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Abstract

Graph labelings has experimented a fast development during the

last four decades. Two books dedicated to this topic, a very complete

survey on the subject and over 1000 papers in the literature consti-

tute a good proof of this fact. In this paper we explore some open

problems on super edge-magic labelings, and about related topics.

We are particularly interested on super edge-magic labelings due to

the large amount of relations existing among super edge-magic la-

belings and other types of labelings, mainly graceful and harmonious

labelings.
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1 Introduction

A labeling of a graph is a function with domain being either the set of
vertices, the set of edges, or both, the set of vertices and edges of a graph
and ranges taken from some set (usually the integers), that meets some
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properties. In 1967 Rosa [20] introduced graceful labelings as an alternative
way to attack Ringel’s conjecture [19], that states that any tree T of size p
decomposes the complete graph K2p+1 into 2p + 1 copies of T . Nowadays
this conjecture remains open and only particular families of trees have
been proved to admit such labeling. Motivated by graceful labelings, many
other labelings have appeared in the literature. Among these labelings,
probably the most important ones, if we mesure importance by the number
of papers devoted to them, are the harmonious labelings introduced by
Graham and Sloane [10] in 1980. Enomoto et al. [3] introduced the concept
of super edge-magic labeling. However, we must mention that in a previous
paper Acharya and Hegde [1] had introduced an equivalent labeling using
arithmetic progressions. In this paper we will mainly concentrate on super
edge-magic labelings due to the close relations that they have with graceful
and harmonious labelings. Next, in order to make this paper reasonably
self-contained, we define the concepts of graceful, harmonious and super
edge-magic graphs.
Let G = (V, E) be a graph of order p and size q. A graceful labeling of
G is an injective function f : V °! Zq+1 such that when each edge xy is
assigned the label |f(x)°f(y)| then the resulting edge labels are all distinct.
Graphs that admit such labelings are called graceful. The graph G is called
harmonious if there exists an injective function f : V °! Zq such that if
we assign to each edge xy the label f(x) + f(y) mod(q) then the resulting
labels are all distinct. When G is a tree, exactly one label can be used
on two distinct vertices. Such a function f is called a harmonious labeling
of G. The graph G is super edge-magic if there exists a bijective function
f : V [E °! {i}p+q

i=1 such that f(V ) = {i}p
i=1 and f(x)+ f(xy)+ f(y) = k

for every edge xy.
The goal of this paper is to present some open problems related with super
edge-magic labelings. First of all, we consider the problem of the maximum

density of super edge-magic graphs. That is to say, let G = (V, E) be a
super edge-magic graph of order p and size q. Is it possible to obtain an
upper bound for q in terms of p?. Enomoto et al., showed in [3] that
q ∑ 2p ° 3, and in [7] it was shown that super edge-magic graphs that
reach the bound must contain triangles. This suggests that if we enlarge
the girth of the graphs then the size of super edge-magic graphs gets smaller.
In Section 2, we discuss this idea and we introduce some possible lines of
research.
Let G = (V, E) be a graph and let M(G) be a set of non-negative integers.
An integer n is in M(G) if G [ nK1 is super edge-magic. The super edge-
magic deficiency of G is defined to be the minimum of M(G) when M(G) is
non-empty, otherwise it is defined to be infinity. In Section 3 we introduce
what we feel that are the most significant results about super edge-magic
deficiency and we introduce some questions that suggest diÆerent lines of
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research.
The concept of super edge-magic labeling has been recently generalized
to the concept of super edge-magic labelings with respect to a model [15].
This generalization shows that the concept of super edge-magicness and the
concept of proper coloring of the edges of a graph are strongly related. In
Section 4, we introduce some questions that rise from this new approach.
In Section 5, we consider the relation existing between the well known
Queen’s problem and the labeling that is named after this problem. In
Section 6, we study a type of labeling that falls in the category of product
magic and product antimagic labelings. Such labelings have been so far
analyzed either using probabilistic methods, or using powerful results in
Number Theory.

2 Bounds for the size of super edge-magic
graphs.

In [3] Enomoto et al. proved the following result.

Lemma 2.1 Let G = (V,E) be a super edge-magic graph of order p and

size q. Then

q ∑ 2p° 3.

It is easy to find super edge-magic graphs that reach the bound, see for
instance the graph shown in Figure 1.
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Figure 1: A super edge-magic graph with q = 2p° 3.

Figueroa-Centeno et al. proved in [7] that if a graph G of order p and size
2p° 3 is super edge-magic, then G must contain at least one triangle as a
subgraph. In fact, they prove the following.
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Theorem 2.1 [7] Let G = (V,E) be a super edge-magic graph of order p
and size q with p ∏ 4 and q ∏ 2p° 4. Then G contains triangles.

Corollary 2.1 [7] Let G = (V,E) be a super edge-magic graph of order

p ∏ 4 and size q with girth greater than 3. Then q ∑ 2p° 5.

It is not hard to find examples of super edge-magic bipartite graphs of order
p ∏ 8 and size q = 2p°5, which shows that the bound provided in Corollary
2.1 is tight. These results suggest that super edge-magic graphs with larger
girth must have size upper bounded by a smaller quantity. Hence we ask
the following question.

Question 2.1 Is it possible to find an infinite family of super edge-magic

graphs of order p, size q = 2p° 5 and girth 5?

In [12] Ichishima, Muntaner and Rius propose a family of graphs with such
properties.
Let P = {Pn : n 2 N} be the family of graphs where each Pn has order 5n
and size 10n°5. Let P1 be the cycle of order 5. For n 2 N\{1}, let [0, 5n°1]
be the vertex set of Pn, where [i, j] denotes the set {i, i + 1, . . . , j}. The
graph Pn consists of n cycles, each one of them called the level Lk, where
k 2 [1, n]. The vertices of the level Lk are V (Lk) = [5k ° 5, 5k ° 1]. Each
vertex in Lk is adjacent with exactly one vertex of the level Lk°1 and with
exactly one vertex of the level Lk+1, for each k 2 [2, n° 1]. Consequently
the vertices of L2, . . . , Ln°1 have all degree 4 and the vertices of L1 and
Ln have degree 3. Next we describe these adjacencies.
Let a, b 2 V (Lk); k 2 [1, n]. We denote by ā and b̄ the remainders of a and
b modulo 5. Then (a, b) 2 E(Pn) if and only if either ā = b̄+52 or b̄ = ā+52.
Next, let a 2 V (Lk) and b 2 V (Lk+1), k 2 [1, n°1] then ab 2 E(Pn) if and
only if b̄ = º(ā) when k is odd or b̄ = º°1(ā) when k is even, where º is
the following permutation of elements of Z5 in cycle notation: (0, 4, 1, 2)(3).

Figure 2 shows the graph P3. Note that P2 is the Petersen graph.
It is easy to show that for all n 2 N the girth of Pn is 5 and that Pn is
super edge-magic. For instance, we obtain that for all n 2 N the function
f : [0, 5n ° 1] °! [1, 5n] defined by the rule f(i) = i + 1 provides us with
a super edge-magic labeling of Pn (see Lemma 4.1 in Section 4). In Figure
3, it is shown a super edge-magic labeling of P1

We ask the followings questions about the relation order-girth-size.

Question 2.2 Let p 2 N. Does there exist a super edge-magic graph of

order p, size q = 2p° 5 and girth 5?

Question 2.3 Find tight bounds for the size of super edge-magic graphs

with girth g ∏ 6.
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Figure 2: The graph P3.

3 The problem of the super edge magic defi-
ciency

Motivated by the concept of edge-magic deficiency, introduced by Kotzig
and Rosa in [14], Figueroa-Centeno et al. introduced in [8] the super edge-
magic deficiency of a graph. Let G = (V, E) be a graph and let

M(G) = {n 2 N [ {0} : G [ nK1 is super edge-magic}.

The super edge-magic deficiency of G, denoted by µs(G), is defined as:

µs(G) =
Ω

min M(G), if M(G) 6= ;,
+1, if M(G) = ;.

The problem to determine the super edge-magic deficiency interested by
many researchers, and in spite of being hard to find general results on
the topic, this definition has been the focus even of some Ph.D. thesis,
see for instance [18]. Next we present some results that we believe are
representative.
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Figure 3: Super edge-magic labeling of P1.

Theorem 3.1 [8] Let Kn be the complete graph of order n. Then,

µs(Kn) =

8
<

:

0, if n 2 {1, 2, 3},
1, if n = 4,
+1, if n ∏ 5.

Theorem 3.2 [8] Let Cn be the cycle of order n. Then,

µs(Cn) =

8
<

:

0, if n is odd,
1, if n ¥ 0 (mod 4),
+1, if n ¥ 2 (mod 4).

Theorem 3.3 [6] For every integer n ∏ 3,

µs(2Cn) =
Ω

1, if n is even,
+1, if n is odd.

Theorem 3.4 [6] For every n ∏ 3,

µs(3Cn) =

8
<

:

0, if n is odd,
1, if n ¥ 0 (mod 4),
+1, if n ¥ 2 (mod 4).

Theorem 3.5 [6] For every positive integer n ¥ 0 (mod 4),

µs(4Cn) = 1.

In [6] the following conjecture is introduced.
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Conjecture 3.6 Let m ∏ 1 and n ∏ 3 be integers. If mn ¥ 0 (mod 4)
then

µs(mCn) = 1.

The next conjecture is probably one of the most popular in the topic of
super edge-magic labelings.

Conjecture 3.7 [3] Every tree is super edge-magic.

In terms of deficiency, the conjecture is equivalent to say that if T is a tree
then µs(T ) = 0. But, what can we say when we deal with acyclic graphs
that are not necessarily connected? Do we have any reason to think that
given any forest F , then µs(F ) = 0? The answer to this last question is
no. The following result provides us with a counterexample.

Theorem 3.8 [8] Let nK2 be a matching with n components. Then,

µs(nK2) =
Ω

0, if n is odd,
1, if n is even.

However the following result found in [6] claims that the super edge-magic
deficiency of any forest is always finite.

Theorem 3.9 Let F be a forest. Then

µs(F ) < +1.

In [6], Figueroa-Centeno et al. conjectured the following:

Conjecture 3.10 Let F be a forest with exactly two connected compo-

nents. Then

µs(F ) ∑ 1.

Up to now, this conjecture is still open and only a few particular examples
known seem to confirm it.
In order to conclude this section we give the following result, stated by
Muntaner and Rius in [16].

Theorem 3.11 For every non-bipartite graph G there exists a natural

number N(G) such that if µs(G) ∏ N(G) then µs(G) = +1.
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4 Super edge-magic models

Generalizations of super edge-magic labelings can be found in the literature,
for instance see [11]. In this section we introduce a new one, based on the
interpretation of super edge-magic labelings as arithmetic progressions with
diÆerence 1.

Lemma 4.1 [5] A graph G = (V, E) of order p and size q is super edge-

magic if and only if, there exists a bijective function f : V ! {i}p
i=1 such

that the set S = {f(x) + f(y) : xy 2 E} is a set of exactly q consecutive

integers.

Recall that a proper coloring of a graph G with n colors is an assignment
of the n colors to the edges, in such a way that the edges incident with a
common vertex receive distinct colors.
Consider a representation of Kn in such a way that its vertices coincide with
vertices of an n-sided polygon. Each bijective assignment of the numbers
from 1 up to n to the vertices induces a labeling of the edges, given by the
sum of the adjacent vertex labels. Therefore, we have a proper coloring
of the edges that admits a natural order given by the value of the colors.
A graph of order n is super edge-magic if, when we have it as a subgraph
of Kn, then the color of its edges respects the natural order. That is to
say the values of the colors (edge labels) form an arithmetic progression of
diÆerence 1.
Given two natural numbers m, n, a super edge-magic m-model of order n is
a proper coloring of the edges of Kn that uses m colors, with an m ordered
set that determines a prestablised order of the m colors. We say that a
graph G of order n is super edge-magic with respect to the m-model if and
only if G can be found as a subgraph of Kn in a representation that uses
consecutive colors in the ordered set, without any color repetition. Figure
4 shows the m-model of order n commented previously, for m = 7 and
n = 5. The interior edges present a proper coloring of the cycle of order 5,
that respects the order of the colors. In particular, we say that C5 is super
edge-magic with respect to this 7-model.
We point out that the number of edges of a super edge-magic graph with
respect to an m-model is always less than or equal to m and that a graph
that uses the m colors is always super edge-magic with respect to the m-
model.
It is well known that even cycles do not admit any super edge magic labeling
[3]. That is to say, they are not super edge-magic with respect to the first
model described. In fact, in [15] an m-model with m colors so that no 2-
regular graph of order m is super edge-magic with respect to it is provided.
This model can be described taking as vertices the vertices of a regular
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Figure 4: A 7-model of order 5.

n-gon, as edges its sides and diagonals and considering a new coloring that
assigns to two diÆerent edges the same color if and only if they are parallel.
The concept of super edge-magic models suggests new research lines, some
of which can be found in [15]. We discuss the following ones:

Question 4.1 Consider an even number m. Find an m-model of order

m, namely ∫m, such that at least a 2-regular graph of order m is super

edge-magic with respect to ∫m, or show that this model does not exist.

Question 4.2 Consider an even number m. Find an m-model of order m
that maximizes the number of 2-regular graphs of order m that contains the

model. Find such maximum.

Question 4.3 Given a (p, q)-graph G find, when possible, a q-model of

order p that does not contain any subgraph isomorphic to G with a proper

coloring.

We conclude this section with an observation with respect to the first ques-
tion. For m = 4, the only 2-regular graph of order 4 is C4. A simple case
by case proof allows us to conclude that there is not a proper coloring of
K4 with 4 colors that allows us to find C4 using all colors. Nevertheless,
the result in general is not true. Figure 5 shows a proper coloring of K6

where there is contained a C6 using all six colors. In relation with the
second question, it is easy to check that there is no proper coloring of K6

that admits a realization of 2C3 using all six colors. Therefore, in this case
this maximum is exactly 1.
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Figure 5: A proper coloring of K6.

5 Queen labelings

In 1848 the German chess player Max Bezzel proposed the 8-queens prob-
lem. This problem consists of placing eight queens on a chessboard in such
a way that not two queens attack each other. That is to say, no two queens
can occupy the same row, column or diagonal.
It is in 1859 when Frank Nanck provides the first solution for this problem
and extends the problem to what is today known as the n-queens problem.
This problem has been studied by many well known mathematicians, as
for instance Gauss and Cantor, and to count the number of solutions for a
given n, has proven to be an extremely di±cult problem. Some solutions
have been found for a few values of n but it seems that the general problem
is far away from being solved.
For instance it is known that there exist 92 solutions for the original 8
queens problem, 12 of which are essentially diÆerent.
Motivated by this problem, it was introduced in [2] the concept of queen

labeling as follows: let G = (V, E) be a digraph, where loops are allowed. A
queen labeling of G is a bijective function l : V ! [1, |V |] such that for every
pair of arcs (u1, v1), (u2, v2) 2 E, we have that l(u1) + l(v1) 6= l(u2) + l(v2)
and l(u1)° l(v1) 6= l(u2)° l(v2).
If a digraph G admits a queen labeling, then we say that G is a queen

digraph. The name of queen labeling comes from the correspondence es-
tablished in [2], between the solutions of the n-queen problem and the
queen labelings of 1-regular digraphs. That is to say, digraphs for which
their underlying graph are 2-regular graphs, possible with loops, where each
component has been oriented cyclically.
We want to remark the following open problem about queen labelings:
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Question 5.1 Characterize the set of 1-regular digraphs of order n with

loops allowed that admit queen labelings.

So far, not much is known about this problem. In [2] it is shown that if 3
divides n(n° 1), then the union of n(n° 1)/3 cyclically oriented triangles,
admits a queen labeling. We note that among all 1-regular digraphs of
order 8, that are candidates to admit queen labelings, the only one that
does not admit such labeling is the one with underlying graph C3 [ C5.

6 Product labelings

Figueroa-Centeno et al. introduced similar concepts to magic and an-
timagic labelings, using products, instead of sums. The following definitions
were first introduced in [4].
A graph G = (V,E) of order p and size q is called product-magic if there is
a bijective function from E onto [1, q], such that the product of the labels
of the edges incident with the same vertex is constant. If this product is
distinct for each vertex, then the graph G is called product antimagic.
The graph G is called product edge-magic if there is a bijective function
f : V [ E ! [1, p + q], such that the product f(u) · f(uv) · f(v) = k for
every uv 2 E.
When the product f(u) · f(uv) · f(v) is distinct for each edge uv 2 E,
then the graph is called product edge-antimagic. The following results and
conjectures can be found in the original paper by Figueroa-Centeno et al.
[4].

Theorem 6.1 A graph G of size q is product-magic if and only if q ∑ 1.

Conjecture 6.2 A connected graph G of order q is product antimagic if

and only if q ∏ 3.

Theorem 6.3 A graph G of size q without isolated vertices is product edge-

magic if and only if q ∑ 1.

Theorem 6.4 Every graph which is non-isomorphic to K2 nor K2[Nn is

product edge-antimagic, where Nn is the graph formed by n isolated vertices.

About Conjecture 6.2, Kaplan, Lev and Roditty proved in [13] that the
following graphs are product antimagic:

• The disjoint union of cycles and paths, where each path has size at
least 3.

• Connected graphs of order p and size q, where q ∏ 4p ln p.
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• Graphs where each component has size at least 2, and the minimum
degree is at least 8

p
ln q ln(ln q), where q is the size of the graph.

• Every K-partite complet graph except for K2 and K1,2.

• The corona product of two graphs G and H, G
J

H, where G has no
isolated vertices and H is regular.

Oleg Pikhurko obtained an excellent result characterizing the set of all
graphs of large order that are product antimagic.

Theorem 6.5 [17] Every connected graph of order larger than n0 = 101020

is product antimagic.

This result suggest the following problem:

Question 6.1 Improve the value for n0.

7 Conclusions

This paper is a journey through super edge-magic labelings and about other
concepts that in one way or another keep some relation with them.
Graph labelings is a very active area of research and many challenging ques-
tions have emerge. Probably the most well known are the two conjectures
that claim that every tree is graceful [19] and that every tree is harmonic
[10], although lately, also the conjecture that claims that every tree is super
edge-magic [3] has become very popular.
The survey by Gallian [9], which is periodically actualized, constitutes a
very good source for the interested reader.
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