Seminari SIMBa: Elliptic Restricted Three-Body Problem: Study of the ejection-collision orbits
La conferència serà a càrrec d'Alexandra Lillo Escuder i es farà a l'aula 103 de la FME el dimecres 9 d'Octubre a les 12h:30
- https://mat.upc.edu/ca/activitats/seminari-simba-elliptic-restricted-three-body-problem-study-of-the-ejection-collision-orbits
- Seminari SIMBa: Elliptic Restricted Three-Body Problem: Study of the ejection-collision orbits
- 2024-10-09T12:30:00+02:00
- 2024-10-09T13:30:00+02:00
- La conferència serà a càrrec d'Alexandra Lillo Escuder i es farà a l'aula 103 de la FME el dimecres 9 d'Octubre a les 12h:30
09/10/2024 de 12:30 a 13:30 (Europe/Madrid / UTC200)
Aula 103 de la FME
El proper dimecres 9 d'Octubre torna a la FME el seminari interuniversitari SIMBa. Aquest seminari, adreçat a joves matemàtics i impulsat per la UPC i la BGSMath, entre d'altres, ofereix una xerrada cada dues setmanes (normalment per part d'un doctorand), dirigida a altres doctorands i a estudiants de grau i màster. En podeu trobar més informació a https://seminari-simba.github.io/en
Conferenciant: Alexandra Lillo Escuder (Universitat Politècnica de Catalunya)
Títol: Elliptic Restricted Three-Body Problem: Study of the ejection-collision orbits
Dia i hora: Dimecres 9 d'Octubre a les 12:30
Lloc: Aula 103 de la FME i Zoom
Abstract: In this work we will study the Elliptical Restricted Three-Body Porblem, from a theoretical and numerical point of view. In this framework, we will have three celestial bodies, two of them massive and following elliptical orbits (also called primaries) and the third (the one that we are interested in studying its motion) considered massless.
In the first part, we will introduce the system of equations of motion, obtained after applying suitable changes of variables, and we will also see some important properties that will be useful later. In the second part, we will introduce a local regularization method, the so-called Levi-Civita method, since we need to be able to work with initial conditions starting in one of the primaries, in which position we have a singularity. We will deduce the equations of motion in the new variables and we will also see what happens with the previous properties in this new system of coordinates.
In the last part, we will perform a numerical analysis for finding a particular kind of orbits, the ejection-collision orbits. In order to do this, we will present a definition and a characterization that will allow us to compute these orbits, following an algorithm that we will explain step by step. Finally, we will explain the effects of the parameters of the system, in particular we will see how these parameters affect the number of n-ejection-collision orbits.
Comparteix: