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Scalar product

The Euclidean scalar product

Definition
The Euclidean scalar product (or dot product) < u, v > of two

vectors u =

 x1
...
xn

 , v =

 y1
...
yn

 ∈ Rn is

< u, v >:= utv = x1y1 + x2y2 + . . .+ xnyn.

Properties:

1. < u, u >≥ 0 ∀u and < u, u >= 0 ⇔ u = 0 (positive definite)

2. < u, v >=< v , u > (symmetric).
3. bilineal:

▶ < a1u1 + a2u2, v >= a1 < u1, v > +a2 < u2, v >;
▶ < u, a1v1 + a2v2 >= a1 < u, v1 > +a2 < u, v2 >.

Any function Rn × Rn −→ R that satisfies these properties is
called a scalar product.
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Scalar product

Bilinear forms

Let E be an R-e.v. A bilinear form on E is a map
φ : E × E −→ R such that, ∀ u, v ,w ∈ E and λ ∈ R :

(a) φ(u + v ,w) = φ(u,w) + φ(v ,w) φ(λu,w) = λφ(u,w),

(b) φ(w , u + v) = φ(w , u) + φ(w , v) φ(w , λu) = λφ(w , u).

If u = {u1, . . . , un} is a basis of E , then the matrix of φ in the
basis u is defined as

Mu(φ) =

 φ(u1, u1) · · · φ(u1, un)
...

...
φ(un, u1) · · · φ(un, un)

 .
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Scalar product

Matrix of a bilinear form

Properties:

1. If vu =

(
x1
.
.
.
xn

)
,wu =

(
y1
.
.
.
yn

)
⇒

φ(v ,w) = (x1 . . . xn)Mu(φ)

(
y1
.
.
.
yn

)
and Mu(φ) is the unique

matrix that satisfies this.

2. If v is another basis, then

Mv(φ) = At
v→uMu(φ)Av→u

A bilinear form φ is symmetric if φ(u, v) = φ(v , u) for all u, v .
A bilinear form is symmetric ⇔ Mu(φ) is a symmetric matrix for
any basis u.
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Scalar product

Scalar products

Let E be an R-e.v. and φ a bilinear form on E . One says that φ is
positive definite if φ(u, u) ≥ 0 with equality only when u = 0.

Definition
A scalar product on E is a symmetric, positive definite bilinear
form <,>: E × E −→ R. An R-e.v together with a scalar product
is called a Euclidean vector space.

Examples:

▶ The Euclidean scalar product

▶ E = F([a, b],R) = { continuous real functions defined on
[a, b]}, then the following defines a scalar product on E :

< f , g >:=

∫ b

a
f (x)g(x)dx .
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Scalar product

Norm and distance

Let E be an R-e.v. with scalar product <,>. The norm of u ∈ E
is ∥u∥ =

√
< u, u >.

If <,> is the Euclidean product, the norm is called the standard,
Euclidean, or 2-norm and is also denoted as ||u||2.
Properties: for any u, v ∈ E and c ∈ R
1. ∥u∥ ≥ 0 ∀u and ∥u∥ = 0 ⇔ u = 0;

2. ∥cu∥ = |c |∥u∥ c ∈ R;
3. | < u, v > | ≤ ∥u∥∥v∥ (Cauchy-Schwarz inequality)

4. ∥u + v∥ ≤ ∥u∥+ ∥v∥ (triangular inequality);

Any function f : E −→ R that satisfies properties 1,2,4 is called a
norm (and is not necessarily defined through a scalar product).
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Scalar product

Other norms

If x = (x1, . . . , xn) ∈ Rn, one defines:

1. The 1-norm (also called taxicab or Manhattan norm):

||x ||1 = |x1|+ · · ·+ |xn|.

2. The maximum norm (also called infinite norm):

||x ||∞ = max(|x1|, . . . , |xn|).
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Scalar product

Distances and Angles

Let E be an R-e.v. with scalar product <,>.

▶ A vector u is called a unit vector if ∥u∥ = 1. Given a vector
v ̸= 0, we can always find a unit vector in its direction: v/∥v∥
(we say that we have normalized v).

▶ The distance between two vectors u, v ∈ E , is
d(u, v) = ∥u − v∥.

▶ The (unoriented) angle between two vectors u ̸= 0, v ̸= 0 ∈ E
is the unique α ∈ [0, π] such that cos(α) = <u,v>

||u||·||v || (the sign

of ûv depends on the orientation we choose).

▶ Two vectors u, v are orthogonal (also denoted u⊥v) if
< u, v >= 0.

▶ Two orthogonal vectors have ûv = ±π
2 .

▶ If u⊥v and u, v ̸= 0 ⇒ u, v are l.i.
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2 .

▶ If u⊥v and u, v ̸= 0 ⇒ u, v are l.i.

10



Scalar product

Orthonormal basis

Definition
A basis {v1, . . . , vd} of a subspace F ⊆ E is an orthonormal basis
(b.o.n) if its vectors are

▶ pairwise orthogonal: < vi , vj >= 0 if i ̸= j

▶ and normalized: ∥vi∥ = 1 for i = 1, 2, . . . , d .

▶ called orthogonal if pairwise orthogonal but not normalized.
▶ Ex: the standard basis is a b.o.n of Rn for Euclidean product.
▶ If v = {v1, . . . , vn} is b.o.n. of E ⇒ the coordinates of v in

basis v are
(< v , v1 >, . . . , < v , vn >).

▶ If v is b.o.n. of E and u basis of E then,

u is b.o.n ⇔ At
u→vAu→v = I .

▶ For any basis u of E , ∃ scalar product such that u is b.o.n for
it.
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Scalar product

Orthogonal matrices
An n × n matrix that satisfies AtA = I is called an orthogonal
matrix.

▶ If we call the columns u1, . . . , un, A =
(
u1 . . . un

)
, then,

A is orthogonal ⇔ {u1, . . . , un} is a b.o.n. for Euclidean scalar
product.

▶ A is orthogonal ⇔ A−1 = At .

▶ A is orthogonal ⇔ AAt = I .

▶ A is orthogonal ⇒ detA = ±1.

▶ If A is orthogonal, then the corresponding endomorphism
preserves the Euclidean scalar product:

< Au,Av >=< u, v > for all u, v

▶ In particular, A preserves norms, angles ⇒ does not deform
objects.
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Scalar product

Examples of 2× 2 orthogonal matrices

The following maps f : R2 −→ R2 are linear and preserve norms:

▶ f= symmetry with respect to a line l passing through the
origin, l = [v ]. E.g. f (x , y) = (x ,−y).

▶ f=rotation counterclockwise of angle α with respect to the
origin; then

Me(f ) =

(
cosα − sinα
sinα cosα

)

13
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Scalar product

Gram-Schmidt algorithm
Given a subspace F of a euclidean space E , the following algorithm
produces a b.o.n. of F :

1. Take any basis of F : u1, . . . , ud and define:
2. v1 := u1
3. v2 := u2 − <v1,u2>

<v1,v1>
v1 (⇒ [v1, v2] = [u1, u2]).

4. v3 := u3 − <v1,u3>
<v1,v1>

v1 − <v2,u3>
<v2,v2>

v2
(⇒ [v1, v2, v3] = [u1, u2, u3]).

...

5. vd := ud − <v1,ud>
<v1,v1>

v1 − · · · − <vd−1,ud>
<vd−1,vd−1>

vd−1.

6. Then v1, . . . , vd are orthogonal vectors and
[v1, . . . , vd ] = [u1, . . . , ud ].

7. We normalize to obtain the desired b.o.n. w1, . . . ,wd :

w1 = v1/∥v1∥, w2 = v2/∥v2∥, . . . , wd = vd/∥vd∥.

Warning: Roundoff errors make vectors not orthogonal! → modified Gram-Schmidt algorithm solves this issue
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Symmetric matrices

Spectral theorem

Theorem (Spectral Theorem)

Let A be a symmetric n × n matrix. Then A has real eigenvalues,
diagonalizes, and there exists an orthonormal basis {v1, . . . , vn} of
eigenvectors (in the Euclidean product); if V has columns
v1, . . . , vn, and D is the diagonal matrix of eigenvalues (in the
corresponding order) then A decomposes as

A = VDV t .

The orthonormal basis of eigenvectors is not difficult to find:

▶ If u, v are eigenvectors of A of eigenvalues λ ̸= µ, then u ⊥ v .

▶ If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.

▶ If the eigenvalues are not all distinct, we have to use
Gram-Schmidt algorithm on each subspace of eigenvectors.

16



Symmetric matrices

Spectral theorem

Theorem (Spectral Theorem)

Let A be a symmetric n × n matrix. Then A has real eigenvalues,
diagonalizes, and there exists an orthonormal basis {v1, . . . , vn} of
eigenvectors (in the Euclidean product); if V has columns
v1, . . . , vn, and D is the diagonal matrix of eigenvalues (in the
corresponding order) then A decomposes as

A = VDV t .

The orthonormal basis of eigenvectors is not difficult to find:

▶ If u, v are eigenvectors of A of eigenvalues λ ̸= µ, then u ⊥ v .

▶ If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.

▶ If the eigenvalues are not all distinct, we have to use
Gram-Schmidt algorithm on each subspace of eigenvectors.

16



Symmetric matrices

Spectral theorem

Theorem (Spectral Theorem)

Let A be a symmetric n × n matrix. Then A has real eigenvalues,
diagonalizes, and there exists an orthonormal basis {v1, . . . , vn} of
eigenvectors (in the Euclidean product); if V has columns
v1, . . . , vn, and D is the diagonal matrix of eigenvalues (in the
corresponding order) then A decomposes as

A = VDV t .

The orthonormal basis of eigenvectors is not difficult to find:

▶ If u, v are eigenvectors of A of eigenvalues λ ̸= µ, then u ⊥ v .

▶ If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.

▶ If the eigenvalues are not all distinct, we have to use
Gram-Schmidt algorithm on each subspace of eigenvectors.

16



Symmetric matrices

Spectral theorem

Theorem (Spectral Theorem)

Let A be a symmetric n × n matrix. Then A has real eigenvalues,
diagonalizes, and there exists an orthonormal basis {v1, . . . , vn} of
eigenvectors (in the Euclidean product); if V has columns
v1, . . . , vn, and D is the diagonal matrix of eigenvalues (in the
corresponding order) then A decomposes as

A = VDV t .

The orthonormal basis of eigenvectors is not difficult to find:

▶ If u, v are eigenvectors of A of eigenvalues λ ̸= µ, then u ⊥ v .

▶ If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.

▶ If the eigenvalues are not all distinct, we have to use
Gram-Schmidt algorithm on each subspace of eigenvectors.

16



Symmetric matrices

Characterization of scalar products

Let A be a symmetric matrix.

▶ A is the matrix of a scalar product if and only if all
eigenvalues of A are positive.

▶ Sylvester criterion: if δ1, δ2,. . . , δn are the principal minors of
A, A is the matrix of a scalar product if and only if δi > 0 ∀i .
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Cross-product

Cross-product in R3

The cross-product between two vectors u = (u1, u2, u3),
v = (v1, v2, v3) of R3 is the following vector (in standard basis)

(u1, u2, u3)× (v1, v2, v3) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Main properties:

▶ bilineal

▶ v × u = −u × v (anti-commutative)

▶ u × v is orthogonal to both u and v

▶ ⟨u × v ,w⟩ = det(u, v ,w)

▶ ∥u × v∥ = ∥u∥ · ∥v∥ · | sin(ûv)|
▶ u × v = 0 ⇔ u, v linearly dependent

▶ If u, v are orthogonal and normalized ⇒ u, v , u × v is b.o.n.
19
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▶ ∥u × v∥ = ∥u∥ · ∥v∥ · | sin(ûv)|
▶ u × v = 0 ⇔ u, v linearly dependent

▶ If u, v are orthogonal and normalized ⇒ u, v , u × v is b.o.n.
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Orthogonal complement

Orthogonal complement

The orthogonal complement to a given subspace F of a
Euclidean space E is the subspace

F⊥ = {u ∈ E | u⊥v for all v ∈ F}.

Properties when E has finite dimension:

▶ If F = [v1, . . . , vd ] ⇒ F⊥ =

u ∈ E

∣∣∣∣∣∣∣
< u, v1 >= 0

...
< u, vd >= 0


▶ (F⊥)⊥ = F , F ⊆ G ⇔ G⊥ ⊆ F⊥,

▶ (F + G )⊥ = F⊥ ∩ G⊥ , (F ∩ G )⊥ = F⊥ + G⊥.

▶ F ∩ F⊥ = {0}.
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Orthogonal complement

In Rn with the Euclidean scalar product,

▶ If F is defined by generators ⇒ the equations of F⊥ are easy
to get: their coefficients are the generators coordinates.

▶ If F is given by equations ⇒ the generators of F⊥ are easy to
get: their coordinates are the coefficients of the equations.

F F⊥

[(1, 3, 2), (−2, 1, 8)]

{
x + 3y + 2z = 0
−2x + y + 8z = 0

3x − 5y + 11
2 z = 0 [(3,−5, 112 )]

▶ If A is a real matrix, then

Nuc(A)⊥ = Im(At).
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Orthogonal projection

Orthogonal projection

Let E be a Euclidean space of dimension n.

Theorem (Orthogonal Decomposition)

E = F ⊕ F⊥ for any subspace F . This is, any v ∈ E can be
written in a unique way as v = w +w ′ where w ∈ F and w ′ ∈ F⊥.

▶ w is called the orthogonal projection of v on F and is denoted
as projF (v),

▶ w ′ is called the orthogonal projection of v on F⊥ and is
denoted as projF⊥(v).

▶ Thus, v = projF (v) + projF⊥(v) and projF (v) is the unique
vector of F such that v − projF (v) belongs to F⊥.

▶ If F ⊆ E has dimension d ⇒ F⊥ has dimension n − d .
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Orthogonal projection

Geometric interpretation

Proposition

The orthogonal projection of v on F is the vector of F that is
closest to v ; this is,

∥v − projF (v)∥ = min
w∈F

{∥v − w∥}

(and this equals ∥projF⊥(v)∥). The orthogonal projection projF (v)
is the best approximation to v in F .
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Orthogonal projection

Computation of the orthogonal projection

Proposition

projF (v) is the unique vector w that satisfies w ∈ F and
v − w ∈ F⊥. If F has basis u1, . . . , ud , then projF (v) is the unique
vector w such that

w = c1u1 + . . . cdud ∈ F and


< u1,w >=< u1, v >

...
< ud ,w >=< ud , v >

Thus, projF (v) is the vector c1u1 + · · ·+ cdud such that c1, . . . , cd
are solution to the system < u1, u1 > . . . < u1, ud >

...
...

...
< ud , u1 > . . . < ud , ud >


 c1

...
cd

 =

 < u1, v >
...

< ud , v >
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Orthogonal projection

Orthogonal projection with orthogonal basis

Corollary

If dimF = 1 , F = [u], then projF (v) =
<v ,u>
<u,u> u.

Proposition

If u1, . . . , ud is an orthogonal basis of F and v ∈ Rn, then

projF (v) =
< v , u1 >

< u1, u1 >
u1 + · · ·+ < v , ud >

< ud , ud >
ud .

Proposition

If u1, . . . , ud is an b.o.n. of F and v ∈ Rn, then

projF (v) =< v , u1 > u1 + · · ·+ < v , ud > ud .

That is, the coordinates of projF (v) in the basis u1, . . . , ud are
< v , u1 >, . . . , < v , ud >.
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Orthogonal projection

Determinants and volumes
From orthogonal projection and properties of cross product we can
prove:

▶ In R2, the parallelogram determined by two vectors u, v has
area equal to | det(u, v)|.

▶ In R3, the parallelepiped determined by three vectors u, v , w
has volume equal to | det(u, v ,w)|.
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Singular value decomposition

Singular value decomposition (SVD)

Theorem (Singular value decomposition)

Let A be a real m × n matrix. There there exists a decomposition
A = U · D · V t , where U is m ×m, V is n × n, U,V are
orthogonal and D is the following m × n matrix

D =



σ1 0 · · · 0
. . .

...

0 σr
...

0 · · · 0 · · · 0
...

...
0 · · · · · · · · · 0


with σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and r = rank A.
σ1, . . . , σr are called singular values of A and are uniquely
determined by A.
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Singular value decomposition

Geometric interpretation of the SVD
If A is the standard matrix of a linear map f : Rn → Rm, and we
call u1, . . . , um, v1, . . . , vn, the columns of U and V respectively,
then D the matrix associated to f in orthonormal basis v1, . . . , vn
and u1, . . . , um:

A = Me(f ) = U︸︷︷︸
Au→e

∗ D︸︷︷︸
Mv,u(f )

∗ V t︸︷︷︸
Ae→v

(note that V t = V−1 = Ae→v ).

[T. Hern, C. Long]
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Singular value decomposition

How to get the SVD?

The singular values are determined by the matrix A:

A = UDV t ⇒ AtA = VDtUtUDV t = VDtDV t

but U and V are not (almost determined in most cases). How do
we compute the SVD?

(1) Diagonalize the symmetric matrix S = At · A
(2) If λ1 ≥ · · · ≥ λr are the non-zero eigenvalues of S ⇒ the

singular values are σ1 =
√
λ1, . . . σr =

√
λr (fact: AtA

always has non-negative eigenvalues).

(3) The columns of V are an orthonormal basis v1, . . . , vn of
eigenvectors of S .

(4) u1 =
1
σ1
Av1, . . . , ur =

1
σr
Avr are orthonormal vectors in Rm

(which can be completed to an orthonormal basis of Rm if
necessary) and they form the columns of U.
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Singular value decomposition

The fundamental theorem of linear algebra
Let f : Rn −→ Rm be a linear map and let A be its standard
matrix. Then Rn = Nuc(A)⊕ Im(At) (Im(At)=row space of A),
Rm = Im(A)⊕ Nuc(At), these decompositions give orthogonal
complements and there exist b.o.n.’s v1, . . . , vn (of Rn) and
u1, . . . , um (of Rm) such that

1. Im(A) = [u1, . . . , ur ]
2. Nuc(A) = [vr+1, . . . , vn]
3. Im(At) = [v1, . . . , vr ]
4. Nuc(At) = [ur+1, . . . , um]

Moreover, the restriction of the map f to the row space Im(At)
and onto Im(A) in the bases v1, . . . , vr , u1, . . . , ur (left and right,
respectively) is the diagonal matrix of singular vaules,

D =

 σ1 0
. . .

0 σr

 .
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Singular value decomposition

2-norm of a matrix
To ”measure” a linear map we measure how big the image of the
unit sphere is under this map:

Definition
The 2-norm of an m × n matrix A is

∥A∥2 = max
∥x∥=1

∥Ax∥.

▶ This is a matrix norm: ∥A∥2 ≥ 0, ∥A∥2 = 0 ⇔ A = 0,
∥cA∥2 = |c |∥A∥2, ∥A+ B∥2 ≤ ∥A∥2 + ∥B∥2

▶ ∥A∥2 = maxx ̸=0
∥Ax∥
∥x∥

▶ ∥Av∥ ≤ ∥A∥2∥v∥ ∀v .
▶ ∥AX∥2 = ∥A∥2 if X is an orthogonal matrix.

▶ ∥YA∥2 = ∥A∥2 if Y is an orthogonal matrix.

▶ ∥AB∥2 ≤ ∥A∥2∥B∥2.
34
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Singular value decomposition

Geometric consequence of the SVD:

Proposition

▶ ∥A∥2 = σ1

▶ The maximum is attained at ±v1: max||x ||=1 ∥Ax∥ = ∥Av1∥.
▶ min||x ||=1 ∥Ax∥ ={

σn if A has rank n, and is attained at ± vn

0 if A has rank < n

▶ If A is invertible, ∥A−1∥2 = 1
σr
.
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Isometries

Orientation of R2

A basis u1, u2 of R2 has

▶ direct/positive orientation if the shortest rotation from u1 to
u2 is counter-clockwise.

▶ inverse/negative if the shortest rotation from u1 to u2 is
clockwise.
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Isometries

Orientations

In Rn we say that the standard basis has direct/positive
orientation. For the other bases:

Definition
A basis u1, . . . , un of Rn has direct/positive orientation, if

det(u1, u2, . . . , un) > 0

(computed in standard coordinates); otherwise, the basis is said to
have inverse/negative orientation.

38



Isometries

Geometric intuition in R3

In R3, to see if a basis u1, u2, u3 has direct orientation we use the
right-hand rule: put your thumb pointing to u3 and if the sense of
closing your hand is the same as the shortest from u1 and u2, then
it has direct orientation.

▶ If u, v ∈ R3 are l.i. ⇒ u, v , u × v is a direct basis,

det(u, v , u × v) > 0.
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Isometries

Isometries

Definition
An endomorphism f ∈ End(E ) is an isometry if it preserves the
scalar product,

⟨f (u), f (v)⟩ = ⟨u, v⟩ ∀u, v .

Ex: If A is an orthogonal matrix, then x
f7→ Ax is an isometry.

Proposition

If f : Rn −→ Rn is a linear map, the following are equivalent

▶ f is an isometry

▶ f maps the standard basis to a b.o.n

▶ Me(f ) (or in any b.o.n) is an orthogonal matrix
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Isometries

Direct/inverse isometries

Properties: if f is an isometry, then

▶ ∥f (u)∥ = ∥u∥, for all u ∈ E .

▶ d(f (x), f (y)) = d(x , y) for all x , y .

▶ angle between f (u) and f (v) = angle between u and v

Remark: if f is an isometry of Rn ⇒ det(f ) = ±1 and if λ is an
eigenvalue of f , then |λ| = 1.

▶ If det f = +1 we say that it is a direct isometry (preserves
orientation).

▶ If det f = +1 we say that it is an inverse isometry (changes
orientation).
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Isometries

Examples of isometries in R2

The following maps f : R2 −→ R2 are isometries:

▶ f= reflection/symmetry with along a line l passing through
the origin, l = [v ].Then

f (x) = 2
< v , x >

< v , v >
v − x , Me(f ) =

2

< v , v >
vv t − Id ,

and taking u in [v ] this can be written as:

Me(f ) = Id − 2

< u, u >
u · ut .

▶ f=rotation counterclockwise of angle α with respect to the
origin; then

Me(f ) =

(
cosα − sinα
sinα cosα

)
,

f is a direct isometry.
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Isometries

Classification of isometries in R2

Theorem
If f is an isometry of R2, then either

▶ det f = 1 and f is a counterclockwise rotation of angle α with
respect to (0, 0) and in any direct b.o.n u,

Mu(f ) =

(
cosα − sinα
sinα cosα

)
,

or

▶ det f = −1 and f is a reflection/symmetry along a line
[v ] ∋ (0, 0); if u ∈ [v ]⊥ ⇒

Me(f ) = Id − 2

< u, u >
u · ut Mv ,u(f ) =

(
1 0
0 −1

)
.
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Isometries

Example of isometry classification

Tell if the map f (x , y) = ( x−
√
3y

2 ,
√
3x+y
2 ) is an isomtry and

describe it.

▶ The standard matrix of f is M =

(
1/2 −

√
3/2√

3/2 1/2

)
.

▶ M is orthogonal ⇒ f is an isometry

▶ det(M) = 1 ⇒ f is a rotation (by Theorem of Classification).

▶ To find angle α: according to the Theorem M must be of the
form(

cosα − sinα
sinα cosα

)
⇒ cosα = 1/2, sinα =

√
3/2 ⇒ α = π/3.

▶ Or also: α = v̂ , f (v) ∀v ⇒ take any v ∈ R2, compute

cosα = <v ,f (v)>
∥|v∥|∥|f (v)∥| and if det(v , f (v)) > 0 (resp.

det(v , f (v)) < 0) take α ∈ [0, π] (resp. α ∈ [π, 2π]).
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Isometries

Examples of isometries in R3

f = rotation of a certain angle with respect to a line
r ∋ O = (0, 0, 0) ( r is called rotation axis).

▶ To distinguish between angle θ and −θ (= 2π − θ) need to
orient r .

▶ Choose a vector u of r , orient r = [u] by u using the right
hand rule: pointing your thumb in the sense of u, positive
rotation is in the sense of cloing hand (looking from the arrow
of u, counterclockwise rotation on the plane r⊥). Then θ is in
[0, π] or [π, 2π] according to: for any v /∈ r

det(v , f (v), u) ≥ 0 ⇔ θ ∈ [0, π]
det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(1)

▶ Preserves orientation of bases, so it’s a direct isometry
(det(f ) = 1).
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Isometries

Example of rotation:

f = rotation with r = [e3], oriented by e3, and angle π/3. Then

f

x
y
z

 =

 1/2 −
√
3/2 0√

3/2 1/2 0
0 0 1

x
y
z

 .
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Isometries

Matrix of a rotation

f = rotation with respect to r = [u] (oriented by u) and angle θ.
Take a positive b.o.n. u = u1, u2, u3 with u3 =

u
∥u∥ (“adapted

b.o.n.”), then

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .
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Isometries

Example: Axial symmetry

f = axial symmetry with respect to a line r ∋ O.

▶ f = rotation of angle π with axis r (so det(f ) = 1).

▶ As π = −π, orientation not needed.

▶ Ex: find Me(f ) for f = axial symmetry respect to z axis.
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Isometries

Example: Specular reflection

f = specular reflexion/symmetry along a plane H ∋ O.

▶ It changes basis orientation ⇒ det(f ) = −1.

▶ Example: if H= {z = 0}, then f (x , y , z) = (x , y ,−z)

▶ If u ∈ H⊥, then

Me(f ) = Id − 2

< u, u >
u · ut .
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Isometries

Example: Rotation followed by specular reflection

g = rotation R with axis r = [u] and angle θ followed by a
specular reflection along the orthogonal plane to r , [u]⊥.
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Isometries

Classification of isometries in R3

Theorem
If f : R3 → R3 is an isometry, then either:

▶ Case 1. det f = +1 (direct isometry): f is a rotation with
axis r = [u] = VEPs of VAP 1.

▶ Case 2. det f = −1 (indirect isometry): f = rotation R of
angle θ and axis r = [u] (=VEPs of VAP -1), followed by a
specular reflection S along plane [u]⊥, f = S ◦ R.

Any isometry in R3 can be written as one of these 2 (case 1 if det f = 1, case 2
if det f = −1). Important: in case 2, the plane of reflection is orthogonal to
rotation axis.
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Isometries

Case 1: det f = +1, f = rotation of axis r = [u].
Orient the axis by u and let θ be the angle of rotation. Take u of
norm 1. Then if u = {u1, u2, u3 = u} is a direct b.o.n (called basis
adapted to f ),

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .

The matrix of f in any other basis can be obtained by change of basis.

▶ [u] = VEPs of VAP 1 = vectors fixed by f .

▶ θ = v̂ , f (v) if v is orthogonal to axis [u].

▶ cos(θ) = tr(f )−1
2 and θ is in [0, π] or [π, 2π] according to (for

any v /∈ [u]):

det(v , f (v), u) ≥ 0 ⇔ θ ∈ [0, π]
det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(2)
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det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(2)

52



Isometries

Case 1: det f = +1, f = rotation of axis r = [u].
Orient the axis by u and let θ be the angle of rotation. Take u of
norm 1. Then if u = {u1, u2, u3 = u} is a direct b.o.n (called basis
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Isometries

Case 2: det f = −1, f = S ◦ R

f = S ◦ R, R= rotation angle θ of axis r = [u] ∋ O (oriented by
u), S specular reflection with respect to plane H = [u]⊥.
▶ Case 2.a θ = 0, f = S = specular reflection along a plane

H = [u]⊥. We have:
▶ [u]: VEPs of VAP -1
▶ Image of a vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matrix of f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixed by f , plane of VEPs of VAP 1.
▶ H = [v − f (v)]⊥ for any v /∈ H.

53



Isometries

Case 2: det f = −1, f = S ◦ R

f = S ◦ R, R= rotation angle θ of axis r = [u] ∋ O (oriented by
u), S specular reflection with respect to plane H = [u]⊥.
▶ Case 2.a θ = 0, f = S = specular reflection along a plane

H = [u]⊥. We have:
▶ [u]: VEPs of VAP -1
▶ Image of a vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matrix of f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixed by f , plane of VEPs of VAP 1.
▶ H = [v − f (v)]⊥ for any v /∈ H.

53



Isometries

Case 2: det f = −1, f = S ◦ R

f = S ◦ R, R= rotation angle θ of axis r = [u] ∋ O (oriented by
u), S specular reflection with respect to plane H = [u]⊥.
▶ Case 2.a θ = 0, f = S = specular reflection along a plane

H = [u]⊥. We have:
▶ [u]: VEPs of VAP -1
▶ Image of a vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matrix of f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixed by f , plane of VEPs of VAP 1.
▶ H = [v − f (v)]⊥ for any v /∈ H.

53



Isometries

Case 2: det f = −1, f = S ◦ R

f = S ◦ R, R= rotation angle θ of axis r = [u] ∋ O (oriented by
u), S specular reflection with respect to plane H = [u]⊥.
▶ Case 2.a θ = 0, f = S = specular reflection along a plane

H = [u]⊥. We have:
▶ [u]: VEPs of VAP -1
▶ Image of a vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matrix of f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixed by f , plane of VEPs of VAP 1.
▶ H = [v − f (v)]⊥ for any v /∈ H.

53



Isometries

Case 2: det f = −1, f = S ◦ R

f = S ◦ R, R= rotation angle θ of axis r = [u] ∋ O (oriented by
u), S specular reflection with respect to plane H = [u]⊥.
▶ Case 2.a θ = 0, f = S = specular reflection along a plane

H = [u]⊥. We have:
▶ [u]: VEPs of VAP -1
▶ Image of a vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matrix of f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixed by f , plane of VEPs of VAP 1.
▶ H = [v − f (v)]⊥ for any v /∈ H.

53



Isometries

Case 2: det f = −1, f = S ◦ R

f = S ◦ R, R= rotation angle θ of axis r = [u] ∋ O (oriented by
u), S specular reflection with respect to plane H = [u]⊥.
▶ Case 2.a θ = 0, f = S = specular reflection along a plane

H = [u]⊥. We have:
▶ [u]: VEPs of VAP -1
▶ Image of a vector v :

S(v) = v − 2 ⟨u,v⟩
⟨u,u⟩u

▶ Matrix of f :

M(S) = Id− 2

utu
uut

▶ H: vectors fixed by f , plane of VEPs of VAP 1.
▶ H = [v − f (v)]⊥ for any v /∈ H.

53



Isometries

▶ Case 2.b: θ ̸= 0, f = S ◦R. Orient rotation axis by u. Then if
u = {u1, u2, u3 = u

∥u∥} is a direct b.o.n (basis adapted to f ),

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 −1

 .

The matrix of f in any other basis can be obtained by change of basis.

▶ [u] = VEPs of VAP -1.
▶ H invariant subspace of dimension 2.
▶ θ = v̂ , f (v) if v orthogonal to axis [u].
▶ cos(θ) = tr(f )+1

2
▶ We have θ in [0, π] or [π, 2π] according to (for any v /∈ [u]):{

det(v , f (v), u) ≥ 0 ⇔ θ ∈ [0, π]
det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(3)
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Isometries
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▶ Case 2.b: θ ̸= 0, f = S ◦R. Orient rotation axis by u. Then if
u = {u1, u2, u3 = u

∥u∥} is a direct b.o.n (basis adapted to f ),

Mu(f ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 −1

 .

The matrix of f in any other basis can be obtained by change of basis.

▶ [u] = VEPs of VAP -1.
▶ H invariant subspace of dimension 2.
▶ θ = v̂ , f (v) if v orthogonal to axis [u].
▶ cos(θ) = tr(f )+1

2
▶ We have θ in [0, π] or [π, 2π] according to (for any v /∈ [u]):{

det(v , f (v), u) ≥ 0 ⇔ θ ∈ [0, π]
det(v , f (v), u) ≤ 0 ⇔ θ ∈ [π, 2π]

(3)

54



Isometries

▶ Case 2.b: θ ̸= 0, f = S ◦R. Orient rotation axis by u. Then if
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Isometries

Example

Me(f ) =

 2/3 2/3 1/3
−2/3 1/3 2/3
1/3 −2/3 2/3


▶ det(f ) = 1 ⇒ f = rotation of axis [u] and angle θ.

▶ Axis: VEPs of eigenvalue 1, r = [u = (1, 0, 1)].

▶ Angle: 1 + 2 cos θ = tr(f ) = 5/3 ⇒ cos θ = 1/3

▶ Orient r by u, take v = (1, 0, 0) /∈ r ,
det(v , f (v), u) = −2/3 < 0 ⇒ θ ∈ [π, 2π], θ = 2π − 1.23.
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Aplications of SVD and orthogonal projection

SVD and rank approximation
Theorem (Eckhart-Young)

Let A be any matrix. If A = UDV t and the singular values of A are
σ1, . . . , σr then for any k ≤ r ,

M = U



σ1 0 · · · 0
. . .

...

0 σk
...

0 · · · 0 · · · 0
...

...
0 · · · · · · · · · 0


V t

is the matrix of rank k closest to A (in the sense that ∥A−M∥2 is
minimal among matrices M of rank k). Note that
||A−M||2 = σk+1.

This is used in image compression, for example. Note that
A = σ1u1v

t
1 + σ2u2v

t
2 + . . .+ σrurv

t
r . 58
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Aplications of SVD and orthogonal projection

Linear least squares approximation

Problem: Ax = b might be incompatible due to measure errors in
b, but we would still like to have an approximated solution:

Incompatible
Ax = b
system

⇔ b /∈ Im(A)

Want: x̃ such that Ax̃ is as close to b as possible.

Definition
A least squares solution of Ax = b is a vector x̃ that minimizes
∥Ax − b∥, that is

∥Ax̃ − b∥ ≤ ∥Ax − b∥ for all x
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Aplications of SVD and orthogonal projection

Solution to the least squares problem

Solution given by Gauss (1801)

▶ Change b by the vector of Im(A) that is closest to b: the
orthogonal projection of b in Im(A), projIm(A)(b).

▶ Then x̃ is a least squares solution ⇔ x̃ is a solution of
Ax = projIm(A)(b).

▶ If x is a least squares solution then it does not satisfy
Ax − b = 0⃗, but minimizes the norm ∥Ax − b∥

▶ The residual measures how far x̃ is from a solution to the
system:

residual = Ax̃ − b (which is = projIm(A)(b)− b).

norm of the residual: ∥Ax̃ − b∥
▶ Important point: we do not need to compute projIm(A)(b) (see

next slide).
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Aplications of SVD and orthogonal projection

Theorem
▶ x̃ is a least squares solution of Ax = b if and only if it is a

solution of the normal equations:

AtAx = Atb.

▶ If the rank of A equals the number of columns, then AtA is
invertible and the least squares solution is unique and given by

x̃ = (AtA)−1Atb

(although computing the inverse is not efficient)

▶ If the original system is compatible, x̃ is a solution to the
original system as well.
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Aplications of SVD and orthogonal projection

Principal component analysis
Goal: Given N data points in R3, pi = (xi , yi , zi ), i = 1, . . . ,N
highly correlated, one wants to find v1 = (a, b, c) of norm 1 such
that the set {ti = axi + byi + czi}i has maximum variance:

▶ Note that proj[v1](pi ) = tiv1
▶ v1 = (a, b, c) is called the first principal component.
▶ Then one can look for v2 ∈ [v1]

⊥ (2nd principal component)
maximizing variance of proj[v1]⊥(pi ).

▶ Keep going or project down to the first components in order
to reduce the dimension of the problem.
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Aplications of SVD and orthogonal projection

Procedure

Assume that set {pi} is centered at the origin. Let

M =

x1 y1 z1
...

...
...

xN yN zN

 so that
∑

i xi =
∑

i yi =
∑

i zi = 0.

▶ Want v1 = (a, b, c) of norm 1 such that∑
i t

2
i =

∑
i (axi + byi + czi )

2 = ||Mv1|| is maximum.

▶ v1 is the first column vector of V in the SVD: M = UDV t .

▶ Then the matrix M2 = M −Mv1v
t
1 has proj[v1]⊥(pi ) in its

rows.

▶ M2 = σ2u2v
t
2 + . . .+ σrurv

t
r .

▶ The direction which maximizes the variance is v2 (2nd vector
in V ).

▶ Keep going.
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∑

i zi = 0.

▶ Want v1 = (a, b, c) of norm 1 such that∑
i t

2
i =

∑
i (axi + byi + czi )

2 = ||Mv1|| is maximum.

▶ v1 is the first column vector of V in the SVD: M = UDV t .

▶ Then the matrix M2 = M −Mv1v
t
1 has proj[v1]⊥(pi ) in its

rows.

▶ M2 = σ2u2v
t
2 + . . .+ σrurv

t
r .

▶ The direction which maximizes the variance is v2 (2nd vector
in V ).

▶ Keep going.
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Aplications of SVD and orthogonal projection

Remarks:

▶ If the set {pi} is not centered at the origin we center it: let
(x̄ , ȳ , z̄) =

∑
i (xi , yi , zi )/N, and consider

M =

x1 − x̄ y1 − ȳ z1 − z̄
...

...
...

xN − x̄ yN − ȳ zN − z̄

 .

Proceed as before with this M and then sum (x̄ , ȳ , z̄) to the
final result.

▶ The matrix MtM is the empirical covariance matrix and the
principal component v1 is the dominant eigenvector of this
matrix.

▶ The same can be done for clouds of points in Rn.
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Scalar product in C

Scalar product in Cn

Definition
In Cn the analogous to the dot product is the standard hermitian

product < u, v > of two vectors u =

 x1
...
xn

 , v =

 y1
...
yn

 ∈ Cn

is
< u, v >:= utv = x1 y1 + x2 y2 + . . .+ xn yn.

Example:

u =
(

1
i

1 − 2i

)
, v =

(
i
0
3

)
⇒< u, v >= (1 i 1− 2i)

(−i
0
3

)
= 3− 7i .
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Scalar product in C

Properties:

1. < u, u >≥ 0 ∀u (positive)

2. < u, u >= 0 ⇔ u = 0 (non-degenerate).

3. < u, v >= < v , u > (”hermitian”).

4. ”sesquilineal”:
▶ < a1u1 + a2u2, v >= a1 < u1, v > +a2 < u2, v >;
▶ < u, a1v1 + a2v2 >= a1 < u, v1 > +a2 < u, v2 >.

5. In this case, the norm of a vector u ∈ Cn is
∥u∥ =

√
utu =

√
|u1|2 + . . .+ |un|2 ∈ R.

6. Orthonormal basis for this scalar product: same definition as
before.

7. If we write the columns of a matrix A = (v1 . . . vd) then,

AtA = Id if and ony if {v1, . . . , vd} is an orthonormal basis.
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Scalar product in C

Unitary matrices

An n× n matrix that satisfies A
t
A = Id is called a unitary matrix.

▶ If we call the columns v1, . . . , vn, A = (v1 . . . vn), then,

A
t
A = Id if and ony if {v1, . . . , vn} is an orthonormal basis.

▶ A is unitary if and only if A−1 = A
t
.

▶ A is unitary ⇒ | detA| = 1.

▶ If A is unitary, then the corresponding endomorphism
preserves norms (preserves the measure of vectors):

∥Ax∥ = ∥x∥ for all x

▶ A also preserves dot products and angles (and hence preserves
orthogonality) and so it is a transformation that does not
deform objects.
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