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LPrcvducte escalar

El producte escalar euclidia

Definicié

El producte escalar euclidia o estandard < u, v > de dos vectors
X1 y1

u= : , V= : cR" és
Xn Yn

<u,v>i=utv=xy1 + X + ...+ XpVn

Propietats:
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El producte escalar euclidia o estandard < u, v > de dos vectors
X1 y1
u= : , V= : cR" és
Xn Yn
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Propietats:
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El producte escalar euclidia

Definicié
El producte escalar euclidia o estandard < u, v > de dos vectors
X1 y1
u= : , V= : cR" és
Xn Yn
<u,v>i=utv=xy1 + X + ...+ XpVn
Propietats:

1. <u,u>>0Vui<uu>=0<% u=0 (definit positiu)
2. <u,v>=<v,u> (simétric).
3. bilineal:
> < ajup 4 axp, v >=a; < u, v > tax < U,V >
P> <uaivit+ave >=a; < u,vg > H4a < uvp >,
Una funcié R” x R” — R que satisfa aquestes propietats
s'anomena un producte escalar.



LProducte escalar
;

Formes bilineals

Sigui E un R-e.v. Una forma bilineal de E és una aplicacié
p:EXE—Rtalque Vuv,weEideR:

(@) wlutv,w)=p(u,w)+e(v,w) p(Au, w) = Ap(u, w),
(b) o(w,u+v)=p(w,u)+ p(w,v) p(w, Au) = Ap(w, u).
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Formes bilineals

Sigui E un R-e.v. Una forma bilineal de E és una aplicacié
p:EXE—Rtalque Vuv,weEideR:

(@) o(u+v,w) = p(u,w) +@(v,w) p(Au, w) = Ap(u, w),

(b) o(w,u+v) =p(w,u) + ¢(w, v) p(w, Au) = Ap(w, u).
Siu={u1,...,u,} és una base de E, aleshores la matriu de ¢ en
la base u es defineix com

So(ulaul) <,0(u1,u,,)

/V’u(SD) = : :
‘p(umul) QO(Un,Un)
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Matriu d'una forma bilineal

Propietats:
X1 i
1. Sivu:( : ),Wu:< ; ):>
o Yo
Y1
o(v,w) = (x1...x0)Mu(p) | : | i Mu() és I'linica matriu

Yn
que ho satisfa.
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2. Si v és una altra base, aleshores

MV(SO) = A5—>u MU(QD)Av—m
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Matriu d'una forma bilineal

Propietats:
X1 i
1. Sivu:( : ),Wu:< ; >:>
o Yo
Y1
o(v,w) = (x1...x0)Mu(p) | : | i Mu() és I'linica matriu

Yn
que ho satisfa.

2. Si v és una altra base, aleshores

MV(SO) = A5—>u MU(QD)Av—m

Una forma bilineal ¢ és simétrica si ¢(u, v) = ¢(v, u) per tot u, v.
Una forma bilineal és simeétrica < M, () és una matriu simétrica
per qualsevol base u.
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Productes escalars

Sigui E un R-e.v. i ¢ una forma bilineal en E. Diem que ¢ és
definida positiva si ¢(u, u) > 0 i només es té la igualtat quan
u=0.

Definicié

Un producte escalar en E és una forma bilineal simétrica definida
positiva <,>: E x E — R. Un R-e.v amb un producte escalar
s'anomena un espai vectorial euclidia.

Exemples:
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Productes escalars

Sigui E un R-e.v. i ¢ una forma bilineal en E. Diem que ¢ és
definida positiva si ¢(u, u) > 0 i només es té la igualtat quan
u=0.
Definicié
Un producte escalar en E és una forma bilineal simétrica definida
positiva <,>: E x E — R. Un R-e.v amb un producte escalar
s'anomena un espai vectorial euclidia.
Exemples:

» El producte escalar estandard

» E = F([a, b],R) = { funcions continues reals definides a
[a, b]} amb el producte escalar:

b
<f,g >::/a f(x)g(x)dx.
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Norma

Sigui E be un R-e.v. amb producte escalar <, >. La norma de
ueEés|ul|=/<uu>.

Si <, > és el producte estandard, la norma s'anomena estandard,
euclidiana, o norma-2 i es denota per ||ul|».

Propietats: pertot u,v € EiceR

1 Jlul| = 0Vuilu] =0 u=0;
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Norma

Sigui E be un R-e.v. amb producte escalar <, >. La norma de
ueEés|ul|=/<uu>.
Si <, > és el producte estandard, la norma s'anomena estandard,
euclidiana, o norma-2 i es denota per ||ul|».
Propietats: pertot u,ve EiceR

1 JJu| >0Vuillu|=0< u=0;

2. |[eull = lefljul] c € R;
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Sigui E be un R-e.v. amb producte escalar <, >. La norma de

ueEés|ul|=/<uu>.
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euclidiana, o norma-2 i es denota per ||ul|z.
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2. |leull = [elllull c € R;
3. | < wu,v>|<|ullllv] (desigualtat de Cauchy-Schwarz)



L Producte escalar
; ;

Norma

Sigui E be un R-e.v. amb producte escalar <, >. La norma de

ueEés|ul|=/<uu>.

Si <, > és el producte estandard, la norma s'anomena estandard,
euclidiana, o norma-2 i es denota per ||ul|z.

Propietats: pertot u,ve EiceR

L Jlu| >0Vui|ul]=0& u=0;

2. |leull = [elllull c € R;

3. | < wu,v>|<|ullllv] (desigualtat de Cauchy-Schwarz)
4. |lu+ v| < |u|| + ||v|| (desigualtat triangular);
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Norma

Sigui E be un R-e.v. amb producte escalar <, >. La norma de

ueEés|ul|=/<uu>.

Si <, > és el producte estandard, la norma s'anomena estandard,
euclidiana, o norma-2 i es denota per ||ul|z.

Propietats: pertot u,ve EiceR

L Jlul >0Vuilul|=0< u=0;

2. |leull = [elllull c € R;

3. | <u,v>|<|ulllv] (desigualtat de Cauchy-Schwarz)
4. |lu+v| < |u|l + ||v|| (desigualtat triangular);

Tota funcié f : E — R que satisfa les propietats 1,2,4 s'anomena
una norma (no té perque setar definida a partir d'un producte
escalar).
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Altres normes

Si x = (x1,...,xp) € R", definim:

1. La norma-1 (o del taxista o de Manhattan):

[Ix[[x = Pal + -+ |xal-
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Altres normes

Si x = (x1,...,xp) € R", definim:

1. La norma-1 (o del taxista o de Manhattan):
[Ix[le = xal + -+ + [xa-
2. La norma del maxim (o infinit):

[IX[loo = max(]xal, . .., [%al)-
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Distancies i Angles

Sigui E un R-e.v. amb producte escalar <, >.

» Un vector u s'anomena unitari si |ju|| = 1. Donat un vector
v # 0, sempre podem trobar un vector unitari en la seva
direccid i sentit: v/||v|| (direm que hem normalitzat v).

10
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Sigui E un R-e.v. amb producte escalar <, >.

» Un vector u s'anomena unitari si |ju|| = 1. Donat un vector
v # 0, sempre podem trobar un vector unitari en la seva
direccié i sentit: v/||v|| (direm que hem normalitzat v).

» La distancia entre dos vectors u, v € E, és d(u,v) = ||lu—v|.

» L'angle (no orientat) entre dos vectors u # 0,v # 0 € E és
I'unic a € [0, 7] tal que cos(ar) = m (el signe de uv
depen de I'orientacié que escollim).
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Distancies i Angles

Sigui E un R-e.v. amb producte escalar <, >.

» Un vector u s'anomena unitari si |ju|| = 1. Donat un vector
v # 0, sempre podem trobar un vector unitari en la seva
direccié i sentit: v/||v|| (direm que hem normalitzat v).

» La distancia entre dos vectors u, v € E, és d(u,v) = ||lu—v|.
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L Producte escalar

Distancies i Angles

Sigui E un R-e.v. amb producte escalar <, >.
» Un vector u s'anomena unitari si |ju|| = 1. Donat un vector
v # 0, sempre podem trobar un vector unitari en la seva
direccié i sentit: v/||v|| (direm que hem normalitzat v).

» La distancia entre dos vectors u, v € E, és d(u,v) = ||lu—v|.
» L'angle (no orientat) entre dos vectors u # 0,v # 0 € E és
I'unic v € [0, 7] tal que cos(a) = m (el signe de uv

depen de I'orientacié que escollim).
» Dos vectors u, v sén ortogonals (notacié uLv) si < u,v >=0.

> Siulv=wv==7.

10



L Producte escalar

Distancies i Angles

Sigui E un R-e.v. amb producte escalar <, >.

>

v

Un vector u s'anomena unitari si ||u|| = 1. Donat un vector
v # 0, sempre podem trobar un vector unitari en la seva
direccié i sentit: v/||v|| (direm que hem normalitzat v).

La distancia entre dos vectors u, v € E, és d(u,v) = ||u— v]||.
L’angle (no orientat) entre dos vectors u # 0,v # 0 € E és
I'unic v € [0, 7] tal que cos(a) = m (el signe de uv
depen de I'orientacié que escollim).

Dos vectors u, v sén ortogonals (notacié uLv) si < u,v >=0.
Siulv=uwv==%.

Siulviuv#0= u,vsonli.

10



LPrcvducte escalar

Base ortonormal

Definicié
Sigui E un R-e.v. amb producte escalar <, >. Una base
{v1,...,vq} d'un subespai F C E és ortonormal (b.o.n) si els seus

vectors sén

11
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Base ortonormal

Definicié
Sigui E un R-e.v. amb producte escalar <, >. Una base
{v1,...,vq} d'un subespai F C E és ortonormal (b.o.n) si els seus

vectors sén
> ortogonals dos a dos: < v;,v; >=0sii#j

» i unitaris: ||vi|| =1 peri=1,2,...,d.

S’anomena ortogonal si sén ortogonals dos a dos perd no unitaris.
> Ex: la base estandard és b.o.n de R” amb el prod. euclidia.
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Definicié
Sigui E un R-e.v. amb producte escalar <, >. Una base
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Base ortonormal

Definicié
Sigui E un R-e.v. amb producte escalar <, >. Una base
{v1,...,vq} d'un subespai F C E és ortonormal (b.o.n) si els seus

vectors sén
> ortogonals dos a dos: < v;,v; >=0sii#j

» i unitaris: ||vi|| =1 peri=1,2,...,d.
S’anomena ortogonal si sén ortogonals dos a dos perd no unitaris.
> Ex: la base estandard és b.o.n de R” amb el prod. euclidia.

» v és b.o.n. per un prod. esc ¢ & My(p) =1
» Sivés b.o.n. perun prod. esc ¢ = (,) es calcula com el
prod. esc. estandard.

11
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Base ortonormal

Definicié
Sigui E un R-e.v. amb producte escalar <, >. Una base
{v1,...,vq} d'un subespai F C E és ortonormal (b.o.n) si els seus

vectors sén
> ortogonals dos a dos: < v;,v; >=0sii#j
» i unitaris: ||vi|| =1 peri=1,2,...,d.

S’anomena ortogonal si sén ortogonals dos a dos perd no unitaris.
> Ex: la base estandard és b.o.n de R” amb el prod. euclidia.
» v és b.o.n. per un prod. esc ¢ & My(p) =1
» Sivés b.o.n. perun prod. esc p = (,) es calcula com el

prod. esc. estandard.
» Sivésb.on. de Eiués base de E aleshores,

uésbon & A A =1

11
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Bases ortonormals

» Siv={vi,...,vp} és b.o.n. de E = les coordenades de v en
base v sén
(Kv,vy >, < v, v, >).

12
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Bases ortonormals

» Siv={vi,...,vp} és b.o.n. de E = les coordenades de v en
base v sén
(Kv,vy >, < v, v, >).

» Donada u base de E, 3 un producte escalar t.q. u és b.o.n.

12



LProducte escalar

Matrius ortogonals

Una matriu n X n s’'anomena ortogonal si satisfa A*'A = /.

> Siu,..., U, s6n les columnes de A, A= (u1...up),
aleshores,
A és ortogonal < {uy,...,u,} és una b.o.n. pel producte

escalar euclidia.

13
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aleshores,
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L Producte escalar

Matrius ortogonals

Una matriu n X n s’'anomena ortogonal si satisfa A*'A = /.

> Siu,..., U, s6n les columnes de A, A= (u1...up),
aleshores,
A és ortogonal < {uy,...,u,} és una b.o.n. pel producte

escalar euclidia.
> A és ortogonal & A~ = Al
> A és ortogonal & AAf = I.
> A és ortogonal = det A= +1.

> Si A és ortogonal, aleshores I'endomorfisme corresponent
preserva el producte escalar euclidia:

< Au,Av >=< u,v > per tot u,v

» En particular, A preserva normes, angles = no deforma
objectes.

13
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Exemples de matrius 2 X 2 ortogonals

Aquestes f : R — R? sén lineals i preserven norma:
» f= simetria respecte una recta / que conté el 0, / = [v]. E.g.
Fx,y) = (x, =y).

14
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Exemples de matrius 2 X 2 ortogonals

Aquestes f : R — R? sén lineals i preserven norma:

» f= simetria respecte una recta / que conté el 0, / = [v]. E.g.

fF(x,y) = (x, =y).
» f=gir d’angle « (en sentit anti-horari) respecte |'origen;
aleshores

m(r) = (

cosa —sino
sinae cosa

14
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Algorisme de Gram-Schmidt

Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:
1. Prenem base de F uq,...,uq qualsevol i definim:

15
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Algorisme de Gram-Schmidt
Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:
1. Prenem base de F uq,...,uq qualsevol i definim:
2. vii=1

15
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Algorisme de Gram-Schmidt
Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:
1. Prenem base de F uq,...,uq qualsevol i definim:
2. vii=1

3. = — %vl (= [v1, vo] = [u1, w2]).

15
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Algorisme de Gram-Schmidt

Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:

1. Prenem base de F uq,...,uq qualsevol i definim:
2. vii=1
N <vi,up> _
3. v i=up — Wvl (:> [V1, V2] = [u1, UQ]).
._ _ Svi,uz> o <vp,U3>
4. v3i=us3 <vi,vi> 1 <vo,Vp> V2

(= [v1, v, v3] = [u1, ug, U3D.

15
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Algorisme de Gram-Schmidt

Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:

1.

2.
3.
4

Prenem base de F uy, ..., ug qualsevol i definim:
Vi = up
._ <vi,lz> _
Vo = Uy — WV]_ (:> [V]_, V2] = [U]_7 UQ]).
V3 1= Uz — <vi,u3> vy — <Vvo,u3> Vo

<vi,vi> <vo,vo>
(= [v1, v2, va] = [u1, o, us]):

<vi,ug> . <Vg—1,Ud>

Vd .= Ud — <vi,vi> Vi— o <Vd717Vd71>Vd_1.

15
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Algorisme de Gram-Schmidt

Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:

1.

2.
3.
4

Prenem base de F uy, ..., ug qualsevol i definim:
Vi = up

Vo = Uy — SRS (= [v1, va] = [u1, w)]).

V3 1= Uz — <vi,u3> 1 — <Vvo,u3> Vo

<vi,vi>

<vo,vo>

(= [v1, v, v3] = [u1, ug, U3D.

Vd ‘= Uq —
Aleshores vy, . .
[V1, e

v ld> oL
<> 1 Vg_1,va_1> VA1
., Vg4 sén ortogonals i

.,vd]:[ul,...

<Vg—_1,Uqd>

,Ud].

15
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Algorisme de Gram-Schmidt

Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:

1.

2.
3.
4

Prenem base de F uy, ..., ug qualsevol i definim:
Vi = up

Vo = Uy — %vl (= [v1, vo] = [u1, w2]).
V3 1= Uz — <vi,u3> vy — <wvp,u3z> Vo

<vi,vi> <vo,vo>
(= [v1, v2, va] = [u1, o, us]):

<vi,ug>. . _<V4_1,Ud>

<vvi> V1 Vg_1,va_1> VA1
Aleshores vy, ..., vg sén ortogonals i

[V1,...,Vd] = [ul,...,ud].

Els normalitzem per obtenir b.o.n. de F, wy, ..., wy:

Vd ‘= Uq —

w1 = vi/|vill, wa = vo/[|val], ..., wg = vg/val-
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L Producte escalar

Algorisme de Gram-Schmidt

Donat un subespai F d'un e.v. euclidia E, aquest algorisme déna
una b.o.n. de F:

1. Prenem base de F uq,...,uq qualsevol i definim:
2. vii=1
. <vi,U2> _
3. Vo = Uy — Wvl (:> [V1, V2] = [ul, Uz]).
e _ <vi,uz> _ <wp,uz>
4 V3 = U3 <vi,vi> Vi <Vvo,vo> V2
(= [v1, vo, va] = [u1, u2, u3]).

5. Vg = ug = TS - SRR v
6. Aleshores vy, ..., vy sén ortogonals i
[V1,...,Vd] = [ul,...,ud].
7. Els normalitzem per obtenir b.o.n. de F, wy,..., wy:
wi = vi/|[vill, wo = vo/|lvall, ..., wa = va/| vdll-

Compte: Errors d’'arrodoniment poden donar vectors no ortogonals! — Gram-Schmidt modificat ho resol
15



LMatrius simeétriques

Outline

Matrius simetriques
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L Matrius simetriques
; ;

Teorema Espectral

Teorema (Teorema Espectral)

Sigui A una matriu simétrica n X n. Aleshores, A té tots els VAPs
reals, diagonalitza, i existeix una base ortonormal {v1,...,v,} de
VEPs (en el prod. esc. euclidia); si V' té columnes v1,...,v,, i D
és la matriu diagonal de VAPS (en I'ordre adequat) llavors A
descomposa com

A= VDV"

17



L Matrius simetriques
; ;

Teorema Espectral

Teorema (Teorema Espectral)

Sigui A una matriu simétrica n X n. Aleshores, A té tots els VAPs
reals, diagonalitza, i existeix una base ortonormal {v1,...,v,} de
VEPs (en el prod. esc. euclidia); si V' té columnes v1,...,v,, i D
és la matriu diagonal de VAPS (en I'ordre adequat) llavors A
descomposa com

A= VDV"

La b.o.n de VEPs es pot trobar facilment:
» Si u,v sén VEPs e A de VAPS X # p, aleshores u L v.
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L Matrius simetriques
; ;

Teorema Espectral

Teorema (Teorema Espectral)

Sigui A una matriu simétrica n X n. Aleshores, A té tots els VAPs
reals, diagonalitza, i existeix una base ortonormal {v1,...,v,} de
VEPs (en el prod. esc. euclidia); si V' té columnes v1,...,v,, i D
és la matriu diagonal de VAPS (en I'ordre adequat) llavors A
descomposa com

A= VDV"

La b.o.n de VEPs es pot trobar facilment:
» Si u,v sén VEPs e A de VAPS X # p, aleshores u L v.

> Si tots els VAPS sén de multiplicitat alg. 1, aleshores
normalitzant els VEPs obtenim b.o.n.
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L Matrius simetriques
;

Teorema Espectral

Teorema (Teorema Espectral)

Sigui A una matriu simétrica n X n. Aleshores, A té tots els VAPs
reals, diagonalitza, i existeix una base ortonormal {v1,...,v,} de
VEPs (en el prod. esc. euclidia); si V' té columnes v1,...,v,, i D
és la matriu diagonal de VAPS (en I'ordre adequat) llavors A
descomposa com

A= VDV"

La b.o.n de VEPs es pot trobar facilment:

» Si u,v sén VEPs e A de VAPS X # p, aleshores u L v.

> Si tots els VAPS sén de multiplicitat alg. 1, aleshores
normalitzant els VEPs obtenim b.o.n.

» Si no tots els VAPs tenen multiplicitat 1, usem I'algorisme de
Gram-Schmidt per cada subespai propi de dimensié > 1.

17



LMatrius simétriques
; ;

Caracteritzacié de productes escalars

Sigui A una matriu simétrica.

» A és |la matriu d'un forma bilineal simeétrica
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LMatrius simétriques
; ;

Caracteritzacié de productes escalars

Sigui A una matriu simétrica.
» A és |la matriu d'un forma bilineal simeétrica

> A és la matriu d'un producte escalar si, i només si, tots els
VAPs de A sén positius.
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L Matrius simetriques

Caracteritzacié de productes escalars

Sigui A una matriu simétrica.
» A és |la matriu d'un forma bilineal simeétrica

> A és la matriu d'un producte escalar si, i només si, tots els
VAPs de A sén positius.

» Criteri de Sylvester: si 41, d2,..., 0, SOn els menors principals
de A, A és la matriu d'un producte escalar si, i només si,
0; >0 Vi.

18



L Producte vectorial

Outline

Producte vectorial
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L Producte vectorial

Producte vectorial a R3

El producte vectorial (cross-product) de dos vectors
u=(u1,up,u3), v=_v1,v2,3) de R3 és el vector (en base

estandard)
Pk
(u1, up, U3) X (vl, Vo, V3) = uy Uz us
Vi V2 V3
= (U2V3 — uszvp,uszvy — uiv3, uiVvo — U2V]_).
Propietats:

» bilineal

20



L Producte vectorial

Producte vectorial a R3
El producte vectorial (cross-product) de dos vectors
u=(u1,up,u3), v=_v1,v2,3) de R3 és el vector (en base
estandard)

i j  k
(U]_,UQ,U3) X (Vl,VQ,V?,) = up ux us
Vi V2 V3

= (U2V3 — U3V2, U3V — U1Vv3, u1vo — U2V1)-

Propietats:
> bilineal
» v X u= —u x v (anti-commutativa)
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L Producte vectorial

Producte vectorial a R3
El producte vectorial (cross-product) de dos vectors
u=(u1,up,u3), v=_v1,v2,3) de R3 és el vector (en base
estandard)

i j  k
(U]_,UQ,U3) X (V17V27V3) = up ux us
Vi V2 V3

= (u2v3 — u3Vva, U3vy — U1Vs, U1 Vo — UaVy).
Propietats:
> bilineal

» v X u= —u x v (anti-commutativa)
> u x v ésortogonal a uiv
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Producte vectorial a R3
El producte vectorial (cross-product) de dos vectors
u=(u1,up,u3), v=_v1,v2,3) de R3 és el vector (en base
estandard)

i j  k
(U]_,UQ,U3) X (V17V27V3) = up ux us
Vi V2 V3

= (U2V3 — uszvp,uszvy — uiv3, uiVvo — U2V]_).
Propietats:
> bilineal
» v X u= —u x v (anti-commutativa)
> u x v ésortogonal a uiv
» (uxv,w) =det(u, v, w)
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L Producte vectorial
;

Producte vectorial a R3

El producte vectorial (cross-product) de dos vectors
u=(u1,up,u3), v=_v1,v2,3) de R3 és el vector (en base

estandard)
FoT Ok
(U]_,UQ,U3) X (V17V27V3) = uyp ux us
i Vo w3
= (u2v3 — u3Vva, U3vy — U1Vs, U1 Vo — UaVy).
Propietats:
> bilineal
» v X u= —u x v (anti-commutativa)
> u X vésortogonalauiv
» (uxv,w) =det(u, v, w)
> Jlux vl = Jlul - [v] - [sin(@v)]
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; ;

Producte vectorial a R3

El producte vectorial (cross-product) de dos vectors
u=(u1,up,u3), v=_v1,v2,3) de R3 és el vector (en base

estandard)
Pj ok
(U]_,UQ,U3) X (V17V27V3) = uyp ux us
Vi V2 w3
= (u2v3 — u3Vva, U3vy — U1Vs, U1 Vo — UaVy).
Propietats:
> bilineal
» v X u= —u x v (anti-commutativa)
> u X vésortogonalauiv
» (uxv,w) =det(u, v, w)
> Jlux vl = Jlull - [[v] - [sin(@v)]
» ux v =0<% u,v linealment dependents
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L Producte vectorial
;

Producte vectorial a R3

El producte vectorial (cross-product) de dos vectors
u=(u1,up,u3), v=_v1,v2,3) de R3 és el vector (en base

estandard)
Pj ok
(U1, w2, u3) X (vi,v2,v3) = | wx u3
Vi V2 w3
= (u2v3 — u3Vva, U3vy — U1Vs, U1 Vo — UaVy).
Propietats:
> bilineal
» v X u= —u x v (anti-commutativa)
> u X vésortogonalauiv
» (uxv,w) =det(u, v, w)
> Jlux vl = ull - |lv] - [sin(uv)]
» ux v =0<% u,v linealment dependents
» Si u, v sén ortogonals i unitaris = u,v,u X v és b.o.n.

20



LComplement Ortogonal

Outline

Complement Ortogonal
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LCcomplement Ortogonal
: :

Complement Ortogonal

El complement ortogonal d'un subespai F d'un e.v. euclidia E és el
subespai
Ft ={ueE|ulv pertotveF}.
Propietats quan E té dimensié finita:
<u,vi>=0
> Si F=[vi,...,vy] = F- =S ucE :
<u,vg>=0

29



LCcomplement Ortogonal

Complement Ortogonal

El complement ortogonal d'un subespai F d'un e.v. euclidia E és el
subespai
Ft ={ueE|ulv pertotveF}.

Propietats quan E té dimensié finita:

<uvi>=0

»SiF:[Vl,...,Vd]:>FJ‘: ue E
<u,vg>=0

> (FL)Lt=F, FCGe G-CFH,
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LComplement Ortogonal
: :

Complement Ortogonal

El complement ortogonal d'un subespai F d'un e.v. euclidia E és el
subespai
Ft ={ueE|ulv pertotveF}.

Propietats quan E té dimensié finita:

<u,vi>=0

> Si F=[vi,...,vy] = F- =S ucE :
<u,vg>=0

> (FL)Lt=F, FCGe G-CFH,

» (F+G)-=FtnGt, (FNG)t =FL 4+ Gt

29



LComplement Ortogonal
: :

Complement Ortogonal

El complement ortogonal d'un subespai F d'un e.v. euclidia E és el
subespai
Ft ={ueE|ulv pertotveF}.

Propietats quan E té dimensié finita:

<u,vi>=0
> Si F=[vi,...,vy] = F- =S ucE :
<u,vg>=0
> (Fhyt=F, FCGe G-CFY,
» (F+G)-=FtnGt, (FNG)t =FL 4+ Gt

> FNFt={0}.

29



LCcomplement Ortogonal

A R” amb el producte escalar euclidia,

» Si F ve donat per generadors = les equacions de F=*
s'obtenen facilment: els seus coeficients sén les coordenades
dels generadors.

27



LComplement Ortogonal
: :

A R” amb el producte escalar euclidia,

» Si F ve donat per generadors = les equacions de F*
s'obtenen facilment: els seus coeficients sén les coordenades
dels generadors.

> Si F ve donat per equacions = els generators de F-
s'obtenen facilment: les seves coordenades son els coeficients
de les equacions.

F Ft
x+3y+2z=0
[(1a3a2)’( 2’178)] { —2x+y+8z=0

3x =5y +2z=0 [(3,-5,2)]

27



LComplement Ortogonal
: :

A R” amb el producte escalar euclidia,

» Si F ve donat per generadors = les equacions de F*
s'obtenen facilment: els seus coeficients sén les coordenades
dels generadors.

> Si F ve donat per equacions = els generators de F-
s'obtenen facilment: les seves coordenades sén els coeficients
de les equacions.

F FL
x+3y+2z=0
[(1,3,2),(=2,1,8)] { —2x+y+8z=0
3x -5y +2z=0 [(3,-5,2)]
» Si A és una matriu real, aleshores

Nuc(A)t = Im(A?).

27



LProjecciﬁ ortogonal

Outline

Projeccié ortogonal
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LPrcvjecz:ic’\ ortogonal

Projeccié ortogonal

Sigui E un e.v. euclidia de dimensié n.

Teorema (Descomposicié Ortogonal)

E = F @ F* per qualsevol subespai F. Es a dir, tot v € E s'escriu
d’'una tnica maneracomv=w+w onwe Fiw € F-.

25



L Projeccié ortogonal
;

Projeccié ortogonal

Sigui E un e.v. euclidia de dimensié n.

Teorema (Descomposicié Ortogonal)
E = F @ F* per qualsevol subespai F. Es a dir, tot v € E s'escriu
d'una tinica manera comv=w+w' onw € F iw € FL.

> w s’anomena la projeccié ortogonal de v en F i es denota per
proje(v),
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L Projeccié ortogonal
;

Projeccié ortogonal

Sigui E un e.v. euclidia de dimensié n.

Teorema (Descomposicié Ortogonal)
E = F @ F* per qualsevol subespai F. Es a dir, tot v € E s'escriu
d'una tinica manera comv=w+w' onw € F iw € FL.

> w s’anomena la projeccié ortogonal de v en F i es denota per
proje(v),

» w' s'anomena la projeccié ortogonal de v en F i es denota
per projgi(v).
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L Projeccié ortogonal

Projeccié ortogonal

Sigui E un e.v. euclidia de dimensié n.

Teorema (Descomposicié Ortogonal)

E = F @ F* per qualsevol subespai F. Es a dir, tot v € E s'escriu
d’'una tnica maneracomv=w+w onwe Fiw € F-.

> w s’anomena la projeccié ortogonal de v en F i es denota per
proje(v),

» w' s'anomena la projeccié ortogonal de v en F i es denota
per projgi(v).

> Aixi, v = proje(v) + projr.(v) i proje(v) és I'iinic vector de
F tal que v — projr(v) pertany a F*.
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L Projeccié ortogonal

Projeccié ortogonal

Sigui E un e.v. euclidia de dimensié n.

Teorema (Descomposicié Ortogonal)
E = F @ F* per qualsevol subespai F. Es a dir, tot v € E s'escriu
d'una tinica maneracomv=w+w onw € F iw' € F*.
> w s’anomena la projeccié ortogonal de v en F i es denota per
proje(v),
» w' s'anomena la projeccié ortogonal de v en F i es denota
per projgi(v).
> Aixi, v = proje(v) + projr.(v) i proje(v) és I'iinic vector de
F tal que v — projr(v) pertany a F*.
» Si F C E té dimensié d = F* té dimensié n — d.

25



L Projeccié ortogonal
; ;

Interpretacié geomeétrica

Proposicié
La projeccié ortogonal de v en F és el vector de F més proper a v;
és a dir,
v = projr(v)|| = min{|[v — wl|}
weF

(i coincideix amb ||proje1 (v)||). La projeccié ortogonal projg(v) és
la millor aproximacié de v en F.

26



L Projeccié ortogonal

Calcul de la projeccié ortogonal

Proposicid
proje(v) és I'tinic vector w que satisfAw € F iv—w € FL. Si F
té base uy, ..., uq, aleshores proje(v) és I'unic vector w tal que

<up,w>=<u,v >

w=cu+...cqug € F i :
< ug,w >=< Uyg,V >

Aixi, proje(v) és el vector ciuy + - - + cquy tal que ¢, ..., cq és
solucié del sistema
< up,uy > < ui,Uq > C1 < up,Vv >
< Uy, Uy > < Uqg, Uq > Cd < ugq,Vv >

27



LPrt:)je(:z:it:’\ ortogonal

Amb el prod. esc. estandard, si A és la matriu
aleshores ¢y, ..., cq son solucié del sistema
ol
ATA = Alv
Cd

(Si u1,...,uq s6n Li., aleshores A'A és invertible).

0

Ud

28



LProjeccié ortogonal
: :

Projeccié ortogonal amb base ortogonal

Corollary
<v,u>

SidimF =1, F = [u], aleshores proj(v) = Si=

20



LProjecz:it:’\ ortogonal
; ;

Projeccié ortogonal amb base ortogonal

Corollary
SidimF =1, F = [u], aleshores projr(v) = St
Proposicid
Siui,...,uq és una base ortogonal de F i v € E, aleshores
. <v,u; > <Vv,ug >
proje(v) = — — —Jt -t —

uy Uq.
< ui,ur > < Uqg, Uqg >

20



L Projeccié ortogonal
; ;

Projeccié ortogonal amb base ortogonal

Corollary

SidimF =1, F = [u], aleshores projr(v) = %

Proposicid

Siui,...,uq és una base ortogonal de F i v € E, aleshores
. <v,u; > < V,ug >

proje(v) = ———u + -+ + ————ugq.
< up,u; > < Uqg, Uqg >
Proposicidé
Siui,...,uqg ésun b.o.n. de F iv € E, aleshores

proje(v) =< v,uy > up + -+ < v, ug > ug.

Es a dir, les coordenades de projg(v) in la base uy, ..., uy sén
<v,up >,...,< V,Ug >.
20



L Projeccié ortogonal
; ;

Determinants i volums
De la projeccié ortogonal i propietats del producte vectorial podem
provar:

> A R?, el paral-lelogram determinat per dos vectors u, v té
area igual a | det(u, v)|.

0= (0,0)

» A R3, el paral-lelepiped determinat per tres vectors u, v, w té

volum igual a |det(u, v, w)].
ﬁ+z‘>+zﬁ
@ 77
(0.0,0)_0

a

20



LDescomposicié en valors singulars

Outline

Descomposicié en valors singulars

21



LDesmmposicié» en valors singulars
;

Descomposicié en valors singulars (SVD)

Teorema (Descomposicié en valors singulars)

Sigui A una matriu real m x n. Existeix una decomposicié
A=U-D-VtonUé mxm,V é nxn, U,V sén ortogonals i
D és la matriu m X n:

o1 0 --- 0
D — 0 o,
0 0 0
0 0

amboy >0, >...>0,>01ir=rank A
01,...,0, S‘anomenen els valors singulars de A i estan
univocament determinats per A.

9



LDescomposicic’; en valors singulars
;

Interpretacié geometrica de la SVD
Si A és la matriu estandard una aplicacié lineal f : R" — R, i

anomenem uq,...,Un, Vi,...,V, les columnes de Ui V
respectivament, aleshores D és la matriu associada a f en b.o.n
VieeooyVp i UL, .., Uny:

A=M(f)=_U x D x V!
Aue Mv’u(f) Aesy

(noteu que Vi=V-1=A.,,).

[T. Hern, C. Long]
213



LDesmmposicié» en valors singulars

Com obtenim la SVD?
Els valors singulars venen determinats per A:
A= UDV'= A'A = VD'U'UDV"' = VD'DV*

perdo U i V no (pero gairebé determintats en la majoria de casos).
Com calculem la SVD?

(1) Diagonalitzem la matriu simétrica S = A* - A (Ta. espectral)

24
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Els valors singulars venen determinats per A:
A= UDV'= A'A = VD'U'UDV"' = VD'DV*

perdo U i V no (pero gairebé determintats en la majoria de casos).
Com calculem la SVD?
(1) Diagonalitzem la matriu simétrica S = A* - A (Ta. espectral)

(2) Si A; > -+ > A, s6n els VAPs no nuls de S = els valors
singulars sén 01 = v/ A1,...0, = VA, (fet: A'A sempre té
VAPs no negatius).
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Com obtenim la SVD?
Els valors singulars venen determinats per A:
A= UDV'= A'A = VD'U'UDV' = VD'DV*
perdo U i V no (pero gairebé determintats en la majoria de casos).
Com calculem la SVD?

(1) Diagonalitzem la matriu simétrica S = A" - A (Ta. espectral)

(2) Si A; > -+ > A, s6n els VAPs no nuls de S = els valors
singulars sén 01 = v/ A1,...0, = VA, (fet: A'A sempre té
VAPs no negatius).

(3) Les columnes de V sén una b.o.n vi,...,v, de VEPs de S.
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LDescomposicié en valors singulars

Com obtenim la SVD?
Els valors singulars venen determinats per A:
A= UDV'= A'A = VD'U'UDV"' = VD'DV*

perdo U i V no (pero gairebé determintats en la majoria de casos).

Com calculem la SVD?

(1) Diagonalitzem la matriu simétrica S = A" - A (Ta. espectral)

(2) Si A; > -+ > A, s6n els VAPs no nuls de S = els valors
singulars sén 01 = v/ A1,...0, = VA, (fet: A'A sempre té
VAPs no negatius).

(3) Les columnes de V sén una b.o.n vi,...,v, de VEPs de S.

(4) ny = UilAvl, ce Uy = U%Av, sén vectors ortonormals de R™
(que es poden complear a una b.o.n. de R™ si cal) i formen
les columnes de U.

24



LDesmmposicié» en valors singulars
; ;

El teorema fonamental de I'algebra lineal
Sigui f : R” — R™ una aplicacié lineal i A la seva matriu
estandard. Aleshores R” = Nuc(A) @ Im(A?) (Im(A")=[files de
A]), R™ = Im(A) & Nuc(A?"), aquestes descomposicions donen
complements ortogonal i existen b.o.n.'s vq,..., v, (de R") i
Ui, ..., Un (de R™) tals que
1. Im(A) = [u1, ..., u]

25K



LDesmmposicic’; en valors singulars
; ;

El teorema fonamental de I'algebra lineal

Sigui f : R” — R™ una aplicacié lineal i A la seva matriu
estandard. Aleshores R” = Nuc(A) @ Im(A?) (Im(A")=[files de
A]), R™ = Im(A) & Nuc(A?"), aquestes descomposicions donen
complements ortogonal i existen b.o.n.'s vq,..., v, (de R") i
Ui, ..., Un (de R™) tals que

1. Im(A) = [u1, ..., u]

2. Nuc(A) = [Vrt1,-- -, val
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LDesmmposicic’; en valors singulars
; ;

El teorema fonamental de I'algebra lineal

Sigui f : R” — R™ una aplicacié lineal i A la seva matriu
estandard. Aleshores R” = Nuc(A) @ Im(A?) (Im(A")=[files de
A]), R™ = Im(A) & Nuc(A?"), aquestes descomposicions donen
complements ortogonal i existen b.o.n.'s vq,..., v, (de R") i
Ui, ..., Un (de R™) tals que

1. Im(A) = [u1, ..., u]

2. Nuc(A) = [Vrt1,-- -, val

3. Im(AY) = [vi, ..., v]

28K



LDescomposicic’; en valors singulars
; ;

El teorema fonamental de I'algebra lineal

Sigui f : R” — R™ una aplicacié lineal i A la seva matriu
estandard. Aleshores R” = Nuc(A) @ Im(A?) (Im(A")=[files de
A]), R™ = Im(A) & Nuc(A?"), aquestes descomposicions donen
complements ortogonal i existen b.o.n.'s vq,..., v, (de R") i
Ui, ..., Un (de R™) tals que

1. Im(A) = [u1, ..., u]

2. Nuc(A) = [Vrt1,-- -, val

3. Im(AY) = [vi, ..., v]

4. Nuc(AY) = [Urs1,- -+, Um]

28K



LDescomposicié en valors singulars
; ;

El teorema fonamental de I'algebra lineal

Sigui f : R” — R™ una aplicacié lineal i A la seva matriu
estandard. Aleshores R” = Nuc(A) @ Im(A?) (Im(A")=[files de
A]), R™ = Im(A) @ Nuc(A?"), aquestes descomposicions donen
complements ortogonal i existen b.o.n.'s vq,..., v, (de R") i
Ui, ..., Un (de R™) tals que

1. Im(A) = [u1, ..., u]

2. Nuc(A) = [Vrt1,-- -, val

3. Im(AY) = [vi, ..., v]

4. Nuc(AY) = [Urs1,- -+, Um]
A més, la restriccié de f al subespai de files Im(Af) C R" i al
subespai Im(A) C R™ en les bases vi,..., v, u1,...,u, ve donada
per la la matriu diagonal de valors singulars,

01 0
D =

5



LDescomposiciéo en valors singulars
; ;

Norma-2 d’'una matriu

Per " mesurar” una aplicacié lineal mirem com de gran és la imatge
per f de l'esfera unitat:

Definicid
La norma-2 d'una matriu m x n A és

[All2 = max |Ax][-

Propietats

26



LDescomposiciéo en valors singulars
; ;

Norma-2 d'una matriu
Per " mesurar” una aplicacié lineal mirem com de gran és la imatge
per f de l'esfera unitat:
Definicié
La norma-2 d’una matriu m x n A és

[[All2 = max {[Ax].
=1

Propietats
» Es una norma de matriu: ||All2 >0, [|All2 =0 < A=0,
[cAll2 = [ell[All2 |A+ Bll2 < [[All2 + [|B]|2

26



LDescomposicié» en valors singulars
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Norma-2 d'una matriu
Per " mesurar” una aplicacié lineal mirem com de gran és la imatge
per f de l'esfera unitat:
Definicié
La norma-2 d’una matriu m x n A és

[[All2 = max {[Ax].
=1

Propietats
» Es una norma de matriu: ||All2 >0, [|All2 =0 < A=0,
[cAll2 = [ell[All2, |A+ Bll2 < [[All2 + [|B]|2

lIAx||
LER

> ”A”2 = MaXx=£Q
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LDesmmposicié» en valors singulars
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Norma-2 d'una matriu
Per " mesurar” una aplicacié lineal mirem com de gran és la imatge
per f de l'esfera unitat:
Definicié
La norma-2 d’una matriu m x n A és

[[All2 = max {[Ax].
=1

Propietats
» Es una norma de matriu: ||All2 >0, [|All2 =0 < A=0,

[cAll2 = ’C|HAH2”nA“/|? + Bll2 < [|All2 + (B2
X
> [[All2 = maxuzo T

> JAv]l < [[All2]| v Vv
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LDesmmposicié» en valors singulars
; ;

Norma-2 d'una matriu
Per " mesurar” una aplicacié lineal mirem com de gran és la imatge
per f de l'esfera unitat:
Definicié
La norma-2 d’una matriu m x n A és

[[All2 = max {[Ax].
=1

Propietats
» Es una norma de matriu: ||All2 >0, [|All2 =0 < A=0,
[cAll2 = ’C|HAH2||'A“/|? + Bll2 < [[All2 + [|Bl2
> [JAll2 = maxczo
> [Av][ < [|All2([v]| Yv.

» [|[AX||2 = ||All2 si X és una matriu ortogonal.
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Norma-2 d'una matriu
Per " mesurar” una aplicacié lineal mirem com de gran és la imatge
per f de l'esfera unitat:
Definicié
La norma-2 d’una matriu m x n A és

[[All2 = max {[Ax].
=1

Propietats
» Es una norma de matriu: ||All2 >0, [|All2 =0 < A=0,

[eAll2 = [elllAll2, [|A+ Bll2 < [|All2 + [|B]l2

A
| All2 = max,zo LAl

[Av]] < [IA]l2][v]] Vv.
|AX]|2 = ||Al|2 si X és una matriu ortogonal.
| YA||2 = ||A]|2 si Y és una matriu ortogonal.

vvyvyy
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Norma-2 d'una matriu
Per " mesurar” una aplicacié lineal mirem com de gran és la imatge
per f de l'esfera unitat:
Definicié
La norma-2 d’una matriu m x n A és

[[All2 = max {[Ax].
=1

Propietats
» Es una norma de matriu: ||All2 >0, [|All2 =0 < A=0,

[eAll2 = [elllAll2, [|A+ Bll2 < [|All2 + [|B]l2

A
| All2 = max,zo LAl

vl < 1Al vl V.
|AX]|2 = ||Al|2 si X és una matriu ortogonal.
| YA||2 = ||A]|2 si Y és una matriu ortogonal.
|AB|l2 < [|All2[| B2

vvvyyVvyy
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LDescomposicié en valors singulars

Conseqiiencies geomeétriques de la SVD:

Proposicid
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LDescomposicié en valors singulars

Conseqiiencies geomeétriques de la SVD:
Proposicid

> [[All2 = o1
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LDescomposit:iéo en valors singulars
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Conseqiiencies geomeétriques de la SVD:
Proposicid
> [|All2 = 01

> EI maxim s'assoleix en £vi: max|iy =1 [|Ax|| = [|Avi||.

7



LDescomposiciéo en valors singulars

Conseqliencies geometriques de la SVD:
Proposicid
> Al = o
> EI maxim s'assoleix en £vi: max|iy =1 [|Ax|| = [|Avi||.
> minj, =1 [ Ax]| =
on st A té rang n, i s’assoleix en + v,

0 st A té rang < n

7



LDescomposiciéo en valors singulars

Conseqliencies geometriques de la SVD:
Proposicid
> Al = o
> EI maxim s'assoleix en £vi: max|iy =1 [|Ax|| = [|Avi||.
> minj, =1 [ Ax]| =
on st A té rang n, i s’assoleix en + v,
0 st A té rang < n

> Si A és invertible, [A72 = L.

7
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Outline
Producte escalar
Matrius simetriques
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Complement Ortogonal
Projeccié ortogonal
Descomposicié en valors singulars
Isometries

Aplicacions de SVD i projeccié ortogonal
Aproximacié pel rang
Minims quadrats lineals
Analisi de components principals

Producte escalar a C
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L Isometries

Orientacié de R?

Una base uy, up de R2 té
» orientacié directa/positiva si el gir més curt de uy a up és
anti-horari.

» orientacié inversa/negativa si the el gir més curt de u; to uy
és horari.

Uy
uz

Bases directes Bases inversa

20



L Isometries

Orientacions

A R" diem que la base estandard té orientacié directa/positiva.
Per les altres bases:

Definicié
Una base uy, ..., u, de R" té orientacié directa/positiva, si

det(uy, u2,...,up) >0

(calculat en coordenades estandard); altrament, diem que la base
té orientacié inversa/negativa.

40
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Interpretacié geomeétrica a R?
A R3, per veure si una base uy, up, u3 té orientacié directa usem la
regla de la ma dreta: posem el polze apuntant a wus i si el sentint
de tancar la ma és el mateix que el del cami més curt de u; a up,
aleshores té orientacié directa.

Uz = Uy X U2

El producte vectorial
déna bases directes

base directa base inversa

» Siu,veR3s6n Li. = u,v,u x v és una base directa,

det(u,v,u x v) > 0.

a1
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; ;

|sometries
Definicié
Un endomorfisme f € End(E) és una isometria si preserva el
producte escalar,
(F(u), F(v)) = {u,v) Vu,v.

C : f .
Ex: Si A és una matriu ortogonal, aleshores x +— Ax és una
isometria.

492
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[sometries

Definicié
Un endomorfisme f € End(E) és una isometria si preserva el
producte escalar,

(f(u),f(v)) =(u,v) Vu,v.

Ex: Si A és una matriu ortogonal, aleshores x Ly Ax és una
isometria.
Proposicié
Sif :R" — R" és una aplicacid lineal, sén equivalents:
» f és un isometria
» f envia la base estandard a una b.o.n

» Me(f) (or en qualsevol b.o.n) és un matriu ortogonal

42
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Isometries directes i inverses

Propietats: si f és un isometria, aleshores
» ||f(u)|| = ||ull, per tot u € E
> d(f(x),f(y)) = d(x,y) per tot x,y
» angle entre f(u) i f(v) = angle (no orientat) entre u i v
» Si F és f-invariant = F és f-invariant
Remarca: si f és una isometria de R” = det(f) = +1isi A és un
VAP de f, aleshores |A| = 1.
» Sidetf = +1 diem que és una isometria directa (preserva
orientacid).
» Sidetf = +1 diem que és una isometria inversa (canvia
orientacid).
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; ;

Exemples d'isometries de R?
Les aplicacions f : R? — R? segiients sén isometries:

» f= reflexié/simetria respecte una recta / que conté |'origen,
I = [v].Aleshores

<V,X > 2
— v —x, Me(f) = ————w' —Id,
<v,v> <v,v>

f(x)=2
i prenent u de [v]* ho podem escriure com:

2
ut.
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Exemples d'isometries de R?
Les aplicacions f : R? — R? segiients sén isometries:

» f= reflexié/simetria respecte una recta / que conté |'origen,
I = [v].Aleshores

<V,X > 2
— v —x, Me(f) = ————w' —Id,
<v,v> <v,v>

f(x)=2
i prenent u de [v]* ho podem escriure com:

2
M(f) = Id — ————u - u'.
e( ) <u,u>
» f=gir anti-horari d’angle « respect |'origen; aleshores

M.(F) = (cosoz —sina) 7

sina cos«

f és una isometria directa.
44



L Isometries
: :

Classificacié d'isometries a R?

Teorema
Si f és una isometria de R?, aleshores o bé

45
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Classificacié d'isometries a R?

Teorema
Si f és una isometria de R?, aleshores o bé

» detf =1 if és un gir anti-horari d’ angle o respecte el (0,0)
i en qualsevol b.o.n directa u,

Mu(f) = (Cosa —Sina) |

sind  coso

45
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Classificacié d'isometries a R?

Teorema
Si f és una isometria de R?, aleshores o bé

» detf =1 if és un gir anti-horari d’ angle o respecte el (0,0)
i en qualsevol b.o.n directa u,

Mu(f) = (Cosa —Sina) |

sind  coso

o
» detf = —1 i f és una reflexid/simetria respecte una recta
[v] 3 (0,0); siu € [v]* =

2

2 /1 0
Me(f) = 1d = — = —u-u Mv,u(f)_(O )
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Exemple de classificacié d'isometria

= ( x=V3y V3x+y
- 2 ) 2

Decidiu si I'aplicacié f(x,y) ) és una isometria i

descriviu-la.

> La matriu estandard de f és M = (%?2 _1/;2/2) :

46
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Exemple de classificacié d'isometria

Decidiu si I'aplicacié f(x,y) = (#, @) és una isometria i

descriviu-la.

> La matriu estandard de f és M = (\}5/52 _1//§2/2) :

> M és ortogonal = f és un isometria

46
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Exemple de classificacié d'isometria

= ( x=V3y V3x+y
- 2 ) 2

Decidiu si I'aplicacié f(x,y) ) és una isometria i

descriviu-la.

> La matriu estandard de f és M = (\}5/52 _1//”3’2/2> :

> M és ortogonal = f és un isometria
» det(M) =1 = f és un gir (pel Ta. de Classificacid).

46
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Exemple de classificacié d'isometria

Decidiu si I'aplicacié f(x,y) = (#, @) és una isometria i

descriviu-la.

> La matriu estandard de f és M = (\}5/52 _1//”3’2/2> :

> M és ortogonal = f és un isometria
» det(M) =1 = f és un gir (pel Ta. de Classificacid).

P Per trobar I'angle a: segons el Teorema, M ha de ser de la
forma

cosa —sino
sina  cos«

) = cosa=1/2,sina = 3/2 = a =7/3.
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Exemple de classificacié d'isometria

Decidiu si I'aplicacié f(x,y) = (

#, @) és una isometria i

descriviu-la.

>

>
>

: . . 1/2  —v/3/2
La matriu estandard de f és M = <\/§//2 1//_2/ ) :
M és ortogonal = f és un isometria
det(M) =1 = f és un gir (pel Ta. de Classificacid).
Per trobar I'angle a: segons el Teorema, M ha de ser de la
forma

cosa —sino
sina  cos«

) = cosa=1/2,sina = 3/2 = a =7/3.

O també: o = v,/f—(\v) Vv = prenem qualsevol v € R?,
calculem cosa = W&"()jm i si det(v,f(v)) >0 (resp.
det(v, f(v)) < 0) prenem « € [0, 7] (resp. a € [, 2n7)).
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Exemples d'isometries a R3

f = gir/rotacié d'un cert angle respecte una recta
r> 0 =(0,0,0) ( r s'anomena eix de rotacid).

» Per distingir entre angle 6 i —0 (= 27 — ) cal orientar r:

a7



L Isometries

Exemples d'isometries a R3

f = gir/rotacié d'un cert angle respecte una recta
r> 0 =(0,0,0) ( r s'anomena eix de rotacid).

» Per distingir entre angle 6 i —0 (= 27 — ) cal orientar r:

» Escollim un vector u de r, orientem r = [u] per u usant la
regla de la ma dreta: amb el polze en el sentit de u, gir
positiu és en el sentit de tancar la ma (mirant des de la fletxa
de u, gir anti-horari en el pla r'). Aleshores 6 pertany a [0, 7]
o [m,27] segons es tingui, per qualsevol v ¢ r,

det(v,f(v),u) >0 < 6¢€]0,n] 1
det(v. F(v).0) <0 < 0¢ [m2n] (1)

a7



L Isometries

Exemples d'isometries a R3

f = gir/rotacié d'un cert angle respecte una recta
r> 0 =(0,0,0) ( r s'anomena eix de rotacid).

» Per distingir entre angle 6 i —0 (= 27 — ) cal orientar r:

» Escollim un vector u de r, orientem r = [u] per u usant la
regla de la ma dreta: amb el polze en el sentit de u, gir
positiu és en el sentit de tancar la ma (mirant des de la fletxa
de u, gir anti-horari en el pla r'). Aleshores 6 pertany a [0, 7]
o [m,27] segons es tingui, per qualsevol v ¢ r,

det(v,f(v),u) >0 < 6¢€]0,n]

det(v. F(v).0) <0 < 0¢ [m2n] (1)

» Preserva |'orientacié de bases, = és isometria directa

(det(f) =1).

a7



L Isometries

Exemple de gir:

f = gir d'eix r = [e3], orientat per e3, i angle /3. Aleshores

x 1/2 —V3/2 0\ [x
f (y) = <\/§/2 1/2 o) (y) .
z 0 0 1 z

48
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Matriu d'un gir

f = gir d'eix r = [u] (orientat per u) i angle §. Prenem b.o.n.

positiva u = uy, up, u3 amb uz = m (“b.o.n adaptada”), aleshores
cosf —sinf 0

My(f) = sinf cosf 0O
0 0 1

490
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Exemple: simetria axial

f = simetria axial respecte una recta r 5 O.
» f = gir d’angle 7 i eix r (det(f) = 1).

50
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Exemple: simetria axial

f = simetria axial respecte una recta r 5 O.
» f = gir d’angle 7 i eix r (det(f) = 1).

» Com m = —m, no necessitem orientacid.

50



L Isometries

Exemple: simetria axial

f = simetria axial respecte una recta r 5 O.
» f = gir d’angle 7 i eix r (det(f) = 1).
» Com m = —m, no necessitem orientacid.
» Ex: trobeu M(f) per f = simetria axial respecte I'eix z.

50
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Exemple: Reflexié especular

f = reflexi6 especular/simetria respecte un pla H 3 O.

» Canvia l'orientacié = det(f) = —1.
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Exemple: Reflexié especular

f = reflexi6 especular/simetria respecte un pla H 3 O.
» Canvia l'orientacié = det(f) = —1.
» Exemple: si H= {z = 0}, aleshores f(x,y,z) = (x,y, —2)

51



L Isometries

Exemple: Reflexié especular

f = reflexi6 especular/simetria respecte un pla H 3 O.
» Canvia l'orientacié = det(f) = —1.
» Exemple: si H= {z = 0}, aleshores f(x,y,z) = (x,y, —2)
» Si uc H*, aleshores

2 t

Me(f): /d—mU‘U
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Exemple: Rotacié seguida de reflexié especular

g = gir R amb eix r = [u] i angle 6 seguida de reflexié especular
respecte un pla ortogonal a r, [u]*.
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Classificacié d' isometries de R3

Teorema
Si f : R3 — R3 és un isometria, aleshores f estd en un dels casos
seglients:
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Classificacié d' isometries de R3

Teorema
Si f : R3 — R3 és un isometria, aleshores f estd en un dels casos
seglients:
» Cas 1. |det f = +1| (isometria directa): f és un gir d’eix
r = [u] = VEPs de VAP 1.
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Classificacié d' isometries de R3

Teorema
Si f : R3 — R3 és un isometria, aleshores f estd en un dels casos
seglients:
» Cas 1. |det f = +1| (isometria directa): f és un gir d’eix
r = [u] = VEPs de VAP 1.

> Cas 2. (isometria inversa): f = gir R d’angle 0 i
eix r = [u] (=VEPs de VAP -1), seguit de reflexié especular S
respecte el pla [u]*, f = So R.
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Classificacié d' isometries de R3

Teorema
Si f : R3 — R3 és un isometria, aleshores f estd en un dels casos
seglients:
» Cas 1. |det f = +1| (isometria directa): f és un gir d’eix
r = [u] = VEPs de VAP 1.

> Cas 2. (isometria inversa): f = gir R d’angle 0 i
eix r = [u] (=VEPs de VAP -1), seguit de reflexié especular S
respecte el pla [u]*, f = So R.
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Classificacié d' isometries de R3

Teorema
Si f : R3 — R3 és un isometria, aleshores f estd en un dels casos
seglients:
» Cas 1. |det f = +1| (isometria directa): f és un gir d’eix
r = [u] = VEPs de VAP 1.

> Cas 2. (isometria inversa): f = gir R d’angle 0 i
eix r = [u] (=VEPs de VAP -1), seguit de reflexié especular S
respecte el pla [u]*, f = So R.

Tota isometria a R® es pot descriure com un d’aquests casos (cas 1si
detf =1, cas 2 si detf = —1). Important: en el cas 2, el pla de simetria és
ortogonal a I'eix de gir.
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Cas 1: detf = +1, f = gir d’eix r = [u].
Orientem I'eix per u u de norma 1 i anomenem 6 I'angle de gir.
Aleshores si u = {u1, up, u3 = u} és una b.o.n. directa (anomenada
base adaptada a f), es té

cosf —sind 0O
My(f) = sinf cosf 0O
0 0 1

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.

» [u] = VEPs de VAP 1 = vectors fixos per f.

B4



L Isometries

Cas 1: detf = +1, f = gir d’eix r = [u].
Orientem I'eix per u u de norma 1 i anomenem 6 I'angle de gir.
Aleshores si u = {u1, up, u3 = u} és una b.o.n. directa (anomenada
base adaptada a f), es té

cosf —sind 0O
My(f) = sinf cosf 0O
0 0 1

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.

» [u] = VEPs de VAP 1 = vectors fixos per f.

> 0= vaE) si v és ortogonal a I'eix [u].

B4



L Isometries
;

Cas 1: detf = +1, f = gir d’eix r = [u].
Orientem I'eix per u u de norma 1 i anomenem 6 I'angle de gir.
Aleshores si u = {u1, up, u3 = u} és una b.o.n. directa (anomenada
base adaptada a f), es té

cosf —sind 0O
My(f) = sinf cosf 0O
0 0 1

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.

» [u] = VEPs de VAP 1 = vectors fixos per f.

—

» 0 =v,f(v)si v és ortogonal a I'eix [u].
> cos(f) = Lz)_l i 0 pertany a [0, 7] o [, 27] segons es tingui
(per qualsevol v ¢ [u]):

det(v,f(v),u) >0 < 60¢€[0,7] 5
det(v,f(v),u) <0 & €€ |[r,27] (2)

B4
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Cas2: detf =—-1,f=SoR

f=5SoR, R=gird'angle 6 d'eix r = [u] > O (orientat per u), S
simetria respecte el pla H = [u]*.

> Case 2.a § =0, f = S = simetria respecte pla H = [u]*. Es
té:

5K
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Cas2: detf =—-1,f=SoR

f=5SoR, R=gird'angle 6 d'eix r = [u] > O (orientat per u), S
simetria respecte el pla H = [u]l.
> Case 2.a § =0, f = S = simetria respecte pla H = [u]*. Es
té:
» [u]: VEPs de VAP -1

5K



L Isometries
; ;

Cas2: detf =—-1,f=SoR

f=5SoR, R=gird'angle 6 d'eix r = [u] > O (orientat per u), S
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Cas2: detf =—-1,f=SoR

f=5SoR, R=gird'angle 6 d'eix r = [u] > O (orientat per u), S
simetria respecte el pla H = [u]*.
> Case 2.a § =0, f = S = simetria respecte pla H = [u]*. Es
té:
» [u]: VEPs de VAP -1
> Imatge d'un vector v:

S(v)=v— 225’3 u

> Matriu de f:
M(S) =Id — —uu*

H: vectors fixos by f, pla de VEPs de VAP 1.
H = [v — f(v)]* per qualsevol v ¢ H.

vy
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L Isometries

» Cas 2.b: ##0, f =S oR. Orientem |'eix de gir per u.
Aleshores si u = {u1, up, u3 = II_ZH} és una b.o.n directa (base

adaptada a f) i

cosf —sinf O
My(f)=| sinf cosf 0O
0 0 -1

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.
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L Isometries
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» Cas 2.b: 6 #0, f =S50 R. Orientem I'eix de gir per u.
Aleshores si u = {uy, up, u3 = ”—ZH} és una b.o.n directa (base
adaptada a f) i

cosf —sinf O
My(f)=| sinf cosf 0O
0 0 -1

La matriu de f en qualsevol altra base es pot obtenir per canvi de base.

> [u] = VEPs de VAP -1.

» H subespai invariant de dimensié 2.

> 0= v,/f(\v) si v és ortogonal a I'eix [u].

> cos(f) = #

> ( pertany a [0, 7] o [m,27] segons es tingui (per qualsevol

v ¢ [u]):

{ det(v,f(v),u) >0 < 6€][0,n] 3
det(v, f(v),u) <0 & 0¢ [r,2n] (3)
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L Isometries
; ;

Exemple

2/3  2/3 1/3
Mo (f) = (2/3 1/3 2/3)
1/3 —2/3 2/3

» det(f) =1 = f = gir d'eix [u] i angle 6.
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1/3 —2/3 2/3

» det(f) =1 = f = gir d'eix [u] i angle 6.
» Eix: VEPsde VAP 1, r =[u=(1,0,1)].

57



L Isometries
; ;

Exemple

2/3  2/3 1/3
Mo (f) = (2/3 1/3 2/3)
1/3 —2/3 2/3

» det(f) =1 = f = gir d'eix [u] i angle 6.
» Eix: VEPsde VAP 1, r =[u=(1,0,1)].
» Angle: 1+2cosf = tr(f) =5/3 = cosf =1/3
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L Isometries
;

Exemple

2/3  2/3 1/3
Mo (f) = (2/3 1/3 2/3)
1/3 —2/3 2/3

» det(f) =1 = f = gir d'eix [u] i angle 6.
» Eix: VEPsde VAP 1, r =[u=(1,0,1)].
» Angle: 1+2cosf = tr(f) =5/3 = cosf =1/3

» Orientem r per u, prenem v = (1,0,0) ¢ r ,
det(v,f(v),u) = -2/3<0= 0 € [r,2n], § =27 — 1.23.
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LAplit:acit:ms de SVD i projeccié ortogonal

SVD i aproximacié pel rang
Teorema (Eckhart-Young)
Sigui A una matriu. Si A= UDV'* i els valors singulars de A sén

01,...,0, aleshores per tot k <'r,
o1 0 --- 0
M=u| © Tk vt
0 0 0
0 -+ v - 0

és la matriu de rank k més propera a A (i.e. |A— M||2 és minima
entre les matrius M de rang k). Observem que ||A — M||2 = ok41.
S'usa en compressié d'imatges, per exemple, perqué es pot
comprimir la informacié de A usant:

A=oiunvi+oouwmvi+... . +ou vt
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Outline

Aplicacions de SVD i projeccié ortogonal

Minims quadrats lineals

61



LApIiA:acit:ms de SVD i projeccié ortogonal
;

Aproximacié per minims quadrats lineals

Problema: Ax = b pot ser incompatible degut a errors en mesures
de b, but voldriem una solucié aproximada:

sistema
Ax=b & b ¢ Im(A)
incompatible

Volem X tal que AX sigui el més proper a b possible.
Definicié
Una solucié per minims quadrats de Ax = b és un vector X que

minimitza ||Ax — b||, és a dir

|AX — b|| < ||Ax — b|| per tot x
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LApIiA:acicms de SVD i projeccié ortogonal
; ;

Resolucié del problema de minims quadrats lineals

Gauss (1801)

» Canviem b pel vector de Im(A) més proper a b: la projeccio
ortogonal de b en Im(A), projim(a)(b).
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Resolucié del problema de minims quadrats lineals

Gauss (1801)

» Canviem b pel vector de Im(A) més proper a b: la projeccié
ortogonal de b en Im(A), projim(a)(b).

» Aleshores X és una solucié per minims quadrats de Ax = b &
X és solucié de Ax = projim(a)(b)-

> Six és unisolucié per minims quadrats aleshores no compleix
Ax — b =0, perdo minimitza la norma ||Ax — bl|

P El residu measura com de lluny esta X de ser solucié del
sistema:

residu = AX — b (que és = projim(a)(b) — b).

norma del residu: ||AX — b||
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LAplit:acit:ms de SVD i projeccié ortogonal

Resolucié del problema de minims quadrats lineals

Gauss (1801)

>

>

| 2

Canviem b pel vector de Im(A) més proper a b: la projeccio
ortogonal de b en Im(A), projim(a)(b).

Aleshores X és una solucié per minims quadrats de Ax = b &
X és solucié de Ax = projim(a)(b)-

Si x és una solucié per minims quadrats aleshores no compleix
Ax — b =0, perdo minimitza la norma ||Ax — bl|

El residu measura com de Iluny esta X de ser solucié del
sistema:

residu = AX — b (que és = projim(a)(b) — b).
norma del residu: ||AX — b||

Important: no ens cal calcular projimay(b) (pagina segiient).
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Teorema
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LAplicacicms de SVD i projeccié ortogonal

Teorema

> X és una solucié per minims quadrats de Ax = b si, i només
si, és una solucid de les equacions normals:

AfAx = Atb.
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LAplit:acit:ms de SVD i projeccié ortogonal

Teorema

> X és una solucié per minims quadrats de Ax = b si, i només
si, és una solucid de les equacions normals:

AtAx = Ab.

» Si el rang de A és igual al nombre de columnes, aleshores AtA
és invertible i la solucié per minims quadrats és tinica i donada
per

X = (A*A)"LAh

(calcular la inversa no és eficient)

64



LAplit:acit:ms de SVD i projeccié ortogonal

Teorema

> X és una solucié per minims quadrats de Ax = b si, i només
si, és una solucid de les equacions normals:

AtAx = Ab.

» Si el rang de A és igual al nombre de columnes, aleshores AtA
és invertible i la solucié per minims quadrats és tinica i donada
per

X = (A*A)"LAh
(calcular la inversa no és eficient)

> Si el sistema original és compatible, X és solucié del sistema
original.
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LApIiA:acit:ms de SVD i projeccié ortogonal
; ;

Analisi de components principals
Goal: Donats N punts (dades) de R3, p; = (x;,yi,z), i=1,...,N
altament correlacionats, volem trobar v; = (a, b, ¢) de norma 1 tal
que el conjunt {t; = ax; + by; + cz;}; tingui maxima variancia:

PC, component

PC, component

a b c

> Observem que projj,j(pi) = tivi
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Analisi de components principals
Goal: Donats N punts (dades) de R3, p; = (x;,yi,z), i=1,...,N
altament correlacionats, volem trobar v; = (a, b, ¢) de norma 1 tal
que el conjunt {t; = ax; + by; + cz;}; tingui maxima variancia:

M
e .\\. ,./PC: E
T \y. . §
0 © g
PC, component
a b c

> Observem que projj,j(pi) = tivi

» v; = (a, b, c) s'anomena primera component principal.

» Després podem buscar v» € [v1]* (2a component principal)
que maximitzi la variancia de projp,,1 (pi)-
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LApIiA:acin:ms de SVD i projecci6 ortogonal
;

Analisi de components principals
Goal: Donats N punts (dades) de R3, p; = (x;,yi,z), i=1,...,N
altament correlacionats, volem trobar v; = (a, b, ¢) de norma 1 tal
que el conjunt {t; = ax; + by; + cz;}; tingui maxima variancia:

PC, component

PC, component

a b c

> Observem que projj,j(pi) = tivi

» v; = (a, b, c) s'anomena primera component principal.

» Després podem buscar v» € [v1]* (2a component principal)
que maximitzi la variancia de projp,,1 (pi)-

» O bé seguim o bé projectem sobre les primeres components

principals per tal de reduir la dimensié del problem.
66



LApIiA:acit:ms de SVD i projeccié ortogonal
; ;

Procediment

Assumim que el conjunt {p;} esta centrat a |'origen. Sigui
X1 n a
M=1|: = ¢ | demaneraque) ;x;=>;yi=y ;2 =0.
XN YN 2N
» Volem v; = (a, b, c) de norma 1 tal que
Yo t2 =Y (ax; + byi + cz;)? = ||Mvi]| sigui maxim.

67



LApIiA:acit:ms de SVD i projeccié ortogonal
; ;

Procediment

Assumim que el conjunt {p;} esta centrat a |'origen. Sigui
X1 N a
M=1|: = ¢ | demaneraque) ;x;=>;yi=y ;2 =0.
XN YN ZN
» Volem v; = (a, b, c) de norma 1 tal que
Yo t2 =Y (ax; + byi + cz;)? = ||Mvi]| sigui maxim.
» = v; = primera columna de V en la SVD: M = UDV*.

67



LAplit:acit:ms de SVD i projeccié ortogonal
;

Procediment

Assumim que el conjunt {p;} esta centrat a |'origen. Sigui
X1 1 4
M=1|: = ¢ | demaneraque) ;x;=>;yi=y ;2 =0.
XN YN ZN
» Volem v; = (a, b, c) de norma 1 tal que
Yo t2 =Y (ax; + byi + cz;)? = ||Mvi]| sigui maxim.
» = v; = primera columna de V en la SVD: M = UDV*.

> Aleshores matriu My = M — Mviv{ té proji,,11(p;) a les seves
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LAplit:acit:ms de SVD i projeccié ortogonal
;

Procediment

Assumim que el conjunt {p;} esta centrat a |'origen. Sigui
X1 1 4
M=1|: = ¢ | demaneraque) ;x;=>;yi=y ;2 =0.
XN YN ZN
» Volem v; = (a, b, c) de norma 1 tal que
Yo t2 =Y (ax; + byi + cz;)? = ||Mvi]| sigui maxim.
» = v; = primera columna de V en la SVD: M = UDV*.

> Aleshores matriu My = M — Mviv{ té proji,,11(p;) a les seves
files.

> My =oouvh + ...+ orupv).

» La direccié que maximitza la variancia ara és v» (2n vector
columna de V).

> | prosseguim de la mateixa manera.
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LApIiA:acit:ms de SVD i projeccié ortogonal

Observacions:

» Si el conjunt {p;} no esta centrat a I'origen el podem centrar:
sigui (X,¥,2) = >_,(xi, i, zi)/N, i considerem
xXx1—X yn—y zn—2
M = . . .
XN—X YyN—Y 2Zy—2Z
Procedim com abans amb aquesta M i aleshores sumem
(x,y,Zz) al resultat final.
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LAplit:acit:ms de SVD i projeccié ortogonal
; ;

Observacions:

» Si el conjunt {p;} no esta centrat a I'origen el podem centrar:
sigui (X,¥,2) = >_,(xi, i, zi)/N, i considerem

xXx1—X yn—y zn—2
M= : : :

XN—X YyN—Y 2Zy—2Z
Procedim com abans amb aquesta M i aleshores sumem

(x,y,Zz) al resultat final.

» La matriu M*M és la matriu de covariancia empirica i la
component principal v; és el VEP dominant d'aqueta matriu.

» Per a conjunts de punts de R” es pot fer el mateix.
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Outline

Producte escalar a C
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L Producte escalar a C

Producte escalar a C”

Definicié

A C" I'analeg al producte escatar estandard és el producte escalar
X1 Y1

hermitic < u, v > de dos vectors u = 5 V= : eCn

) Xn Yn

és

<u,v>i= utV:X1)71—|—X2)72—|-...—|-X,,}Tn.
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L Producte escalar a C

Producte escalar a C”

Definicié

A C" I'analeg al producte escatar estandard és el producte escalar
X1 Y1

hermitic < u, v > de dos vectors u = 5 V= : eCn
Xn Yn

és

<u,v>i= utV:xlel+x2)Tg+...+x,,)Tn.
Exemple:

—i

u:< i )v:(g> =< u,v>:(1i1—2i)(g):3—7i.

1-—2i



L Producte escalar a C

Propietats:
1. < u,u>>0VYu (positiu)
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> <uavi+ave >=ar < u,vi > +a < u,vp>.

5. En aquest cas, la norma d'un vector u € C" és

|ul| = Vutt = /w2 + ... + |up]2 € R.
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Propietats:
1. < u,u>>0VYu (positiu)
2. <u,u>=0<% u=0 (no-degenerat).
3. <u,v>=<v,u> ("hermitic").
4. "sesquilineal”:

> < aju 4 a,v>=a <u,v>Hta < U,V >;
> <uaivit+avw>=3ar < uvi>+4a < u v >,

5. En aquest cas, la norma d'un vector u € C" és
lu|| = Vutt = Ve + . 4 un? € R

6. Base ortonormal per aquest producte escalar: definicié
analoga.
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L Producte escalar a C

Propietats:

1.

< u,u>>0Vu (positiu)

2. <u,u>=0<% u=0 (no-degenerat).
3.
4. "sesquilineal”:

< u,v>=<v,u> ("hermitic").

> < aju 4 a,v>=a <u,v>Hta < U,V >;
> <uaivit+avw>=3ar < uvi>+4a < u v >,

En aquest cas, la norma d'un vector u € C” és

|ul| = Vutd = Ve + . 4 un? € R

Base ortonormal per aquest producte escalar: definicié
analoga.

Si escrivim les columnes d'una matriu A = (v;...vy)
aleshores,

A'A=1Id siinoméssi{vi,..., vy} és una base ortonormal.
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Matrius unitaries

. .~ At , . e .
Una matriu n X n que satisfa A'A = Id s"anomena matriu unitaria.

» Si anomenenm les columnes de A vy, ..., vy, A= (v1...vp),
aleshores,

—t .. / . 7
A'/A=1Id siinoméssi{vi,...,v,} és una base ortonormal.
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Matrius unitaries

. .~ At , . e .
Una matriu n X n que satisfa A'A = Id s"anomena matriu unitaria.

» Si anomenenm les columnes de A vy, ..., vy, A= (v1...vp),
aleshores,
—t .. / . 7
A'/A=1Id siinoméssi{vi,...,v,} és una base ortonormal.

, e N . . , . _ —t
> A és unitaria si, i noméssi A1 = A",
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Matrius unitaries

. .~ At , . e .
Una matriu n X n que satisfa A'A = Id s"anomena matriu unitaria.

» Si anomenenm les columnes de A vy, ..., vy, A= (v1...vp),
aleshores,
—t .. / . 7
A'/A=1Id siinoméssi{vi,...,v,} és una base ortonormal.

, e N . . , . _ —t
> A és unitaria si, i noméssi A1 = A",

> A és unitaria = |det A| = 1.
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L Producte escalar a C

Matrius unitaries

. .~ At , . e .
Una matriu n X n que satisfa A'A = Id s"anomena matriu unitaria.

» Si anomenenm les columnes de A vy, ..., vy, A= (v1...vp),
aleshores,
—t .. / . 7
A'/A=1Id siinoméssi{vi,...,v,} és una base ortonormal.

, e N . . , . _ —t
> A és unitaria si, i noméssi A1 = A",

A és unitaria = |det A| = 1.
> Si A és unitaria, aleshores I'endomorfisme corresponent
preserva normes (preserva la mesura de vectors):

v

| Ax|| = ||x]|| per tot x
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L Producte escalar a C

Matrius unitaries

Una
| 2

v

. . it , . o
matriu n X n que satisfa A'A = Id s'Tanomena matriu unitaria.
Si anomenenm les columnes de A vq,...,vp,, A= (vi...vp),
aleshores,
—t .. , . ,
A'/A=1Id siinoméssi{vi,...,v,} és una base ortonormal.

, e N . . , . _ —t
A és unitaria si, i noméssi A~ = A",

A és unitaria = |det A| = 1.
Si A és unitaria, aleshores |'endomorfisme corresponent
preserva normes (preserva la mesura de vectors):

|AX]| = [|x]| per tot x

A també preserva producte hermitic i angles (i ortogonalitat) i
per tant és una transformacié que no deforma objectes.
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