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Vector spaces

The vector space Rn

We consider the set of n-tuples of real numbers:

Rn = {(x1, x2, . . . , xn) | xi ∈ R}

and we call its elements vectors.
Notation: When we talk about v ∈ Rn we usually think of v as a
column vector,

v =

x1
...
xn

 .
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Vector spaces

R2: Physical interpretation
▶ View (x , y) ∈ R2 as a directed line segment between two

points A and B, (x , y) = ”vector”
−→
AB.

▶
−→
AB : the displacement needed to get from A to B: x units
along the x-axis and y along the y -axis.

▶ Two vectors are equal if they represent the same displacement
(⇔ they have the same length, direction, and sense).

▶ We can always think (x , y) as a vector of initial point (0, 0)
and end point (x , y).
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Vector spaces

Operations in R2

We can sum or substract vectors

and multiply a vector by a constant (scalar)
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Vector spaces

R3

▶ Vectors in R3 have a similar physical interpretation

▶ We can also sum two vectors and multiply a vector by a
scalar. These operations can be done in coordinates: if
u = (x1, x2, x3) and v = (y1, y2, y3), then

u + v = (x1 + y1, x2 + y2, x3 + y3),

c · u = (cx1, cx2, cx3) for any c ∈ R.
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Vector spaces

Operations in Rn

In Rn we define the following operations:

sum: if u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn), then

u + v = (x1 + y1, x2 + y2, . . . , xn + yn) ∈ Rn.

scalar multiplication: if u = (x1, x2, . . . , xn), c ∈ R,
then

c · u = (c x1, c x2, . . . , c xn) ∈ Rn.
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Vector spaces

Proposition

These operations in Rn satisfy the following properties:

1. u + v = v + u. Commutativity

2. (u + v) + w = u + (v + w). Associativity

3. ∃ an element 0 ∈ Rn, called the zero vector, such that
u + 0 = u.

4. For each u ∈ Rn, ∃ an element −u ∈ Rn such that
u + (−u) = 0.

5. c · (u + v) = c · u + c · v. Distributivity
6. (c + d) · u = c · u + d · u. Distributivity
7. c · (d · u) = (cd) · u.
8. 1 · u = u.
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Vector spaces

Examples

Any set that has two operations + and · satisfying the previous
property is called a vector space
Some other examples of vector spaces are:

▶ Solutions of a homogeneous linear system of equations.

▶ m × n matrices

▶ Polynomials of degree ≤ k , k ≥ 1

▶ Real functions
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Vector spaces

Vector subspaces

F is a vector subspace of the vector space E if
F ⊆ E and F a vector space itself.

Definition
Let F be a nonempty subset of Rn. Then F is a vector subspace of
Rn if the following conditions hold:

1. If u and v are in F , then u + v is in F .

2. If u is in F and c is a scalar, then c · u is in F .
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Vector spaces

Vector subspaces

The following are examples of vector subspaces:

▶ V = {⃗0}
▶ V = Rn

▶ F1 = {(α,−2α) | α ∈ R}
▶ F2 = {(a+ 2b, 0, b) ∈ R3 | a, b ∈ R}
▶ G1 = {(x , y) ∈ R2 | 2x − 5y = 0}
▶ G2 = {(x , y , z , t) ∈ R4 | 2x − 5y +3z = 0, x − y + z +2t = 0}
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Linear dependency, basis, and dimension

Linear Combination

Definition
We say that u ∈ Rn is a linear combination of v1, . . . , vk ∈ Rn if
there are c1, . . . , ck ∈ R such that u = c1 v1 + . . .+ ck vk

Finding out if a given vector is a linear combination of a collection
of vectors is equivalent to check whether a linear system of
equations is consistent. | |

v1 . . . vk
| |


c1

...
ck

 =

 |
u
|


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Linear dependency, basis, and dimension

Generators

Let v1, v2, . . . , vk be vectors in Rn.

Definition
The span of v1, v2, . . . , vk is the set of all linear combinations of
v1, v2, . . . , vk :

[v1, v2, . . . , vk ] = {c1v1 + . . .+ ckvk | c1, . . . , cn ∈ R}.
If [v1, . . . , vk ] = F , we say that {v1, v2, . . . , vk} is a system of
generators for F , and also that F is spanned by v1, v2, . . . , vk .
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Linear dependency, basis, and dimension

Linear independence

Definition
The vectors v1, v2, . . . , vk are linearly dependent if there are scalars
c1, c2, . . . , ck , at least one of which is not zero, such that
c1 v1 + . . .+ ck vk = 0⃗.
Otherwise, we say that v1, v2, . . . , vk are linearly independent.

Theorem
The vectors v1, v2, . . . , vk in Rn are linearly dependent if and only
if at least one of the vectors can be expressed as a linear
combination of the others.
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Linear dependency, basis, and dimension

Basis

Definition
Let F ⊆ Rn be a vector subspace. An ordered collection of vectors
{v1, . . . , vk} is a basis of F if

1. F = [v1, . . . , vk ] (that is, {v1, ...vk} is a system of generators
of F ) and

2. v1, . . . , vk are linearly independent.

Example-Definition

If ei = (0, . . . , 1, . . . , 0) for i = 1, 2, . . . , n, then
e = {e1, e2, . . . , en} is a basis for Rn. This basis is called the
standard basis for Rn.

Notation: [v1, . . . , vk ] is the generated set (the vector space),
Notation: {v1, . . . , vk} is a set of k vectors (the basis).
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Linear dependency, basis, and dimension

The importance of rank

Theorem
Given v1, v2, . . . , vk ∈ Rn, write A = (v1, . . . , vk) ∈ Mn,k(R).
Then,

i) v1, v2, . . . , vk are linearly independent if and only if
rank(A) = k.

ii) v1, v2, . . . , vk are a system of generators of Rn if and only if
rank(A) = n.

i) + ii) v1, v2, . . . , vk are a basis for Rn if and only if
k = rank(A) = n.

Proposition

Given vectors S = {v1, . . . , vk} in Rn, the following are equivalent:

1. S is a basis of Rn;

2. S are linearly independent and k = n;

3. S are a system of generators and k = n.
18
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Linear dependency, basis, and dimension

Dimension

Theorem (The Basis Theorem)

1. Each basis of the space Rn has n vectors.

2. If F is a vector subspace, all bases of F have the same
cardinal.

Definition
The cardinal of a basis of F is called the dimension of F .

19



Linear dependency, basis, and dimension

Dimension

Theorem (The Basis Theorem)

1. Each basis of the space Rn has n vectors.

2. If F is a vector subspace, all bases of F have the same
cardinal.

Definition
The cardinal of a basis of F is called the dimension of F .

19



Vector Subspaces

Outline

Vector spaces

Linear dependency, basis, and dimension

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

20



Vector Subspaces

Vector subspaces

Proposition

▶ V = [v1, v2, . . . , vk ] is a vector subspace of Rn.

▶ Let Ax = 0 be a linear system, where A ∈ Mm,n(R). Then,
the set of solutions V = {v ∈ Rn | Av = 0} is a vector
subspace of Rn.

In general, there are two ways to describe a vector subspace
F ⊂ Rn:

▶ through a system of generators: F = [v1, . . . , vk ]

▶ through an homogeneous linear system of equations:
F = {u ∈ Rn | Au = 0}
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Vector Subspaces

Computing a basis of a vector subspace

If F = [v1, v2, . . . , vk ], a basis of F can be obtained by applying
any of the following methods:

▶ Write the vectors v1, . . . , vk as the rows of a matrix A, and
reduce A to row echelon form Ā (Gaussian elimination). The
nonzero rows of Ā are a basis of F .

▶ Write the vectors v1, . . . , vk as the columns of a matrix B
and reduce B to row echelon form B̄ (Gaussian elimination).
The columns of B̄ with pivots indicate the vectors among
v1, . . . , vk to choose to obtain a basis of F .
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Vector Subspaces

Computing the dimension of a subspace

Proposition

▶ If F = [v1, . . . , vk ], then dim(F ) = rank (v1, . . . , vk)

▶ If F = {u ∈ Rn | Au = 0}, then dim(F ) = n − rank(A).

Theorem
Let F ⊆ G be subspaces of Rn. Then:

▶ F ,G are finite-dimensional and dimF ≤ dimG ≤ n.

▶ dimF = dimG if and only if F = G.
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Vector Subspaces

Extending to a basis of Rn

If u1, . . . , uk are linearly independent vectors, then they can be
extended to a basis of Rn:

▶ Write the vectors u1, . . . , uk as the columns of a matrix B,
and take M = (B | In).

▶ Then, reduce M to row echelon form M̄ = (B̄ | Īn) (Gaussian
elimination).

▶ Collect the columns of Īn with a pivot and choose the
corresponding vectors of the standard basis (columns of In) of
Rn.

▶ u1, . . . , uk together with these last vectors form a basis of Rn.

The same can be done if u1, . . . , uk are linearly independent
vectors of a vector subspace V :
instead of In, take a matrix formed by a basis v1, . . . , vd of V and
do the same process as above for M = (u1, . . . , uk |v1, . . . , vd) .
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Vector Subspaces

Subspaces: Equations ↔ Generators

From “generators” to “equations”:
If V = [v1, . . . , vk ] ⊂ Rn:
Write M = (v1, . . . , vk), and form an augmented matrix (M|x)
with x = column with entries x1, x2, . . . , xn.
Then x ∈ [v1, . . . , vk ] if and only if rank(M|x) = rank(M).
There are 2 options:

▶ Reduce M to echelon form (M̄|x̄) by Gaussian elimination ⇒
a linear system of equations for V is obtained by writing the
equations that correspond to zero rows of M̄.

▶ If rank(M) = k , the equations are formed by the vanishing of
the (k + 1)× (k + 1) minors of (M|x) (only need those that a
chosen non-zero k × k minor of M).
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Vector Subspaces

Subspaces of Rn: Generators ↔ Equations

From “equations” to “generators”:
If V = {u ∈ Rn | Au = 0} (solutions to a homogeneous system):

▶ It is enough to solve the system to obtain a system of
generators of V .

▶ Moreover, if we give values 0’s and 1’s to the free variables,
these generators form a basis and dim(V ) = n − rank(A).

We have proved:

Corollary

A subset V of Rn is a subspace ⇔ it is the set of solutions to a
homogeneous system.
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Coordinates and change of basis

Coordinates

Theorem
Any element of a vector space can be written as a unique linear
combination of the vectors of any basis of that space.

Given u ∈ Rn and B = {v1, . . . , vn} a basis for Rn, there exist
c1, . . . , cn ∈ R such that u = c1v1 + c2v2 + . . .+ cnvn and these
c1, . . . , cn are unique.

Definition
The c1, c2, . . . , cn are called the coordinates of v with respect to
B. We will use the notation

vB =

 c1
. . .
cn

 .
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Coordinates and change of basis

Examples

1 In the standard basis B of R3, the coordinates of
v = (−1, 2,−1) are vB = (−1, 2,−1), because

(−1, 2,−1) = (−1) · (1, 0, 0) + 2 · (0, 1, 0) + (−1) · (0, 0, 1).

2 In the basis B ′ = {(1, 0, 1), (0, 1, 1), (2,−1, 3)}, the
coordinates of v relative to B ′ are vB′ = (1, 1,−1), because

(−1, 2,−1) = 1 · (1, 0, 1) + 1 · (0, 1, 1) + (−1) · (2,−1, 3).
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Coordinates and change of basis

Change of basis

Let B = {u1, . . . , un} and C = {v1, . . . , vn} be two bases of Rn.
Denote by AB→C the n × n matrix whose columns are the
coordinate vectors of the basis B with respect to C :

AB→C = ((u1)C , . . . , (un)C ) .

This is the change-of-basis matrix from B to C .

Proposition

1. AB→C · wB = wC for all w ∈ Rn.

2. AB→C is invertible, and (AB→C )
−1 = AC→B .

3. If D is another basis for Rn, then AC→D · AB→C = AB→D .
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Coordinates and change of basis

Example

In R3, take the standard basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and
B ′ = {(1, 0, 1), (0, 1, 1), (2,−1, 3)}.
Then,

AB′→B =

 1 0 2
0 1 −1
1 1 3


AB→B′ = A−1

B′→B = 1
2

 4 2 −2
−1 1 1
−1 −1 1

 .

Then,

1. (AB′ 7→B)vB′ = vB , and

2. (AB 7→B′)vB = vB′
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Intersection and sum of subspaces

Intersection and sum of subspaces

Let F ,G be vector subspaces in Rn then:
The intersection of F and G is F ∩ G = {v ∈ Rn | v ∈ F , v ∈ G}.
The sum of F and G is F + G = {v + w ∈ Rn | v ∈ F ,w ∈ G}.

Computation:
If F = {x ∈ Rn | AF x = 0} and G = {x ∈ Rn | AGx = 0}, then

F ∩ G = {x ∈ Rn | Ax = 0}, where A =

(
AF

AG

)
.

If F = [v1, . . . , vr ] and G = [w1, . . . ,ws ], then

F + G = [v1, . . . , vr ,w1, . . . ,ws ].
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Intersection and sum of subspaces

Grassmann Formula

Theorem
▶ F ∩ G and F + G are vector subspaces of Rn.

▶ dim(F + G ) = dim(F ) + dim(G )− dim(F ∩ G ).

Example

F = [(1, 0, 1), (0, 2, 3)]
G = [(0, 1, 0), (1, 1, 1)]

F ∩ G = [(1, 0, 1)]
F + G = R3
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Intersection and sum of subspaces

Direct sum

Definition
E is the direct sum of subspaces F1 and F2 if any w ∈ E can be
written in a unique way as w = v1 + v2 with v1 ∈ F1, v2 ∈ F2.
In this case we use the notation E = F1 ⊕ F2.

Proposition

Let F1,F2 be two subspaces of E . Then E = F1 ⊕ F2 if and only if
the following two conditions hold:

E = F1 + F2,

F1 ∩ F2 = {0}.

If E = F1 ⊕ F2, we say that F2 is a complementary subspace to
F1 (and vice-versa).

35



Intersection and sum of subspaces

Direct sum

Definition
E is the direct sum of subspaces F1 and F2 if any w ∈ E can be
written in a unique way as w = v1 + v2 with v1 ∈ F1, v2 ∈ F2.
In this case we use the notation E = F1 ⊕ F2.

Proposition

Let F1,F2 be two subspaces of E . Then E = F1 ⊕ F2 if and only if
the following two conditions hold:

E = F1 + F2,

F1 ∩ F2 = {0}.

If E = F1 ⊕ F2, we say that F2 is a complementary subspace to
F1 (and vice-versa).

35



Intersection and sum of subspaces

Direct sum

Definition
E is the direct sum of subspaces F1 and F2 if any w ∈ E can be
written in a unique way as w = v1 + v2 with v1 ∈ F1, v2 ∈ F2.
In this case we use the notation E = F1 ⊕ F2.

Proposition

Let F1,F2 be two subspaces of E . Then E = F1 ⊕ F2 if and only if
the following two conditions hold:

E = F1 + F2,

F1 ∩ F2 = {0}.

If E = F1 ⊕ F2, we say that F2 is a complementary subspace to
F1 (and vice-versa).

35



Python

Outline

Vector spaces

Linear dependency, basis, and dimension

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

36



Python

Python: vectors and operations

Vectors are introduced in numpy as n × 1 matrices:

u = np.array([1, 2, 0,−3]) or v = np.array([0, 5,−2, 7]).

The sum of vectors in the same space is introduced with + and the
scalar multiplication with ∗:

u+ v = np.array([1, 7,−2, 4])
(−3) ∗ u = np.array([−3,−6, 0, 9])
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Python

Python: Subspaces

If F = [v1, . . . , vk ] we can compute dim(F ) with Python:

M = np.array([[v1], . . . , [vk]]);
matrix rank(M)

If F = {u ∈ Rn | Au = 0} we can compute dim(F ) with Python:

n-matrix rank(A)
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