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Abstract

The study of the possible valences for edge-magic labelings of graphs has motivated
us to introduce the concept of perfect edge-magic graphs. Intuitively speaking, an edge-
magic graph is perfect edge-magic if all possible theoretical valences occur. In particular,
we prove that for each integer m > 0, that is the power of an odd prime, and for each
natural number n, the crown product Cm ⊙ Kn is perfect edge-magic. Related results
are also provided concerning other families of unicyclic graphs. Furthermore, several open
questions that suggest interesting lines for future research are also proposed.
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1 Introduction

For the graph theory terminology and notation not defined in this paper we refer the reader
to either one of the following sources [2, 3, 8, 18]. Kotzig and Rosa [12] introduced in 1970
the concepts of edge-magic graphs and edge-magic labelings as follows: a (p, q)-graph G is
called edge-magic if there is a bijective function f : V (G) ∪ E(G) → {i}p+q

i=1 such that the sum
f(u) + f(uv) + f(v) = k for any uv ∈ E(G). Such a function is called an edge-magic labeling of
G and k is called the valence or the magic sum of the labeling f . The purpose of this paper is to
characterize the set of numbers that are valences for the edge-magic labelings of some families
of unicyclic graphs.

Let G = (V,E) be a (p, q)-graph, and define the set

TG =

{
∑

u∈V deg(u)g(u) +
∑

e∈E g(e)

q
: g : V ∪ E → {i}p+q

i=1 is a bijective function

}

.

If ⌈minTG⌉ ≤ ⌊maxTG⌋ then the magic interval of G, denoted by JG, is defined to be the set
JG = [⌈minTG⌉, ⌊maxTG⌋]∩N and the magic set of G, denoted by τG, is the set τG = {n ∈ JG :
n is the valence of some edge-magic labeling of G}. It is clear that τG ⊆ JG. In this paper, we
call G a perfect edge-magic graph if τG = JG.
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A (p, q)-graph G is super edge-magic if there is an edge-magic labeling of G, namely f :
V (G) ∪ E(G) → {i}p+q

i=1 , with the extra property that f(V (G)) = {i}pi=1. The function f
is called a super edge-magic labeling of G. These concepts were introduced independently by
Acharya and Hegde [1] and by Enomoto et al. in [4]. Figueroa-Centento et al. stated in [5] the
following characterization for super edge-magic labelings.

Lemma 1.1. Let G be a (p, q)-graph. Then G is super edge-magic if and only if there is a
bijective function g : V (G) −→ {i}pi=1 such that the set S = {g(u) + g(v) : uv ∈ E(G)} is a set
of q consecutive integers. In this case, g can be extended to a super edge-magic labeling f with
valence p+ q +minS.

Let f : V (G) ∪ E(G) → {i}p+q
i=1 be an edge-magic labeling of a (p, q)-graph G. The comple-

mentary labeling of f , denoted by f , is the labeling defined by the rule: f(x) = p+ q+1−f(x),
for all x ∈ V (G) ∪ E(G). Notice that, if f is an edge-magic labeling of G with valence k,
we have that f is also an edge-magic labeling of G with valence k = 3(p + q + 1) − k. Let
f : V (G) ∪ E(G) → {i}p+q

i=1 be a super edge-magic labeling of a (p, q)-graph G, with p = q.
The odd labeling and the even labeling obtained from f , denoted respectively by o(f) and
e(f), are the labelings o(f), e(f) : V (G) ∪ E(G) → {i}p+q

i=1 defined as follows: (i) on the
vertices: o(f)(x) = 2f(x) − 1 and e(f)(x) = 2f(x), for all x ∈ V (G), (ii) on the edges:
o(f)(xy) = 2val(f)−2p−2−o(f)(x)−o(f)(y) and e(f)(xy) = 2val(f)−2p−1−e(f)(x)−e(f)(y),
for all xy ∈ E(G).

Lemma 1.2. Let G be a (p, q)-graph with p = q and let f : V (G) ∪ E(G) → {i}p+q
i=1 be a super

edge-magic labeling of G. Then, the odd labeling o(f) and the even labeling e(f) obtained from
f are edge-magic labelings of G with valences val(o(f)) = 2val(f) − 2p − 2 and val(e(f)) =
2val(f)− 2p− 1.

Proof: Note that, since f is super edge-magic, the set So = {o(f)(x)+o(f)(y) : xy ∈ E(G)} =
{2(f(x) + f(y)) − 2 : xy ∈ E(G)} is an arithmetic progression of difference 2, starting at
2(val(f) − 2p) − 2. Thus, by assigning the even labels to the edges, we obtain an edge-magic
labeling with valence val(o(f)) = 2val(f)− 2p− 2. The proof for e(f) is similar. 2

When we say that a digraph has a labeling we mean that its underlying graph has such
labeling, see [7].

The paper is organized as follows: in section 2 we prove that each element in the family
Cm ⊙Kn, where m is a power of an odd prime and Kn denotes the complementary graph of
the complete graph Kn (n ∈ N), is a perfect edge-magic graph. In section 3, we prove that the
magic set of irregular crowns is big by showing a general construction of edge-magic labelings,
and that a subfamily of them is perfect edge-magic. In section 4, we establish a new relation
among super edge-magic and even harmonius labelings. Finally, we end by a short section of
conclusions and remarks.

2 A family of perfect edge-magic graphs

We begin our calculation of the magic interval JCm⊙Kn
, for all m,n ∈ N. Let Cm ⊙ Kn =

(V,E), where V = {vi}
m
i=1 ∪ (∪m

i=1{v
j
i }

n
j=1) and E = {vivi+1}

m−1
i=1 ∪ {v1vm} ∪ (∪m

i=1{viv
j
i }

n
j=1).
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For any bijective function g : V ∪ E → {i}
2m(n+1)
i=1 , the corresponding element in TG is

(

(1 + n)
∑m

i=1 g(vi) +
∑

u∈V ∪E g(u)
)

/(mn + m). Thus, the minimum possible valence occurs
when the labels {1, 2, . . . ,m} are assigned to the vertices of the cycle. Therefore,

minTCm⊙Kn
=

(1 + n)
∑m

i=1 i+
∑2m(n+1)

i=1 i

mn+m
=

3 + 5m

2
+ 2mn.

On the other hand, the maximum possible valence occurs when the labels {2m(n + 1) −m +
1, 2m(n + 1) − m + 2, . . . , 2m(n + 1)} are assigned to the vertices of the cycle. Hence, using
similar calculations, we obtain that maxTCm⊙Kn

= (3 + 7m)/2 + 4mn.
López et al. have shown in [15] that for each r ∈ N, with 1 ≤ r ≤ mn + 1, there exists a

super edge-magic labeling fr with valence

val(fr) = r − 1 +
3 + 5m

2
+ 2mn (1)

of Cm⊙Kn, when m is a power of a prime greater than 2. Taking the complementary labelings
of these labelings, we get that all the natural numbers from 3mn + (3 + 7m)/2 up to 4mn +
(3 + 7m)/2 also appear as valences of edge-magic labelings of Cm ⊙ Kn. Therefore, in order
to prove that Cm ⊙Kn is perfect edge-magic, we only need to show that for each k ∈ N, with
3mn+ (3 + 5m)/2 < k < 3mn+ (3 + 7m)/2, there exists an edge-magic labeling with valence
k. We do this using the odd and the even labelings of the labelings fr introduced in [15].

Lemma 2.1. Let m be a power of a prime greater than 2 and let n be any positive integer.
Then, for each k with 2mn+ 3m+ 1 ≤ k ≤ 4mn+ 3m+ 2 there exists an edge-magic labeling
of Cm ⊙Kn with valence k.

Proof: Notice that, by (1) the set {val(fr) : 1 ≤ r ≤ mn+ 1} is a set of consecutive integers.
Thus, Lemma 1.2 implies that the set {val(o(fr)) : 1 ≤ r ≤ mn + 1} ∪ {val(e(fr)) : 1 ≤ r ≤
mn + 1} contains all integers from val(o(f1)) up to val(e(fmn+1)). That is, all integers from
2mn+ 3m+ 1 up to 4mn+ 3m+ 2. 2

Since 2mn+3m+1 ≤ 3mn+(3+5m)/2 and 3mn+(3+7m)/2 ≤ 4mn+3m+2, for n ≥ 1,
we obtain the next theorem.

Theorem 2.1. Let m = pk where p is an odd prime and k ∈ N. Then the graph Cm ⊙Kn is
perfect edge-magic for all n ∈ N, n ≥ 1.

3 Super edge-magic toroidal labelings

The purpose of this section is to introduce another family of perfect edge-magic graphs. This
is a subfamily of the family of irregular crowns that we introduce in the next lines.

Let C(n; j1, j2, . . . , jn) = (V,E), where n ∈ N \ {1, 2} and ji ∈ N ∪ {0} for all i ∈
{1, 2, . . . , n} be the irregular crown defined as follows: V = {vi}

n
i=1 ∪ V1 ∪ V2 · · · ∪ Vn, where

Vk = {v1k, v
2
k, . . . , v

jk
k }, if jk 6= 0 and Vk = ∅ if jk = 0, for each k ∈ {1, 2, . . . , n} and
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E = {vivi+1}
n−1
i=1 ∪ {v1vn} ∪ (∪n

k=1,jk 6=0{vkv
l
k}

jk
l=1). Choose an orientation either clockwise

or counterclockwise of the unique cycle in C(n; j1, j2, . . . , jn), obtaining the oriented cycle
−→
Cn. In what follows, we denote by

−→
C (n; j1, j2, . . . , jn) the oriented digraph obtained from

C(n; j1, j2, . . . , jn) by considering the strong orientation
−→
Cn and in such a way that all ver-

tices have indegree equal to 1. The orientation chosen allows us to arrange the vertices of
C(n; j1, j2, . . . , jn) into n ordered levels. For each k, with 1 ≤ k < n, we consider the or-
dered vertices v1k, v

2
k, . . . , v

jk
k , vk+1, if jk 6= 0 and vk+1 if jk = 0. For k = n, we consider

v1n, v
2
n, . . . , v

jn
n , v1, if jn 6= 0 and v1 if jn = 0.

At this point, assume that n is odd and choose a vertex v ∈ V . We define the labeling
λv : V → {1, 2, . . . , n+

∑n
i=1 ji} recursively, as follows when n is odd. The vertex v receives the

label 1. Next, we consider the next vertex in the level of v, that receives the label 2. If the level
of v only contains v, then the label 2 is assigned to the first vertex of the level that contains
all vertices at distance 2 from v in the digraph. In general, if a vertex receives the label i, for
1 ≤ i < |V |, the next vertex in the level receives the label i+ 1. If the vertex that receives the
label i is the biggest one in the level, then the label i + 1 is assigned to the first vertex of the
level that contains all vertices at distance 2 from the vertex labeled with i in the digraph. We
keep labeling the vertices in this way until all vertices have been labeled, and our labeling λv

is completed. Two examples are showed in Figure 1.
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Figure 1: Two super edge-magic labelings of an oriented irregular crown.

Let v ∈ V and p = |V |. Then, for any two vertices v′ and w ∈ V , we have that λv′(w) ∈
{1, 2, . . . , p} and

λv′(w) ≡ λv(w) + 1− λv(v
′) (mod p). (2)

Remark 3.1. Let x ∈ V and denote by Nv(x) = {λv(y) : xy ∈ E}. Notice that, by construction,
if |Nv(x) ∩ {1, p}| < 2 then Nv(x) is a set of consecutive integers. In case, |Nv(x) ∩ {1, p}| = 2
then Nv(x) admits a partition, namely Nv(x) = N1

v (x)∪N
2
v (x) such that, 1 ∈ N1

v (x), p ∈ N2
v (x)

and N i
v(x) is a set of consecutive integers, for i = 1, 2.

The next lemma shows that any labeling λv is super edge-magic for any v ∈ V .

Lemma 3.1. Let n be an odd integer and let j1, j2, . . . , jn ∈ N ∪ {0}. Then, the labeling

λv of
−→
C (n; j1, j2, . . . , jn) can be extended to a super edge-magic labeling gv, for each v ∈ V .

Moreover, the valence of gv is 1 + λv(u) + 2p, where u is the (only) vertex such that (u, v) ∈

E(
−→
C (n; j1, j2, . . . , jn)) and p = n+ j1 + j2 + . . .+ jn.
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Proof: Let Si = {λv(vi) + j : j ∈ Nv(vi)}, for i = 1, 2, . . . , n. The orientation cho-
sen in C(n; j1, j2, . . . , jn) guarantees the existence of k ∈ {1, 2, . . . , n} such that (vk, v) ∈

E(
−→
C (n; j1, j2, . . . , jn)). By Remark 3.1, Si is a set of consecutive integers, for each i 6= k,

and for i = k, we have the partition Sk = S1
k ∪ S2

k given by Sα
k = {λv(vk) + j : j ∈

Nα
v (vk)}, where Sα

k is also a set of consecutive integers, for α = 1, 2. Then, the sequence
S1
k, Sk+1, . . . , Sn, S1, S2, . . . , Sk−1, S

2
k verifies: (i) every element of the sequence is a set of con-

secutive integers and, (ii) the maximum in each element of the sequence is the minimum of the
next element of the sequence. Therefore, by Lemma 1.1, the labeling λv can be extended to a
super edge-magic labeling gv of C(n; j1, j2, . . . , jn), for each v ∈ V . Moreover, the valence of gv
is given by 1 + λv(vk) + 2p. 2

In what follows, we identify λv with the super edge-magic labeling gv, for each v ∈ V .

Proposition 3.1. Let n be an odd integer and let j1, j2, . . . , jn ∈ N ∪ {0}. Then the set

{val(λv) : v ∈ V (
−→
C (n; j1, j2, . . . , jn))} is a set of consecutive integers.

Proof: Let D =
−→
C (n; j1, j2, . . . , jn) and p = n+j1+j2+ . . .+jn. By Lemma 3.1, the valence of

the super edge-magic labeling λv is given by 1+λv(u)+2p, where (u, v) ∈ E(D). Thus, we should
prove that the set {λv′(u′) : v′ ∈ V (D) and (u′, v′) ∈ E(D)} is a set of consecutive integers,
which by (2), it is equivalent to prove that Difv := {(λv(u

′) − λv(v
′))∗ : (u′, v′) ∈ E(D)} is a

set of consecutive integers, where a∗ denotes the least nonnegative residue of a (mod p).
Let us see first that the set Difv does not depend on the vertex v. For any x ∈ V (D), using

(2), we get:

λx(u
′)− λx(v

′) ≡ (λv(u
′) + 1− λv(x))− (λv(v

′) + 1− λv(x)) (mod p)

≡ λv(u
′)− λv(v

′) (mod p).

Let Difv(vi) = {(λv(vi) − λv(w))
∗ : (vi, w) ∈ E(D)}. As before, the set Difv(vi) does not

depend on the vertex v. Clearly, the following equality holds

Difv = Difv(v1) ∪Difv(v2) ∪ · · · ∪Difv(vn). (3)

By Remark 3.1, Difv(vi) is a set of consecutive integers for each i with 1 ≤ i ≤ n. Let
ai = minDifv(vi) and bi = maxDifv(vi). We will prove by induction on the number of leaves,
j1 + j2 + . . .+ jn, that

a1 ≤ b3, a3 ≤ b5, . . . , an−2 ≤ bn, an ≤ b2, a2 ≤ b4, . . . , an−1 ≤ b1. (4)

Assume first that j1+ j2+ . . .+ jn = 0, that is, D does not contain leaves. In this case, we have
|Difv| = 1 and there is nothing to prove. Assume now that the result is true for each digraph D,
with j1+j2+ . . .+jn = l and consider a digraph D′ with j′1+j′2+ . . .+j′n = l+1. Let (u, x) and
(u, v) be two arcs ofD′, where u and v are two vertices of the cycle. LetD = D′\{x}. We denote
by λ′

v the labeling introduced before, when instead of D we consider the digraph D′. Thus, we
have λ′

v(w) = λv(w), for each w ∈ V (D) and λ′
v(x) = n+ l+ 1. Similarly, we consider the sets

Dif′v(vi) = {(λ′
v(vi) − λ′

v(w))
∗ : viw ∈ E(G)} and a′i = minDif′v(vi) and b′i = maxDif′v(vi),
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for i = 1, 2, . . . , n. Without loss of restriction, we can assume that v = v1. Notice that, by
construction a′n = an, a

′
2i−1 = a2i−1 + 1, a′2i = a2i, b

′
2i = b2i, for i = 1, 2, . . . , (n − 1)/2 and

b′2i−1 = b2i−1 + 1, for i = 1, 2, . . . , (n + 1)/2. Therefore, the induction hypothesis and an easy
check show that a′1 ≤ b′3, a′3 ≤ b′5, . . . , a

′
n−2 ≤ b′n, a′n ≤ b′2, a′2 ≤ b′4, . . . , a

′
n−1 ≤ b′1.

Now, we are ready to prove that Difv is a set of consecutive integers. Assume to the contrary
that there exists x /∈ Difv such that mini ai ≤ x ≤ maxi bi. Without loss of restriction assume
that mini ai = a1. The condition x /∈ Difv and (3) imply that x > b1 and thus, using (4) that
x > an−1. Again, the condition x /∈ Difv and (3) imply that x > bn−1. Repeating this reasoning
recursively, we obtain that x > bi, for all i, which contradicts the fact that x ≤ maxi bi. This
proves the result. 2

3.1 Irregular crowns that are perfect edge-magic

Let Cm be the cycle of odd orderm, with V (Cm) = {vi}
m
i=1 and E(Cm) = {vivi+1}

m−1
i=1 ∪{v1vm}.

We denote by Cn
m the graph obtained from Cm by attaching n leaves to each vertex v2i−1, for

i = 1, 2, . . . , (m+1)/2. That is, we have the identity Cn
m

∼= C(m; j1, j2, . . . , jm), where j2i−1 = n,
for each i with 1 ≤ i ≤ (m + 1)/2, and j2i = 0, for each i, 1 ≤ i ≤ (m − 1)/2. Let us first
calculate the magic interval of Cn

m.

Lemma 3.2. The magic interval of Cn
m is JCn

m
= [a, b], where a = 1+ (m+1)n+2m+ ⌈(m+

3 + (2m(m − 1))/((m + 1)n + 2m))/4⌉ and b = 1 + 2(m + 1)n + 2m + ⌊(7m + 1 − (2m(m −
1))/((m+ 1)n+ 2m))/4⌋.

Proof: Let Cn
m = (V,E), where V = {vi}

m
i=1 ∪ (∪

(m+1)/2
i=1 {vj2i−1}

n
j=1) and E = {vivi+1}

m−1
i=1 ∪

{v1vm} ∪ (∪
(m+1)/2
i=1 {vj2i−1}

n
j=1). For any bijective function g : V ∪ E → {i}

(m+1)n+2m
i=1 , the

corresponding element in TG is

2

(m+ 1)n+ 2m



(1 + n)

(m+1)/2
∑

i=1

g(v2i−1) +

(m−1)/2
∑

i=1

g(v2i) +
∑

u∈V ∪E

g(u)



 .

Thus, the minimum possible valence occurs when the labels {1, 2, . . . , (m+1)/2} are assigned
to the vertices of degree 2+n and the labels {(m+3)/2, (m+5)/2, . . . ,m} are assigned to the
remaining vertices of the cycle. Hence, the minimum possible valence is:

min JCn
m

=









2

(m+ 1)n+ 2m



(1 + n)

(m+1)/2
∑

i=1

i+

m
∑

i=(m+3)/2

i+

(m+1)n+2m
∑

i=1

i













=

⌈

1

4

(

m+ 3 +
2m(m− 1)

(m+ 1)n+ 2m

)⌉

+ 1 + (m+ 1)n+ 2m.

On the other hand, the maximum possible valence occurs when the labels {(m + 1)n +
2m, (m+1)n+2m−1, . . . , (m+1)n+2m−(m−1)/2} are assigned to the vertices of degree 2+n
and the labels {(m+1)n+2m−(m+1)/2, (m+1)n+2m−(m+3)/2, . . . , (m+1)n+2m−(m−1)}
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are assigned to the remaining vertices of the cycle. Hence, the maximum possible valence is:
max JCn

m
= ⌊(7m+ 1− (2m(m− 1))/((m+ 1)n+ 2m)) /4⌋+ 1 + 2(m+ 1)n+ 2m. 2

Lemma 3.3. Let m be an odd integer. Then, for any pair of integers n and k, with (5m +
3)/2 + (m + 1)n ≤ k ≤ (5m + 3)/2 + 3(m + 1)n/2 there exists a super edge-magic labeling of
Cn

m with valence k.

Proof: An easy check shows that the labelings λv1
and λv1

1

have valences (5m+3)/2+(m+1)n
and (5m + 3)/2 + 3(m + 1)n/2, respectively. By Lemma 3.1, the set {val(λv) : v ∈ V (Cn

m)}
is a set of consecutive integers. Therefore, for each k with (5m + 3)/2 + (m + 1)n ≤ k ≤
(5m+3)/2+ 3(m+1)n/2 there exists v ∈ V (Cn

m) such that the valence of λv is equal to k. 2

Corollary 3.1. Let m be an odd integer. Then, for any pair of integers n and k with 3m+1+
(m+ 1)n ≤ k ≤ 3m+ 2 + 2(m+ 1)n there exists an edge-magic labeling of Cn

m with valence k.

Proof. Notice that, by Lemma 3.3, for any pair of integers n and k, with (5m+3)/2+ (m+
1)n ≤ k ≤ (5m+3)/2+3(m+1)n/2 there exists a super edge-magic labeling of Cn

m with valence
k. Let gr be a super edge-magic labeling of Cn

m with valence (5m + 3)/2 + (m + 1)n + r − 1,
for r = 1, 2, . . . , (m + 1)n/2 + 1. Thus, Lemma 1.2 implies that the set {val(o(gr)) : 1 ≤ r ≤
(m+1)n/2+1}∪{val(e(gr)) : 1 ≤ r ≤ (m+1)n/2+1} contains all integers from val(o(g1)) up
to val(e(g(m+1)n/2+1)). That is, all integers from (m+1)n+3m+1 up to 2(m+1)n+3m+2.
2

Corollary 3.2. Let m be an odd integer. Then, for any pair of integers n and k with n ≥ 1
and (5m+ 3)/2 + (m+ 1)n ≤ k ≤ (7m+ 3)/2 + 2(m+ 1)n there exists an edge-magic labeling
of Cn

m with valence k.

Proof: Let gr be a super edge-magic labeling of Cn
m with valence (5m+3)/2+(m+1)n+r−1,

for r = 1, 2, . . . , (m+1)n/2+1. Such labelings exist by Lemma 3.3. Taking the complementary
labelings of these labelings, we get that all the natural numbers from (7m+3)/2+3(m+1)n/2
up to (7m+ 3)/2 + 2(m+ 1)n also appear as valences of edge-magic labelings of Cn

m. Since by
Corollary 3.1, for any pair of integers n and k with 3m+1+(m+1)n ≤ k ≤ 3m+2+2(m+1)n
there exists an edge-magic labeling of Cn

m with valence k, in order to complete the proof we only
need to check that 3m+1+(m+1)n ≤ (5m+3)/2+3(m+1)n/2 and (7m+3)/2+3(m+1)n/2 ≤
3m+2+2(m+1)n. But, this is clear since the two inequalities are equivalent to the inequality
m− 1 ≤ (m+ 1)n, which trivially holds for n ≥ 1. 2

Proposition 3.2. The graph Cn
3 is perfect edge-magic, for all n ∈ N \ {1}.

Proof: By Lemma 3.2, the magic interval of Cn
3 is JCn

3
= [4n+9, 8n+12]. Since by Corollary

3.2, the magic set τCn
3
contains the interval [4n+ 9, 8n+ 12], we get the result. 2
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Theorem 3.2. The graph Cn
5 is perfect edge-magic for all n ∈ N \ {1}.

Proof: By Lemma 3.2, the magic interval of Cn
5 is JCn

5
= [6n+14, 12n+19]. Since by Corollary

3.2, the magic set τCn
5
contains the interval [6n+ 14, 12n+ 19], we get the result. 2

Using Lemma 3.2 and Corollary 3.2, a computer check shows other families of perfect edge-
magic graphs.

Theorem 3.3. The graph Cn
m is perfect edge-magic when (i) m = 7 and 1 ≤ n ≤ 3, (ii) m = 9

and n = 1, and (iii) m = 11 and n = 1.

4 Even harmonious labelings from super edge-magic labelings

A (p, q)-graph G with p ≤ q is called harmonious [10] if it is possible to label its vertices with
distinct integers (mod q) in such a way that the edge sums are also distinct (mod q). When
G is a tree, exactly one label may be used on two vertices. Variations of this concept have
appeared recently in the literature. A (p, q)-graph G is said to be odd harmonious [13] if there
exists an injection f : V (G) → {i}2q−1

i=0 such that the induced mapping f∗(uv) = (f(u) + f(v))
is a bijection from E(G) onto the set {1, 3, 5, . . . , 2q − 1}. Then f is called an odd harmonious
labeling of G. Similarly, Sarasija and Binthiya introduced in [17] what they called an even
harmonious graph. Let G be a (p, q)-graph. An injective function f : V (G) → {i}2qi=0 such that
the induced function f∗ : E(G) → {0, 2, 4, . . . , 2(q− 1)} defined by f∗(uv) = (f(u)+ f(v)) mod
(2q) is bijective. Then f is called an even harmonious labeling of G and G is called an even
harmonious graph.

Super edge-magic labelings are known to be a powerful link among different types of la-
belings. In [5] many relations among labelings were established in a direct way. Later on, in
[7] the digraph product ⊗h was introduced, and this product together with super edge-magic
labelings, has been used in order to establish further relations among labelings, see for instance
[7, 11, 14, 16]. In this section we establish a new relationship among super edge-magic labelings
and even harmonious labelings.

Lemma 4.1. Let G be a (p, q)-graph with q ≥ p− 1. If G is super edge-magic then G is even
harmonious.

Proof: Let f be any super edge-magic labeling of a (p, q)-graph G, with q ≥ p − 1. Consider
the labeling e∗(f) : V (G) → {i}2qi=0 defined by the rule e∗(f)(u) = 2f(u)− 2, for all u ∈ V (G).
Then, using a similar proof as in Lemma 1.2, it is clear that e∗(f) is an even harmonious
labeling of G. 2

From this result we get that all super edge-magic graphs are even harmonious. In particular,
we can obtain some of the results introduced in [17].

Corollary 4.1. [17] The following graphs are even harmonious: (i) the path Pn, with n ≥ 2,
(ii) the star K1,n, with n ≥ 1, and (iii) the cycle of odd order Cn, with n ≥ 3.
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5 Conclusions and remarks

In this paper we have proved that the family Cm ⊙Kn, where m is a power of a prime greater
than 2, is perfect edge-magic for all n ∈ N \ {1}. In fact, it is the first non-trivial infinite family
known to be perfect edge-magic. We also have proved that Cn

3 and Cn
5 are perfect edge-magic

and that the magic set of the family Cn
m contains a big interval. The problem of finding families

of graphs that are perfect edge-magic seems to be a hard one, and we want to encourage other
researches to continue this line of research. Next we want to introduce some open problems in
this direction.

Open question 5.1. Characterize the set Σn defined by

Σm = {m ∈ N : C2m+1 ⊙Kn is perfect edge-magic for all n ∈ N}.

About open question 5.1, we have made some progress, continuing a work started in [15].
However, nothing is known about the next question.

Open question 5.2. Characterize the set Υn defined by Υm = {m ∈ N \ {1} : C2m ⊙
Kn is perfect edge-magic for all n ∈ N}.

It is well known that stars are not perfect edge-magic. In fact the set τK1,n
contains only 3

elements for every n ∈ N \ {1} (see [6, 18]). This fact motivates the following two questions.

Open question 5.3. Find examples of infinite families of graphs which are edge-magic but not
perfect edge-magic.

Open question 5.4. Characterize the set of caterpillars which are not perfect edge-magic. In
particular, characterize the set of paths which are perfect edge-magic and characterize the set
of caterpillars with the same number of leaves attached at each vertex of the spine which are
perfect edge-magic.

The concept of perfect edge-magic graphs was motivated by the concept of perfect super
edge-magic graphs introduced in [15]. Furthermore, the concept of perfect super edge-magic
graphs was motivated by the following conjecture introduced in [9] by Godbold and Slater, that
“as far as we know” remains unsolved up to the present.

Conjecture 5.1. [9]. For n = 2t+1 ≥ 7 and 5t+4 ≤ j ≤ 7t+5 there is an edge-magic labeling
of Cn, with valence k = j. For n = 2t ≥ 4 and 5t + 2 ≤ j ≤ 7t + 1 there is an edge-magic
labeling of Cn, with valence k = j.

In this paper we want to renew the interest for this question, and encourage researches to
work towards a final solution of the question. For any reader interested in it, the book of Wallis
[18] constitutes an excellent source of information about this question. For related problems on
graph labelings we direct the reader to [2] and [8].
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[2] M. Bača and M. Miller, Super Edge-Antimagic Graphs, BrownWalker Press, Boca
Raton, 2008.

[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, second edition. Wadsworth
& Brooks/Cole Advanced Books and Software, Monterey (1986).
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