Robustly transitive dynamics Enrique Pujals (IMPA, Rio de Janeiro)
|
- Robust transitivity.
- Examples of robust transitive partially hyperbolic systems.
- Dominated splitting: examples of robust transitive systems which are not
partially hyperbolic.
- Dynamical consequences from robust transitivity.
- Classication of partially hyperbolic systems.
- Blenders and Iterated Function Systems.
- Partially hyperbolic systems in the Symplectic and Hamiltonian context.
- Density of homoclinic and heteroclinic bifurcations in the complement of
hyperbolic systems.
[BD] C. Bonatti, L. J. Diaz, Persistence of transitive dieomorphisms, Annals of Math 143 (1995), 367-396. [BDP] C. Bonatti, L. J. Diaz, E. R. Pujals, A C1-generic dichotomy for dieomorphisms: weak form of hyperbolicity or innitely many sinks or sources, Annals of Mathematics, 158 (2003), 355-418. [BDU] C. Bonatti, L.J. Daz, R. Ures; Minimality of strong stable and unstable foliations for partially hyperbolic dieomorphisms. J. Inst. Math. Jussieu 1 (2002), 4, 513{541. [BFP] J. Bochi, B. Fayad, E. R. Pujals, Dichotomy for conservative robust ergodic maps, to appear in CRAS. [CP] S. Crovissier, E. R. Pujals; Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for dieomorphisms. [D1] L. J. Diaz Robust nonhyperbolic dynamics at heterodimensional cycles. Ergodic The- ory and Dynamical Systems, 15 (1995), 291-315.
[HPS] M. Hirsch, C. Pugh, M. Shub, Invariant manifolds, Springer Lecture Notes in Math., 583 (1977). [LP] C. Lizana, E. R. Pujals, Robust transivity for Endomorphisms, to appear in Ergodic Theory and Dynamical Systems. [M] R. Ma~ne, Contributions to the stability conjecture. Topology, 17 (1978), 386-396. [M2] R. Ma~ne, An ergodic clossing lemma, Ann. of Math. 116 (1982), 503-540. [NP] M. Nassiri, E. R. Pujals,Robust transivity in Hamiltonian Dynamics, Annales scien- tiques de l'Ecole Mormale Superieur (45), fascicule 2 (2012), 191-239. [PS1] E. R. Pujals, M. Sambarino,Topics on homoclinic bifurcation, dominated splitting, robust transitivity and related results, Handbook of dynamical systems vol 1B, Elsevier (2005) 327-378 [PS2] E. R. Pujals, M. Sambarino, Homoclinic tangencies and hyperbolicity for surface dieomorphisms, Annals of Mathematics, 151 (2000), 961-1023. [PS3] E. R. Pujals, M. Sambarino, On the dynamics of dominated splitting, Annals of Mathematics (169) (2009), 675-740.
|
Comparteix: