Vés al contingut (premeu Retorn)

Resultats de la cerca

1222 elements coincideixen amb el vostre criteri de cerca. Ordena per rellevància · data (més recent primer) · alfabèticament
Filtra els resultats.
MAK Crypto Seminar: Jacek Pomykala
Title: L-functions and large sieve application in cryptology By: Jacek Pomykała (University of Warsaw)
Ubicat a Activitats
Lectura de tesi doctoral: Ferran Dachs
Títol: Multiplier Ideals in Two-Dimensional Local Rings with Rational Singularities
Ubicat a Activitats
CRM: The Mathematics of MemoryCRM: The Mathematics of Memory
We would like to inform you about the forthcoming CRM Intensive Research Program on The Mathematics of Memory, from January 16th to March 10th, 2017.
Ubicat a Activitats
Congres Catala Educacio Matematica
De l'11 al 13 de juliol es farà a Barcelona el Congrés Català d'Educació Matemàtica, organitzat per la FEEMCAT.
Ubicat a Activitats
Seminari Carles Simo
El 22 de juny el professor Carles Simó impartirà un seminari especial a les 11h30 a l'Aula Capella de la UB
Ubicat a Activitats
LIMDA Seminar: C. Elsholtz
Christian Elsholtz (TU Graz) Hilbert cubes in arithmetic sets
Ubicat a Activitats
CRM: Large Cardinals reminder
We would like to remind you about the activities that will take place at the CRM within the Intensive Research Program on Large Cardinals and Strong Logics, from September 5 to December 16, 2016.
Ubicat a Activitats
IEEE Author's Workshop
Taller impartit en anglès, adreçat investigadors que han d'elaborar publicacions acadèmiques.
Ubicat a Activitats
Col·loqui FME-UPC
S'inicia la sèrie de Col.loquis FME-UPC, una iniciativa conjunta del departament de matemàtiques, el departament d'estadística i investigacó operativa, el departament d'enginyeria civil i ambiental i la facultat de matemàtiques. La primera sessió del col.loqui es farà el proper dimarts 14 de juny ales 12h amb la conferència ‘The maximum principle, moving planes et al’ a càrrec de Louis Nirenberg, Premi Abel 2015.
Ubicat a Activitats
Computational geometry seminars: J. Pfeifle
The simplexity of a convex d-polytope P with n vertices is the minimum number of simplices necessary to triangulate P without using new vertices. In dimension 3 and above, bounds for the simplexity are scarce, even in such well-studied cases as the d-dimensional cube. One general method for obtaining bounds on the simplexity is doing linear optimization over the universal polytope U(P). However, since U(P) lives in (d+1)-dimensional space, these linear programs quickly become infeasible computationally. On the other hand, if P is symmetric, we can use techniques from the representation theory of finite groups to simplify the computations. In the Tuesday session, we'll give a crash course on the basics of representation theory, and apply these tools to the problem at hand on Friday.
Ubicat a Activitats