Àlgebra lineal i geometria 4. Ortogonalitat

Grau en Enginyeria Física 2023-24

Universitat Politècnica de Catalunya
 Departament de Matemàtiques

Marta Casanellas

BARCELONATECH

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

The Euclidean scalar product

Definition

The Euclidean scalar product (or dot product) $\langle u, v\rangle$ of two
vectors $u=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), v=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{R}^{n}$ is

$$
<u, v>:=u^{t} v=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} .
$$

Properties:

The Euclidean scalar product

Definition

The Euclidean scalar product (or dot product) $\langle u, v\rangle$ of two
vectors $u=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), v=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{R}^{n}$ is

$$
<u, v>:=u^{t} v=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} .
$$

Properties:

1. $\langle u, u>\geq 0 \forall u$ and $<u, u>=0 \Leftrightarrow u=0$ (positive definite)

The Euclidean scalar product

Definition

The Euclidean scalar product (or dot product) $\langle u, v\rangle$ of two
vectors $u=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), v=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{R}^{n}$ is

$$
<u, v>:=u^{t} v=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} .
$$

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ and $<u, u\rangle=0 \Leftrightarrow u=0$ (positive definite)
2. $\langle u, v\rangle=<v, u\rangle$ (symmetric).

The Euclidean scalar product

Definition

The Euclidean scalar product (or dot product) $\langle u, v\rangle$ of two
vectors $u=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), v=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{R}^{n}$ is

$$
<u, v>:=u^{t} v=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} .
$$

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ and $<u, u\rangle=0 \Leftrightarrow u=0$ (positive definite)
2. $\langle u, v\rangle=<v, u\rangle$ (symmetric).
3. bilineal:
$><a_{1} u_{1}+a_{2} u_{2}, v>=a_{1}<u_{1}, v>+a_{2}<u_{2}, v>$;
$><u, a_{1} v_{1}+a_{2} v_{2}>=a_{1}<u, v_{1}>+a_{2}<u, v_{2}>$.
Any function $\mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ that satisfies these properties is called a scalar product.

Bilinear forms

Let E be an \mathbb{R}-e.v. A bilinear form on E is a map
$\varphi: E \times E \longrightarrow \mathbb{R}$ such that, $\forall u, v, w \in E$ and $\lambda \in \mathbb{R}:$
(a) $\varphi(u+v, w)=\varphi(u, w)+\varphi(v, w) \varphi(\lambda u, w)=\lambda \varphi(u, w)$,
(b) $\varphi(w, u+v)=\varphi(w, u)+\varphi(w, v) \varphi(w, \lambda u)=\lambda \varphi(w, u)$.

Bilinear forms

Let E be an \mathbb{R}-e.v. A bilinear form on E is a map
$\varphi: E \times E \longrightarrow \mathbb{R}$ such that, $\forall u, v, w \in E$ and $\lambda \in \mathbb{R}:$
(a) $\varphi(u+v, w)=\varphi(u, w)+\varphi(v, w) \varphi(\lambda u, w)=\lambda \varphi(u, w)$,
(b) $\varphi(w, u+v)=\varphi(w, u)+\varphi(w, v) \varphi(w, \lambda u)=\lambda \varphi(w, u)$.

If $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of E, then the matrix of φ in the basis \mathbf{u} is defined as

$$
M_{\mathbf{u}}(\varphi)=\left(\begin{array}{ccc}
\varphi\left(u_{1}, u_{1}\right) & \cdots & \varphi\left(u_{1}, u_{n}\right) \\
\vdots & & \vdots \\
\varphi\left(u_{n}, u_{1}\right) & \cdots & \varphi\left(u_{n}, u_{n}\right)
\end{array}\right) .
$$

Matrix of a bilinear form

Properties:

1. If $v_{\mathbf{u}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), w_{\mathbf{u}}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \Rightarrow$
$\varphi(v, w)=\left(x_{1} \ldots x_{n}\right) M_{\mathbf{u}}(\varphi)\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$ and $M_{\mathbf{u}}(\varphi)$ is the unique matrix that satisfies this.

Matrix of a bilinear form

Properties:

1. If $v_{\mathbf{u}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), w_{\mathbf{u}}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \Rightarrow$
$\varphi(v, w)=\left(x_{1} \ldots x_{n}\right) M_{\mathbf{u}}(\varphi)\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$ and $M_{\mathbf{u}}(\varphi)$ is the unique matrix that satisfies this.
2. If \mathbf{v} is another basis, then

$$
M_{\mathbf{v}}(\varphi)=A_{\mathbf{v} \rightarrow \mathbf{u}}^{t} M_{\mathbf{u}}(\varphi) A_{\mathbf{v} \rightarrow \mathbf{u}}
$$

Matrix of a bilinear form

Properties:

1. If $v_{\mathbf{u}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), w_{\mathbf{u}}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \Rightarrow$
$\varphi(v, w)=\left(x_{1} \ldots x_{n}\right) M_{\mathbf{u}}(\varphi)\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$ and $M_{\mathbf{u}}(\varphi)$ is the unique matrix that satisfies this.
2. If \mathbf{v} is another basis, then

$$
M_{\mathbf{v}}(\varphi)=A_{\mathbf{v} \rightarrow \mathbf{u}}^{t} M_{\mathbf{u}}(\varphi) A_{\mathbf{v} \rightarrow \mathbf{u}}
$$

A bilinear form φ is symmetric if $\varphi(u, v)=\varphi(v, u)$ for all u, v. A bilinear form is symmetric $\Leftrightarrow M_{\mathbf{u}}(\varphi)$ is a symmetric matrix for any basis \mathbf{u}.

Scalar products

Let E be an \mathbb{R}-e.v. and φ a bilinear form on E. One says that φ is positive definite if $\varphi(u, u) \geq 0$ with equality only when $u=0$.

Definition
A scalar product on E is a symmetric, positive definite bilinear form $<,>: E \times E \longrightarrow \mathbb{R}$. An \mathbb{R}-e.v together with a scalar product is called a Euclidean vector space.
Examples:

Scalar products

Let E be an \mathbb{R}-e.v. and φ a bilinear form on E. One says that φ is positive definite if $\varphi(u, u) \geq 0$ with equality only when $u=0$.

Definition
A scalar product on E is a symmetric, positive definite bilinear form $<,>: E \times E \longrightarrow \mathbb{R}$. An \mathbb{R}-e.v together with a scalar product is called a Euclidean vector space.
Examples:

- The Euclidean scalar product

Scalar products

Let E be an \mathbb{R}-e.v. and φ a bilinear form on E. One says that φ is positive definite if $\varphi(u, u) \geq 0$ with equality only when $u=0$.

Definition

A scalar product on E is a symmetric, positive definite bilinear form $<,>: E \times E \longrightarrow \mathbb{R}$. An \mathbb{R}-e.v together with a scalar product is called a Euclidean vector space.
Examples:

- The Euclidean scalar product
- $E=\mathcal{F}([a, b], \mathbb{R})=\{$ continuous real functions defined on $[a, b]\}$, then the following defines a scalar product on E :

$$
<f, g>:=\int_{a}^{b} f(x) g(x) d x
$$

Norm and distance

Let E be an \mathbb{R}-e.v. with scalar product $<,>$. The norm of $u \in E$ is $\|u\|=\sqrt{\langle u, u\rangle}$.
If $<,>$ is the Euclidean product, the norm is called the standard,
Euclidean, or 2-norm and is also denoted as $\|u\|_{2}$.
Properties: for any $u, v \in E$ and $c \in \mathbb{R}$

1. $\|u\| \geq 0 \forall u$ and $\|u\|=0 \Leftrightarrow u=0$;

Norm and distance

Let E be an \mathbb{R}-e.v. with scalar product $<,>$. The norm of $u \in E$ is $\|u\|=\sqrt{\langle u, u\rangle}$.
If $<,>$ is the Euclidean product, the norm is called the standard, Euclidean, or 2-norm and is also denoted as $\|u\|_{2}$. Properties: for any $u, v \in E$ and $c \in \mathbb{R}$

1. $\|u\| \geq 0 \forall u$ and $\|u\|=0 \Leftrightarrow u=0$;
2. $\|c u\|=|c|\|u\| c \in \mathbb{R}$;

Norm and distance

Let E be an \mathbb{R}-e.v. with scalar product $<,>$. The norm of $u \in E$ is $\|u\|=\sqrt{\langle u, u\rangle}$.
If $<,>$ is the Euclidean product, the norm is called the standard, Euclidean, or 2-norm and is also denoted as $\|u\|_{2}$. Properties: for any $u, v \in E$ and $c \in \mathbb{R}$

1. $\|u\| \geq 0 \forall u$ and $\|u\|=0 \Leftrightarrow u=0$;
2. $\|c u\|=|c|\|u\| c \in \mathbb{R}$;
3. $|<u, v\rangle \mid \leq\|u\|\|v\|$ (Cauchy-Schwarz inequality)

Norm and distance

Let E be an \mathbb{R}-e.v. with scalar product $<,>$. The norm of $u \in E$ is $\|u\|=\sqrt{\langle u, u\rangle}$.
If $<,>$ is the Euclidean product, the norm is called the standard,
Euclidean, or 2-norm and is also denoted as $\|u\|_{2}$.
Properties: for any $u, v \in E$ and $c \in \mathbb{R}$

1. $\|u\| \geq 0 \forall u$ and $\|u\|=0 \Leftrightarrow u=0$;
2. $\|c u\|=|c|\|u\| c \in \mathbb{R}$;
3. $|\langle u, v\rangle| \leq\|u\|\|v\|$ (Cauchy-Schwarz inequality)
4. $\|u+v\| \leq\|u\|+\|v\|$ (triangular inequality);

Norm and distance

Let E be an \mathbb{R}-e.v. with scalar product $<,>$. The norm of $u \in E$ is $\|u\|=\sqrt{\langle u, u\rangle}$.
If $<,>$ is the Euclidean product, the norm is called the standard,
Euclidean, or 2-norm and is also denoted as $\|u\|_{2}$.
Properties: for any $u, v \in E$ and $c \in \mathbb{R}$

1. $\|u\| \geq 0 \forall u$ and $\|u\|=0 \Leftrightarrow u=0$;
2. $\|c u\|=|c|\|u\| c \in \mathbb{R}$;
3. $|\langle u, v\rangle| \leq\|u\|\|v\|$ (Cauchy-Schwarz inequality)
4. $\|u+v\| \leq\|u\|+\|v\|$ (triangular inequality);

Any function $f: E \longrightarrow \mathbb{R}$ that satisfies properties $1,2,4$ is called a norm (and is not necessarily defined through a scalar product).

Other norms

If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, one defines:

1. The 1-norm (also called taxicab or Manhattan norm):

$$
\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right| .
$$

2. The maximum norm (also called infinite norm):

Other norms

If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, one defines:

1. The 1-norm (also called taxicab or Manhattan norm):

$$
\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|\mathrm{x}_{n}\right| .
$$

2. The maximum norm (also called infinite norm):

$$
\|x\|_{\infty}=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)
$$

Distances and Angles

Let E be an \mathbb{R}-e.v. with scalar product $<,>$.

- A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).

Distances and Angles

Let E be an \mathbb{R}-e.v. with scalar product $<,>$.

- A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).
- The distance between two vectors $u, v \in E$, is $d(u, v)=\|u-v\|$.

Distances and Angles

Let E be an \mathbb{R}-e.v. with scalar product $<,>$.

- A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).
- The distance between two vectors $u, v \in E$, is $d(u, v)=\|u-v\|$.
- The (unoriented) angle between two vectors $u \neq 0, v \neq 0 \in E$ is the unique $\alpha \in[0, \pi]$ such that $\cos (\alpha)=\frac{\langle u, v\rangle}{\|u\| \cdot\|v\|}$ (the sign of $\widehat{u v}$ depends on the orientation we choose).

Distances and Angles

Let E be an \mathbb{R}-e.v. with scalar product $<,>$.

- A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).
- The distance between two vectors $u, v \in E$, is $d(u, v)=\|u-v\|$.
- The (unoriented) angle between two vectors $u \neq 0, v \neq 0 \in E$ is the unique $\alpha \in[0, \pi]$ such that $\cos (\alpha)=\frac{\langle u, v\rangle}{\|u\| \cdot\|v\|}$ (the sign of $\widehat{u v}$ depends on the orientation we choose).
- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $\langle u, v\rangle=0$.

Distances and Angles

Let E be an \mathbb{R}-e.v. with scalar product $<,>$.

- A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).
- The distance between two vectors $u, v \in E$, is $d(u, v)=\|u-v\|$.
- The (unoriented) angle between two vectors $u \neq 0, v \neq 0 \in E$ is the unique $\alpha \in[0, \pi]$ such that $\cos (\alpha)=\frac{\langle u, v\rangle}{\|u\| \cdot\|v\|}$ (the sign of $\widehat{u v}$ depends on the orientation we choose).
- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $\langle u, v\rangle=0$.
- Two orthogonal vectors have $\widehat{u v}= \pm \frac{\pi}{2}$.

Distances and Angles

Let E be an \mathbb{R}-e.v. with scalar product $<,>$.

- A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).
- The distance between two vectors $u, v \in E$, is $d(u, v)=\|u-v\|$.
- The (unoriented) angle between two vectors $u \neq 0, v \neq 0 \in E$ is the unique $\alpha \in[0, \pi]$ such that $\cos (\alpha)=\frac{\langle u, v\rangle}{\|u\| \cdot\|v\|}$ (the sign of $\widehat{u v}$ depends on the orientation we choose).
- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $\langle u, v\rangle=0$.
- Two orthogonal vectors have $\widehat{u v}= \pm \frac{\pi}{2}$.
- If $u \perp v$ and $u, v \neq 0 \Rightarrow u, v$ are I.i.

Orthonormal basis

Definition
A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

Orthonormal basis

Definition
A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

- pairwise orthogonal: $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$

Orthonormal basis

Definition
A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

- pairwise orthogonal: $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$
- and normalized: $\left\|v_{i}\right\|=1$ for $i=1,2, \ldots, d$.

Orthonormal basis

Definition
A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

- pairwise orthogonal: $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$
- and normalized: $\left\|v_{i}\right\|=1$ for $i=1,2, \ldots, d$.
- called orthogonal if pairwise orthogonal but not normalized.

Orthonormal basis

Definition
A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

- pairwise orthogonal: $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$
- and normalized: $\left\|v_{i}\right\|=1$ for $i=1,2, \ldots, d$.
- called orthogonal if pairwise orthogonal but not normalized.
- Ex: the standard basis is a b.o.n of \mathbb{R}^{n} for Euclidean product.

Orthonormal basis

Definition

A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

- pairwise orthogonal: $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$
- and normalized: $\left\|v_{i}\right\|=1$ for $i=1,2, \ldots, d$.
- called orthogonal if pairwise orthogonal but not normalized.
- Ex: the standard basis is a b.o.n of \mathbb{R}^{n} for Euclidean product.
- If $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ is b.o.n. of $E \Rightarrow$ the coordinates of v in basis \mathbf{v} are

$$
\left(<v, v_{1}>, \ldots,<v, v_{n}>\right) .
$$

Orthonormal basis

Definition

A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

- pairwise orthogonal: $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$
- and normalized: $\left\|v_{i}\right\|=1$ for $i=1,2, \ldots, d$.
- called orthogonal if pairwise orthogonal but not normalized.
- Ex: the standard basis is a b.o.n of \mathbb{R}^{n} for Euclidean product.
- If $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ is b.o.n. of $E \Rightarrow$ the coordinates of v in basis \mathbf{v} are

$$
\left(<v, v_{1}>, \ldots,<v, v_{n}>\right) .
$$

- If \mathbf{v} is b.o.n. of E and \mathbf{u} basis of E then,

$$
\mathbf{u} \text { is b.o.n } \quad \Leftrightarrow \quad A_{\mathbf{u} \rightarrow \mathbf{v}}^{t} A_{\mathbf{u} \rightarrow \mathbf{v}}=I .
$$

Orthonormal basis

Definition

A basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of a subspace $F \subseteq E$ is an orthonormal basis (b.o.n) if its vectors are

- pairwise orthogonal: $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$
- and normalized: $\left\|v_{i}\right\|=1$ for $i=1,2, \ldots, d$.
- called orthogonal if pairwise orthogonal but not normalized.
- Ex: the standard basis is a b.o.n of \mathbb{R}^{n} for Euclidean product.
- If $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ is b.o.n. of $E \Rightarrow$ the coordinates of v in basis \mathbf{v} are

$$
\left(<v, v_{1}>, \ldots,<v, v_{n}>\right) .
$$

- If \mathbf{v} is b.o.n. of E and \mathbf{u} basis of E then,

$$
\mathbf{u} \text { is b.o.n } \quad \Leftrightarrow \quad A_{\mathbf{u} \rightarrow \mathbf{v}}^{t} A_{\mathbf{u} \rightarrow \mathbf{v}}=I .
$$

- For any basis \mathbf{u} of E, \exists scalar product such that \mathbf{u} is b.o.n for it.

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^{t} A=I$ is called an orthogonal matrix.

- If we call the columns $u_{1}, \ldots, u_{n}, A=\left(u_{1} \ldots u_{n}\right)$, then, A is orthogonal $\Leftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}$ is a b.o.n. for Euclidean scalar product.

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^{t} A=I$ is called an orthogonal matrix.

- If we call the columns $u_{1}, \ldots, u_{n}, A=\left(u_{1} \ldots u_{n}\right)$, then, A is orthogonal $\Leftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}$ is a b.o.n. for Euclidean scalar product.
- A is orthogonal $\Leftrightarrow A^{-1}=A^{t}$.

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^{t} A=I$ is called an orthogonal matrix.

- If we call the columns $u_{1}, \ldots, u_{n}, A=\left(u_{1} \ldots u_{n}\right)$, then, A is orthogonal $\Leftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}$ is a b.o.n. for Euclidean scalar product.
- A is orthogonal $\Leftrightarrow A^{-1}=A^{t}$.
- A is orthogonal $\Leftrightarrow A A^{t}=I$.

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^{t} A=I$ is called an orthogonal matrix.

- If we call the columns $u_{1}, \ldots, u_{n}, A=\left(u_{1} \ldots u_{n}\right)$, then, A is orthogonal $\Leftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}$ is a b.o.n. for Euclidean scalar product.
- A is orthogonal $\Leftrightarrow A^{-1}=A^{t}$.
- A is orthogonal $\Leftrightarrow A A^{t}=I$.
- A is orthogonal $\Rightarrow \operatorname{det} A= \pm 1$.

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^{t} A=I$ is called an orthogonal matrix.

- If we call the columns $u_{1}, \ldots, u_{n}, A=\left(u_{1} \ldots u_{n}\right)$, then, A is orthogonal $\Leftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}$ is a b.o.n. for Euclidean scalar product.
- A is orthogonal $\Leftrightarrow A^{-1}=A^{t}$.
- A is orthogonal $\Leftrightarrow A A^{t}=l$.
- A is orthogonal $\Rightarrow \operatorname{det} A= \pm 1$.
- If A is orthogonal, then the corresponding endomorphism preserves the Euclidean scalar product:

$$
<A u, A v>=<u, v>\text { for all } u, v
$$

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^{t} A=I$ is called an orthogonal matrix.

- If we call the columns $u_{1}, \ldots, u_{n}, A=\left(u_{1} \ldots u_{n}\right)$, then, A is orthogonal $\Leftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}$ is a b.o.n. for Euclidean scalar product.
- A is orthogonal $\Leftrightarrow A^{-1}=A^{t}$.
- A is orthogonal $\Leftrightarrow A A^{t}=l$.
- A is orthogonal $\Rightarrow \operatorname{det} A= \pm 1$.
- If A is orthogonal, then the corresponding endomorphism preserves the Euclidean scalar product:

$$
<A u, A v>=<u, v>\text { for all } u, v
$$

- In particular, A preserves norms, angles \Rightarrow does not deform objects.

Examples of 2×2 orthogonal matrices

The following maps $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ are linear and preserve norms:

- $f=$ symmetry with respect to a line $/$ passing through the origin, $I=[v]$. E.g. $f(x, y)=(x,-y)$.

Examples of 2×2 orthogonal matrices

The following maps $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ are linear and preserve norms:

- $f=$ symmetry with respect to a line $/$ passing through the origin, $I=[v]$. E.g. $f(x, y)=(x,-y)$.
- $f=$ rotation counterclockwise of angle α with respect to the origin; then

$$
M_{e}(f)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:
2. $v_{1}:=u_{1}$

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:
2. $v_{1}:=u_{1}$
3. $v_{2}:=u_{2}-\frac{\left\langle v_{1}, u_{2}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \quad\left(\Rightarrow\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right]\right)$.

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:
2. $v_{1}:=u_{1}$
3. $v_{2}:=u_{2}-\frac{\left\langle v_{1}, u_{2}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \quad\left(\Rightarrow\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right]\right)$.
4. $v_{3}:=u_{3}-\frac{\left\langle v_{1}, u_{3}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle v_{2}, u_{3}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}$
$\left(\Rightarrow\left[v_{1}, v_{2}, v_{3}\right]=\left[u_{1}, u_{2}, u_{3}\right]\right)$.

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:
2. $v_{1}:=u_{1}$
3. $v_{2}:=u_{2}-\frac{\left\langle v_{1}, u_{2}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \quad\left(\Rightarrow\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right]\right)$.
4. $v_{3}:=u_{3}-\frac{\left\langle v_{1}, u_{3}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle v_{2}, u_{3}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}$
$\left(\Rightarrow\left[v_{1}, v_{2}, v_{3}\right]=\left[u_{1}, u_{2}, u_{3}\right]\right)$.
5. $v_{d}:=u_{d}-\frac{\left\langle v_{1}, u_{d}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\cdots-\frac{\left\langle v_{d-1}, u_{d}\right\rangle}{\left\langle v_{d-1}, v_{d-1}\right\rangle} v_{d-1}$.

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:
2. $v_{1}:=u_{1}$
3. $v_{2}:=u_{2}-\frac{\left\langle v_{1}, u_{2}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \quad\left(\Rightarrow\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right]\right)$.
4. $v_{3}:=u_{3}-\frac{\left\langle v_{1}, u_{3}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle v_{2}, u_{3}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}$
$\left(\Rightarrow\left[v_{1}, v_{2}, v_{3}\right]=\left[u_{1}, u_{2}, u_{3}\right]\right)$.
5. $v_{d}:=u_{d}-\frac{\left\langle v_{1}, u_{d}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\cdots-\frac{\left\langle v_{d-1}, u_{d}\right\rangle}{\left\langle v_{d-1}, v_{d-1}\right\rangle} v_{d-1}$.
6. Then v_{1}, \ldots, v_{d} are orthogonal vectors and $\left[v_{1}, \ldots, v_{d}\right]=\left[u_{1}, \ldots, u_{d}\right]$.

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:
2. $v_{1}:=u_{1}$
3. $v_{2}:=u_{2}-\frac{\left\langle v_{1}, u_{2}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \quad\left(\Rightarrow\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right]\right)$.
4. $v_{3}:=u_{3}-\frac{\left\langle v_{1}, u_{3}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle v_{2}, u_{3}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}$

$$
\left(\Rightarrow\left[v_{1}, v_{2}, v_{3}\right]=\left[u_{1}, u_{2}, u_{3}\right]\right) .
$$

5. $v_{d}:=u_{d}-\frac{\left\langle v_{1}, u_{d}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\cdots-\frac{\left\langle v_{d-1}, u_{d}\right\rangle}{\left\langle v_{d-1}, v_{d-1}\right\rangle} v_{d-1}$.
6. Then v_{1}, \ldots, v_{d} are orthogonal vectors and $\left[v_{1}, \ldots, v_{d}\right]=\left[u_{1}, \ldots, u_{d}\right]$.
7. We normalize to obtain the desired b.o.n. w_{1}, \ldots, w_{d} :

$$
w_{1}=v_{1} /\left\|v_{1}\right\|, w_{2}=v_{2} /\left\|v_{2}\right\|, \ldots, w_{d}=v_{d} /\left\|v_{d}\right\| .
$$

Gram-Schmidt algorithm

Given a subspace F of a euclidean space E, the following algorithm produces a b.o.n. of F :

1. Take any basis of $F: u_{1}, \ldots, u_{d}$ and define:
2. $v_{1}:=u_{1}$
3. $v_{2}:=u_{2}-\frac{\left\langle v_{1}, u_{2}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \quad\left(\Rightarrow\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right]\right)$.
4. $v_{3}:=u_{3}-\frac{\left\langle v_{1}, u_{3}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle v_{2}, u_{3}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}$
$\left(\Rightarrow\left[v_{1}, v_{2}, v_{3}\right]=\left[u_{1}, u_{2}, u_{3}\right]\right)$.
5. $v_{d}:=u_{d}-\frac{\left\langle v_{1}, u_{d}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\cdots-\frac{\left\langle v_{d-1}, u_{d}\right\rangle}{\left\langle v_{d-1}, v_{d-1}\right\rangle} v_{d-1}$.
6. Then v_{1}, \ldots, v_{d} are orthogonal vectors and $\left[v_{1}, \ldots, v_{d}\right]=\left[u_{1}, \ldots, u_{d}\right]$.
7. We normalize to obtain the desired b.o.n. w_{1}, \ldots, w_{d} :

$$
w_{1}=v_{1} /\left\|v_{1}\right\|, w_{2}=v_{2} /\left\|v_{2}\right\|, \ldots, w_{d}=v_{d} /\left\|v_{d}\right\| .
$$

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Spectral theorem

Theorem (Spectral Theorem)
Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors (in the Euclidean product); if V has columns v_{1}, \ldots, v_{n}, and D is the diagonal matrix of eigenvalues (in the corresponding order) then A decomposes as

$$
A=V D V^{t}
$$

Spectral theorem

Theorem (Spectral Theorem)

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors (in the Euclidean product); if V has columns v_{1}, \ldots, v_{n}, and D is the diagonal matrix of eigenvalues (in the corresponding order) then A decomposes as

$$
A=V D V^{t}
$$

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.

Spectral theorem

Theorem (Spectral Theorem)

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors (in the Euclidean product); if V has columns v_{1}, \ldots, v_{n}, and D is the diagonal matrix of eigenvalues (in the corresponding order) then A decomposes as

$$
A=V D V^{t}
$$

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.

Spectral theorem

Theorem (Spectral Theorem)

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors (in the Euclidean product); if V has columns v_{1}, \ldots, v_{n}, and D is the diagonal matrix of eigenvalues (in the corresponding order) then A decomposes as

$$
A=V D V^{t}
$$

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.
- If the eigenvalues are not all distinct, we have to use Gram-Schmidt algorithm on each subspace of eigenvectors.

Characterization of scalar products

Let A be a symmetric matrix.

- A is the matrix of a scalar product if and only if all eigenvalues of A are positive.

Characterization of scalar products

Let A be a symmetric matrix.

- A is the matrix of a scalar product if and only if all eigenvalues of A are positive.
- Sylvester criterion: if $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ are the principal minors of A, A is the matrix of a scalar product if and only if $\delta_{i}>0 \forall i$.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- bilineal

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- bilineal
- $v \times u=-u \times v$ (anti-commutative)

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- bilineal
- $v \times u=-u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- bilineal
- $v \times u=-u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v
- $\langle u \times v, w\rangle=\operatorname{det}(u, v, w)$

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- bilineal
- $v \times u=-u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v
- $\langle u \times v, w\rangle=\operatorname{det}(u, v, w)$
- $\|u \times v\|=\|u\| \cdot\|v\| \cdot|\sin (\widehat{u v})|$

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- bilineal
- $v \times u=-u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v
- $\langle u \times v, w\rangle=\operatorname{det}(u, v, w)$
- $\|u \times v\|=\|u\| \cdot\|v\| \cdot|\sin (\widehat{u v})|$
- $u \times v=0 \Leftrightarrow u, v$ linearly dependent

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- bilineal
- $v \times u=-u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v
- $\langle u \times v, w\rangle=\operatorname{det}(u, v, w)$
- $\|u \times v\|=\|u\| \cdot\|v\| \cdot|\sin (\widehat{u v})|$
- $u \times v=0 \Leftrightarrow u, v$ linearly dependent
- If u, v are orthogonal and normalized $\Rightarrow u, v, u \times v$ is b.o.n.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Orthogonal complement

The orthogonal complement to a given subspace F of a Euclidean space E is the subspace

$$
F^{\perp}=\{u \in E \mid u \perp v \text { for all } v \in F\} .
$$

Properties when E has finite dimension:

$$
\text { If } F=\left[v_{1}, \ldots, v_{d}\right] \Rightarrow F^{\perp}=\left\{\begin{array}{l|c}
u \in E & <u, v_{1}>=0 \\
\vdots \\
<u, v_{d}>=0
\end{array}\right\}
$$

Orthogonal complement

The orthogonal complement to a given subspace F of a Euclidean space E is the subspace

$$
F^{\perp}=\{u \in E \mid u \perp v \text { for all } v \in F\} .
$$

Properties when E has finite dimension:

- If $F=\left[v_{1}, \ldots, v_{d}\right] \Rightarrow F^{\perp}=\left\{\begin{array}{l|c}u \in E & \begin{array}{c}<u, v_{1}>=0 \\ \vdots \\ <u, v_{d}>=0\end{array}\end{array}\right\}$
- $\left(F^{\perp}\right)^{\perp}=F, \quad F \subseteq G \Leftrightarrow G^{\perp} \subseteq F^{\perp}$,

Orthogonal complement

The orthogonal complement to a given subspace F of a Euclidean space E is the subspace

$$
F^{\perp}=\{u \in E \mid u \perp v \text { for all } v \in F\} .
$$

Properties when E has finite dimension:

- If $F=\left[v_{1}, \ldots, v_{d}\right] \Rightarrow F^{\perp}=\left\{\begin{array}{l|c}u \in E & \begin{array}{c}<u, v_{1}>=0 \\ \vdots \\ <u, v_{d}>=0\end{array}\end{array}\right\}$
- $\left(F^{\perp}\right)^{\perp}=F, \quad F \subseteq G \Leftrightarrow G^{\perp} \subseteq F^{\perp}$,
- $(F+G)^{\perp}=F^{\perp} \cap G^{\perp}$,

$$
(F \cap G)^{\perp}=F^{\perp}+G^{\perp} .
$$

Orthogonal complement

The orthogonal complement to a given subspace F of a Euclidean space E is the subspace

$$
F^{\perp}=\{u \in E \mid u \perp v \text { for all } v \in F\} .
$$

Properties when E has finite dimension:

- If $F=\left[v_{1}, \ldots, v_{d}\right] \Rightarrow F^{\perp}=\left\{\begin{array}{l|c}u \in E & \begin{array}{c}<u, v_{1}>=0 \\ \vdots \\ <u, v_{d}>=0\end{array}\end{array}\right\}$
- $\left(F^{\perp}\right)^{\perp}=F, \quad F \subseteq G \Leftrightarrow G^{\perp} \subseteq F^{\perp}$,
- $(F+G)^{\perp}=F^{\perp} \cap G^{\perp}$,
$(F \cap G)^{\perp}=F^{\perp}+G^{\perp}$.
- $F \cap F^{\perp}=\{\mathbf{0}\}$.

In \mathbb{R}^{n} with the Euclidean scalar product,

- If F is defined by generators \Rightarrow the equations of F^{\perp} are easy to get: their coefficients are the generators coordinates.
get: their coordinates are the coefficients of the equations.

In \mathbb{R}^{n} with the Euclidean scalar product,

- If F is defined by generators \Rightarrow the equations of F^{\perp} are easy to get: their coefficients are the generators coordinates.
- If F is given by equations \Rightarrow the generators of F^{\perp} are easy to get: their coordinates are the coefficients of the equations.

F	F^{\perp}
$[(1,3,2),(-2,1,8)]$	$\left\{\begin{array}{c}x+3 y+2 z=0 \\ -2 x+y+8 z=0\end{array}\right.$
$3 x-5 y+\frac{11}{2} z=0$	$\left[\left(3,-5, \frac{11}{2}\right)\right]$

In \mathbb{R}^{n} with the Euclidean scalar product,

- If F is defined by generators \Rightarrow the equations of F^{\perp} are easy to get: their coefficients are the generators coordinates.
- If F is given by equations \Rightarrow the generators of F^{\perp} are easy to get: their coordinates are the coefficients of the equations.

F	F^{\perp}
$[(1,3,2),(-2,1,8)]$	$\left\{\begin{array}{c}x+3 y+2 z=0 \\ -2 x+y+8 z=0\end{array}\right.$
$3 x-5 y+\frac{11}{2} z=0$	$\left[\left(3,-5, \frac{11}{2}\right)\right]$

- If A is a real matrix, then

$$
\operatorname{Nuc}(A)^{\perp}=\operatorname{Im}\left(A^{t}\right)
$$

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Orthogonal projection

Let E be a Euclidean space of dimension n.
Theorem (Orthogonal Decomposition)
$E=F \oplus F^{\perp}$ for any subspace F. This is, any $v \in E$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

Orthogonal projection

Let E be a Euclidean space of dimension n.
Theorem (Orthogonal Decomposition)
$E=F \oplus F^{\perp}$ for any subspace F. This is, any $v \in E$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as $\operatorname{proj}_{F}(v)$,

Orthogonal projection

Let E be a Euclidean space of dimension n.
Theorem (Orthogonal Decomposition)
$E=F \oplus F^{\perp}$ for any subspace F. This is, any $v \in E$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as $\operatorname{proj}_{F}(v)$,
- w^{\prime} is called the orthogonal projection of v on F^{\perp} and is denoted as $\operatorname{proj}_{F^{\perp}}(v)$.

Orthogonal projection

Let E be a Euclidean space of dimension n.
Theorem (Orthogonal Decomposition)
$E=F \oplus F^{\perp}$ for any subspace F. This is, any $v \in E$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as $\operatorname{proj}_{F}(v)$,
- w^{\prime} is called the orthogonal projection of v on F^{\perp} and is denoted as $\operatorname{proj}_{F^{\perp}}(v)$.
- Thus, $v=\operatorname{proj}_{F}(v)+\operatorname{proj}_{F^{\perp}}(v)$ and $\operatorname{proj}_{F}(v)$ is the unique vector of F such that $v-\operatorname{proj}_{F}(v)$ belongs to F^{\perp}.

Orthogonal projection

Let E be a Euclidean space of dimension n.
Theorem (Orthogonal Decomposition)
$E=F \oplus F^{\perp}$ for any subspace F. This is, any $v \in E$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as $\operatorname{proj}_{F}(v)$,
- w^{\prime} is called the orthogonal projection of v on F^{\perp} and is denoted as $\operatorname{proj}_{F^{\perp}}(v)$.
- Thus, $v=\operatorname{proj}_{F}(v)+\operatorname{proj}_{F^{\perp}}(v)$ and $\operatorname{proj}_{F}(v)$ is the unique vector of F such that $v-\operatorname{proj}_{F}(v)$ belongs to F^{\perp}.
- If $F \subseteq E$ has dimension $d \Rightarrow F^{\perp}$ has dimension $n-d$.

Geometric interpretation

Proposition

The orthogonal projection of v on F is the vector of F that is closest to v ; this is,

$$
\left\|v-\operatorname{proj}_{F}(v)\right\|=\min _{w \in F}\{\|v-w\|\}
$$

(and this equals $\left.\left\|\operatorname{proj}_{F^{\perp}}(v)\right\|\right)$. The orthogonal projection $\operatorname{proj}_{F}(v)$ is the best approximation to v in F.

Computation of the orthogonal projection

Proposition

$\operatorname{proj}_{F}(v)$ is the unique vector w that satisfies $w \in F$ and
$v-w \in F^{\perp}$. If F has basis u_{1}, \ldots, u_{d}, then $\operatorname{proj}_{F}(v)$ is the unique vector w such that

$$
w=c_{1} u_{1}+\ldots c_{d} u_{d} \in F \quad \text { and }\left\{\begin{array}{c}
<u_{1}, w>=<u_{1}, v> \\
\vdots \\
<u_{d}, w>=<u_{d}, v>
\end{array}\right.
$$

Thus, $\operatorname{proj}_{F}(v)$ is the vector $c_{1} u_{1}+\cdots+c_{d} u_{d}$ such that c_{1}, \ldots, c_{d} are solution to the system

$$
\left(\begin{array}{ccc}
<u_{1}, u_{1}> & \ldots & <u_{1}, u_{d}> \\
\vdots & \vdots & \vdots \\
<u_{d}, u_{1}> & \ldots & <u_{d}, u_{d}>
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{d}
\end{array}\right)=\left(\begin{array}{c}
<u_{1}, v> \\
\vdots \\
<u_{d}, v>
\end{array}\right)
$$

Orthogonal projection with orthogonal basis

Corollary
If $\operatorname{dim} F=1, F=[u]$, then $\operatorname{proj}_{F}(v)=\frac{\langle v, u\rangle}{\langle u, u\rangle} u$.

Orthogonal projection with orthogonal basis

Corollary
If $\operatorname{dim} F=1, F=[u]$, then $\operatorname{proj}_{F}(v)=\frac{\langle v, u\rangle}{\langle u, u\rangle} u$.
Proposition
If u_{1}, \ldots, u_{d} is an orthogonal basis of F and $v \in \mathbb{R}^{n}$, then

$$
\operatorname{proj}_{F}(v)=\frac{\left\langle v, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}+\cdots+\frac{\left\langle v, u_{d}\right\rangle}{\left\langle u_{d}, u_{d}\right\rangle} u_{d} .
$$

Orthogonal projection with orthogonal basis

Corollary
If $\operatorname{dim} F=1, F=[u]$, then $\operatorname{proj}_{F}(v)=\frac{\langle v, u\rangle}{\langle u, u\rangle} u$.

Proposition

If u_{1}, \ldots, u_{d} is an orthogonal basis of F and $v \in \mathbb{R}^{n}$, then

$$
\operatorname{proj}_{F}(v)=\frac{\left.<v, u_{1}\right\rangle}{\left.<u_{1}, u_{1}\right\rangle} u_{1}+\cdots+\frac{\left\langle v, u_{d}\right\rangle}{\left\langle u_{d}, u_{d}\right\rangle} u_{d} .
$$

Proposition
If u_{1}, \ldots, u_{d} is an b.o.n. of F and $v \in \mathbb{R}^{n}$, then

$$
\operatorname{proj}_{F}(v)=<v, u_{1}>u_{1}+\cdots+<v, u_{d}>u_{d} .
$$

That is, the coordinates of $\operatorname{proj}_{F}(v)$ in the basis u_{1}, \ldots, u_{d} are $<v, u_{1}>, \ldots,<v, u_{d}>$.

Determinants and volumes

From orthogonal projection and properties of cross product we can prove:

- In \mathbb{R}^{2}, the parallelogram determined by two vectors u, v has area equal to $|\operatorname{det}(u, v)|$.

- In \mathbb{R}^{3}, the parallelepiped determined by three vectors u, v, w has volume equal to $|\operatorname{det}(u, v, w)|$.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Singular value decomposition (SVD)

Theorem (Singular value decomposition)
Let A be a real $m \times n$ matrix. There there exists a decomposition $A=U \cdot D \cdot V^{t}$, where U is $m \times m, V$ is $n \times n, U, V$ are orthogonal and D is the following $m \times n$ matrix

$$
D=\left(\begin{array}{ccccc}
\sigma_{1} & & 0 & \cdots & 0 \\
& \ddots & & & \vdots \\
0 & & \sigma_{r} & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & \cdots & \cdots & \cdots & 0
\end{array}\right)
$$

with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ and $r=r a n k A$. $\sigma_{1}, \ldots, \sigma_{r}$ are called singular values of A and are uniquely determined by A.

Geometric interpretation of the SVD

If A is the standard matrix of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and we call $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}$, the columns of U and V respectively, then D the matrix associated to f in orthonormal basis v_{1}, \ldots, v_{n} and u_{1}, \ldots, u_{m} :

$$
A=M_{e}(f)=\underbrace{U}_{A_{u \rightarrow e}} * \underbrace{D}_{M_{v, u}(f)} * \underbrace{V^{t}}_{A_{e \rightarrow v}}
$$

(note that $V^{t}=V^{-1}=A_{e \rightarrow V}$).

How to get the SVD?

The singular values are determined by the matrix A :

$$
A=U D V^{t} \Rightarrow A^{t} A=V D^{t} U^{t} U D V^{t}=V D^{t} D V^{t}
$$

but U and V are not (almost determined in most cases). How do we compute the SVD?
(1) Diagonalize the symmetric matrix $S=A^{t} \cdot A$

How to get the SVD?

The singular values are determined by the matrix A :

$$
A=U D V^{t} \Rightarrow A^{t} A=V D^{t} U^{t} U D V^{t}=V D^{t} D V^{t}
$$

but U and V are not (almost determined in most cases). How do we compute the SVD?
(1) Diagonalize the symmetric matrix $S=A^{t} \cdot A$
(2) If $\lambda_{1} \geq \cdots \geq \lambda_{r}$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_{1}=\sqrt{\lambda_{1}}, \ldots \sigma_{r}=\sqrt{\lambda_{r}}$ (fact: $A^{t} A$ always has non-negative eigenvalues).

How to get the SVD?

The singular values are determined by the matrix A :

$$
A=U D V^{t} \Rightarrow A^{t} A=V D^{t} U^{t} U D V^{t}=V D^{t} D V^{t}
$$

but U and V are not (almost determined in most cases). How do we compute the SVD?
(1) Diagonalize the symmetric matrix $S=A^{t} \cdot A$
(2) If $\lambda_{1} \geq \cdots \geq \lambda_{r}$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_{1}=\sqrt{\lambda_{1}}, \ldots \sigma_{r}=\sqrt{\lambda_{r}}$ (fact: $A^{t} A$ always has non-negative eigenvalues).
(3) The columns of V are an orthonormal basis v_{1}, \ldots, v_{n} of eigenvectors of S.

How to get the SVD?

The singular values are determined by the matrix A :

$$
A=U D V^{t} \Rightarrow A^{t} A=V D^{t} U^{t} U D V^{t}=V D^{t} D V^{t}
$$

but U and V are not (almost determined in most cases). How do we compute the SVD?
(1) Diagonalize the symmetric matrix $S=A^{t} \cdot A$
(2) If $\lambda_{1} \geq \cdots \geq \lambda_{r}$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_{1}=\sqrt{\lambda_{1}}, \ldots \sigma_{r}=\sqrt{\lambda_{r}}$ (fact: $A^{t} A$ always has non-negative eigenvalues).
(3) The columns of V are an orthonormal basis v_{1}, \ldots, v_{n} of eigenvectors of S.
(4) $u_{1}=\frac{1}{\sigma_{1}} A v_{1}, \ldots, u_{r}=\frac{1}{\sigma_{r}} A v_{r}$ are orthonormal vectors in \mathbb{R}^{m} (which can be completed to an orthonormal basis of \mathbb{R}^{m} if necessary) and they form the columns of U.

The fundamental theorem of linear algebra

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix. Then $\mathbb{R}^{n}=\operatorname{Nuc}(A) \oplus \operatorname{Im}\left(A^{t}\right)\left(\operatorname{lm}\left(A^{t}\right)=\right.$ row space of $\left.A\right)$, $\mathbb{R}^{m}=\operatorname{Im}(A) \oplus \operatorname{Nuc}\left(A^{t}\right)$, these decompositions give orthogonal complements and there exist b.o.n.'s v_{1}, \ldots, v_{n} (of \mathbb{R}^{n}) and $u_{1}, \ldots, u_{m}\left(\right.$ of $\left.\mathbb{R}^{m}\right)$ such that

1. $\operatorname{Im}(A)=\left[u_{1}, \ldots, u_{r}\right]$

The fundamental theorem of linear algebra

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix. Then $\mathbb{R}^{n}=\operatorname{Nuc}(A) \oplus \operatorname{Im}\left(A^{t}\right)\left(\operatorname{lm}\left(A^{t}\right)=\right.$ row space of $\left.A\right)$, $\mathbb{R}^{m}=\operatorname{Im}(A) \oplus \operatorname{Nuc}\left(A^{t}\right)$, these decompositions give orthogonal complements and there exist b.o.n.'s v_{1}, \ldots, v_{n} (of \mathbb{R}^{n}) and $u_{1}, \ldots, u_{m}\left(\right.$ of $\left.\mathbb{R}^{m}\right)$ such that

1. $\operatorname{Im}(A)=\left[u_{1}, \ldots, u_{r}\right]$
2. $\operatorname{Nuc}(A)=\left[v_{r+1}, \ldots, v_{n}\right]$

The fundamental theorem of linear algebra

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix. Then $\mathbb{R}^{n}=\operatorname{Nuc}(A) \oplus \operatorname{Im}\left(A^{t}\right)\left(\operatorname{lm}\left(A^{t}\right)=\right.$ row space of $\left.A\right)$, $\mathbb{R}^{m}=\operatorname{Im}(A) \oplus \operatorname{Nuc}\left(A^{t}\right)$, these decompositions give orthogonal complements and there exist b.o.n.'s v_{1}, \ldots, v_{n} (of \mathbb{R}^{n}) and $u_{1}, \ldots, u_{m}\left(\right.$ of $\left.\mathbb{R}^{m}\right)$ such that

1. $\operatorname{Im}(A)=\left[u_{1}, \ldots, u_{r}\right]$
2. $\operatorname{Nuc}(A)=\left[v_{r+1}, \ldots, v_{n}\right]$
3. $\operatorname{Im}\left(A^{t}\right)=\left[v_{1}, \ldots, v_{r}\right]$

The fundamental theorem of linear algebra

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix. Then $\mathbb{R}^{n}=\operatorname{Nuc}(A) \oplus \operatorname{Im}\left(A^{t}\right)\left(\operatorname{lm}\left(A^{t}\right)=\right.$ row space of $\left.A\right)$, $\mathbb{R}^{m}=\operatorname{Im}(A) \oplus \operatorname{Nuc}\left(A^{t}\right)$, these decompositions give orthogonal complements and there exist b.o.n.'s v_{1}, \ldots, v_{n} (of \mathbb{R}^{n}) and $u_{1}, \ldots, u_{m}\left(\right.$ of $\left.\mathbb{R}^{m}\right)$ such that

1. $\operatorname{Im}(A)=\left[u_{1}, \ldots, u_{r}\right]$
2. $\operatorname{Nuc}(A)=\left[v_{r+1}, \ldots, v_{n}\right]$
3. $\operatorname{Im}\left(A^{t}\right)=\left[v_{1}, \ldots, v_{r}\right]$
4. $\operatorname{Nuc}\left(A^{t}\right)=\left[u_{r+1}, \ldots, u_{m}\right]$

The fundamental theorem of linear algebra

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix. Then $\mathbb{R}^{n}=\operatorname{Nuc}(A) \oplus \operatorname{Im}\left(A^{t}\right)\left(\operatorname{lm}\left(A^{t}\right)=\right.$ row space of $\left.A\right)$, $\mathbb{R}^{m}=\operatorname{Im}(A) \oplus \operatorname{Nuc}\left(A^{t}\right)$, these decompositions give orthogonal complements and there exist b.o.n.'s $v_{1}, \ldots, v_{n}\left(\right.$ of $\left.\mathbb{R}^{n}\right)$ and $u_{1}, \ldots, u_{m}\left(\right.$ of $\left.\mathbb{R}^{m}\right)$ such that

1. $\operatorname{Im}(A)=\left[u_{1}, \ldots, u_{r}\right]$
2. $\operatorname{Nuc}(A)=\left[v_{r+1}, \ldots, v_{n}\right]$
3. $\operatorname{Im}\left(A^{t}\right)=\left[v_{1}, \ldots, v_{r}\right]$
4. $\operatorname{Nuc}\left(A^{t}\right)=\left[u_{r+1}, \ldots, u_{m}\right]$

Moreover, the restriction of the map f to the row space $\operatorname{Im}\left(A^{t}\right)$ and onto $\operatorname{Im}(A)$ in the bases $v_{1}, \ldots, v_{r}, u_{1}, \ldots, u_{r}$ (left and right, respectively) is the diagonal matrix of singular vaules,

$$
D=\left(\begin{array}{ccc}
\sigma_{1} & & 0 \\
& \ddots & \\
0 & & \sigma_{r}
\end{array}\right)
$$

2-norm of a matrix

To " measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition
The 2 -norm of an $m \times n$ matrix A is

$$
\|A\|_{2}=\max _{\|x\|=1}\|A x\|
$$

2-norm of a matrix

To " measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of an $m \times n$ matrix A is

$$
\|A\|_{2}=\max _{\|x\|=1}\|A x\| .
$$

- This is a matrix norm: $\|A\|_{2} \geq 0,\|A\|_{2}=0 \Leftrightarrow A=0$, $\|c A\|_{2}=|c|\|A\|_{2},\|A+B\|_{2} \leq\|A\|_{2}+\|B\|_{2}$

2-norm of a matrix

To " measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of an $m \times n$ matrix A is

$$
\|A\|_{2}=\max _{\|x\|=1}\|A x\| .
$$

- This is a matrix norm: $\|A\|_{2} \geq 0,\|A\|_{2}=0 \Leftrightarrow A=0$, $\|c A\|_{2}=|c|\|A\|_{2},\|A+B\|_{2} \leq\|A\|_{2}+\|B\|_{2}$
- $\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}$

2-norm of a matrix

To " measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of an $m \times n$ matrix A is

$$
\|A\|_{2}=\max _{\|x\|=1}\|A x\| .
$$

- This is a matrix norm: $\|A\|_{2} \geq 0,\|A\|_{2}=0 \Leftrightarrow A=0$, $\|c A\|_{2}=|c|\|A\|_{2},\|A+B\|_{2} \leq\|A\|_{2}+\|B\|_{2}$
- $\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}$
- $\|A v\| \leq\|A\|_{2}\|v\| \forall v$.

2-norm of a matrix

To " measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of an $m \times n$ matrix A is

$$
\|A\|_{2}=\max _{\|x\|=1}\|A x\| .
$$

- This is a matrix norm: $\|A\|_{2} \geq 0,\|A\|_{2}=0 \Leftrightarrow A=0$, $\|c A\|_{2}=|c|\|A\|_{2},\|A+B\|_{2} \leq\|A\|_{2}+\|B\|_{2}$
- $\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}$
- $\|A v\| \leq\|A\|_{2}\|v\| \forall v$.
- $\|A X\|_{2}=\|A\|_{2}$ if X is an orthogonal matrix.

2-norm of a matrix

To " measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of an $m \times n$ matrix A is

$$
\|A\|_{2}=\max _{\|x\|=1}\|A x\|
$$

- This is a matrix norm: $\|A\|_{2} \geq 0,\|A\|_{2}=0 \Leftrightarrow A=0$, $\|c A\|_{2}=|c|\|A\|_{2},\|A+B\|_{2} \leq\|A\|_{2}+\|B\|_{2}$
- $\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}$
- $\|A v\| \leq\|A\|_{2}\|v\| \forall v$.
- $\|A X\|_{2}=\|A\|_{2}$ if X is an orthogonal matrix.
- $\|Y A\|_{2}=\|A\|_{2}$ if Y is an orthogonal matrix.

2-norm of a matrix

To " measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of an $m \times n$ matrix A is

$$
\|A\|_{2}=\max _{\|x\|=1}\|A x\| .
$$

- This is a matrix norm: $\|A\|_{2} \geq 0,\|A\|_{2}=0 \Leftrightarrow A=0$, $\|c A\|_{2}=|c|\|A\|_{2},\|A+B\|_{2} \leq\|A\|_{2}+\|B\|_{2}$
- $\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}$
- $\|A v\| \leq\|A\|_{2}\|v\| \forall v$.
- $\|A X\|_{2}=\|A\|_{2}$ if X is an orthogonal matrix.
- $\|Y A\|_{2}=\|A\|_{2}$ if Y is an orthogonal matrix.
- $\|A B\|_{2} \leq\|A\|_{2}\|B\|_{2}$.

Geometric consequence of the SVD:
Proposition

Geometric consequence of the SVD:
Proposition

- $\|A\|_{2}=\sigma_{1}$

Geometric consequence of the SVD:
Proposition

- $\|A\|_{2}=\sigma_{1}$
- The maximum is attained at $\pm v_{1}: \max _{\|x\|=1}\|A x\|=\left\|A v_{1}\right\|$.

Geometric consequence of the SVD:
Proposition

- $\|A\|_{2}=\sigma_{1}$
- The maximum is attained at $\pm v_{1}: \max _{\|x\|=1}\|A x\|=\left\|A v_{1}\right\|$.
- $\min _{\|x\|=1}\|A x\|=$

$$
\begin{cases}\sigma_{n} & \text { if A has rank } n, \text { and is attained at } \pm v_{n} \\ 0 & \text { if A has rank }<n\end{cases}
$$

Geometric consequence of the SVD:
Proposition

- $\|A\|_{2}=\sigma_{1}$
- The maximum is attained at $\pm v_{1}: \max _{\|x\|=1}\|A x\|=\left\|A v_{1}\right\|$.
- $\min _{\|x\|=1}\|A x\|=$
$\begin{cases}\sigma_{n} & \text { if A has rank } n, \text { and is attained at } \pm v_{n} \\ 0 & \text { if A has rank }<n\end{cases}$
- If A is invertible, $\left\|A^{-1}\right\|_{2}=\frac{1}{\sigma_{r}}$.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Orientation of \mathbb{R}^{2}

A basis u_{1}, u_{2} of \mathbb{R}^{2} has

- direct/positive orientation if the shortest rotation from u_{1} to u_{2} is counter-clockwise.
- inverse/negative if the shortest rotation from u_{1} to u_{2} is clockwise.

Orientations

In \mathbb{R}^{n} we say that the standard basis has direct/positive orientation. For the other bases:

Definition
A basis u_{1}, \ldots, u_{n} of \mathbb{R}^{n} has direct/positive orientation, if

$$
\operatorname{det}\left(u_{1}, u_{2}, \ldots, u_{n}\right)>0
$$

(computed in standard coordinates); otherwise, the basis is said to have inverse/negative orientation.

Geometric intuition in \mathbb{R}^{3}

In \mathbb{R}^{3}, to see if a basis u_{1}, u_{2}, u_{3} has direct orientation we use the right-hand rule: put your thumb pointing to u_{3} and if the sense of closing your hand is the same as the shortest from u_{1} and u_{2}, then it has direct orientation.

base directa

base inversa

El producte vectorial dóna bases directes

- If $u, v \in \mathbb{R}^{3}$ are I.i. $\Rightarrow u, v, u \times v$ is a direct basis,

$$
\operatorname{det}(u, v, u \times v)>0
$$

Isometries

Definition

An endomorphism $f \in \operatorname{End}(E)$ is an isometry if it preserves the scalar product,

$$
\langle f(u), f(v)\rangle=\langle u, v\rangle \quad \forall u, v .
$$

Ex: If A is an orthogonal matrix, then $x \stackrel{f}{\mapsto} A x$ is an isometry.

Isometries

Definition

An endomorphism $f \in \operatorname{End}(E)$ is an isometry if it preserves the scalar product,

$$
\langle f(u), f(v)\rangle=\langle u, v\rangle \quad \forall u, v .
$$

Ex: If A is an orthogonal matrix, then $x \stackrel{f}{\mapsto} A x$ is an isometry.
Proposition
If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a linear map, the following are equivalent

- f is an isometry
- f maps the standard basis to a b.o.n
- $M_{e}(f)$ (or in any b.o.n) is an orthogonal matrix

Direct/inverse isometries

Properties: if f is an isometry, then

- $\|f(u)\|=\|u\|$, for all $u \in E$.
- $d(f(x), f(y))=d(x, y)$ for all x, y.
- angle between $f(u)$ and $f(v)=$ angle between u and v Remark: if f is an isometry of $\mathbb{R}^{n} \Rightarrow \operatorname{det}(f)= \pm 1$ and if λ is an eigenvalue of f, then $|\lambda|=1$.
- If $\operatorname{det} f=+1$ we say that it is a direct isometry (preserves orientation).
- If $\operatorname{det} f=+1$ we say that it is an inverse isometry (changes orientation).

Examples of isometries in \mathbb{R}^{2}

The following maps $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ are isometries:

- $f=$ reflection/symmetry with along a line / passing through the origin, $I=[v]$.Then

$$
f(x)=2 \frac{\langle v, x\rangle}{\langle v, v\rangle} v-x, \quad M_{e}(f)=\frac{2}{\langle v, v\rangle} v v^{t}-l d,
$$

and taking u in $[v]$ this can be written as:

$$
M_{e}(f)=I d-\frac{2}{\langle u, u>} u \cdot u^{t} .
$$

f is a direct isometry

Examples of isometries in \mathbb{R}^{2}

The following maps $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ are isometries:

- $f=$ reflection/symmetry with along a line / passing through the origin, $I=[v]$.Then

$$
f(x)=2 \frac{\langle v, x\rangle}{\langle v, v\rangle} v-x, \quad M_{e}(f)=\frac{2}{\langle v, v\rangle} v v^{t}-l d,
$$

and taking u in $[v]$ this can be written as:

$$
M_{e}(f)=I d-\frac{2}{\langle u, u>} u \cdot u^{t}
$$

- $f=$ rotation counterclockwise of angle α with respect to the origin; then

$$
M_{e}(f)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

f is a direct isometry.

Classification of isometries in \mathbb{R}^{2}

Theorem

If f is an isometry of \mathbb{R}^{2}, then either

\square

$\rightarrow \operatorname{det} f=-1$ and f is a reflection/symmetry along a line $\lceil v\rceil \ni(0,0)$; if $u \in\lceil v]^{\perp} \Rightarrow$

Classification of isometries in \mathbb{R}^{2}

Theorem
If f is an isometry of \mathbb{R}^{2}, then either

- $\operatorname{det} f=1$ and f is a counterclockwise rotation of angle α with respect to $(0,0)$ and in any direct b.o.n \mathbf{u},

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

or

Classification of isometries in \mathbb{R}^{2}

Theorem
If f is an isometry of \mathbb{R}^{2}, then either

- $\operatorname{det} f=1$ and f is a counterclockwise rotation of angle α with respect to $(0,0)$ and in any direct b.o.n \mathbf{u},

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

or

- $\operatorname{det} f=-1$ and f is a reflection/symmetry along a line $[v] \ni(0,0)$; if $u \in[v]^{\perp} \Rightarrow$

$$
M_{e}(f)=l d-\frac{2}{<u, u>} u \cdot u^{t} \quad M_{v, u}(f)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Example of isometry classification

Tell if the map $f(x, y)=\left(\frac{x-\sqrt{3} y}{2}, \frac{\sqrt{3} x+y}{2}\right)$ is an isomtry and describe it.

- The standard matrix of f is $M=\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)$.

Example of isometry classification

Tell if the map $f(x, y)=\left(\frac{x-\sqrt{3} y}{2}, \frac{\sqrt{3} x+y}{2}\right)$ is an isomtry and describe it.

- The standard matrix of f is $M=\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)$.
- M is orthogonal $\Rightarrow f$ is an isometry

Example of isometry classification

Tell if the map $f(x, y)=\left(\frac{x-\sqrt{3} y}{2}, \frac{\sqrt{3} x+y}{2}\right)$ is an isomtry and describe it.

- The standard matrix of f is $M=\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)$.
- M is orthogonal $\Rightarrow f$ is an isometry
$-\operatorname{det}(M)=1 \Rightarrow f$ is a rotation (by Theorem of Classification).

Example of isometry classification

Tell if the map $f(x, y)=\left(\frac{x-\sqrt{3} y}{2}, \frac{\sqrt{3} x+y}{2}\right)$ is an isomtry and describe it.

- The standard matrix of f is $M=\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)$.
- M is orthogonal $\Rightarrow f$ is an isometry
- $\operatorname{det}(M)=1 \Rightarrow f$ is a rotation (by Theorem of Classification).
- To find angle α : according to the Theorem M must be of the form

$$
\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \Rightarrow \cos \alpha=1 / 2, \sin \alpha=\sqrt{3} / 2 \Rightarrow \alpha=\pi / 3
$$

Example of isometry classification

Tell if the map $f(x, y)=\left(\frac{x-\sqrt{3} y}{2}, \frac{\sqrt{3} x+y}{2}\right)$ is an isomtry and describe it.

- The standard matrix of f is $M=\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)$.
- M is orthogonal $\Rightarrow f$ is an isometry
- $\operatorname{det}(M)=1 \Rightarrow f$ is a rotation (by Theorem of Classification).
- To find angle α : according to the Theorem M must be of the form

$$
\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \Rightarrow \cos \alpha=1 / 2, \sin \alpha=\sqrt{3} / 2 \Rightarrow \alpha=\pi / 3
$$

- Or also: $\alpha=\widehat{v, f(v)} \forall v \Rightarrow$ take any $v \in \mathbb{R}^{2}$, compute $\cos \alpha=\frac{\langle v, f(v)>}{\| \| v\| \|\|f(v)\| \mid}$ and if $\operatorname{det}(v, f(v))>0$ (resp. $\operatorname{det}(v, f(v))<0)$ take $\alpha \in[0, \pi]$ (resp. $\alpha \in[\pi, 2 \pi])$.

Examples of isometries in \mathbb{R}^{3}

$f=$ rotation of a certain angle with respect to a line $r \ni O=(0,0,0)(r$ is called rotation axis).

- To distinguish between angle θ and $-\theta(=2 \pi-\theta)$ need to orient r.

Examples of isometries in \mathbb{R}^{3}

$f=$ rotation of a certain angle with respect to a line
$r \ni O=(0,0,0)(r$ is called rotation axis).

- To distinguish between angle θ and $-\theta(=2 \pi-\theta)$ need to orient r.
- Choose a vector u of r, orient $r=[u]$ by u using the right hand rule: pointing your thumb in the sense of u, positive rotation is in the sense of cloing hand (looking from the arrow of u, counterclockwise rotation on the plane r^{\perp}). Then θ is in $[0, \pi]$ or $[\pi, 2 \pi]$ according to: for any $v \notin r$

$$
\begin{align*}
& \operatorname{det}(v, f(v), u) \geq 0 \Leftrightarrow \\
& \operatorname{det}(v, f(v), u) \leq 0 \Leftrightarrow \tag{1}\\
& \operatorname{de}[0, \pi] \\
&
\end{align*}
$$

Examples of isometries in \mathbb{R}^{3}

$f=$ rotation of a certain angle with respect to a line
$r \ni O=(0,0,0)(r$ is called rotation axis).

- To distinguish between angle θ and $-\theta(=2 \pi-\theta)$ need to orient r.
- Choose a vector u of r, orient $r=[u]$ by u using the right hand rule: pointing your thumb in the sense of u, positive rotation is in the sense of cloing hand (looking from the arrow of u, counterclockwise rotation on the plane r^{\perp}). Then θ is in $[0, \pi]$ or $[\pi, 2 \pi]$ according to: for any $v \notin r$

$$
\begin{align*}
& \operatorname{det}(v, f(v), u) \geq 0 \Leftrightarrow \tag{1}\\
& \operatorname{det}(v, f(v), u) \leq 0 \Leftrightarrow \\
& \operatorname{de}[0, \pi] \\
&
\end{align*}
$$

- Preserves orientation of bases, so it's a direct isometry $(\operatorname{det}(f)=1)$.

Example of rotation:

$f=$ rotation with $r=\left[e_{3}\right]$, oriented by e_{3}, and angle $\pi / 3$. Then

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

Matrix of a rotation

$f=$ rotation with respect to $r=[u]$ (oriented by u) and angle θ. Take a positive b.o.n. $\mathbf{u}=u_{1}, u_{2}, u_{3}$ with $u_{3}=\frac{u}{\|u\| \|}$ ("adapted b.o.n."), then

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example: Axial symmetry

$f=$ axial symmetry with respect to a line $r \ni O$.

- $f=$ rotation of angle π with axis $r(\operatorname{sodet}(f)=1)$.

Example: Axial symmetry

$f=$ axial symmetry with respect to a line $r \ni O$.

- $f=$ rotation of angle π with axis $r(\operatorname{sodet}(f)=1)$.
- As $\pi=-\pi$, orientation not needed.

Example: Axial symmetry

$f=$ axial symmetry with respect to a line $r \ni O$.

- $f=$ rotation of angle π with axis $r(\operatorname{sodet}(f)=1)$.
- As $\pi=-\pi$, orientation not needed.
- Ex: find $M_{e}(f)$ for $f=$ axial symmetry respect to z axis.

Example: Specular reflection

$f=$ specular reflexion/symmetry along a plane $H \ni O$.

- It changes basis orientation $\Rightarrow \operatorname{det}(f)=-1$.

Example: Specular reflection

$f=$ specular reflexion/symmetry along a plane $H \ni O$.

- It changes basis orientation $\Rightarrow \operatorname{det}(f)=-1$.
- Example: if $H=\{z=0\}$, then $f(x, y, z)=(x, y,-z)$

Example: Specular reflection

$f=$ specular reflexion/symmetry along a plane $H \ni O$.

- It changes basis orientation $\Rightarrow \operatorname{det}(f)=-1$.
- Example: if $H=\{z=0\}$, then $f(x, y, z)=(x, y,-z)$
- If $u \in H^{\perp}$, then

$$
M_{e}(f)=I d-\frac{2}{\langle u, u>} u \cdot u^{t}
$$

Example: Rotation followed by specular reflection

$g=$ rotation R with axis $r=[u]$ and angle θ followed by a specular reflection along the orthogonal plane to $r,[u]^{\perp}$.

Classification of isometries in \mathbb{R}^{3}

Theorem
If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an isometry, then either:

Any isometry in \mathbb{R}^{3} can be written as one of these 2 (case 1 if $\operatorname{det} f=1$, case 2 if $\operatorname{det} f=-1$). Important: in case 2 , the plane of reflection is orthogonal to rotation axis.

Classification of isometries in \mathbb{R}^{3}

Theorem
If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an isometry, then either:

- Case 1. $\operatorname{det} f=+1$ (direct isometry): f is a rotation with axis $r=[u]=$ VEPs of VAP 1.

Any isometry in \mathbb{R}^{3} can be written as one of these 2 (case 1 if $\operatorname{det} f=1$, case 2 if $\operatorname{det} f=-1$). Important: in case 2, the plane of reflection is orthogonal to rotation axis.

Classification of isometries in \mathbb{R}^{3}

Theorem

If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an isometry, then either:

- Case 1. $\operatorname{det} f=+1$ (direct isometry): f is a rotation with axis $r=[u]=$ VEPs of VAP 1.
- Case 2. $\operatorname{det} f=-1$ (indirect isometry): $f=$ rotation R of angle θ and axis $r=[u]$ ($=$ VEPs of VAP -1), followed by a specular reflection S along plane $[u]^{\perp}, f=S \circ R$.

Any isometry in \mathbb{R}^{3} can be written as one of these 2 (case 1 if $\operatorname{det} f=1$, case 2 if $\operatorname{det} f=-1$). Important: in case 2, the plane of reflection is orthogonal to rotation axis.

Case 1: $\operatorname{det} f=+1, f=$ rotation of axis $r=[u]$.
Orient the axis by u and let θ be the angle of rotation. Take u of norm 1. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=u\right\}$ is a direct b.o.n (called basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.

- $[u]=$ VEPs of VAP $1=$ vectors fixed by f.

Case 1: $\operatorname{det} f=+1, f=$ rotation of axis $r=[u]$.
Orient the axis by u and let θ be the angle of rotation. Take u of norm 1. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=u\right\}$ is a direct b.o.n (called basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.

- $[u]=$ VEPs of VAP $1=$ vectors fixed by f.
- $\theta=\widehat{v, f(v)}$ if v is orthogonal to axis [u].

Case 1: $\operatorname{det} f=+1, f=$ rotation of axis $r=[u]$.
Orient the axis by u and let θ be the angle of rotation. Take u of norm 1. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=u\right\}$ is a direct b.o.n (called basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.

- $[u]=$ VEPs of VAP $1=$ vectors fixed by f.
- $\theta=\widehat{v, f(v)}$ if v is orthogonal to axis $[u]$.
- $\cos (\theta)=\frac{\operatorname{tr}(f)-1}{2}$ and θ is in $[0, \pi]$ or $[\pi, 2 \pi]$ according to (for any $v \notin[u])$:

$$
\begin{align*}
& \operatorname{det}(v, f(v), u) \geq 0 \Leftrightarrow \tag{2}\\
& \operatorname{det}(v, f(v), u) \leq 0 \Leftrightarrow \\
& \theta \in[0, \pi] \\
&
\end{align*}
$$

Case 2: $\operatorname{det} f=-1, f=S \circ R$

$f=S \circ R, R=$ rotation angle θ of axis $r=[u] \ni O$ (oriented by
$u), S$ specular reflection with respect to plane $H=[u]^{\perp}$.

- Case 2.a $\theta=0, f=S=$ specular reflection along a plane $H=[u]^{\perp}$. We have:

Case 2: $\operatorname{det} f=-1, f=S \circ R$

$f=S \circ R, R=$ rotation angle θ of axis $r=[u] \ni O$ (oriented by
$u), S$ specular reflection with respect to plane $H=[u]^{\perp}$.

- Case 2.a $\theta=0, f=S=$ specular reflection along a plane $H=[u]^{\perp}$. We have:
- [u]: VEPs of VAP -1

Case 2: $\operatorname{det} f=-1, f=S \circ R$

$f=S \circ R, R=$ rotation angle θ of axis $r=[u] \ni O$ (oriented by
$u), S$ specular reflection with respect to plane $H=[u]^{\perp}$.

- Case 2.a $\theta=0, f=S=$ specular reflection along a plane $H=[u]^{\perp}$. We have:
- [u]: VEPs of VAP -1
- Image of a vector v :

$$
S(v)=v-2 \frac{\langle u, v\rangle}{\langle u, u\rangle} u
$$

Case 2: $\operatorname{det} f=-1, f=S \circ R$

$f=S \circ R, R=$ rotation angle θ of axis $r=[u] \ni O$ (oriented by
$u), S$ specular reflection with respect to plane $H=[u]^{\perp}$.

- Case 2.a $\theta=0, f=S=$ specular reflection along a plane $H=[u]^{\perp}$. We have:
- [u]: VEPs of VAP -1
- Image of a vector v :

$$
S(v)=v-2 \frac{\langle u, v\rangle}{\langle u, u\rangle} u
$$

- Matrix of f :

$$
M(S)=\operatorname{Id}-\frac{2}{u^{t} u} u u^{t}
$$

Case 2: $\operatorname{det} f=-1, f=S \circ R$

$f=S \circ R, R=$ rotation angle θ of axis $r=[u] \ni O$ (oriented by
$u), S$ specular reflection with respect to plane $H=[u]^{\perp}$.

- Case 2.a $\theta=0, f=S=$ specular reflection along a plane $H=[u]^{\perp}$. We have:
- [u]: VEPs of VAP -1
- Image of a vector v :

$$
S(v)=v-2 \frac{\langle u, v\rangle}{\langle u, u\rangle} u
$$

- Matrix of f :

$$
M(S)=\operatorname{Id}-\frac{2}{u^{t} u} u u^{t}
$$

- H: vectors fixed by f, plane of VEPs of VAP 1.

Case 2: $\operatorname{det} f=-1, f=S \circ R$

$f=S \circ R, R=$ rotation angle θ of axis $r=[u] \ni O$ (oriented by
$u), S$ specular reflection with respect to plane $H=[u]^{\perp}$.

- Case 2.a $\theta=0, f=S=$ specular reflection along a plane $H=[u]^{\perp}$. We have:
- [u]: VEPs of VAP -1
- Image of a vector v :

$$
S(v)=v-2 \frac{\langle u, v\rangle}{\langle u, u\rangle} u
$$

- Matrix of f :

$$
M(S)=\operatorname{Id}-\frac{2}{u^{t} u} u u^{t}
$$

- H : vectors fixed by f, plane of VEPs of VAP 1.
- $H=[v-f(v)]^{\perp}$ for any $v \notin H$.
- Case 2.b: $\theta \neq 0, f=S \circ R$. Orient rotation axis by u. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=\frac{u}{\|u\|}\right\}$ is a direct b.o.n (basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right)
$$

The matrix of f in any other basis can be obtained by change of basis.

- Case 2.b: $\theta \neq 0, f=S \circ R$. Orient rotation axis by u. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=\frac{u}{\|u\|}\right\}$ is a direct b.o.n (basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.

- $[u]=$ VEPs of VAP -1.
- Case 2.b: $\theta \neq 0, f=S \circ R$. Orient rotation axis by u. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=\frac{u}{\|u\|}\right\}$ is a direct b.o.n (basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.
$-[u]=$ VEPs of VAP -1.

- H invariant subspace of dimension 2.
- Case 2.b: $\theta \neq 0, f=S \circ R$. Orient rotation axis by u. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=\frac{u}{\|u\|}\right\}$ is a direct b.o.n (basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.
$-[u]=$ VEPs of VAP -1.

- H invariant subspace of dimension 2.
- $\theta=\widehat{v, f(v)}$ if v orthogonal to axis [u].
- Case 2.b: $\theta \neq 0, f=S \circ R$. Orient rotation axis by u. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=\frac{u}{\|u\|}\right\}$ is a direct b.o.n (basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.
$-[u]=$ VEPs of VAP -1.

- H invariant subspace of dimension 2.
- $\theta=\widehat{v, f(v)}$ if v orthogonal to axis [u].
- $\cos (\theta)=\frac{\operatorname{tr}(f)+1}{2}$
- Case 2.b: $\theta \neq 0, f=S \circ R$. Orient rotation axis by u. Then if $\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}=\frac{u}{\|u\|}\right\}$ is a direct b.o.n (basis adapted to f),

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

The matrix of f in any other basis can be obtained by change of basis.

- $[u]=$ VEPs of VAP -1.
- H invariant subspace of dimension 2.
- $\theta=\widehat{v, f(v)}$ if v orthogonal to axis [u].
- $\cos (\theta)=\frac{\operatorname{tr}(f)+1}{2}$
- We have θ in $[0, \pi]$ or $[\pi, 2 \pi]$ according to (for any $v \notin[u]$):

$$
\left\{\begin{array}{llll}
\operatorname{det}(v, f(v), u) \geq 0 & \Leftrightarrow & \theta \in[0, \pi] \tag{3}\\
\operatorname{det}(v, f(v), u) \leq 0 & \Leftrightarrow & \theta \in[\pi, 2 \pi]
\end{array}\right.
$$

Example

$$
M_{e}(f)=\left(\begin{array}{ccc}
2 / 3 & 2 / 3 & 1 / 3 \\
-2 / 3 & 1 / 3 & 2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3
\end{array}\right)
$$

- $\operatorname{det}(f)=1 \Rightarrow f=\operatorname{rotation}$ of axis $[u]$ and angle θ.

Example

$$
M_{e}(f)=\left(\begin{array}{ccc}
2 / 3 & 2 / 3 & 1 / 3 \\
-2 / 3 & 1 / 3 & 2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3
\end{array}\right)
$$

- $\operatorname{det}(f)=1 \Rightarrow f=$ rotation of axis $[u]$ and angle θ.
- Axis: VEPs of eigenvalue $1, r=[u=(1,0,1)]$.

Example

$$
M_{e}(f)=\left(\begin{array}{ccc}
2 / 3 & 2 / 3 & 1 / 3 \\
-2 / 3 & 1 / 3 & 2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3
\end{array}\right)
$$

- $\operatorname{det}(f)=1 \Rightarrow f=$ rotation of axis $[u]$ and angle θ.
- Axis: VEPs of eigenvalue $1, r=[u=(1,0,1)]$.
- Angle: $1+2 \cos \theta=\operatorname{tr}(f)=5 / 3 \Rightarrow \cos \theta=1 / 3$

Example

$$
M_{e}(f)=\left(\begin{array}{ccc}
2 / 3 & 2 / 3 & 1 / 3 \\
-2 / 3 & 1 / 3 & 2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3
\end{array}\right)
$$

- $\operatorname{det}(f)=1 \Rightarrow f=$ rotation of axis $[u]$ and angle θ.
- Axis: VEPs of eigenvalue $1, r=[u=(1,0,1)]$.
- Angle: $1+2 \cos \theta=\operatorname{tr}(f)=5 / 3 \Rightarrow \cos \theta=1 / 3$
- Orient r by u, take $v=(1,0,0) \notin r$, $\operatorname{det}(v, f(v), u)=-2 / 3<0 \Rightarrow \theta \in[\pi, 2 \pi], \theta=2 \pi-1.23$.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

SVD and rank approximation

Theorem (Eckhart-Young)

Let A be any matrix. If $A=U D V^{t}$ and the singular values of A are $\sigma_{1}, \ldots, \sigma_{r}$ then for any $k \leq r$,

$$
M=U\left(\begin{array}{ccccc}
\sigma_{1} & & 0 & \cdots & 0 \\
& \ddots & & & \vdots \\
0 & & \sigma_{k} & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & \cdots & \cdots & \cdots & 0
\end{array}\right) V^{t}
$$

is the matrix of rank k closest to A (in the sense that $\|A-M\|_{2}$ is minimal among matrices M of rank k). Note that
$\|A-M\|_{2}=\sigma_{k+1}$.
This is used in image compression, for example. Note that $A=\sigma_{1} u_{1} v_{1}^{t}+\sigma_{2} u_{2} v_{2}^{t}+\ldots+\sigma_{r} u_{r} v_{r}^{t}$.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Linear least squares approximation

Problem: $A x=b$ might be incompatible due to measure errors in b, but we would still like to have an approximated solution:

Incompatible

$$
\begin{aligned}
& A x=b \\
& \text { system }
\end{aligned} \quad \Leftrightarrow \quad b \notin \operatorname{Im}(A)
$$

Want: \tilde{x} such that $A \tilde{x}$ is as close to b as possible.

Definition

A least squares solution of $A x=b$ is a vector \tilde{x} that minimizes $\|A x-b\|$, that is

$$
\|A \tilde{x}-b\| \leq\|A x-b\| \text { for all } x
$$

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A), \operatorname{proj}_{\operatorname{Im}(A)}(b)$.

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A), \operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Then \tilde{x} is a least squares solution $\Leftrightarrow \tilde{x}$ is a solution of $A x=\operatorname{proj}_{\mathrm{Im}(A)}(b)$.

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A), \operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Then \tilde{x} is a least squares solution $\Leftrightarrow \tilde{x}$ is a solution of $A x=\operatorname{proj}_{\mathrm{Im}(A)}(b)$.
- If x is a least squares solution then it does not satisfy $A x-b=\overrightarrow{0}$, but minimizes the norm $\|A x-b\|$

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A), \operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Then \tilde{x} is a least squares solution $\Leftrightarrow \tilde{x}$ is a solution of $A x=\operatorname{proj}_{\mathrm{Im}(A)}(b)$.
- If x is a least squares solution then it does not satisfy $A x-b=\overrightarrow{0}$, but minimizes the norm $\|A x-b\|$
- The residual measures how far \tilde{x} is from a solution to the system:

$$
\text { residual }=A \tilde{x}-b\left(\text { which is }=\operatorname{proj}_{\operatorname{lm}(A)}(b)-b\right)
$$

norm of the residual: $\|A \tilde{x}-b\|$

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A), \operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Then \tilde{x} is a least squares solution $\Leftrightarrow \tilde{x}$ is a solution of $A x=\operatorname{proj}_{\mathrm{Im}(A)}(b)$.
- If x is a least squares solution then it does not satisfy $A x-b=\overrightarrow{0}$, but minimizes the norm $\|A x-b\|$
- The residual measures how far \tilde{x} is from a solution to the system:

$$
\text { residual }=A \tilde{x}-b\left(\text { which is }=\operatorname{proj}_{\operatorname{lm}(A)}(b)-b\right)
$$

norm of the residual: $\|A \tilde{x}-b\|$

- Important point: we do not need to compute $\operatorname{proj}_{\mathrm{Im}_{(A)}(b)}($ see next slide).

Theorem

> $\rightarrow \tilde{x}$ is a least squares solution of $A x=b$ if and only if it is a solution of the normal equations:

$$
A^{\underline{t}} A x=A^{\underline{t}} b
$$

\rightarrow If the rank of A equals the number of columns, then $A^{t} A$ is invertible and the least squares solution is unique and given by

(although computing the inverse is not efficient)

Theorem

- \tilde{x} is a least squares solution of $A x=b$ if and only if it is a solution of the normal equations:

$$
A^{t} A x=A^{t} b
$$

> (although computing the inverse is not efficient)

Δ If the original system is compatible \tilde{x} is a solution to the original system as well.

Theorem

- \tilde{x} is a least squares solution of $A x=b$ if and only if it is a solution of the normal equations:

$$
A^{t} A x=A^{t} b
$$

- If the rank of A equals the number of columns, then $A^{t} A$ is invertible and the least squares solution is unique and given by

$$
\tilde{x}=\left(A^{t} A\right)^{-1} A^{t} b
$$

(although computing the inverse is not efficient)

Theorem

- \tilde{x} is a least squares solution of $A x=b$ if and only if it is a solution of the normal equations:

$$
A^{t} A x=A^{t} b
$$

- If the rank of A equals the number of columns, then $A^{t} A$ is invertible and the least squares solution is unique and given by

$$
\tilde{x}=\left(A^{t} A\right)^{-1} A^{t} b
$$

(although computing the inverse is not efficient)

- If the original system is compatible, \tilde{x} is a solution to the original system as well.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Principal component analysis

Goal: Given N data points in $\mathbb{R}^{3}, p_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1, \ldots, N$ highly correlated, one wants to find $v_{1}=(a, b, c)$ of norm 1 such that the set $\left\{t_{i}=a x_{i}+b y_{i}+c z_{i}\right\}_{i}$ has maximum variance:

a

b

c

- Note that $\operatorname{proj}_{\left[v_{1}\right]}\left(p_{i}\right)=t_{i} v_{1}$

Principal component analysis

Goal: Given N data points in $\mathbb{R}^{3}, p_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1, \ldots, N$ highly correlated, one wants to find $v_{1}=(a, b, c)$ of norm 1 such that the set $\left\{t_{i}=a x_{i}+b y_{i}+c z_{i}\right\}_{i}$ has maximum variance:

- Note that $\operatorname{proj}_{\left[v_{1}\right]}\left(p_{i}\right)=t_{i} v_{1}$
- $v_{1}=(a, b, c)$ is called the first principal component.

Principal component analysis

Goal: Given N data points in $\mathbb{R}^{3}, p_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1, \ldots, N$ highly correlated, one wants to find $v_{1}=(a, b, c)$ of norm 1 such that the set $\left\{t_{i}=a x_{i}+b y_{i}+c z_{i}\right\}_{i}$ has maximum variance:

- Note that $\operatorname{proj}_{\left[v_{1}\right]}\left(p_{i}\right)=t_{i} v_{1}$
- $v_{1}=(a, b, c)$ is called the first principal component.
- Then one can look for $v_{2} \in\left[v_{1}\right]^{\perp}$ (2nd principal component) maximizing variance of $\operatorname{proj}_{\left[v_{1}\right]^{\perp}}\left(p_{i}\right)$.

Principal component analysis

Goal: Given N data points in $\mathbb{R}^{3}, p_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1, \ldots, N$ highly correlated, one wants to find $v_{1}=(a, b, c)$ of norm 1 such that the set $\left\{t_{i}=a x_{i}+b y_{i}+c z_{i}\right\}_{i}$ has maximum variance:

a

b

C

- Note that $\operatorname{proj}_{\left[v_{1}\right]}\left(p_{i}\right)=t_{i} v_{1}$
- $v_{1}=(a, b, c)$ is called the first principal component.
- Then one can look for $v_{2} \in\left[v_{1}\right]^{\perp}$ (2nd principal component) maximizing variance of $\operatorname{proj}_{\left[v_{1}\right]^{\perp}}\left(p_{i}\right)$.
- Keep going or project down to the first components in order to reduce the dimension of the problem.

Procedure

Assume that set $\left\{p_{i}\right\}$ is centered at the origin. Let

$$
M=\left(\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
\vdots & \vdots & \vdots \\
x_{N} & y_{N} & z_{N}
\end{array}\right) \text { so that } \sum_{i} x_{i}=\sum_{i} y_{i}=\sum_{i} z_{i}=0 .
$$

- Want $v_{1}=(a, b, c)$ of norm 1 such that $\sum_{i} t_{i}^{2}=\sum_{i}\left(a x_{i}+b y_{i}+c z_{i}\right)^{2}=\left\|M v_{1}\right\|$ is maximum.

Procedure

Assume that set $\left\{p_{i}\right\}$ is centered at the origin. Let
$M=\left(\begin{array}{ccc}x_{1} & y_{1} & z_{1} \\ \vdots & \vdots & \vdots \\ x_{N} & y_{N} & z_{N}\end{array}\right)$ so that $\sum_{i} x_{i}=\sum_{i} y_{i}=\sum_{i} z_{i}=0$.

- Want $v_{1}=(a, b, c)$ of norm 1 such that $\sum_{i} t_{i}^{2}=\sum_{i}\left(a x_{i}+b y_{i}+c z_{i}\right)^{2}=\left\|M v_{1}\right\|$ is maximum.
- v_{1} is the first column vector of V in the SVD: $M=U D V^{t}$.

Procedure

Assume that set $\left\{p_{i}\right\}$ is centered at the origin. Let
$M=\left(\begin{array}{ccc}x_{1} & y_{1} & z_{1} \\ \vdots & \vdots & \vdots \\ x_{N} & y_{N} & z_{N}\end{array}\right)$ so that $\sum_{i} x_{i}=\sum_{i} y_{i}=\sum_{i} z_{i}=0$.

- Want $v_{1}=(a, b, c)$ of norm 1 such that $\sum_{i} t_{i}^{2}=\sum_{i}\left(a x_{i}+b y_{i}+c z_{i}\right)^{2}=\left\|M v_{1}\right\|$ is maximum.
- v_{1} is the first column vector of V in the SVD: $M=U D V^{t}$.
- Then the matrix $M_{2}=M-M v_{1} v_{1}^{t}$ has $\operatorname{proj}_{\left[v_{1}\right]^{\perp}}\left(p_{i}\right)$ in its rows.

Procedure

Assume that set $\left\{p_{i}\right\}$ is centered at the origin. Let
$M=\left(\begin{array}{ccc}x_{1} & y_{1} & z_{1} \\ \vdots & \vdots & \vdots \\ x_{N} & y_{N} & z_{N}\end{array}\right)$ so that $\sum_{i} x_{i}=\sum_{i} y_{i}=\sum_{i} z_{i}=0$.

- Want $v_{1}=(a, b, c)$ of norm 1 such that $\sum_{i} t_{i}^{2}=\sum_{i}\left(a x_{i}+b y_{i}+c z_{i}\right)^{2}=\left\|M v_{1}\right\|$ is maximum.
- v_{1} is the first column vector of V in the SVD: $M=U D V^{t}$.
- Then the matrix $M_{2}=M-M v_{1} v_{1}^{t}$ has $\operatorname{proj}_{\left[v_{1}\right]^{\perp}}\left(p_{i}\right)$ in its rows.
- $M_{2}=\sigma_{2} u_{2} v_{2}^{t}+\ldots+\sigma_{r} u_{r} v_{r}^{t}$.

Procedure

Assume that set $\left\{p_{i}\right\}$ is centered at the origin. Let
$M=\left(\begin{array}{ccc}x_{1} & y_{1} & z_{1} \\ \vdots & \vdots & \vdots \\ x_{N} & y_{N} & z_{N}\end{array}\right)$ so that $\sum_{i} x_{i}=\sum_{i} y_{i}=\sum_{i} z_{i}=0$.

- Want $v_{1}=(a, b, c)$ of norm 1 such that $\sum_{i} t_{i}^{2}=\sum_{i}\left(a x_{i}+b y_{i}+c z_{i}\right)^{2}=\left\|M v_{1}\right\|$ is maximum.
- v_{1} is the first column vector of V in the SVD: $M=U D V^{t}$.
- Then the matrix $M_{2}=M-M v_{1} v_{1}^{t}$ has $\operatorname{proj}_{\left[v_{1}\right]^{\perp}}\left(p_{i}\right)$ in its rows.
- $M_{2}=\sigma_{2} u_{2} v_{2}^{t}+\ldots+\sigma_{r} u_{r} v_{r}^{t}$.
- The direction which maximizes the variance is v_{2} (2nd vector in V).

Procedure

Assume that set $\left\{p_{i}\right\}$ is centered at the origin. Let
$M=\left(\begin{array}{ccc}x_{1} & y_{1} & z_{1} \\ \vdots & \vdots & \vdots \\ x_{N} & y_{N} & z_{N}\end{array}\right)$ so that $\sum_{i} x_{i}=\sum_{i} y_{i}=\sum_{i} z_{i}=0$.

- Want $v_{1}=(a, b, c)$ of norm 1 such that $\sum_{i} t_{i}^{2}=\sum_{i}\left(a x_{i}+b y_{i}+c z_{i}\right)^{2}=\left\|M v_{1}\right\|$ is maximum.
- v_{1} is the first column vector of V in the SVD: $M=U D V^{t}$.
- Then the matrix $M_{2}=M-M v_{1} v_{1}^{t}$ has $\operatorname{proj}_{\left[v_{1}\right]^{\perp}}\left(p_{i}\right)$ in its rows.
- $M_{2}=\sigma_{2} u_{2} v_{2}^{t}+\ldots+\sigma_{r} u_{r} v_{r}^{t}$.
- The direction which maximizes the variance is v_{2} (2nd vector in V).
- Keep going.

Remarks:

- If the set $\left\{p_{i}\right\}$ is not centered at the origin we center it: let $(\bar{x}, \bar{y}, \bar{z})=\sum_{i}\left(x_{i}, y_{i}, z_{i}\right) / N$, and consider

$$
M=\left(\begin{array}{ccc}
x_{1}-\bar{x} & y_{1}-\bar{y} & z_{1}-\bar{z} \\
\vdots & \vdots & \vdots \\
x_{N}-\bar{x} & y_{N}-\bar{y} & z_{N}-\bar{z}
\end{array}\right) .
$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

Remarks:

- If the set $\left\{p_{i}\right\}$ is not centered at the origin we center it: let $(\bar{x}, \bar{y}, \bar{z})=\sum_{i}\left(x_{i}, y_{i}, z_{i}\right) / N$, and consider

$$
M=\left(\begin{array}{ccc}
x_{1}-\bar{x} & y_{1}-\bar{y} & z_{1}-\bar{z} \\
\vdots & \vdots & \vdots \\
x_{N}-\bar{x} & y_{N}-\bar{y} & z_{N}-\bar{z}
\end{array}\right) .
$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

- The matrix $M^{t} M$ is the empirical covariance matrix and the principal component v_{1} is the dominant eigenvector of this matrix.

Remarks:

- If the set $\left\{p_{i}\right\}$ is not centered at the origin we center it: let $(\bar{x}, \bar{y}, \bar{z})=\sum_{i}\left(x_{i}, y_{i}, z_{i}\right) / N$, and consider

$$
M=\left(\begin{array}{ccc}
x_{1}-\bar{x} & y_{1}-\bar{y} & z_{1}-\bar{z} \\
\vdots & \vdots & \vdots \\
x_{N}-\bar{x} & y_{N}-\bar{y} & z_{N}-\bar{z}
\end{array}\right) .
$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

- The matrix $M^{t} M$ is the empirical covariance matrix and the principal component v_{1} is the dominant eigenvector of this matrix.
- The same can be done for clouds of points in \mathbb{R}^{n}.

Outline

Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
Rank approximation
Linear least squares
Principal component analysis
Scalar product in \mathbb{C}
Bibliography

Scalar product in \mathbb{C}^{n}

Definition

In \mathbb{C}^{n} the analogous to the dot product is the standard hermitian product $\langle u, v\rangle$ of two vectors $u=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), v=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{C}^{n}$
is

$$
<u, v>:=u^{t} \bar{v}=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\ldots+x_{n} \overline{y_{n}} .
$$

Scalar product in \mathbb{C}^{n}

Definition

In \mathbb{C}^{n} the analogous to the dot product is the standard hermitian product $\left\langle u, v>\right.$ of two vectors $u=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), v=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{C}^{n}$
is

$$
<u, v>:=u^{t} \bar{v}=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\ldots+x_{n} \overline{y_{n}} .
$$

Example:

$$
u=\left(\begin{array}{c}
1 \\
i \\
1-2 i
\end{array}\right), v=\left(\begin{array}{l}
i \\
0 \\
3
\end{array}\right) \Rightarrow\left\langle u, v>=\left(\begin{array}{lll}
1 & i & 1
\end{array}-2 i\right)\left(\begin{array}{c}
-i \\
0 \\
3
\end{array}\right)=3-7 i .\right.
$$

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ (positive)

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ (positive)
2. $\langle u, u\rangle=0 \Leftrightarrow u=0$ (non-degenerate).

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ (positive)
2. $\langle u, u\rangle=0 \Leftrightarrow u=0$ (non-degenerate).
3. $\langle u, v\rangle=\langle v, u\rangle$ ("hermitian").

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ (positive)
2. $\langle u, u\rangle=0 \Leftrightarrow u=0$ (non-degenerate).
3. $\langle u, v\rangle=\langle v, u\rangle$ ("hermitian").
4. 'sesquilineal":
$><a_{1} u_{1}+a_{2} u_{2}, v>=a_{1}<u_{1}, v>+a_{2}<u_{2}, v>$;
$><u, a_{1} v_{1}+a_{2} v_{2}>=\overline{a_{1}}<u, v_{1}>+\overline{a_{2}}<u, v_{2}>$.

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ (positive)
2. $\langle u, u\rangle=0 \Leftrightarrow u=0$ (non-degenerate).
3. $\langle u, v\rangle=\langle v, u\rangle$ ("hermitian").
4. "sesquilineal":
$><a_{1} u_{1}+a_{2} u_{2}, v>=a_{1}<u_{1}, v>+a_{2}<u_{2}, v>$;
$><u, a_{1} v_{1}+a_{2} v_{2}>=\overline{a_{1}}<u, v_{1}>+\overline{a_{2}}<u, v_{2}>$.
5. In this case, the norm of a vector $u \in \mathbb{C}^{n}$ is $\|u\|=\sqrt{u^{t} \bar{u}}=\sqrt{\left|u_{1}\right|^{2}+\ldots+\left|u_{n}\right|^{2}} \in \mathbb{R}$.

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ (positive)
2. $\langle u, u\rangle=0 \Leftrightarrow u=0$ (non-degenerate).
3. $\langle u, v\rangle=\langle v, u\rangle$ ("hermitian").
4. "sesquilineal":
$><a_{1} u_{1}+a_{2} u_{2}, v>=a_{1}<u_{1}, v>+a_{2}<u_{2}, v>$;
$><u, a_{1} v_{1}+a_{2} v_{2}>=\overline{a_{1}}<u, v_{1}>+\overline{a_{2}}<u, v_{2}>$.
5. In this case, the norm of a vector $u \in \mathbb{C}^{n}$ is $\|u\|=\sqrt{u^{t} \bar{u}}=\sqrt{\left|u_{1}\right|^{2}+\ldots+\left|u_{n}\right|^{2}} \in \mathbb{R}$.
6. Orthonormal basis for this scalar product: same definition as before.

Properties:

1. $\langle u, u\rangle \geq 0 \forall u$ (positive)
2. $\langle u, u\rangle=0 \Leftrightarrow u=0$ (non-degenerate).
3. $\langle u, v\rangle=\langle v, u\rangle$ ("hermitian").
4. "sesquilineal":
$><a_{1} u_{1}+a_{2} u_{2}, v>=a_{1}<u_{1}, v>+a_{2}<u_{2}, v>;$
$><u, a_{1} v_{1}+a_{2} v_{2}>=\overline{a_{1}}<u, v_{1}>+\overline{a_{2}}<u, v_{2}>$.
5. In this case, the norm of a vector $u \in \mathbb{C}^{n}$ is
$\|u\|=\sqrt{u^{t} \bar{u}}=\sqrt{\left|u_{1}\right|^{2}+\ldots+\left|u_{n}\right|^{2}} \in \mathbb{R}$.
6. Orthonormal basis for this scalar product: same definition as before.
7. If we write the columns of a matrix $A=\left(v_{1} \ldots v_{d}\right)$ then, $A^{t} \bar{A}=I d \quad$ if and ony if $\left\{v_{1}, \ldots, v_{d}\right\}$ is an orthonormal basis.

Unitary matrices

An $n \times n$ matrix that satisfies $\bar{A}^{t} A=I d$ is called a unitary matrix.

- If we call the columns $v_{1}, \ldots, v_{n}, A=\left(v_{1} \ldots v_{n}\right)$, then,
$\bar{A}^{t} A=I d \quad$ if and ony if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis.

Unitary matrices

An $n \times n$ matrix that satisfies $\bar{A}^{t} A=I d$ is called a unitary matrix.

- If we call the columns $v_{1}, \ldots, v_{n}, A=\left(v_{1} \ldots v_{n}\right)$, then,
$\bar{A}^{t} A=I d \quad$ if and ony if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis.
- A is unitary if and only if $A^{-1}=\bar{A}^{t}$.

Unitary matrices

An $n \times n$ matrix that satisfies $\bar{A}^{t} A=I d$ is called a unitary matrix.

- If we call the columns $v_{1}, \ldots, v_{n}, A=\left(v_{1} \ldots v_{n}\right)$, then,
$\bar{A}^{t} A=I d \quad$ if and ony if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis.
- A is unitary if and only if $A^{-1}=\bar{A}^{t}$.
- A is unitary $\Rightarrow|\operatorname{det} A|=1$.

Unitary matrices

An $n \times n$ matrix that satisfies $\bar{A}^{t} A=I d$ is called a unitary matrix.

- If we call the columns $v_{1}, \ldots, v_{n}, A=\left(v_{1} \ldots v_{n}\right)$, then,
$\bar{A}^{t} A=I d \quad$ if and ony if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis.
- A is unitary if and only if $A^{-1}=\bar{A}^{t}$.
- A is unitary $\Rightarrow|\operatorname{det} A|=1$.
- If A is unitary, then the corresponding endomorphism preserves norms (preserves the measure of vectors):

$$
\|A x\|=\|x\| \text { for all } x
$$

Unitary matrices

An $n \times n$ matrix that satisfies $\bar{A}^{t} A=I d$ is called a unitary matrix.

- If we call the columns $v_{1}, \ldots, v_{n}, A=\left(v_{1} \ldots v_{n}\right)$, then,
$\bar{A}^{t} A=I d \quad$ if and ony if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis.
- A is unitary if and only if $A^{-1}=\bar{A}^{t}$.
- A is unitary $\Rightarrow|\operatorname{det} A|=1$.
- If A is unitary, then the corresponding endomorphism preserves norms (preserves the measure of vectors):

$$
\|A x\|=\|x\| \text { for all } x
$$

- A also preserves dot products and angles (and hence preserves orthogonality) and so it is a transformation that does not deform objects.

Outline

```
Scalar product
Symmetric matrices
Cross-product
Orthogonal complement
Orthogonal projection
Singular value decomposition
Isometries
Aplications of SVD and orthogonal projection
    Rank approximation
    Linear least squares
    Principal component analysis
Scalar product in \mathbb{C}
```

Bibliography

Bibliography

Basic:

- D. Poole, Linear Algebra, A modern introduction (3rd edition), Brooks/Cole, 2011. Chapter 6.
Additional
- Hernández Rodríguez, E.; Vàzquez Gallo, M.J.; Zurro Moro, M.A. Álgebra lineal y geometría [en línia]

