Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 1, 2014, 81–91

Perfect edge-magic graphs

by

SUSANA-CLARA LÓPEZ, FRANCISCO ANTONIO MUNTANER-BATLE AND MIQUEL RIUS-FONT

Abstract

The study of the possible valences for edge-magic labelings of graphs has motivated us to introduce the concept of perfect edge-magic graphs. Intuitively speaking, an edgemagic graph is perfect edge-magic if all possible theoretical valences occur. In particular, we prove that for each integer m > 0, that is the power of an odd prime, and for each natural number n, the crown product $C_m \odot \overline{K_n}$ is perfect edge-magic. Related results are also provided concerning other families of unicyclic graphs. Furthermore, several open questions that suggest interesting lines for future research are also proposed.

Key Words: Edge-magic, perfect edge-magic, valence.
2010 Mathematics Subject Classification: Primary 05C78, Secondary 05C76.

1 Introduction

For the graph theory terminology and notation not defined in this paper we refer the reader to either one of the following sources [2, 3, 8, 18]. Kotzig and Rosa [12] introduced in 1970 the concepts of edge-magic graphs and edge-magic labelings as follows: a (p,q)-graph G is called *edge-magic* if there is a bijective function $f: V(G) \cup E(G) \to \{i\}_{i=1}^{p+q}$ such that the sum f(u) + f(uv) + f(v) = k for any $uv \in E(G)$. Such a function is called an *edge-magic labeling* of G and k is called the *valence* or the *magic sum* of the labeling f. The purpose of this paper is to characterize the set of numbers that are valences for the edge-magic labelings of some families of unicyclic graphs.

Let G = (V, E) be a (p, q)-graph, and define the set

$$T_G = \left\{ \frac{\sum_{u \in V} \deg(u)g(u) + \sum_{e \in E} g(e)}{q} : g: V \cup E \to \{i\}_{i=1}^{p+q} \text{ is a bijective function} \right\}.$$

If $[\min T_G] \leq [\max T_G]$ then the magic interval of G, denoted by J_G , is defined to be the set $J_G = [[\min T_G], [\max T_G]] \cap \mathbb{N}$ and the magic set of G, denoted by τ_G , is the set $\tau_G = \{n \in J_G : n \text{ is the valence of some edge-magic labeling of } G\}$. It is clear that $\tau_G \subseteq J_G$. In this paper, we call G a perfect edge-magic graph if $\tau_G = J_G$.

A (p,q)-graph G is super edge-magic if there is an edge-magic labeling of G, namely $f : V(G) \cup E(G) \to \{i\}_{i=1}^{p+q}$, with the extra property that $f(V(G)) = \{i\}_{i=1}^{p}$. The function f is called a super edge-magic labeling of G. These concepts were introduced independently by Acharya and Hegde [1] and by Enomoto et al. in [4]. Figueroa-Centento et al. stated in [5] the following characterization for super edge-magic labelings.

Lemma 1.1. Let G be a (p,q)-graph. Then G is super edge-magic if and only if there is a bijective function $g: V(G) \longrightarrow \{i\}_{i=1}^{p}$ such that the set $S = \{g(u) + g(v) : uv \in E(G)\}$ is a set of q consecutive integers. In this case, g can be extended to a super edge-magic labeling f with valence $p + q + \min S$.

Let $f: V(G) \cup E(G) \to \{i\}_{i=1}^{p+q}$ be an edge-magic labeling of a (p,q)-graph G. The complementary labeling of f, denoted by \overline{f} , is the labeling defined by the rule: $\overline{f}(x) = p+q+1-f(x)$, for all $x \in V(G) \cup E(G)$. Notice that, if f is an edge-magic labeling of G with valence k, we have that \overline{f} is also an edge-magic labeling of G with valence $\overline{k} = 3(p+q+1) - k$. Let $f: V(G) \cup E(G) \to \{i\}_{i=1}^{p+q}$ be a super edge-magic labeling of a (p,q)-graph G, with p = q. The odd labeling and the even labeling obtained from f, denoted respectively by o(f) and e(f), are the labelings $o(f), e(f) : V(G) \cup E(G) \to \{i\}_{i=1}^{p+q}$ defined as follows: (i) on the vertices: o(f)(x) = 2f(x) - 1 and e(f)(x) = 2f(x), for all $x \in V(G)$, (ii) on the edges: o(f)(xy) = 2val(f) - 2p - 2 - o(f)(x) - o(f)(y) and e(f)(xy) = 2val(f) - 2p - 1 - e(f)(x) - e(f)(y), for all $xy \in E(G)$.

Lemma 1.2. Let G be a (p,q)-graph with p = q and let $f : V(G) \cup E(G) \rightarrow \{i\}_{i=1}^{p+q}$ be a super edge-magic labeling of G. Then, the odd labeling o(f) and the even labeling e(f) obtained from f are edge-magic labelings of G with valences val(o(f)) = 2val(f) - 2p - 2 and val(e(f)) = 2val(f) - 2p - 1.

Proof: Note that, since f is super edge-magic, the set $S_o = \{o(f)(x) + o(f)(y) : xy \in E(G)\} = \{2(f(x) + f(y)) - 2 : xy \in E(G)\}$ is an arithmetic progression of difference 2, starting at $2(\operatorname{val}(f) - 2p) - 2$. Thus, by assigning the even labels to the edges, we obtain an edge-magic labeling with valence $\operatorname{val}(o(f)) = 2\operatorname{val}(f) - 2p - 2$. The proof for e(f) is similar. \Box

When we say that a digraph has a labeling we mean that its underlying graph has such labeling, see [7].

The paper is organized as follows: in section 2 we prove that each element in the family $C_m \odot \overline{K_n}$, where m is a power of an odd prime and $\overline{K_n}$ denotes the complementary graph of the complete graph K_n $(n \in \mathbb{N})$, is a perfect edge-magic graph. In section 3, we prove that the magic set of irregular crowns is big by showing a general construction of edge-magic labelings, and that a subfamily of them is perfect edge-magic. In section 4, we establish a new relation among super edge-magic and even harmonius labelings. Finally, we end by a short section of conclusions and remarks.

2 A family of perfect edge-magic graphs

We begin our calculation of the magic interval $J_{C_m \odot \overline{K_n}}$, for all $m, n \in \mathbb{N}$. Let $C_m \odot \overline{K_n} = (V, E)$, where $V = \{v_i\}_{i=1}^m \cup (\bigcup_{i=1}^m \{v_i^j\}_{j=1}^n)$ and $E = \{v_i v_{i+1}\}_{i=1}^{m-1} \cup \{v_1 v_m\} \cup (\bigcup_{i=1}^m \{v_i v_i^j\}_{j=1}^n)$.

Perfect edge-magic graphs

For any bijective function $g: V \cup E \to \{i\}_{i=1}^{2m(n+1)}$, the corresponding element in T_G is $((1+n)\sum_{i=1}^{m}g(v_i) + \sum_{u \in V \cup E}g(u))/(mn+m)$. Thus, the minimum possible valence occurs when the labels $\{1, 2, \ldots, m\}$ are assigned to the vertices of the cycle. Therefore,

$$\min T_{C_m \odot \overline{K_n}} = \frac{(1+n)\sum_{i=1}^m i + \sum_{i=1}^{2m(n+1)} i}{mn+m} = \frac{3+5m}{2} + 2mn$$

On the other hand, the maximum possible valence occurs when the labels $\{2m(n+1) - m +$ $1, 2m(n+1) - m + 2, \dots, 2m(n+1)$ are assigned to the vertices of the cycle. Hence, using similar calculations, we obtain that $\max T_{C_m \odot \overline{K_n}} = (3+7m)/2 + 4mn$. López et al. have shown in [15] that for each $r \in \mathbb{N}$, with $1 \le r \le mn + 1$, there exists a

super edge-magic labeling f_r with valence

$$\operatorname{val}(f_r) = r - 1 + \frac{3 + 5m}{2} + 2mn \tag{1}$$

of $C_m \odot \overline{K_n}$, when m is a power of a prime greater than 2. Taking the complementary labelings of these labelings, we get that all the natural numbers from 3mn + (3 + 7m)/2 up to 4mn + (3 + 7m)/2(3+7m)/2 also appear as valences of edge-magic labelings of $C_m \odot \overline{K_n}$. Therefore, in order to prove that $C_m \odot \overline{K_n}$ is perfect edge-magic, we only need to show that for each $k \in \mathbb{N}$, with 3mn + (3+5m)/2 < k < 3mn + (3+7m)/2, there exists an edge-magic labeling with valence k. We do this using the odd and the even labelings of the labelings f_r introduced in [15].

Lemma 2.1. Let m be a power of a prime greater than 2 and let n be any positive integer. Then, for each k with $2mn + 3m + 1 \le k \le 4mn + 3m + 2$ there exists an edge-magic labeling of $C_m \odot \overline{K_n}$ with valence k.

Proof: Notice that, by (1) the set $\{\operatorname{val}(f_r): 1 \leq r \leq mn+1\}$ is a set of consecutive integers. mn + 1} contains all integers from val $(o(f_1))$ up to val $(e(f_{mn+1}))$. That is, all integers from 2mn + 3m + 1 up to 4mn + 3m + 2.

Since $2mn + 3m + 1 \le 3mn + (3+5m)/2$ and $3mn + (3+7m)/2 \le 4mn + 3m + 2$, for $n \ge 1$, we obtain the next theorem.

Theorem 2.1. Let $m = p^k$ where p is an odd prime and $k \in \mathbb{N}$. Then the graph $C_m \odot \overline{K_n}$ is perfect edge-magic for all $n \in \mathbb{N}$, $n \geq 1$.

3 Super edge-magic toroidal labelings

The purpose of this section is to introduce another family of perfect edge-magic graphs. This is a subfamily of the family of irregular crowns that we introduce in the next lines.

Let $C(n; j_1, j_2, \ldots, j_n) = (V, E)$, where $n \in \mathbb{N} \setminus \{1, 2\}$ and $j_i \in \mathbb{N} \cup \{0\}$ for all $i \in \mathbb{N}$ $\{1, 2, \ldots, n\}$ be the irregular crown defined as follows: $V = \{v_i\}_{i=1}^n \cup V_1 \cup V_2 \cdots \cup V_n$, where $V_k = \{v_k^1, v_k^2, \dots, v_k^{j_k}\}, \text{ if } j_k \neq 0 \text{ and } V_k = \emptyset \text{ if } j_k = 0, \text{ for each } k \in \{1, 2, \dots, n\} \text{ and } V_k$ $E = \{v_i v_{i+1}\}_{i=1}^{n-1} \cup \{v_1 v_n\} \cup (\cup_{k=1, j_k \neq 0}^n \{v_k v_k^l\}_{l=1}^{j_k}).$ Choose an orientation either clockwise or counterclockwise of the unique cycle in $C(n; j_1, j_2, \ldots, j_n)$, obtaining the oriented cycle $\overrightarrow{C_n}$. In what follows, we denote by $\overrightarrow{C}(n; j_1, j_2, \ldots, j_n)$ the oriented digraph obtained from $C(n; j_1, j_2, \ldots, j_n)$ by considering the strong orientation $\overrightarrow{C_n}$ and in such a way that all vertices have indegree equal to 1. The orientation chosen allows us to arrange the vertices of $C(n; j_1, j_2, \ldots, j_n)$ into n ordered levels. For each k, with $1 \leq k < n$, we consider the ordered vertices $v_k^1, v_k^2, \ldots, v_k^{j_k}, v_{k+1}$, if $j_k \neq 0$ and v_{k+1} if $j_k = 0$. For k = n, we consider $v_n^1, v_n^2, \ldots, v_n^{j_n}, v_1$, if $j_n \neq 0$ and v_1 if $j_n = 0$.

At this point, assume that n is odd and choose a vertex $v \in V$. We define the labeling $\lambda_v : V \to \{1, 2, \ldots, n + \sum_{i=1}^n j_i\}$ recursively, as follows when n is odd. The vertex v receives the label 1. Next, we consider the next vertex in the level of v, that receives the label 2. If the level of v only contains v, then the label 2 is assigned to the first vertex of the level that contains all vertices at distance 2 from v in the digraph. In general, if a vertex receives the label i, for $1 \leq i < |V|$, the next vertex in the level receives the label i + 1. If the vertex that receives the label i is the biggest one in the level, then the label i + 1 is assigned to the first vertex of the level that contains all vertices at distance 2 from the vertex labeled i + 1 is distance 1. We keep labeling the vertices in this way until all vertices have been labeled, and our labeling λ_v is completed. Two examples are showed in Figure 1.

Figure 1: Two super edge-magic labelings of an oriented irregular crown.

Let $v \in V$ and p = |V|. Then, for any two vertices v' and $w \in V$, we have that $\lambda_{v'}(w) \in \{1, 2, \ldots, p\}$ and

$$\lambda_{v'}(w) \equiv \lambda_v(w) + 1 - \lambda_v(v') \pmod{p}.$$
(2)

Remark 3.1. Let $x \in V$ and denote by $N_v(x) = \{\lambda_v(y) : xy \in E\}$. Notice that, by construction, if $|N_v(x) \cap \{1, p\}| < 2$ then $N_v(x)$ is a set of consecutive integers. In case, $|N_v(x) \cap \{1, p\}| = 2$ then $N_v(x)$ admits a partition, namely $N_v(x) = N_v^1(x) \cup N_v^2(x)$ such that, $1 \in N_v^1(x)$, $p \in N_v^2(x)$ and $N_v^i(x)$ is a set of consecutive integers, for i = 1, 2.

The next lemma shows that any labeling λ_v is super edge-magic for any $v \in V$.

Lemma 3.1. Let n be an odd integer and let $j_1, j_2, \ldots, j_n \in \mathbb{N} \cup \{0\}$. Then, the labeling λ_v of $\overrightarrow{C}(n; j_1, j_2, \ldots, j_n)$ can be extended to a super edge-magic labeling g_v , for each $v \in V$. Moreover, the valence of g_v is $1 + \lambda_v(u) + 2p$, where u is the (only) vertex such that $(u, v) \in E(\overrightarrow{C}(n; j_1, j_2, \ldots, j_n))$ and $p = n + j_1 + j_2 + \ldots + j_n$.

Perfect edge-magic graphs

Proof: Let $S_i = \{\lambda_v(v_i) + j : j \in N_v(v_i)\}$, for i = 1, 2, ..., n. The orientation chosen in $C(n; j_1, j_2, ..., j_n)$ guarantees the existence of $k \in \{1, 2, ..., n\}$ such that $(v_k, v) \in E(\overrightarrow{C}(n; j_1, j_2, ..., j_n))$. By Remark 3.1, S_i is a set of consecutive integers, for each $i \neq k$, and for i = k, we have the partition $S_k = S_k^1 \cup S_k^2$ given by $S_k^{\alpha} = \{\lambda_v(v_k) + j : j \in N_v^{\alpha}(v_k)\}$, where S_k^{α} is also a set of consecutive integers, for $\alpha = 1, 2$. Then, the sequence $S_k^1, S_{k+1}, \ldots, S_n, S_1, S_2, \ldots, S_{k-1}, S_k^2$ verifies: (i) every element of the sequence is a set of consecutive integers and, (ii) the maximum in each element of the sequence is the minimum of the next element of the sequence. Therefore, by Lemma 1.1, the labeling λ_v can be extended to a super edge-magic labeling g_v of $C(n; j_1, j_2, \ldots, j_n)$, for each $v \in V$. Moreover, the valence of g_v is given by $1 + \lambda_v(v_k) + 2p$.

In what follows, we identify λ_v with the super edge-magic labeling g_v , for each $v \in V$.

Proposition 3.1. Let n be an odd integer and let $j_1, j_2, \ldots, j_n \in \mathbb{N} \cup \{0\}$. Then the set $\{val(\lambda_v): v \in V(\overrightarrow{C}(n; j_1, j_2, \ldots, j_n))\}$ is a set of consecutive integers.

Proof: Let $D = \overrightarrow{C}(n; j_1, j_2, \ldots, j_n)$ and $p = n + j_1 + j_2 + \ldots + j_n$. By Lemma 3.1, the valence of the super edge-magic labeling λ_v is given by $1 + \lambda_v(u) + 2p$, where $(u, v) \in E(D)$. Thus, we should prove that the set $\{\lambda_{v'}(u') : v' \in V(D) \text{ and } (u', v') \in E(D)\}$ is a set of consecutive integers, which by (2), it is equivalent to prove that $\text{Dif}_v := \{(\lambda_v(u') - \lambda_v(v'))^* : (u', v') \in E(D)\}$ is a set of consecutive integers, where a^* denotes the least nonnegative residue of $a \pmod{p}$.

Let us see first that the set Dif_v does not depend on the vertex v. For any $x \in V(D)$, using (2), we get:

$$\lambda_x(u') - \lambda_x(v') \equiv (\lambda_v(u') + 1 - \lambda_v(x)) - (\lambda_v(v') + 1 - \lambda_v(x)) \pmod{p}$$

$$\equiv \lambda_v(u') - \lambda_v(v') \pmod{p}.$$

Let $\text{Dif}_v(v_i) = \{(\lambda_v(v_i) - \lambda_v(w))^* : (v_i, w) \in E(D)\}$. As before, the set $\text{Dif}_v(v_i)$ does not depend on the vertex v. Clearly, the following equality holds

$$\operatorname{Dif}_{v} = \operatorname{Dif}_{v}(v_{1}) \cup \operatorname{Dif}_{v}(v_{2}) \cup \dots \cup \operatorname{Dif}_{v}(v_{n}).$$
(3)

By Remark 3.1, $\operatorname{Dif}_{v}(v_{i})$ is a set of consecutive integers for each i with $1 \leq i \leq n$. Let $a_{i} = \min \operatorname{Dif}_{v}(v_{i})$ and $b_{i} = \max \operatorname{Dif}_{v}(v_{i})$. We will prove by induction on the number of leaves, $j_{1} + j_{2} + \ldots + j_{n}$, that

$$a_1 \le b_3, \ a_3 \le b_5, \dots, a_{n-2} \le b_n, \ a_n \le b_2, \ a_2 \le b_4, \dots, a_{n-1} \le b_1.$$
 (4)

Assume first that $j_1 + j_2 + \ldots + j_n = 0$, that is, D does not contain leaves. In this case, we have $|\operatorname{Dif}_v| = 1$ and there is nothing to prove. Assume now that the result is true for each digraph D, with $j_1 + j_2 + \ldots + j_n = l$ and consider a digraph D' with $j'_1 + j'_2 + \ldots + j'_n = l + 1$. Let (u, x) and (u, v) be two arcs of D', where u and v are two vertices of the cycle. Let $D = D' \setminus \{x\}$. We denote by λ'_v the labeling introduced before, when instead of D we consider the digraph D'. Thus, we have $\lambda'_v(w) = \lambda_v(w)$, for each $w \in V(D)$ and $\lambda'_v(x) = n + l + 1$. Similarly, we consider the sets $\operatorname{Dif}'_v(v_i) = \{(\lambda'_v(v_i) - \lambda'_v(w))^* : v_i w \in E(G)\}$ and $a'_i = \min \operatorname{Dif}'_v(v_i)$ and $b'_i = \max \operatorname{Dif}'_v(v_i)$,

for i = 1, 2, ..., n. Without loss of restriction, we can assume that $v = v_1$. Notice that, by construction $a'_n = a_n$, $a'_{2i-1} = a_{2i-1} + 1$, $a'_{2i} = a_{2i}$, $b'_{2i} = b_{2i}$, for i = 1, 2, ..., (n-1)/2 and $b'_{2i-1} = b_{2i-1} + 1$, for i = 1, 2, ..., (n+1)/2. Therefore, the induction hypothesis and an easy check show that $a'_1 \leq b'_3$, $a'_3 \leq b'_5$, ..., $a'_{n-2} \leq b'_n$, $a'_n \leq b'_2$, $a'_2 \leq b'_4$, ..., $a'_{n-1} \leq b'_1$.

Now, we are ready to prove that Dif_v is a set of consecutive integers. Assume to the contrary that there exists $x \notin \operatorname{Dif}_v$ such that $\min_i a_i \leq x \leq \max_i b_i$. Without loss of restriction assume that $\min_i a_i = a_1$. The condition $x \notin \operatorname{Dif}_v$ and (3) imply that $x > b_1$ and thus, using (4) that $x > a_{n-1}$. Again, the condition $x \notin \operatorname{Dif}_v$ and (3) imply that $x > b_{n-1}$. Repeating this reasoning recursively, we obtain that $x > b_i$, for all i, which contradicts the fact that $x \leq \max_i b_i$. This proves the result.

3.1 Irregular crowns that are perfect edge-magic

Let C_m be the cycle of odd order m, with $V(C_m) = \{v_i\}_{i=1}^m$ and $E(C_m) = \{v_i v_{i+1}\}_{i=1}^{m-1} \cup \{v_1 v_m\}$. We denote by C_m^n the graph obtained from C_m by attaching n leaves to each vertex v_{2i-1} , for $i = 1, 2, \ldots, (m+1)/2$. That is, we have the identity $C_m^n \cong C(m; j_1, j_2, \ldots, j_m)$, where $j_{2i-1} = n$, for each i with $1 \le i \le (m+1)/2$, and $j_{2i} = 0$, for each i, $1 \le i \le (m-1)/2$. Let us first calculate the magic interval of C_m^n .

Lemma 3.2. The magic interval of C_m^n is $J_{C_m^n} = [a, b]$, where $a = 1 + (m+1)n + 2m + \lceil (m+3+(2m(m-1))/((m+1)n+2m))/4 \rceil$ and $b = 1 + 2(m+1)n + 2m + \lfloor (7m+1-(2m(m-1))/((m+1)n+2m))/4 \rfloor$.

Proof: Let $C_m^n = (V, E)$, where $V = \{v_i\}_{i=1}^m \cup (\bigcup_{i=1}^{(m+1)/2} \{v_{2i-1}^j\}_{j=1}^n)$ and $E = \{v_i v_{i+1}\}_{i=1}^{m-1} \cup \{v_1 v_m\} \cup (\bigcup_{i=1}^{(m+1)/2} \{v_{2i-1}^j\}_{j=1}^n)$. For any bijective function $g : V \cup E \to \{i\}_{i=1}^{(m+1)n+2m}$, the corresponding element in T_G is

$$\frac{2}{(m+1)n+2m}\left((1+n)\sum_{i=1}^{(m+1)/2}g(v_{2i-1})+\sum_{i=1}^{(m-1)/2}g(v_{2i})+\sum_{u\in V\cup E}g(u)\right).$$

Thus, the minimum possible valence occurs when the labels $\{1, 2, ..., (m+1)/2\}$ are assigned to the vertices of degree 2 + n and the labels $\{(m+3)/2, (m+5)/2, ..., m\}$ are assigned to the remaining vertices of the cycle. Hence, the minimum possible valence is:

$$\min J_{C_m^n} = \left[\frac{2}{(m+1)n+2m} \left((1+n) \sum_{i=1}^{(m+1)/2} i + \sum_{i=(m+3)/2}^m i + \sum_{i=1}^{(m+1)n+2m} i \right) \right]$$
$$= \left[\frac{1}{4} \left(m+3 + \frac{2m(m-1)}{(m+1)n+2m} \right) \right] + 1 + (m+1)n + 2m.$$

On the other hand, the maximum possible valence occurs when the labels $\{(m+1)n + 2m, (m+1)n + 2m - 1, \dots, (m+1)n + 2m - (m-1)/2\}$ are assigned to the vertices of degree 2+n and the labels $\{(m+1)n + 2m - (m+1)/2, (m+1)n + 2m - (m+3)/2, \dots, (m+1)n + 2m - (m-1)\}$

are assigned to the remaining vertices of the cycle. Hence, the maximum possible valence is: $\max J_{C_m^n} = \lfloor (7m + 1 - (2m(m-1))/((m+1)n + 2m))/4 \rfloor + 1 + 2(m+1)n + 2m. \square$

Lemma 3.3. Let m be an odd integer. Then, for any pair of integers n and k, with $(5m + 3)/2 + (m + 1)n \le k \le (5m + 3)/2 + 3(m + 1)n/2$ there exists a super edge-magic labeling of C_m^n with valence k.

Proof: An easy check shows that the labelings λ_{v_1} and λ_{v_1} have valences (5m+3)/2 + (m+1)nand (5m+3)/2 + 3(m+1)n/2, respectively. By Lemma 3.1, the set $\{\operatorname{val}(\lambda_v) : v \in V(C_m^n)\}$ is a set of consecutive integers. Therefore, for each k with $(5m+3)/2 + (m+1)n \leq k \leq (5m+3)/2 + 3(m+1)n/2$ there exists $v \in V(C_m^n)$ such that the valence of λ_v is equal to k. \Box

Corollary 3.1. Let m be an odd integer. Then, for any pair of integers n and k with $3m + 1 + (m+1)n \le k \le 3m + 2 + 2(m+1)n$ there exists an edge-magic labeling of C_m^n with valence k.

Proof. Notice that, by Lemma 3.3, for any pair of integers n and k, with $(5m+3)/2 + (m+1)n \le k \le (5m+3)/2 + 3(m+1)n/2$ there exists a super edge-magic labeling of C_m^n with valence k. Let g_r be a super edge-magic labeling of C_m^n with valence (5m+3)/2 + (m+1)n + r - 1, for $r = 1, 2, \ldots, (m+1)n/2 + 1$. Thus, Lemma 1.2 implies that the set $\{\operatorname{val}(o(g_r)) : 1 \le r \le (m+1)n/2 + 1\} \cup \{\operatorname{val}(e(g_r)) : 1 \le r \le (m+1)n/2 + 1\}$ contains all integers from $\operatorname{val}(o(g_1))$ up to $\operatorname{val}(e(g_{(m+1)n/2+1}))$. That is, all integers from (m+1)n + 3m + 1 up to 2(m+1)n + 3m + 2. \Box

Corollary 3.2. Let m be an odd integer. Then, for any pair of integers n and k with $n \ge 1$ and $(5m+3)/2 + (m+1)n \le k \le (7m+3)/2 + 2(m+1)n$ there exists an edge-magic labeling of C_m^n with valence k.

Proof: Let g_r be a super edge-magic labeling of C_m^n with valence (5m+3)/2 + (m+1)n + r - 1, for $r = 1, 2, \ldots, (m+1)n/2 + 1$. Such labelings exist by Lemma 3.3. Taking the complementary labelings of these labelings, we get that all the natural numbers from (7m+3)/2 + 3(m+1)n/2 up to (7m+3)/2 + 2(m+1)n also appear as valences of edge-magic labelings of C_m^n . Since by Corollary 3.1, for any pair of integers n and k with $3m+1+(m+1)n \leq k \leq 3m+2+2(m+1)n$ there exists an edge-magic labeling of C_m^n with valence k, in order to complete the proof we only need to check that $3m+1+(m+1)n \leq (5m+3)/2+3(m+1)n/2$ and $(7m+3)/2+3(m+1)n/2 \leq 3m+2+2(m+1)n$. But, this is clear since the two inequalities are equivalent to the inequality $m-1 \leq (m+1)n$, which trivially holds for $n \geq 1$.

Proposition 3.2. The graph C_3^n is perfect edge-magic, for all $n \in \mathbb{N} \setminus \{1\}$.

Proof: By Lemma 3.2, the magic interval of C_3^n is $J_{C_3^n} = [4n+9, 8n+12]$. Since by Corollary 3.2, the magic set $\tau_{C_3^n}$ contains the interval [4n+9, 8n+12], we get the result. \Box

Theorem 3.2. The graph C_5^n is perfect edge-magic for all $n \in \mathbb{N} \setminus \{1\}$.

Proof: By Lemma 3.2, the magic interval of C_5^n is $J_{C_5^n} = [6n+14, 12n+19]$. Since by Corollary 3.2, the magic set $\tau_{C_5^n}$ contains the interval [6n+14, 12n+19], we get the result. \Box

Using Lemma 3.2 and Corollary 3.2, a computer check shows other families of perfect edgemagic graphs.

Theorem 3.3. The graph C_m^n is perfect edge-magic when (i) m = 7 and $1 \le n \le 3$, (ii) m = 9 and n = 1, and (iii) m = 11 and n = 1.

4 Even harmonious labelings from super edge-magic labelings

A (p,q)-graph G with $p \leq q$ is called *harmonious* [10] if it is possible to label its vertices with distinct integers (mod q) in such a way that the edge sums are also distinct (mod q). When G is a tree, exactly one label may be used on two vertices. Variations of this concept have appeared recently in the literature. A (p,q)-graph G is said to be *odd harmonious* [13] if there exists an injection $f: V(G) \to \{i\}_{i=0}^{2q-1}$ such that the induced mapping $f^*(uv) = (f(u) + f(v))$ is a bijection from E(G) onto the set $\{1,3,5,\ldots,2q-1\}$. Then f is called an *odd harmonious labeling* of G. Similarly, Sarasija and Binthiya introduced in [17] what they called an even harmonious graph. Let G be a (p,q)-graph. An injective function $f: V(G) \to \{i\}_{i=0}^{2q}$ such that the induced function $f^*: E(G) \to \{0, 2, 4, \ldots, 2(q-1)\}$ defined by $f^*(uv) = (f(u) + f(v))$ mod (2q) is bijective. Then f is called an *even harmonious labeling* of G and G is called an *even harmonious graph*.

Super edge-magic labelings are known to be a powerful link among different types of labelings. In [5] many relations among labelings were established in a direct way. Later on, in [7] the digraph product \otimes_h was introduced, and this product together with super edge-magic labelings, has been used in order to establish further relations among labelings, see for instance [7, 11, 14, 16]. In this section we establish a new relationship among super edge-magic labelings and even harmonious labelings.

Lemma 4.1. Let G be a (p,q)-graph with $q \ge p-1$. If G is super edge-magic then G is even harmonious.

Proof: Let f be any super edge-magic labeling of a (p,q)-graph G, with $q \ge p-1$. Consider the labeling $e^*(f): V(G) \to \{i\}_{i=0}^{2q}$ defined by the rule $e^*(f)(u) = 2f(u) - 2$, for all $u \in V(G)$. Then, using a similar proof as in Lemma 1.2, it is clear that $e^*(f)$ is an even harmonious labeling of G.

From this result we get that all super edge-magic graphs are even harmonious. In particular, we can obtain some of the results introduced in [17].

Corollary 4.1. [17] The following graphs are even harmonious: (i) the path P_n , with $n \ge 2$, (ii) the star $K_{1,n}$, with $n \ge 1$, and (iii) the cycle of odd order C_n , with $n \ge 3$.

Perfect edge-magic graphs

5 Conclusions and remarks

In this paper we have proved that the family $C_m \odot \overline{K_n}$, where m is a power of a prime greater than 2, is perfect edge-magic for all $n \in \mathbb{N} \setminus \{1\}$. In fact, it is the first non-trivial infinite family known to be perfect edge-magic. We also have proved that C_3^n and C_5^n are perfect edge-magic and that the magic set of the family C_m^n contains a big interval. The problem of finding families of graphs that are perfect edge-magic seems to be a hard one, and we want to encourage other researches to continue this line of research. Next we want to introduce some open problems in this direction.

Open question 5.1. Characterize the set Σ_n defined by $\Sigma_m = \{m \in \mathbb{N} : C_{2m+1} \odot \overline{K_n} \text{ is perfect edge-magic for all } n \in \mathbb{N}\}.$

About open question 5.1, we have made some progress, continuing a work started in [15]. However, nothing is known about the next question.

Open question 5.2. Characterize the set Υ_n defined by $\Upsilon_m = \{m \in \mathbb{N} \setminus \{1\} : C_{2m} \odot \overline{K_n} \text{ is perfect edge-magic for all } n \in \mathbb{N}\}.$

It is well known that stars are not perfect edge-magic. In fact the set $\tau_{K_{1,n}}$ contains only 3 elements for every $n \in \mathbb{N} \setminus \{1\}$ (see [6, 18]). This fact motivates the following two questions.

Open question 5.3. Find examples of infinite families of graphs which are edge-magic but not perfect edge-magic.

Open question 5.4. Characterize the set of caterpillars which are not perfect edge-magic. In particular, characterize the set of paths which are perfect edge-magic and characterize the set of caterpillars with the same number of leaves attached at each vertex of the spine which are perfect edge-magic.

The concept of perfect edge-magic graphs was motivated by the concept of perfect super edge-magic graphs introduced in [15]. Furthermore, the concept of perfect super edge-magic graphs was motivated by the following conjecture introduced in [9] by Godbold and Slater, that "as far as we know" remains unsolved up to the present.

Conjecture 5.1. [9]. For $n = 2t+1 \ge 7$ and $5t+4 \le j \le 7t+5$ there is an edge-magic labeling of C_n , with valence k = j. For $n = 2t \ge 4$ and $5t+2 \le j \le 7t+1$ there is an edge-magic labeling of C_n , with valence k = j.

In this paper we want to renew the interest for this question, and encourage researches to work towards a final solution of the question. For any reader interested in it, the book of Wallis [18] constitutes an excellent source of information about this question. For related problems on graph labelings we direct the reader to [2] and [8].

Acknowledgements The research conducted in this document by the first and third authors has been supported by the Spanish Research Council under project MTM2011-28800-C02-01 and by the Catalan Research Council under grant 2009SGR1387.

References

- B. D. ACHARYA AND S. M. HEGDE, Strongly indexable graphs, *Discrete Math.* 93 (1991), 123–129.
- [2] M. BAČA AND M. MILLER, Super Edge-Antimagic Graphs, BrownWalker Press, Boca Raton, 2008.
- [3] G. CHARTRAND AND L. LESNIAK, *Graphs and Digraphs*, second edition. Wadsworth & Brooks/Cole Advanced Books and Software, Monterey (1986).
- [4] H. ENOMOTO, A. LLADÓ, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105–109.
- [5] R.M. FIGUEROA-CENTENO, R. ICHISHIMA AND F.A. MUNTANER-BATLE, The place of super edge-magic labelings among other classes of labelings, *Discrete Math.* 231 (1-3) (2001), 153–168.
- [6] R.M FIGUEROA -CENTENO, R. ICHISHIMA AND F.A. MUNTANER-BATLE, On super edge-magic graphs, Ars Combin. 64 (2002), 81–95.
- [7] R.M. FIGUEROA-CENTENO, R. ICHISHIMA, F.A. MUNTANER-BATLE AND M. RIUS-FONT, Labeling generating matrices, J. Comb. Math. and Comb. Comput. 67 (2008), 189–216.
- [8] J.A. GALLIAN, A dynamic survey of graph labeling, *Electron. J. Combin.* 14 (2011), #DS6.
- [9] R.D. GODBOLD AND P. J. SLATER, All cycles are edge-magic, Bull. Inst. Combin Appl. 22 (1998), 93–97.
- [10] R.L. GRAHAM AND N.J.A. SLOANE, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth. 1 (1980), 382–404.
- [11] R. ICHISHIMA, S.C. LÓPEZ, F. A. MUNTANER-BATLE, M. RIUS-FONT, The power of digraph products applied to labelings, *Discrete Math.* **312** (2012), 221-228.
- [12] A. KOTZIG AND A. ROSA, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451–461.
- [13] Z.-H. LIANG AND Z.-L. BAI, On the odd harmonious graphs with applications, J. Appl. Math. Comput. 29 (2009), 105–116.
- [14] S.C. LÓPEZ, F. A. MUNTANER-BATLE, M. RIUS-FONT, Bi-magic and other generalizations of super edge-magic labelings, Bull. Aust. Math. Soc. 84 (2011), 137–152.
- [15] S.C. LÓPEZ, F. A. MUNTANER-BATLE, M. RIUS-FONT, Perfect super edge-magic graphs, Bull. Math. Soc.Sci. Math. Roumanie 55 (103) No 2 (2012), 199–208.

- [16] S.C. LÓPEZ, F. A. MUNTANER-BATLE, M. RIUS-FONT, Labeling constructions using the \otimes_h -product, Discrete Appl. Math, 161(2013), 3005–3016.
- [17] P.B. SARASIJA AND R. BINTHIYA, Even harmonious graphs with applications, Int. J. Comput. Sci. Inf. Security 9 (2011), 161–163.
- [18] W.D. WALLIS, Magic graphs. Birkhaüser, Boston (2001).

Received: 17.07.2012, Accepted: 09.09.2012.

> S.C. López Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya, C/Esteve Terrades 5 08860 Castelldefels, Spain E-mail: susana@ma4.upc.edu

F.A. Muntaner-Batle Graph Theory and Applications Research Group School of Electrical Engineering and Computer Science Faculty of Engineering and Built Environment The University of Newcastle NSW 2308 Australia E-mail: fambles@yahoo.es

> M. Rius-Font Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya, C/Esteve Terrades 5 08860 Castelldefels, Spain E-mail: mrius@ma4.upc.edu