Orthogonality

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

- Distance and angle
- Orthogonal complement
- Orthogonal projection
- Spectral Theorem
- Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Outline

Distance and angle

- Orthogonal complement
- Orthogonal projection
- Spectral Theorem
- Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Definition

Definition The dot product (or scalar product) $u \cdot v$ of two vectors $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$ is

$$u \cdot v := u^t v = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

Example:

$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \Rightarrow u \cdot v = (123) \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 1 \times 1 + 2 \times 0 + 3 \times 2 = 7$$

Definition

Definition The dot product (or scalar product) $u \cdot v$ of two vectors $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$ is $u \cdot v := u^t v = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n.$

Example:

$$u = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, v = \begin{pmatrix} 1\\0\\2 \end{pmatrix} \Rightarrow u \cdot v = (123) \begin{pmatrix} 1\\0\\2 \end{pmatrix} = 1 \times 1 + 2 \times 0 + 3 \times 2 = 7$$

1. $u \cdot u \ge 0 \forall u$ 2. $u \cdot u = 0 \Leftrightarrow u = 0$. 3. $u \cdot v = v \cdot u$. 4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v$; 5. $u \cdot (a_1v_1 + a_2v_2) = a_1u \cdot v_1 + a_2u \cdot v_2$.

1. $u \cdot u \ge 0 \ \forall u$ 2. $u \cdot u = 0 \Leftrightarrow u = 0$. 3. $u \cdot v = v \cdot u$. 4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v$; 5. $u \cdot (a_1v_1 + a_2v_2) = a_1u \cdot v_1 + a_2u \cdot v_2$.

1.
$$u \cdot u \ge 0 \ \forall u$$

2. $u \cdot u = 0 \Leftrightarrow u = 0$.
3. $u \cdot v = v \cdot u$.
4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v$.
5. $u \cdot (a_1v_1 + a_2v_2) = a_1u \cdot v_1 + a_2u \cdot v_2$.

1.
$$u \cdot u \ge 0 \ \forall u$$

2. $u \cdot u = 0 \Leftrightarrow u = 0$.
3. $u \cdot v = v \cdot u$.
4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v$;
5. $u \cdot (a_1v_1 + a_2v_2) = a_1u \cdot v_1 + a_2u \cdot v_2$.

1.
$$u \cdot u \ge 0 \ \forall u$$

2. $u \cdot u = 0 \Leftrightarrow u = 0$.
3. $u \cdot v = v \cdot u$.
4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v$;
5. $u \cdot (a_1v_1 + a_2v_2) = a_1u \cdot v_1 + a_2u \cdot v_2$.

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

▶ $||u|| \ge 0;$

 $||cu|| = |c|||u|| \ c \in \mathbb{R};$

 $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

 $||u|| = 0 \Leftrightarrow u = 0$

A vector u is called a unit vector if ||u|| = 1. Given a vector $v \neq 0$, we can always find a unit vector in its direction: v/||v|| (we say that we have normalized v).

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

▶ $||u|| \ge 0;$

 $\blacktriangleright \|cu\| = |c|\|u\| \ c \in \mathbb{R};$

 $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

 $||u|| = 0 \Leftrightarrow u = 0$

A vector u is called a unit vector if ||u|| = 1. Given a vector $v \neq 0$, we can always find a unit vector in its direction: v/||v|| (we say that we have normalized v).

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

▶
$$||u|| \ge 0;$$

 $\blacktriangleright \|cu\| = |c|\|u\| \ c \in \mathbb{R};$

• $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

 $||u|| = 0 \Leftrightarrow u = 0$

A vector u is called a unit vector if ||u|| = 1. Given a vector $v \neq 0$, we can always find a unit vector in its direction: v/||v|| (we say that we have normalized v).

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

▶
$$||u|| \ge 0;$$

$$\blacktriangleright \|cu\| = |c|\|u\| \ c \in \mathbb{R};$$

• $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

$$\blacktriangleright ||u|| = 0 \Leftrightarrow u = 0$$

A vector u is called a unit vector if ||u|| = 1. Given a vector $v \neq 0$, we can always find a unit vector in its direction: v/||v|| (we say that we have normalized v).

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

- ▶ $||u|| \ge 0;$
- $\blacktriangleright \|cu\| = |c|\|u\| \ c \in \mathbb{R};$
- $||u + v|| \le ||u|| + ||v||$ (triangular inequality);
- $\blacktriangleright ||u|| = 0 \Leftrightarrow u = 0$

A vector u is called a unit vector if ||u|| = 1. Given a vector $v \neq 0$, we can always find a unit vector in its direction: v/||v|| (we say that we have normalized v).

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

▶ $||u|| \ge 0;$

$$||cu|| = |c|||u|| \ c \in \mathbb{R};$$

• $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

$$||u|| = 0 \Leftrightarrow u = 0$$

A vector u is called a unit vector if ||u|| = 1. Given a vector $v \neq 0$, we can always find a unit vector in its direction: v/||v|| (we say that we have normalized v).

Angle

- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v = 0$.
- ▶ The angle between two vectors $u, v \in \mathbb{R}^n$ is the angle that has $\cos(\widehat{uv}) = \frac{u \cdot v}{||u|| \cdot ||v||}$ (the sign of \widehat{uv} depends on the orientation we choose).
- Two orthogonal vectors have $\widehat{uv} = \pm \frac{\pi}{2}$.

Angle

- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v = 0$.
- ▶ The angle between two vectors $u, v \in \mathbb{R}^n$ is the angle that has $\cos(\widehat{uv}) = \frac{u \cdot v}{||u|| \cdot ||v||}$ (the sign of \widehat{uv} depends on the orientation we choose).
- Two orthogonal vectors have $\widehat{uv} = \pm \frac{\pi}{2}$.

Angle

- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v = 0$.
- The angle between two vectors u, v ∈ ℝⁿ is the angle that has cos(uv) = u·v / ||u||·||v|| (the sign of uv depends on the orientation we choose).
- Two orthogonal vectors have $\widehat{uv} = \pm \frac{\pi}{2}$.

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

▶ pairwise orthogonal: $v_i \cdots v_i = 0$ if $i \neq j, 1$,

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1,\ldots,v_n\}$ of \mathbb{R}^n such that its vectors are

Pairwise orthogonal: v_i · v_i = 0 if i ≠ j, 1,

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

- ▶ pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,
- ▶ and normalized: $||v_i|| = 1$ for i = 1, 2, ..., n.

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

- ▶ pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,
- ▶ and normalized: $||v_i|| = 1$ for i = 1, 2, ..., n.

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

- ▶ pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,
- and normalized: $||v_i|| = 1$ for i = 1, 2, ..., n.

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \ldots v_n)$ then,

• A^tA is a diagonal matrix if and only if B is orthogonal.

• $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

Note:

- The columns of an orthogonal matrix form an orthonormal basis.
- If A is orthogonal, then A⁻¹ = A^ℓ.

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \ldots v_n)$ then,

- $A^t A$ is a diagonal matrix if and only if B is orthogonal.
- $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

Note:

- The columns of an orthogonal matrix form an orthonormal basis.
- ► If A is orthogonal, then A⁻¹ = A^t...

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \ldots v_n)$ then,

- A^tA is a diagonal matrix if and only if B is orthogonal.
- $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

Note:

- The columns of an orthogonal matrix form an orthonormal basis.
- ▶ If A is orthogonal, then $A^{-1} = A^t$.

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \ldots v_n)$ then,

- A^tA is a diagonal matrix if and only if B is orthogonal.
- $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

Note:

 The columns of an orthogonal matrix form an orthonormal basis.

▶ If A is orthogonal, then
$$A^{-1} = A^t$$
.

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \ldots v_n)$ then,

- A^tA is a diagonal matrix if and only if B is orthogonal.
- $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

Note:

 The columns of an orthogonal matrix form an orthonormal basis.

• If A is orthogonal, then
$$A^{-1} = A^t$$
.

Cross-product in \mathbb{R}^3

The cross-product between two vectors $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$ of \mathbb{R}^3 is the following vector (in standard basis)

$$(u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

= $(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Main properties:

- $v \times u = -u \times v$ (anti-commutative)
- \blacktriangleright *u* \times *v* is orthogonal to both *u* and *v*

If u, v are orthogonal and normalized, then u, v, u × v is an orthonormal basis.

Cross-product in \mathbb{R}^3

The cross-product between two vectors $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$ of \mathbb{R}^3 is the following vector (in standard basis)

$$(u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

= $(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Main properties:

- $v \times u = -u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v
- If u, v are orthogonal and normalized, then u, v, u × v is an orthonormal basis.

Cross-product in \mathbb{R}^3

The cross-product between two vectors $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$ of \mathbb{R}^3 is the following vector (in standard basis)

$$(u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

= $(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Main properties:

- $v \times u = -u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v
- If u, v are orthogonal and normalized, then u, v, u × v is an orthonormal basis.

Outline

Distance and angle

Orthogonal complement

- Orthogonal projection
- Spectral Theorem
- Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Orthogonal complement

The orthogonal complement to a given subspace $F \subset \mathbb{R}^n$ is

$$F^{\perp} = \{ u \in \mathbb{R}^n \, | \, u \perp v \text{ for all } v \in F \}.$$

If $F = [v_1, \ldots, v_d]$, then

$$\mathcal{F}^{\perp} = \left\{ u \in \mathbb{R}^n \left| egin{array}{c} u \cdot v_1 = 0 \ dots \ u \cdot v_d = 0 \end{array}
ight.
ight\}$$

 If F ⊆ ℝⁿ has dimension d, then F[⊥] has dimension n − d.
 The orthogonal of the orthogonal is the subspace itself: (F[⊥])[⊥] = F.

Orthogonal complement

The orthogonal complement to a given subspace $F \subset \mathbb{R}^n$ is

$$F^{\perp} = \{ u \in \mathbb{R}^n \, | \, u \perp v \text{ for all } v \in F \}.$$

If $F = [v_1, \ldots, v_d]$, then

$$F^{\perp} = \left\{ u \in \mathbb{R}^n \mid \begin{array}{c} u \cdot v_1 = 0 \\ \vdots \\ u \cdot v_d = 0 \end{array}
ight\}$$

If F ⊆ ℝⁿ has dimension d, then F[⊥] has dimension n − d.
The orthogonal of the orthogonal is the subspace itself: (F[⊥])[⊥] = F.

- If F is defined by generators ⇒ the equations of F[⊥] are easy to get: their coefficients are the generators coordinates.
- If F is given by equations ⇒ the generators of F[⊥] are easy to get: their coordinates are the coefficients of the equations.

F

$$F^{\perp}$$
 $[(1,3,2), (-2,1,8)]$
 $\begin{cases} x+3y+2z=0\\ -2x+y+8z=0 \end{cases}$
 $\{3x-5y+\frac{11}{2}z\}=0$
 $[(3,-5,\frac{11}{2})]$
- If F is defined by generators ⇒ the equations of F[⊥] are easy to get: their coefficients are the generators coordinates.
- If F is given by equations ⇒ the generators of F[⊥] are easy to get: their coordinates are the coefficients of the equations.

F

$$F^{\perp}$$
 $[(1,3,2), (-2,1,8)]$
 $\begin{cases} x+3y+2z=0\\ -2x+y+8z=0 \end{cases}$
 $\{3x-5y+\frac{11}{2}z\}=0$
 $[(3,-5,\frac{11}{2})]$

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as v = w + w' where $w \in F$ and $w' \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as proj_F(v),
- w' is called the orthogonal projection of v on F[⊥] and is denoted as proj_{F[⊥]}(v).

Thus, v = proj_F(v) + proj_{F⊥}(v) and proj_F(v) is the unique vector of F such that v − proj_F(v) belongs to F[⊥].

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as v = w + w' where $w \in F$ and $w' \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as proj_F(v),
- w' is called the orthogonal projection of v on F[⊥] and is denoted as proj_{F[⊥]}(v).
- Thus, v = proj_F(v) + proj_{F⊥}(v) and proj_F(v) is the unique vector of F such that v − proj_F(v) belongs to F[⊥].

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as v = w + w' where $w \in F$ and $w' \in F^{\perp}$.

w is called the orthogonal projection of v on F and is denoted as proj_F(v),

w' is called the orthogonal projection of v on F[⊥] and is denoted as proj_{F[⊥]}(v).

Thus, v = proj_F(v) + proj_{F⊥}(v) and proj_F(v) is the unique vector of F such that v − proj_F(v) belongs to F[⊥].

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as v = w + w' where $w \in F$ and $w' \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as proj_F(v),
- w' is called the orthogonal projection of v on F[⊥] and is denoted as proj_{F[⊥]}(v).
- Thus, v = proj_F(v) + proj_{F⊥}(v) and proj_F(v) is the unique vector of F such that v − proj_F(v) belongs to F[⊥].

Computation of the orthogonal projection

Proposition

 $proj_F(v)$ is the unique vector w that satisfies $w \in F$ and $v - w \in F^{\perp}$. If F has basis u_1, \ldots, u_d , then $proj_F(v)$ is the unique vector w such that

$$w = c_1 u_1 + \dots c_d u_d \in F \quad and \begin{cases} u_1 \cdot w = u_1 \cdot v \\ \vdots \\ u_d \cdot w = u_d \cdot v \end{cases}$$

Thus, $proj_F(v)$ is the vector $c_1u_1 + \cdots + c_du_d$ such that c_1, \ldots, c_d are solution to the system

$$\left(\begin{array}{ccc}u_1\cdot u_1&\ldots&u_1\cdot u_d\\\vdots&\vdots&\vdots\\u_d\cdot u_1&\ldots&u_d\cdot u_d\end{array}\right)\left(\begin{array}{c}c_1\\\vdots\\c_d\end{array}\right)=\left(\begin{array}{c}v\cdot u_1\\\vdots\\v\cdot u_d\end{array}\right)$$

If A is the matrix
$$\begin{pmatrix} u_1 & \cdots & u_d \end{pmatrix}$$
, then c_1, \ldots, c_d are the solution to the system

$$A^{t}A\left(egin{array}{c} c_{1} \ dots \ c_{d} \end{array}
ight)=A^{t}v.$$

(If u_1, \ldots, u_d is a basis, then $A^t A$ is invertible). Corollary If dim F = 1, F = [u], then $proj_F(v) = \frac{v \cdot u}{u \cdot u} u$.

Orthogonal projection with orthonormal basis

Proposition

If u_1,\ldots,u_d is an orthonormal basis of F and $v\in\mathbb{R}^n,$ then

$$proj_F(v) = (v \cdot u_1)u_1 + \cdots + (v \cdot u_d)u_d.$$

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

 $A = VDV^t$.

The orthonormal basis of eigenvectors is not difficult to find:

- lf u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.
- If the eigenvalues are not all distinct, use Gram-Schmidt algorithm (not studied in this course).

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$A = VDV^t$$
.

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.
- If the eigenvalues are not all distinct, use Gram-Schmidt algorithm (not studied in this course).

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$A = VDV^t$$
.

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.

If the eigenvalues are not all distinct, use Gram-Schmidt algorithm (not studied in this course).

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$A = VDV^t$$
.

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.
- If the eigenvalues are not all distinct, use Gram-Schmidt algorithm (not studied in this course).

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

▶ If we call the columns v_1, \ldots, v_n , $A = (v_1 \ldots v_n)$, then,

 $A^{t}A = Id$ if and ony if $\{v_1, \ldots, v_n\}$ is an orthonormal basis.

• A is orthogonal if and only if $A^{-1} = A^t$.

If A is orthogonal, then the corresponding endomorphism preserves norms (preserves the measures of vectors):

$$\|Ax\| = \|x\| \text{ for all } x,$$

and preserves dot products and angles (and hence preserves orthogonality).

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

▶ If we call the columns v_1, \ldots, v_n , $A = (v_1 \ldots v_n)$, then,

 $A^{t}A = Id$ if and ony if $\{v_1, \ldots, v_n\}$ is an orthonormal basis.

• A is orthogonal if and only if $A^{-1} = A^t$.

If A is orthogonal, then the corresponding endomorphism preserves norms (preserves the measures of vectors):

 $\|Ax\| = \|x\| \text{ for all } x,$

and preserves dot products and angles (and hence preserves orthogonality).

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

▶ If we call the columns v_1, \ldots, v_n , $A = (v_1 \ldots v_n)$, then,

 $A^{t}A = Id$ if and ony if $\{v_1, \ldots, v_n\}$ is an orthonormal basis.

- A is orthogonal if and only if $A^{-1} = A^t$.
- If A is orthogonal, then the corresponding endomorphism preserves norms (preserves the measures of vectors):

$$\|Ax\| = \|x\| \text{ for all } x,$$

and preserves dot products and angles (and hence preserves orthogonality).

Singular value decomposition (SVD)

Theorem (Singular value decomposition)

Let A be an $m \times n$ matrix. There there exists a decomposition $A = U \cdot D \cdot V^t$, where U is $m \times m$, V is $n \times n$, U, V are orthogonal and

$$D = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ & \ddots & & & \vdots \\ 0 & \sigma_r & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$ and r = rank A. $\sigma_1, \ldots, \sigma_r$ are called singular values of A.

The singular values are determined by the matrix A:

$$A = UDV^{t} \Rightarrow A^{t}A = VD^{t}U^{t}UDV^{t} = VD^{t}DV^{t}$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

- (2) If $\lambda_1 \geq \cdots \geq \lambda_r$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_1 = \sqrt{\lambda_1}, \ldots \sigma_r = \sqrt{\lambda_r}$ (fact: $A^t A$ always has non-negative eigenvalues).
- (3) The columns of V are an orthonormal basis v₁,..., v_n of eigenvectors of S.
- (4) u₁ = ¹/_{σ1}Av₁,..., u_r = ¹/_{σr}Av_r are orthonormal vectors in ℝ^m (which can be completed to an orthonormal basis of ℝ^m if necessary) and they form the columns of U.

The singular values are determined by the matrix A:

$$A = UDV^{t} \Rightarrow A^{t}A = VD^{t}U^{t}UDV^{t} = VD^{t}DV^{t}$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

- (2) If $\lambda_1 \geq \cdots \geq \lambda_r$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_1 = \sqrt{\lambda_1}, \ldots \sigma_r = \sqrt{\lambda_r}$ (fact: $A^t A$ always has non-negative eigenvalues).
- (3) The columns of V are an orthonormal basis v₁,..., v_n of eigenvectors of S.
- (4) $u_1 = \frac{1}{\sigma_1} A v_1, \dots, u_r = \frac{1}{\sigma_r} A v_r$ are orthonormal vectors in \mathbb{R}^m (which can be completed to an orthonormal basis of \mathbb{R}^m if necessary) and they form the columns of U.

The singular values are determined by the matrix A:

$$A = UDV^{t} \Rightarrow A^{t}A = VD^{t}U^{t}UDV^{t} = VD^{t}DV^{t}$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

- (2) If $\lambda_1 \geq \cdots \geq \lambda_r$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_1 = \sqrt{\lambda_1}, \ldots \sigma_r = \sqrt{\lambda_r}$ (fact: $A^t A$ always has non-negative eigenvalues).
- (3) The columns of V are an orthonormal basis v_1, \ldots, v_n of eigenvectors of S.
- (4) $u_1 = \frac{1}{\sigma_1} A v_1, \dots, u_r = \frac{1}{\sigma_r} A v_r$ are orthonormal vectors in \mathbb{R}^m (which can be completed to an orthonormal basis of \mathbb{R}^m if necessary) and they form the columns of U.

The singular values are determined by the matrix A:

$$A = UDV^{t} \Rightarrow A^{t}A = VD^{t}U^{t}UDV^{t} = VD^{t}DV^{t}$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

- (2) If $\lambda_1 \geq \cdots \geq \lambda_r$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_1 = \sqrt{\lambda_1}, \ldots \sigma_r = \sqrt{\lambda_r}$ (fact: $A^t A$ always has non-negative eigenvalues).
- (3) The columns of V are an orthonormal basis v₁,..., v_n of eigenvectors of S.
- (4) $u_1 = \frac{1}{\sigma_1} A v_1, \dots, u_r = \frac{1}{\sigma_r} A v_r$ are orthonormal vectors in \mathbb{R}^m (which can be completed to an orthonormal basis of \mathbb{R}^m if necessary) and they form the columns of U.

Significance of the SVD

If A is the standard matrix of a linear map $f : \mathbb{R}^n \to \mathbb{R}^m$, and we call $u_1, \ldots, u_m, v_1, \ldots, v_n$, the columns of U and V respectively, then D the matrix associated to f in orthonormal basis v_1, \ldots, v_n and u_1, \ldots, u_m :

$$A = M_e(f) = \underbrace{U}_{A_{u \to e}} * \underbrace{D}_{M_{v,u}(f)} * \underbrace{V^t}_{A_{e \to v}}$$

(note that $V^t = V^{-1} = A_{e \to v}$).

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$||A||_2 = \max_{||x||=1} ||Ax||.$$

Geometric consequence of the SVD:

Proposition

 $||A||_2 = \sigma_1,$

■ max_{[x]=1} |Ax| = |Ay₁| (the maximum is attained at ±y₁)

• If A is invertible, $\|A^{-1}\|_2 = \frac{1}{2}$

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$||A||_2 = \max_{||x||=1} ||Ax||.$$

Geometric consequence of the SVD:

Proposition

 $||A||_2 = \sigma_1,$

• $\max_{||x||=1} ||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$).

• If A is invertible, $||A^{-1}||_2 = \frac{1}{\sigma_1}$.

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$||A||_2 = \max_{||x||=1} ||Ax||.$$

Geometric consequence of the SVD:

Proposition

• $||A||_2 = \sigma_1$,

• $\max_{||x||=1} ||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$).

► If A is invertible, $||A^{-1}||_2 = \frac{1}{\sigma_r}$.

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$\|A\|_2 = \max_{||x||=1} \|Ax\|.$$

Geometric consequence of the SVD:

Proposition

•
$$||A||_2 = \sigma_1$$
,

• $\max_{||x||=1} ||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$).

• If A is invertible, $||A^{-1}||_2 = \frac{1}{\sigma_2}$.

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$\|A\|_2 = \max_{||x||=1} \|Ax\|.$$

Geometric consequence of the SVD:

Proposition

•
$$||A||_2 = \sigma_1$$
,

• $\max_{||x||=1} ||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$).

• If A is invertible,
$$||A^{-1}||_2 = \frac{1}{\sigma_r}$$

SVD and rank approximation

Theorem

Let A be any matrix. If $A = UDV^t$ and the singular values of A are $\sigma_1, \ldots, \sigma_r$ then for any $k \leq r$,

$$M = U \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ & \ddots & & & \vdots \\ 0 & \sigma_k & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix} V^t$$

is the matrix of rank k closest to A (in the sense that $||A - M||_2$ is minimal among matrices M of rank k).

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Singular value decomposition

Applications

Linear least squares

Principal component analysis

Python

Linear least squares approximation

Problem: Ax = b might be incompatible due to measure errors in b, but we would still like to have an approximated solution:

Incompatible

$$Ax = b \quad \Leftrightarrow \quad b \notin Im(A)$$

system

Want: \tilde{x} such that $A\tilde{x}$ is as close to b as possible.

Definition

A least squares solution of Ax = b is a vector \tilde{x} that minimizes ||Ax - b||, that is

$$\|A\tilde{x} - b\| \le \|Ax - b\|$$
 for all x

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of Im(A) that is closest to b: the orthogonal projection of b in Im(A), proj_{Im(A)}(b).
- Find a solution \tilde{x} to the compatible system $Ax = proj_{Im(A)}(b)$
- Then \tilde{x} is a least square solution to Ax = b.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm ||Ax b|| among all x.
- The residual measures how far x̃ is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{Im(A)}(b) - b$).

norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute proj_{Im(A)}(b) (see next slide).

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of Im(A) that is closest to b: the orthogonal projection of b in Im(A), proj_{Im(A)}(b).
- Find a solution \tilde{x} to the compatible system $Ax = proj_{Im(A)}(b)$
- Then \tilde{x} is a least square solution to Ax = b.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm ||Ax b|| among all x.
- The residual measures how far x̃ is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{Im(A)}(b) - b$).

norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute proj_{Im(A)}(b) (see next slide).

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of Im(A) that is closest to b: the orthogonal projection of b in Im(A), proj_{Im(A)}(b).
- Find a solution \tilde{x} to the compatible system $Ax = proj_{Im(A)}(b)$
- Then \tilde{x} is a least square solution to Ax = b.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm ||Ax b|| among all x.
- The residual measures how far x̃ is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{Im(A)}(b) - b$).

norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute proj_{Im(A)}(b) (see next slide).
Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of Im(A) that is closest to b: the orthogonal projection of b in Im(A), proj_{Im(A)}(b).
- Find a solution \tilde{x} to the compatible system $Ax = proj_{Im(A)}(b)$
- Then \tilde{x} is a least square solution to Ax = b.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm ||Ax b|| among all x.

The residual measures how far x̃ is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{Im(A)}(b) - b$).

norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute proj_{Im(A)}(b) (see next slide).

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of Im(A) that is closest to b: the orthogonal projection of b in Im(A), proj_{Im(A)}(b).
- Find a solution \tilde{x} to the compatible system $Ax = proj_{Im(A)}(b)$
- Then \tilde{x} is a least square solution to Ax = b.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm ||Ax b|| among all x.
- The residual measures how far x̃ is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{Im(A)}(b) - b$). norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute proj_{Im(A)}(b) (see next slide).

Solution to the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of Im(A) that is closest to b: the orthogonal projection of b in Im(A), proj_{Im(A)}(b).
- Find a solution \tilde{x} to the compatible system $Ax = proj_{Im(A)}(b)$
- Then \tilde{x} is a least square solution to Ax = b.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm ||Ax b|| among all x.
- The residual measures how far x̃ is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{Im(A)}(b) - b$).

norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute proj_{Im(A)}(b) (see next slide).

x̃ is a least squares solution to Ax = b if and only if it is a solution to the normal equations:

$$A^t A x = A^t b.$$

If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$\tilde{x} = (A^t A)^{-1} A^t b$$

(although computing the inverse is not efficient)

x̃ is a least squares solution to Ax = b if and only if it is a solution to the normal equations:

$$A^t A x = A^t b.$$

If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$\tilde{x} = (A^t A)^{-1} A^t b$$

(although computing the inverse is not efficient)

x̃ is a least squares solution to Ax = b if and only if it is a solution to the normal equations:

$$A^t A x = A^t b.$$

If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$\tilde{x} = (A^t A)^{-1} A^t b$$

(although computing the inverse is not efficient)

x̃ is a least squares solution to Ax = b if and only if it is a solution to the normal equations:

$$A^t A x = A^t b.$$

If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$\tilde{x} = (A^t A)^{-1} A^t b$$

(although computing the inverse is not efficient)

Linear regression

Problem: Given *n* data points $P_i = (x_i, y_i) \in \mathbb{R}^2$, find a line $y = a_1x + a_0$ such that $a_1x_i + a_0 = y_i \forall i$:

$$\left(\begin{array}{cc} x_1 & 1\\ \vdots & \vdots\\ x_n & 1 \end{array}\right) \left(\begin{array}{c} a_1\\ a_0 \end{array}\right) = \left(\begin{array}{c} y_1\\ \vdots\\ y_n \end{array}\right)$$

If the system is incompatible, use linear least squares to find $a_1, a_0 \rightarrow$ the line is called the regression line.

Statistically and numerically speaking, it is better to center the data x and y first.

Quadratic regression

Problem: given *n* data points $P_i = (x_i, y_i) \in \mathbb{R}^2$, find the parabola $y = a_2x^2 + a_1x + a_0$ such that $a_2x_i^2 + a_1x_i + a_0 = y_i \ \forall i$.

$$\left(\begin{array}{ccc} x_1^2 & x_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n^2 & x_n & 1 \end{array}\right) \left(\begin{array}{c} a_2 \\ a_1 \\ a_0 \end{array}\right) = \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right).$$

If the system is incompatible, use linear least squares approximation.

- This approach can be followed for polynomials of higher degree (polynomial regression)
- The same approach can be followed to fit other types of functions.

- This approach can be followed for polynomials of higher degree (polynomial regression)
- The same approach can be followed to fit other types of functions.

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, i = 1, ..., N highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}_i$ has maximum variance:

• Note that $proj_{[v_1]}(p_i) = t_i v_1$

 \triangleright $v_1 = (a, b, c)$ is called the first principal component.

- Then one can look for v₂ ∈ [v₁][⊥] (2nd principal component) maximizing variance of proj_{[v₁][⊥]}(p_i).
- Keep going or project down to the first components in order to reduce the dimension of the problem.

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, i = 1, ..., N highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}_i$ has maximum variance:

• Note that $proj_{[v_1]}(p_i) = t_i v_1$

• $v_1 = (a, b, c)$ is called the first principal component.

- Then one can look for v₂ ∈ [v₁][⊥] (2nd principal component) maximizing variance of proj_{[v₁][⊥]}(p_i).
- Keep going or project down to the first components in order to reduce the dimension of the problem.

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, i = 1, ..., N highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}_i$ has maximum variance:

- Note that $proj_{[v_1]}(p_i) = t_i v_1$
- $v_1 = (a, b, c)$ is called the first principal component.
- Then one can look for v₂ ∈ [v₁][⊥] (2nd principal component) maximizing variance of proj_{[v₁][⊥]}(p_i).
- Keep going or project down to the first components in order to reduce the dimension of the problem.

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, i = 1, ..., N highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}_i$ has maximum variance:

- Note that $proj_{[v_1]}(p_i) = t_i v_1$
- $v_1 = (a, b, c)$ is called the first principal component.
- Then one can look for v₂ ∈ [v₁][⊥] (2nd principal component) maximizing variance of proj_{[v₁][⊥]}(p_i).
- Keep going or project down to the first components in order to reduce the dimension of the problem.

$$M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix} \text{ so that } \sum_i x_i = \sum_i y_i = \sum_i z_i = 0.$$

- Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- ▶ v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- Then the matrix M₂ = M − Mv₁v₁^t has proj_{[v1]⊥}(p_i) in its rows.
- $\blacktriangleright M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.$
- The direction which maximizes the variance is v₂ (2nd vector in V).
- Keep going.

$$M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix} \text{ so that } \sum_i x_i = \sum_i y_i = \sum_i z_i = 0.$$

- Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- ▶ v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- Then the matrix M₂ = M − Mv₁v₁^t has proj_{[v1]⊥}(p_i) in its rows.
- $\blacktriangleright M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.$
- The direction which maximizes the variance is v₂ (2nd vector in V).
- Keep going.

$$M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix} \text{ so that } \sum_i x_i = \sum_i y_i = \sum_i z_i = 0.$$

- Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- ▶ v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- Then the matrix M₂ = M − Mv₁v₁^t has proj_{[v1]⊥}(p_i) in its rows.
- $\blacktriangleright M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.$
- The direction which maximizes the variance is v₂ (2nd vector in V).
- Keep going.

Assume that set $\{p_i\}$ is centered at the origin. Let

$$M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix} \text{ so that } \sum_i x_i = \sum_i y_i = \sum_i z_i = 0.$$

- Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- ▶ v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- Then the matrix M₂ = M − Mv₁v₁^t has proj_{[v1]⊥}(p_i) in its rows.

$$\blacktriangleright M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.$$

(x, x, -,)

- The direction which maximizes the variance is v₂ (2nd vector in V).
- Keep going.

Assume that set $\{p_i\}$ is centered at the origin. Let

$$M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix} \text{ so that } \sum_i x_i = \sum_i y_i = \sum_i z_i = 0.$$

- Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- ▶ v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- Then the matrix M₂ = M − Mv₁v₁^t has proj_{[v1]⊥}(p_i) in its rows.

$$\blacktriangleright M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.$$

The direction which maximizes the variance is v₂ (2nd vector in V).

Keep going.

$$M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix} \text{ so that } \sum_i x_i = \sum_i y_i = \sum_i z_i = 0.$$

- Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- ▶ v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- Then the matrix M₂ = M − Mv₁v₁^t has proj_{[v1]⊥}(p_i) in its rows.

$$\blacktriangleright M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.$$

- The direction which maximizes the variance is v₂ (2nd vector in V).
- Keep going.

Remarks:

▶ If the set $\{p_i\}$ is not centered at the origin we center it: let $(\bar{x}, \bar{y}, \bar{z}) = \sum_i (x_i, y_i, z_i)/N$, and consider

$$M = \begin{pmatrix} x_1 - \bar{x} & y_1 - \bar{y} & z_1 - \bar{z} \\ \vdots & \vdots & \vdots \\ x_N - \bar{x} & y_N - \bar{y} & z_N - \bar{z} \end{pmatrix}$$

.

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

- The matrix M^tM is the empirical covariance matrix and the principal component v₁ is the dominant eigenvector of this matrix.
- The same can be done for clouds of points in \mathbb{R}^n .

Remarks:

▶ If the set $\{p_i\}$ is not centered at the origin we center it: let $(\bar{x}, \bar{y}, \bar{z}) = \sum_i (x_i, y_i, z_i)/N$, and consider

$$M = \begin{pmatrix} x_1 - \bar{x} & y_1 - \bar{y} & z_1 - \bar{z} \\ \vdots & \vdots & \vdots \\ x_N - \bar{x} & y_N - \bar{y} & z_N - \bar{z} \end{pmatrix}$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

The matrix M^tM is the empirical covariance matrix and the principal component v₁ is the dominant eigenvector of this matrix.

• The same can be done for clouds of points in \mathbb{R}^n .

Remarks:

▶ If the set $\{p_i\}$ is not centered at the origin we center it: let $(\bar{x}, \bar{y}, \bar{z}) = \sum_i (x_i, y_i, z_i)/N$, and consider

$$M = \begin{pmatrix} x_1 - \bar{x} & y_1 - \bar{y} & z_1 - \bar{z} \\ \vdots & \vdots & \vdots \\ x_N - \bar{x} & y_N - \bar{y} & z_N - \bar{z} \end{pmatrix}$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

- The matrix M^tM is the empirical covariance matrix and the principal component v₁ is the dominant eigenvector of this matrix.
- The same can be done for clouds of points in \mathbb{R}^n .

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Singular value decomposition

Applications

Linear least squares Principal component analysis

Python

Python

```
>>> import numpy as np
>>> from numpy.linalg import *
>>> A = np.array([[a_{11}, ..., a_{1n}], ..., [a_{n1}, ..., a_{nn}]])
To get U, V^t and the singular values of A we do:
>> U,d,Vt = svd(A)
d is not a matrix, it is an array that contains the signular values.
To convert it to a matrix we can do:
>>> D=np.diag(d)
if A is a square matrix; if not, we can do:
>>> D = np.zeros((n,n),dtype='complex128')
>>> for i in range(n):
      D[i,i] = eigenval[i]
```