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Producte escalar

El producte escalar euclidià

Definició
El producte escalar euclidià o estàndard < u, v > de dos vectors

u =

 x1
...
xn

 , v =

 y1
...
yn

 ∈ Rn és

< u, v >:= utv = x1y1 + x2y2 + . . .+ xnyn.

Propietats:

1. < u, u >≥ 0 ∀u i < u, u >= 0 ⇔ u = 0 (definit positiu)

2. < u, v >=< v , u > (simètric).
3. bilineal:

▶ < a1u1 + a2u2, v >= a1 < u1, v > +a2 < u2, v >;
▶ < u, a1v1 + a2v2 >= a1 < u, v1 > +a2 < u, v2 >.

Una funció Rn × Rn −→ R que satisfà aquestes propietats
s’anomena un producte escalar.
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Producte escalar

Formes bilineals

Sigui E un R-e.v. Una forma bilineal de E és una aplicació
φ : E × E −→ R tal que, ∀ u, v ,w ∈ E i λ ∈ R :

(a) φ(u + v ,w) = φ(u,w) + φ(v ,w) φ(λu,w) = λφ(u,w),

(b) φ(w , u + v) = φ(w , u) + φ(w , v) φ(w , λu) = λφ(w , u).

Si u = {u1, . . . , un} és una base de E , aleshores la matriu de φ en
la base u es defineix com

Mu(φ) =

 φ(u1, u1) · · · φ(u1, un)
...

...
φ(un, u1) · · · φ(un, un)

 .
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Producte escalar

Matriu d’una forma bilineal

Propietats:

1. Si vu =

(
x1
.
.
.
xn

)
,wu =

(
y1
.
.
.
yn

)
⇒

φ(v ,w) = (x1 . . . xn)Mu(φ)

(
y1
.
.
.
yn

)
i Mu(φ) és l’única matriu

que ho satisfà.

2. Si v és una altra base, aleshores

Mv(φ) = At
v→uMu(φ)Av→u

Una forma bilineal φ és simètrica si φ(u, v) = φ(v , u) per tot u, v .
Una forma bilineal és simètrica ⇔ Mu(φ) és una matriu simètrica
per qualsevol base u.
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Producte escalar

Productes escalars
Sigui E un R-e.v. i φ una forma bilineal en E . Diem que φ és
definida positiva si φ(u, u) ≥ 0 i només es té la igualtat quan
u = 0.

Definició
Un producte escalar en E és una forma bilineal simètrica definida
positiva <,>: E × E −→ R. Un R-e.v amb un producte escalar
s’anomena un espai vectorial euclidià.

Exemples:

▶ El producte escalar estàndard

▶ E = F([a, b],R) = { funcions cont́ınues reals definides a
[a, b]} amb el producte escalar:

< f , g >:=

∫ b

a
f (x)g(x)dx .
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positiva <,>: E × E −→ R. Un R-e.v amb un producte escalar
s’anomena un espai vectorial euclidià.
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Producte escalar

Norma

Sigui E be un R-e.v. amb producte escalar <,>. La norma de
u ∈ E és ∥u∥ =

√
< u, u >.

Si <,> és el producte estàndard, la norma s’anomena estàndard,
euclidiana, o norma-2 i es denota per ||u||2.
Propietats: per tot u, v ∈ E i c ∈ R
1. ∥u∥ ≥ 0 ∀u i ∥u∥ = 0 ⇔ u = 0;

2. ∥cu∥ = |c |∥u∥ c ∈ R;
3. | < u, v > | ≤ ∥u∥∥v∥ (desigualtat de Cauchy-Schwarz)

4. ∥u + v∥ ≤ ∥u∥+ ∥v∥ (desigualtat triangular);

Tota funció f : E −→ R que satisfà les propietats 1,2,4 s’anomena
una norma (no té perquè setar definida a partir d’un producte
escalar).
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Tota funció f : E −→ R que satisfà les propietats 1,2,4 s’anomena
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Producte escalar

Altres normes

Si x = (x1, . . . , xn) ∈ Rn, definim:

1. La norma-1 (o del taxista o de Manhattan):

||x ||1 = |x1|+ · · ·+ |xn|.

2. La norma del màxim (o infinit):

||x ||∞ = max(|x1|, . . . , |xn|).
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Producte escalar

Distàncies i Angles

Sigui E un R-e.v. amb producte escalar <,>.

▶ Un vector u s’anomena unitari si ∥u∥ = 1. Donat un vector
v ̸= 0, sempre podem trobar un vector unitari en la seva
direcció i sentit: v/∥v∥ (direm que hem normalitzat v).

▶ La distància entre dos vectors u, v ∈ E , és d(u, v) = ∥u − v∥.
▶ L’angle (no orientat) entre dos vectors u ̸= 0, v ̸= 0 ∈ E és

l’unic α ∈ [0, π] tal que cos(α) = <u,v>
||u||·||v || (el signe de ûv

depèn de l’orientació que escollim).

▶ Dos vectors u, v són ortogonals (notació u⊥v) si < u, v >= 0.

▶ Si u⊥v ⇒ ûv = ±π
2 .

▶ Si u⊥v i u, v ̸= 0 ⇒ u, v són l.i.

10



Producte escalar
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direcció i sentit: v/∥v∥ (direm que hem normalitzat v).

▶ La distància entre dos vectors u, v ∈ E , és d(u, v) = ∥u − v∥.
▶ L’angle (no orientat) entre dos vectors u ̸= 0, v ̸= 0 ∈ E és

l’unic α ∈ [0, π] tal que cos(α) = <u,v>
||u||·||v || (el signe de ûv
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Producte escalar

Base ortonormal

Definició
Sigui E un R-e.v. amb producte escalar <,>. Una base
{v1, . . . , vd} d’un subespai F ⊆ E és ortonormal (b.o.n) si els seus
vectors són

▶ ortogonals dos a dos: < vi , vj >= 0 si i ̸= j

▶ i unitaris: ∥vi∥ = 1 per i = 1, 2, . . . , d .

S’anomena ortogonal si són ortogonals dos a dos però no unitaris.

▶ Ex: la base estàndard és b.o.n de Rn amb el prod. euclidià.

▶ v és b.o.n. per un prod. esc φ ⇔ Mv(φ) = I

▶ Si v és b.o.n. per un prod. esc φ ⇒ ⟨ , ⟩ es calcula com el
prod. esc. estàndard.

▶ Si v és b.o.n. de E i u és base de E aleshores,

u és b.o.n ⇔ At
u→vAu→v = I .
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Producte escalar

Bases ortonormals

▶ Si v = {v1, . . . , vn} és b.o.n. de E ⇒ les coordenades de v en
base v són

(< v , v1 >, . . . , < v , vn >).

▶ Donada u base de E , ∃ un producte escalar t.q. u és b.o.n.
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Producte escalar

Matrius ortogonals
Una matriu n × n s’anomena ortogonal si satisfà AtA = I .

▶ Si u1, . . . , un són les columnes de A, A =
(
u1 . . . un

)
,

aleshores,

A és ortogonal ⇔ {u1, . . . , un} és una b.o.n. pel producte
escalar euclidià.

▶ A és ortogonal ⇔ A−1 = At .

▶ A és ortogonal ⇔ AAt = I .

▶ A és ortogonal ⇒ detA = ±1.

▶ Si A és ortogonal, aleshores l’endomorfisme corresponent
preserva el producte escalar euclidià:

< Au,Av >=< u, v > per tot u, v

▶ En particular, A preserva normes, angles ⇒ no deforma
objectes.
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Producte escalar

Exemples de matrius 2× 2 ortogonals

Aquestes f : R2 −→ R2 són lineals i preserven norma:

▶ f= simetria respecte una recta l que conté el 0, l = [v ]. E.g.
f (x , y) = (x ,−y).

▶ f=gir d’angle α (en sentit anti-horari) respecte l’origen;
aleshores

Me(f ) =

(
cosα − sinα
sinα cosα

)
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Producte escalar

Algorisme de Gram-Schmidt
Donat un subespai F d’un e.v. euclidià E , aquest algorisme dóna
una b.o.n. de F :

1. Prenem base de F u1, . . . , ud qualsevol i definim:
2. v1 := u1
3. v2 := u2 − <v1,u2>

<v1,v1>
v1 (⇒ [v1, v2] = [u1, u2]).

4. v3 := u3 − <v1,u3>
<v1,v1>

v1 − <v2,u3>
<v2,v2>

v2
(⇒ [v1, v2, v3] = [u1, u2, u3]).

...

5. vd := ud − <v1,ud>
<v1,v1>

v1 − · · · − <vd−1,ud>
<vd−1,vd−1>

vd−1.

6. Aleshores v1, . . . , vd són ortogonals i
[v1, . . . , vd ] = [u1, . . . , ud ].

7. Els normalitzem per obtenir b.o.n. de F , w1, . . . ,wd :

w1 = v1/∥v1∥, w2 = v2/∥v2∥, . . . , wd = vd/∥vd∥.

Compte: Errors d’arrodoniment poden donar vectors no ortogonals! → Gram-Schmidt modificat ho resol
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Matrius simètriques

Teorema Espectral

Teorema (Teorema Espectral)

Sigui A una matriu simètrica n × n. Aleshores, A té tots els VAPs
reals, diagonalitza, i existeix una base ortonormal {v1, . . . , vn} de
VEPs (en el prod. esc. euclidià); si V té columnes v1, . . . , vn, i D
és la matriu diagonal de VAPS (en l’ordre adequat) llavors A
descomposa com

A = VDV t .

La b.o.n de VEPs es pot trobar fàcilment:

▶ Si u, v són VEPs e A de VAPS λ ̸= µ, aleshores u ⊥ v .

▶ Si tots els VAPS són de multiplicitat alg. 1, aleshores
normalitzant els VEPs obtenim b.o.n.

▶ Si no tots els VAPs tenen multiplicitat 1, usem l’algorisme de
Gram-Schmidt per cada subespai propi de dimensió > 1.
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és la matriu diagonal de VAPS (en l’ordre adequat) llavors A
descomposa com

A = VDV t .

La b.o.n de VEPs es pot trobar fàcilment:

▶ Si u, v són VEPs e A de VAPS λ ̸= µ, aleshores u ⊥ v .

▶ Si tots els VAPS són de multiplicitat alg. 1, aleshores
normalitzant els VEPs obtenim b.o.n.

▶ Si no tots els VAPs tenen multiplicitat 1, usem l’algorisme de
Gram-Schmidt per cada subespai propi de dimensió > 1.
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Matrius simètriques

Caracterització de productes escalars

Sigui A una matriu simètrica.

▶ A és la matriu d’un forma bilineal simètrica

▶ A és la matriu d’un producte escalar si, i només si, tots els
VAPs de A són positius.

▶ Criteri de Sylvester: si δ1, δ2,. . . , δn són els menors principals
de A, A és la matriu d’un producte escalar si, i només si,
δi > 0 ∀i .
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Producte vectorial

Producte vectorial a R3

El producte vectorial (cross-product) de dos vectors
u = (u1, u2, u3), v = (v1, v2, v3) de R3 és el vector (en base
estàndard)

(u1, u2, u3)× (v1, v2, v3) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Propietats:
▶ bilineal
▶ v × u = −u × v (anti-commutativa)
▶ u × v és ortogonal a u i v
▶ ⟨u × v ,w⟩ = det(u, v ,w)
▶ ∥u × v∥ = ∥u∥ · ∥v∥ · | sin(ûv)|
▶ u × v = 0 ⇔ u, v linealment dependents
▶ Si u, v són ortogonals i unitaris ⇒ u, v , u × v és b.o.n.
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Complement Ortogonal

Complement Ortogonal

El complement ortogonal d’un subespai F d’un e.v. euclidià E és el
subespai

F⊥ = {u ∈ E | u⊥v per tot v ∈ F}.

Propietats quan E té dimensió finita:

▶ Si F = [v1, . . . , vd ] ⇒ F⊥ =

u ∈ E

∣∣∣∣∣∣∣
< u, v1 >= 0

...
< u, vd >= 0


▶ (F⊥)⊥ = F , F ⊆ G ⇔ G⊥ ⊆ F⊥,

▶ (F + G )⊥ = F⊥ ∩ G⊥ , (F ∩ G )⊥ = F⊥ + G⊥.

▶ F ∩ F⊥ = {0}.
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Complement Ortogonal

A Rn amb el producte escalar euclidià,

▶ Si F ve donat per generadors ⇒ les equacions de F⊥

s’obtenen fàcilment: els seus coeficients són les coordenades
dels generadors.

▶ Si F ve donat per equacions ⇒ els generators de F⊥

s’obtenen fàcilment: les seves coordenades són els coeficients
de les equacions.

F F⊥

[(1, 3, 2), (−2, 1, 8)]

{
x + 3y + 2z = 0
−2x + y + 8z = 0

3x − 5y + 2z = 0 [(3,−5, 2)]

▶ Si A és una matriu real, aleshores

Nuc(A)⊥ = Im(At).
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Projecció ortogonal

Projecció ortogonal

Sigui E un e.v. euclidià de dimensió n.

Teorema (Descomposició Ortogonal)

E = F ⊕ F⊥ per qualsevol subespai F . És a dir, tot v ∈ E s’escriu
d’una única manera com v = w + w ′ on w ∈ F i w ′ ∈ F⊥.

▶ w s’anomena la projecció ortogonal de v en F i es denota per
projF (v),

▶ w ′ s’anomena la projecció ortogonal de v en F⊥ i es denota
per projF⊥(v).

▶ Aix́ı, v = projF (v) + projF⊥(v) i projF (v) és l’únic vector de
F tal que v − projF (v) pertany a F⊥.

▶ Si F ⊆ E té dimensió d ⇒ F⊥ té dimensió n − d .
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E = F ⊕ F⊥ per qualsevol subespai F . És a dir, tot v ∈ E s’escriu
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Projecció ortogonal

Interpretació geomètrica

Proposició

La projecció ortogonal de v en F és el vector de F més proper a v;
és a dir,

∥v − projF (v)∥ = min
w∈F

{∥v − w∥}

(i coincideix amb ∥projF⊥(v)∥). La projecció ortogonal projF (v) és
la millor aproximació de v en F .
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Projecció ortogonal

Càlcul de la projecció ortogonal

Proposició

projF (v) és l’únic vector w que satisfà w ∈ F i v − w ∈ F⊥. Si F
té base u1, . . . , ud , aleshores projF (v) és l’unic vector w tal que

w = c1u1 + . . . cdud ∈ F i


< u1,w >=< u1, v >

...
< ud ,w >=< ud , v >

Aix́ı, projF (v) és el vector c1u1 + · · ·+ cdud tal que c1, . . . , cd és
solució del sistema < u1, u1 > . . . < u1, ud >

...
...

...
< ud , u1 > . . . < ud , ud >


 c1

...
cd

 =

 < u1, v >
...

< ud , v >


27



Projecció ortogonal

Amb el prod. esc. estàndard, si A és la matriu

 u1 · · · ud

,

aleshores c1, . . . , cd són solució del sistema

AtA

 c1
...
cd

 = Atv .

(Si u1, . . . , ud són l.i., aleshores AtA és invertible).

28



Projecció ortogonal

Projecció ortogonal amb base ortogonal

Corollary

Si dimF = 1 , F = [u], aleshores projF (v) =
<v ,u>
<u,u> u.

Proposició

Si u1, . . . , ud és una base ortogonal de F i v ∈ E, aleshores

projF (v) =
< v , u1 >

< u1, u1 >
u1 + · · ·+ < v , ud >

< ud , ud >
ud .

Proposició

Si u1, . . . , ud és un b.o.n. de F i v ∈ E, aleshores

projF (v) =< v , u1 > u1 + · · ·+ < v , ud > ud .

És a dir, les coordenades de projF (v) in la base u1, . . . , ud són
< v , u1 >, . . . , < v , ud >.
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Projecció ortogonal
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Projecció ortogonal

Determinants i volums
De la projecció ortogonal i propietats del producte vectorial podem
provar:

▶ A R2, el paral·lelogram determinat per dos vectors u, v té
àrea igual a | det(u, v)|.

▶ A R3, el paral·leleṕıped determinat per tres vectors u, v , w té
volum igual a | det(u, v ,w)|.
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Descomposició en valors singulars

Descomposició en valors singulars (SVD)

Teorema (Descomposició en valors singulars)

Sigui A una matriu real m × n. Existeix una decomposició
A = U ·D ·V t ,on U és m×m, V és n× n, U,V són ortogonals i
D és la matriu m × n:

D =



σ1 0 · · · 0
. . .

...

0 σr
...

0 · · · 0 · · · 0
...

...
0 · · · · · · · · · 0


amb σ1 ≥ σ2 ≥ . . . ≥ σr > 0 i r = rank A.
σ1, . . . , σr s’anomenen els valors singulars de A i estan
uńıvocament determinats per A.
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Descomposició en valors singulars

Interpretació geomètrica de la SVD
Si A és la matriu estàndard una aplicació lineal f : Rn → Rm, i
anomenem u1, . . . , um, v1, . . . , vn les columnes de U i V
respectivament, aleshores D és la matriu associada a f en b.o.n
v1, . . . , vn i u1, . . . , um:

A = Me(f ) = U︸︷︷︸
Au→e

∗ D︸︷︷︸
Mv,u(f )

∗ V t︸︷︷︸
Ae→v

(noteu que V t = V−1 = Ae→v ).

[T. Hern, C. Long]
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Descomposició en valors singulars

Com obtenim la SVD?

Els valors singulars venen determinats per A:

A = UDV t ⇒ AtA = VDtUtUDV t = VDtDV t

però U i V no (però gairebé determintats en la majoria de casos).
Com calculem la SVD?

(1) Diagonalitzem la matriu simètrica S = At · A (Ta. espectral)

(2) Si λ1 ≥ · · · ≥ λr són els VAPs no nuls de S ⇒ els valors
singulars són σ1 =

√
λ1, . . . σr =

√
λr (fet: AtA sempre té

VAPs no negatius).

(3) Les columnes de V són una b.o.n v1, . . . , vn de VEPs de S .

(4) u1 =
1
σ1
Av1, . . . , ur =

1
σr
Avr són vectors ortonormals de Rm

(que es poden complear a una b.o.n. de Rm si cal) i formen
les columnes de U.
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però U i V no (però gairebé determintats en la majoria de casos).
Com calculem la SVD?

(1) Diagonalitzem la matriu simètrica S = At · A (Ta. espectral)
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Descomposició en valors singulars

El teorema fonamental de l’àlgebra lineal
Sigui f : Rn −→ Rm una aplicació lineal i A la seva matriu
estàndard. Aleshores Rn = Nuc(A)⊕ Im(At) (Im(At)=[files de
A]), Rm = Im(A)⊕ Nuc(At), aquestes descomposicions donen
complements ortogonal i existen b.o.n.’s v1, . . . , vn (de Rn) i
u1, . . . , um (de Rm) tals que

1. Im(A) = [u1, . . . , ur ]
2. Nuc(A) = [vr+1, . . . , vn]
3. Im(At) = [v1, . . . , vr ]
4. Nuc(At) = [ur+1, . . . , um]

A més, la restricció de f al subespai de files Im(At) ⊂ Rn i al
subespai Im(A) ⊂ Rm en les bases v1, . . . , vr , u1, . . . , ur ve donada
per la la matriu diagonal de valors singulars,

D =

 σ1 0
. . .

0 σr

 .
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estàndard. Aleshores Rn = Nuc(A)⊕ Im(At) (Im(At)=[files de
A]), Rm = Im(A)⊕ Nuc(At), aquestes descomposicions donen
complements ortogonal i existen b.o.n.’s v1, . . . , vn (de Rn) i
u1, . . . , um (de Rm) tals que

1. Im(A) = [u1, . . . , ur ]
2. Nuc(A) = [vr+1, . . . , vn]
3. Im(At) = [v1, . . . , vr ]
4. Nuc(At) = [ur+1, . . . , um]
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Descomposició en valors singulars

Norma-2 d’una matriu
Per ”mesurar” una aplicació lineal mirem com de gran és la imatge
per f de l’esfera unitat:

Definició
La norma-2 d’una matriu m × n A és

∥A∥2 = max
∥x∥=1

∥Ax∥.

Propietats
▶ És una norma de matriu: ∥A∥2 ≥ 0, ∥A∥2 = 0 ⇔ A = 0,

∥cA∥2 = |c|∥A∥2, ∥A+ B∥2 ≤ ∥A∥2 + ∥B∥2
▶ ∥A∥2 = maxx ̸=0

∥Ax∥
∥x∥

▶ ∥Av∥ ≤ ∥A∥2∥v∥ ∀v .
▶ ∥AX∥2 = ∥A∥2 si X és una matriu ortogonal.
▶ ∥YA∥2 = ∥A∥2 si Y és una matriu ortogonal.
▶ ∥AB∥2 ≤ ∥A∥2∥B∥2.
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Per ”mesurar” una aplicació lineal mirem com de gran és la imatge
per f de l’esfera unitat:

Definició
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Descomposició en valors singulars

Norma-2 d’una matriu
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La norma-2 d’una matriu m × n A és

∥A∥2 = max
∥x∥=1

∥Ax∥.

Propietats
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Descomposició en valors singulars

Conseqüències geomètriques de la SVD:

Proposició

▶ ∥A∥2 = σ1

▶ El màxim s’assoleix en ±v1: max||x ||=1 ∥Ax∥ = ∥Av1∥.
▶ min||x ||=1 ∥Ax∥ ={

σn si A té rang n, i s’assoleix en ± vn

0 si A té rang < n

▶ Si A és invertible, ∥A−1∥2 = 1
σr
.
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Isometries

Orientació de R2

Una base u1, u2 de R2 té

▶ orientació directa/positiva si el gir més curt de u1 a u2 és
anti-horari.

▶ orientació inversa/negativa si the el gir més curt de u1 to u2
és horari.
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Isometries

Orientacions

A Rn diem que la base estàndard té orientació directa/positiva.
Per les altres bases:

Definició
Una base u1, . . . , un de Rn té orientació directa/positiva, si

det(u1, u2, . . . , un) > 0

(calculat en coordenades estàndard); altrament, diem que la base
té orientació inversa/negativa.
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Isometries

Interpretació geomètrica a R3

A R3, per veure si una base u1, u2, u3 té orientació directa usem la
regla de la mà dreta: posem el polze apuntant a u3 i si el sentint
de tancar la mà és el mateix que el del caḿı més curt de u1 a u2,
aleshores té orientació directa.

▶ Si u, v ∈ R3 són l.i. ⇒ u, v , u × v és una base directa,

det(u, v , u × v) > 0.
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Isometries

Isometries

Definició
Un endomorfisme f ∈ End(E ) és una isometria si preserva el
producte escalar,

⟨f (u), f (v)⟩ = ⟨u, v⟩ ∀u, v .

Ex: Si A és una matriu ortogonal, aleshores x
f7→ Ax és una

isometria.

Proposició

Si f : Rn −→ Rn és una aplicació lineal, són equivalents:

▶ f és un isometria

▶ f envia la base estàndard a una b.o.n

▶ Me(f ) (or en qualsevol b.o.n) és un matriu ortogonal
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Isometries

Isometries directes i inverses

Propietats: si f és un isometria, aleshores

▶ ∥f (u)∥ = ∥u∥, per tot u ∈ E

▶ d(f (x), f (y)) = d(x , y) per tot x , y

▶ angle entre f (u) i f (v) = angle (no orientat) entre u i v

▶ Si F és f -invariant ⇒ F⊥ és f -invariant

Remarca: si f és una isometria de Rn ⇒ det(f ) = ±1 i si λ és un
VAP de f , aleshores |λ| = 1.

▶ Si det f = +1 diem que és una isometria directa (preserva
orientació).

▶ Si det f = +1 diem que és una isometria inversa (canvia
orientació).
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Exemples d’isometries de R2

Les aplicacions f : R2 −→ R2 següents són isometries:

▶ f= reflexió/simetria respecte una recta l que conté l’origen,
l = [v ].Aleshores

f (x) = 2
< v , x >

< v , v >
v − x , Me(f ) =

2

< v , v >
vv t − Id ,

i prenent u de [v ]⊥ ho podem escriure com:

Me(f ) = Id − 2

< u, u >
u · ut .

▶ f=gir anti-horari d’angle α respect l’origen; aleshores

Me(f ) =

(
cosα − sinα
sinα cosα

)
,

f és una isometria directa.
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Classificació d’isometries a R2

Teorema
Si f és una isometria de R2, aleshores o bé

▶ det f = 1 i f és un gir anti-horari d’ angle α respecte el (0, 0)
i en qualsevol b.o.n directa u,

Mu(f ) =

(
cosα − sinα
sinα cosα

)
,

o

▶ det f = −1 i f és una reflexió/simetria respecte una recta
[v ] ∋ (0, 0); si u ∈ [v ]⊥ ⇒

Me(f ) = Id − 2

< u, u >
u · ut Mv ,u(f ) =

(
1 0
0 −1

)
.
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Isometries

Exemple de classificació d’isometria

Decidiu si l’aplicació f (x , y) = ( x−
√
3y

2 ,
√
3x+y
2 ) és una isometria i

descriviu-la.

▶ La matriu estàndard de f és M =

(
1/2 −

√
3/2√

3/2 1/2

)
.

▶ M és ortogonal ⇒ f és un isometria

▶ det(M) = 1 ⇒ f és un gir (pel Ta. de Classificació).

▶ Per trobar l’angle α: segons el Teorema, M ha de ser de la
forma(

cosα − sinα
sinα cosα

)
⇒ cosα = 1/2, sinα =

√
3/2 ⇒ α = π/3.

▶ O també: α = v̂ , f (v) ∀v ⇒ prenem qualsevol v ∈ R2,

calculem cosα = <v ,f (v)>
∥|v∥|∥|f (v)∥| i si det(v , f (v)) > 0 (resp.

det(v , f (v)) < 0) prenem α ∈ [0, π] (resp. α ∈ [π, 2π]).
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Exemple de classificació d’isometria
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▶ O també: α = v̂ , f (v) ∀v ⇒ prenem qualsevol v ∈ R2,

calculem cosα = <v ,f (v)>
∥|v∥|∥|f (v)∥| i si det(v , f (v)) > 0 (resp.

det(v , f (v)) < 0) prenem α ∈ [0, π] (resp. α ∈ [π, 2π]).

46



Isometries
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Exemples d’isometries a R3

f = gir/rotació d’un cert angle respecte una recta
r ∋ O = (0, 0, 0) ( r s’anomena eix de rotació).

▶ Per distingir entre angle θ i −θ (= 2π − θ) cal orientar r :

▶ Escollim un vector u de r , orientem r = [u] per u usant la
regla de la mà dreta: amb el polze en el sentit de u, gir
positiu és en el sentit de tancar la mà (mirant des de la fletxa
de u, gir anti-horari en el pla r⊥). Aleshores θ pertany a [0, π]
o [π, 2π] segons es tingui, per qualsevol v /∈ r ,

det(v , f (v), u) ≥ 0 ⇔ θ ∈ [0, π]
det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(1)

▶ Preserva l’orientació de bases, ⇒ és isometria directa
(det(f ) = 1).
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Exemple de gir:

f = gir d’eix r = [e3], orientat per e3, i angle π/3. Aleshores

f

x
y
z

 =

 1/2 −
√
3/2 0√

3/2 1/2 0
0 0 1

x
y
z

 .
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Matriu d’un gir

f = gir d’eix r = [u] (orientat per u) i angle θ. Prenem b.o.n.
positiva u = u1, u2, u3 amb u3 =

u
∥u∥ (“b.o.n adaptada”), aleshores

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .
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Exemple: simetria axial

f = simetria axial respecte una recta r ∋ O.

▶ f = gir d’angle π i eix r (det(f ) = 1).

▶ Com π = −π, no necessitem orientació.

▶ Ex: trobeu Me(f ) per f = simetria axial respecte l’eix z .
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Exemple: Reflexió especular

f = reflexió especular/simetria respecte un pla H ∋ O.

▶ Canvia l’orientació ⇒ det(f ) = −1.

▶ Exemple: si H= {z = 0}, aleshores f (x , y , z) = (x , y ,−z)

▶ Si u ∈ H⊥, aleshores

Me(f ) = Id − 2

< u, u >
u · ut .
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▶ Exemple: si H= {z = 0}, aleshores f (x , y , z) = (x , y ,−z)

▶ Si u ∈ H⊥, aleshores

Me(f ) = Id − 2

< u, u >
u · ut .

51



Isometries

Exemple: Reflexió especular
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Exemple: Rotació seguida de reflexió especular

g = gir R amb eix r = [u] i angle θ seguida de reflexió especular
respecte un pla ortogonal a r , [u]⊥.
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Classificació d’ isometries de R3

Teorema
Si f : R3 → R3 és un isometria, aleshores f està en un dels casos
següents:

▶ Cas 1. det f = +1 (isometria directa): f és un gir d’eix
r = [u] = VEPs de VAP 1.

▶ Cas 2. det f = −1 (isometria inversa): f = gir R d’angle θ i
eix r = [u] (=VEPs de VAP -1), seguit de reflexió especular S
respecte el pla [u]⊥, f = S ◦ R.

Tota isometria a R3 es pot descriure com un d’aquests casos (cas 1 si
det f = 1, cas 2 si det f = −1). Important: en el cas 2, el pla de simetria és
ortogonal a l’eix de gir.
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Cas 1: det f = +1, f = gir d’eix r = [u].
Orientem l’eix per u u de norma 1 i anomenem θ l’angle de gir.
Aleshores si u = {u1, u2, u3 = u} és una b.o.n. directa (anomenada
base adaptada a f ), es té

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.

▶ [u] = VEPs de VAP 1 = vectors fixos per f .

▶ θ = v̂ , f (v) si v és ortogonal a l’eix [u].

▶ cos(θ) = tr(f )−1
2 i θ pertany a [0, π] o [π, 2π] segons es tingui

(per qualsevol v /∈ [u]):

det(v , f (v), u) ≥ 0 ⇔ θ ∈ [0, π]
det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(2)
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Cas 2: det f = −1, f = S ◦ R

f = S ◦ R, R= gir d’angle θ d’eix r = [u] ∋ O (orientat per u), S
simetria respecte el pla H = [u]⊥.

▶ Case 2.a θ = 0, f = S = simetria respecte pla H = [u]⊥. Es
té:
▶ [u]: VEPs de VAP -1
▶ Imatge d’un vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matriu de f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixos by f , pla de VEPs de VAP 1.
▶ H = [v − f (v)]⊥ per qualsevol v /∈ H.

55



Isometries
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simetria respecte el pla H = [u]⊥.

▶ Case 2.a θ = 0, f = S = simetria respecte pla H = [u]⊥. Es
té:
▶ [u]: VEPs de VAP -1
▶ Imatge d’un vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matriu de f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixos by f , pla de VEPs de VAP 1.
▶ H = [v − f (v)]⊥ per qualsevol v /∈ H.
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Isometries

▶ Cas 2.b: θ ̸= 0, f = S ◦ R. Orientem l’eix de gir per u.
Aleshores si u = {u1, u2, u3 = u

∥u∥} és una b.o.n directa (base

adaptada a f ) i

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 −1

 .

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.

▶ [u] = VEPs de VAP -1.
▶ H subespai invariant de dimensió 2.
▶ θ = v̂ , f (v) si v és ortogonal a l’eix [u].
▶ cos(θ) = tr(f )+1

2
▶ θ pertany a [0, π] o [π, 2π] segons es tingui (per qualsevol

v /∈ [u]): {
det(v , f (v), u) ≥ 0 ⇔ θ ∈ [0, π]
det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(3)

56



Isometries

▶ Cas 2.b: θ ̸= 0, f = S ◦ R. Orientem l’eix de gir per u.
Aleshores si u = {u1, u2, u3 = u

∥u∥} és una b.o.n directa (base

adaptada a f ) i

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 −1

 .

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.

▶ [u] = VEPs de VAP -1.
▶ H subespai invariant de dimensió 2.
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Isometries

Exemple

Me(f ) =

 2/3 2/3 1/3
−2/3 1/3 2/3
1/3 −2/3 2/3


▶ det(f ) = 1 ⇒ f = gir d’eix [u] i angle θ.

▶ Eix: VEPs de VAP 1, r = [u = (1, 0, 1)].

▶ Angle: 1 + 2 cos θ = tr(f ) = 5/3 ⇒ cos θ = 1/3

▶ Orientem r per u, prenem v = (1, 0, 0) /∈ r ,
det(v , f (v), u) = −2/3 < 0 ⇒ θ ∈ [π, 2π], θ = 2π − 1.23.
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Aplicacions de SVD i projecció ortogonal

SVD i aproximació pel rang
Teorema (Eckhart-Young)

Sigui A una matriu. Si A = UDV t i els valors singulars de A són
σ1, . . . , σr aleshores per tot k ≤ r ,

M = U



σ1 0 · · · 0
. . .

...

0 σk
...

0 · · · 0 · · · 0
...

...
0 · · · · · · · · · 0


V t

és la matriu de rank k més propera a A (i.e. ∥A−M∥2 és ḿınima
entre les matrius M de rang k). Observem que ||A−M||2 = σk+1.

S’usa en compressió d’imatges, per exemple, perquè es pot
comprimir la informació de A usant:
A = σ1u1v

t
1 + σ2u2v

t
2 + . . .+ σrurv

t
r . 60
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Aplicacions de SVD i projecció ortogonal

Aproximació per ḿınims quadrats lineals

Problema: Ax = b pot ser incompatible degut a errors en mesures
de b, but voldŕıem una solució aproximada:

sistema
Ax = b

incompatible
⇔ b /∈ Im(A)

Volem x̃ tal que Ax̃ sigui el més proper a b possible.

Definició
Una solució per ḿınims quadrats de Ax = b és un vector x̃ que
minimitza ∥Ax − b∥, és a dir

∥Ax̃ − b∥ ≤ ∥Ax − b∥ per tot x
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Aplicacions de SVD i projecció ortogonal

Resolució del problema de ḿınims quadrats lineals

Gauss (1801)

▶ Canviem b pel vector de Im(A) més proper a b: la projecció
ortogonal de b en Im(A), projIm(A)(b).

▶ Aleshores x̃ és una solució per ḿınims quadrats de Ax = b ⇔
x̃ és solució de Ax = projIm(A)(b).

▶ Si x és una solució per ḿınims quadrats aleshores no compleix
Ax − b = 0⃗, però minimitza la norma ∥Ax − b∥

▶ El residu measura com de lluny està x̃ de ser solució del
sistema:

residu = Ax̃ − b (que és = projIm(A)(b)− b).

norma del residu: ∥Ax̃ − b∥
▶ Important: no ens cal calcular projIm(A)(b) (pàgina següent).
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63



Aplicacions de SVD i projecció ortogonal
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Gauss (1801)

▶ Canviem b pel vector de Im(A) més proper a b: la projecció
ortogonal de b en Im(A), projIm(A)(b).
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Aplicacions de SVD i projecció ortogonal

Teorema
▶ x̃ és una solució per ḿınims quadrats de Ax = b si, i només

si, és una solució de les equacions normals:

AtAx = Atb.

▶ Si el rang de A és igual al nombre de columnes, aleshores AtA
és invertible i la solució per ḿınims quadrats és única i donada
per

x̃ = (AtA)−1Atb

(calcular la inversa no és eficient)

▶ Si el sistema original és compatible, x̃ és solució del sistema
original.
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és invertible i la solució per ḿınims quadrats és única i donada
per

x̃ = (AtA)−1Atb

(calcular la inversa no és eficient)

▶ Si el sistema original és compatible, x̃ és solució del sistema
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Anàlisi de components principals

Producte escalar a C
Bibliografia

65



Aplicacions de SVD i projecció ortogonal

Anàlisi de components principals
Goal: Donats N punts (dades) de R3, pi = (xi , yi , zi ), i = 1, . . . ,N
altament correlacionats, volem trobar v1 = (a, b, c) de norma 1 tal
que el conjunt {ti = axi + byi + czi}i tingui màxima variància:

▶ Observem que proj[v1](pi ) = tiv1
▶ v1 = (a, b, c) s’anomena primera component principal.
▶ Després podem buscar v2 ∈ [v1]

⊥ (2a component principal)
que maximitzi la variància de proj[v1]⊥(pi ).

▶ O bé seguim o bé projectem sobre les primeres components
principals per tal de reduir la dimensió del problem.
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que maximitzi la variància de proj[v1]⊥(pi ).
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Aplicacions de SVD i projecció ortogonal

Procediment

Assumim que el conjunt {pi} està centrat a l’origen. Sigui

M =

x1 y1 z1
...

...
...

xN yN zN

 de manera que
∑

i xi =
∑

i yi =
∑

i zi = 0.

▶ Volem v1 = (a, b, c) de norma 1 tal que∑
i t

2
i =

∑
i (axi + byi + czi )

2 = ||Mv1|| sigui màxim.

▶ ⇒ v1 = primera columna de V en la SVD: M = UDV t .

▶ Aleshores matriu M2 = M −Mv1v
t
1 té proj[v1]⊥(pi ) a les seves

files.

▶ M2 = σ2u2v
t
2 + . . .+ σrurv

t
r .

▶ La direcció que maximitza la variància ara és v2 (2n vector
columna de V ).

▶ I prosseguim de la mateixa manera.
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Aplicacions de SVD i projecció ortogonal

Observacions:

▶ Si el conjunt {pi} no està centrat a l’origen el podem centrar:
sigui (x̄ , ȳ , z̄) =

∑
i (xi , yi , zi )/N, i considerem

M =

x1 − x̄ y1 − ȳ z1 − z̄
...

...
...

xN − x̄ yN − ȳ zN − z̄

 .

Procedim com abans amb aquesta M i aleshores sumem
(x̄ , ȳ , z̄) al resultat final.

▶ La matriu MtM és la matriu de covariància emṕırica i la
component principal v1 és el VEP dominant d’aqueta matriu.

▶ Per a conjunts de punts de Rn es pot fer el mateix.
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Aproximació pel rang
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Producte escalar a C

Producte escalar a Cn

Definició
A Cn l’anàleg al producte escatar estàndard és el producte escalar

herḿıtic < u, v > de dos vectors u =

 x1
...
xn

 , v =

 y1
...
yn

 ∈ Cn

és
< u, v >:= utv = x1 y1 + x2 y2 + . . .+ xn yn.

Exemple:

u =
(

1
i

1 − 2i

)
, v =

(
i
0
3

)
⇒< u, v >= (1 i 1− 2i)

(−i
0
3

)
= 3− 7i .
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Producte escalar a C

Propietats:
1. < u, u >≥ 0 ∀u (positiu)

2. < u, u >= 0 ⇔ u = 0 (no-degenerat).

3. < u, v >= < v , u > (”herḿıtic”).

4. ”sesquilineal”:
▶ < a1u1 + a2u2, v >= a1 < u1, v > +a2 < u2, v >;
▶ < u, a1v1 + a2v2 >= a1 < u, v1 > +a2 < u, v2 >.

5. En aquest cas, la norma d’un vector u ∈ Cn és
∥u∥ =

√
utu =

√
|u1|2 + . . .+ |un|2 ∈ R.

6. Base ortonormal per aquest producte escalar: definició
anàloga.

7. Si escrivim les columnes d’una matriu A = (v1 . . . vd)
aleshores,

AtA = Id si i només si {v1, . . . , vd} és una base ortonormal.
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Producte escalar a C

Matrius unitàries

Una matriu n× n que satisfà A
t
A = Id s’anomena matriu unitària.

▶ Si anomenenm les columnes de A v1, . . . , vn, A = (v1 . . . vn),
aleshores,

A
t
A = Id si i només si {v1, . . . , vn} és una base ortonormal.

▶ A és unitària si, i només si A−1 = A
t
.

▶ A és unitària ⇒ | detA| = 1.

▶ Si A és unitària, aleshores l’endomorfisme corresponent
preserva normes (preserva la mesura de vectors):

∥Ax∥ = ∥x∥ per tot x

▶ A també preserva producte herḿıtic i angles (i ortogonalitat) i
per tant és una transformació que no deforma objectes.
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▶ A és unitària ⇒ | detA| = 1.
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▶ Si anomenenm les columnes de A v1, . . . , vn, A = (v1 . . . vn),
aleshores,

A
t
A = Id si i només si {v1, . . . , vn} és una base ortonormal.
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Aproximació pel rang
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