Orthogonality

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

- [Distance and angle](#page-2-0)
- [Orthogonal complement](#page-32-0)
- [Orthogonal projection](#page-37-0)
- [Spectral Theorem](#page-45-0)
- [Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Outline

[Distance and angle](#page-2-0)

- [Orthogonal complement](#page-32-0)
- [Orthogonal projection](#page-37-0)
- [Spectral Theorem](#page-45-0)
- [Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Definition

Definition The dot product (or scalar product) $u \cdot v$ of two vectors $u =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ u_1 . . . u_n \setminus $, v =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ $V₁$. . . V_n \setminus $\Big\} \in \mathbb{R}^n$ is

$$
u\cdot v:=u^tv=u_1v_1+u_2v_2+\ldots+u_nv_n.
$$

$$
u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \Rightarrow u \cdot v = (123) \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 1 \times 1 + 2 \times 0 + 3 \times 2 = 7
$$

Definition

Definition The dot product (or scalar product) $u \cdot v$ of two vectors $u =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ u_1 . . . u_n \setminus $, v =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ $V₁$. . . V_n \setminus $\Big\} \in \mathbb{R}^n$ is

$$
u \cdot v := u^t v = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n.
$$

Example:

$$
u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \Rightarrow u \cdot v = (123) \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 1 \times 1 + 2 \times 0 + 3 \times 2 = 7
$$

1. $u \cdot u \geq 0$ $\forall u$

1. $u \cdot u \geq 0$ $\forall u$ 2. $u \cdot u = 0 \Leftrightarrow u = 0$. 4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v;$

1.
$$
\mathbf{u} \cdot \mathbf{u} \geq 0 \ \forall \mathbf{u}
$$

\n2. $\mathbf{u} \cdot \mathbf{u} = 0 \Leftrightarrow \mathbf{u} = 0$.
\n3. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.
\n4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v$
\n5. $\mathbf{u} \cdot (a_1v_1 + a_2v_2) = a_1u \cdot v_1 + a_2u \cdot v_2$.

1. $u \cdot u \geq 0$ $\forall u$ 2. $u \cdot u = 0 \Leftrightarrow u = 0$. 3. $u \cdot v = v \cdot u$. 4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v;$

1.
$$
u \cdot u \ge 0 \forall u
$$

\n2. $u \cdot u = 0 \Leftrightarrow u = 0$.
\n3. $u \cdot v = v \cdot u$.
\n4. $(a_1u_1 + a_2u_2) \cdot v = a_1u_1 \cdot v + a_2u_2 \cdot v$;
\n5. $u \cdot (a_1v_1 + a_2v_2) = a_1u \cdot v_1 + a_2u \cdot v_2$.

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1, 2, 0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

 \blacktriangleright $||u|| > 0;$

 \blacktriangleright $\Vert cu \Vert = |c| \Vert u \Vert$ $c \in \mathbb{R}$;

 \blacktriangleright $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1, 2, 0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

 \blacktriangleright $||u|| > 0;$

 \blacktriangleright $\Vert cu \Vert = |c| \Vert u \Vert$ $c \in \mathbb{R}$;

 \blacktriangleright $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

 \blacktriangleright $||u|| = 0 \Leftrightarrow u = 0$

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1, 2, 0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

$$
\blacktriangleright \ \ \|u\| \geq 0;
$$

 \blacktriangleright $\Vert cu \Vert = |c| \Vert u \Vert \ c \in \mathbb{R};$

▶ $||u + v|| \le ||u|| + ||v||$ (triangular inequality);

 \blacktriangleright $||u|| = 0 \Leftrightarrow u = 0$

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1, 2, 0)|| = \sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}$. Properties:

$$
\blacktriangleright \ \ \|u\| \geq 0;
$$

$$
\blacktriangleright \Vert cu \Vert = |c| \Vert u \Vert \ c \in \mathbb{R};
$$

$$
\blacktriangleright \|u + v\| \le \|u\| + \|v\| \text{ (triangular inequality)};
$$

$$
\blacktriangleright \|u\| = 0 \Leftrightarrow u = 0
$$

The distance between two points $P, Q \in \mathbb{R}^n$, is

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| =$ $\sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}.$ Properties:

 \blacktriangleright $||u|| > 0;$

$$
\blacktriangleright \ \|cu\| = |c| \|u\| \ c \in \mathbb{R};
$$

 \blacktriangleright $\|u + v\| \leq \|u\| + \|v\|$ (triangular inequality);

$$
\blacktriangleright \|u\| = 0 \Leftrightarrow u = 0
$$

A vector u is called a unit vector if $||u|| = 1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v/||v||$ (we say that we have normalized v).

The distance between two points $P, Q \in \mathbb{R}^n$, is

The norm of $u \in \mathbb{R}^n$ is $||u|| = \sqrt{u \cdot u}$. Example: $||(1,2,0)|| =$ $\sqrt{1 \times 1 + 2 \times 2 + 0} = \sqrt{5}.$ Properties:

 \blacktriangleright $||u|| > 0;$

$$
\blacktriangleright \Vert cu \Vert = |c| \Vert u \Vert \ c \in \mathbb{R};
$$

$$
\blacktriangleright \|u + v\| \le \|u\| + \|v\| \text{ (triangular inequality)};
$$

$$
\blacktriangleright \|u\| = 0 \Leftrightarrow u = 0
$$

A vector u is called a unit vector if $||u|| = 1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v/||v||$ (we say that we have normalized v).

The distance between two points $P, Q \in \mathbb{R}^n$, is $d(P, Q) = ||P - Q||.$

Angle

- ▶ Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v = 0$.
- ▶ The angle between two vectors $u, v \in \mathbb{R}^n$ is the angle that has
- \blacktriangleright Two orthogonal vectors have $\widehat{uv} = \pm \frac{\pi}{2}$

Angle

- ▶ Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v = 0$.
- ▶ The angle between two vectors $u, v \in \mathbb{R}^n$ is the angle that has $cos(\widehat{uv}) = \frac{u \cdot v}{||u|| \cdot ||v||}$ (the sign of \widehat{uv} depends on the orientation we choose).
- \blacktriangleright Two orthogonal vectors have $\widehat{uv} = \pm \frac{\pi}{2}$

Angle

- ▶ Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v = 0$.
- ▶ The angle between two vectors $u, v \in \mathbb{R}^n$ is the angle that has $cos(\widehat{uv}) = \frac{u \cdot v}{||u|| \cdot ||v||}$ (the sign of \widehat{uv} depends on the orientation we choose).
- \blacktriangleright Two orthogonal vectors have $\widehat{uv} = \pm \frac{\pi}{2}$ $\frac{\pi}{2}$.

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

▶ pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

- ▶ pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,
- ▶ and normalized: $||v_i|| = 1$ for $i = 1, 2, ..., n$.

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

▶ pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

▶ and normalized: $||v_i|| = 1$ for $i = 1, 2, ..., n$.

Definition

An orthogonal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

• pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,

Definition

An orthonormal basis is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that its vectors are

- ▶ pairwise orthogonal: $v_i \cdot v_j = 0$ if $i \neq j, 1$,
- ▶ and normalized: $||v_i|| = 1$ for $i = 1, 2, ..., n$.

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \dots v_n)$ then,

 \blacktriangleright $A^t A$ is a diagonal matrix if and only if B is orthogonal.

 \blacktriangleright $A^t A = Id$ if and only if B is orthonormal.

-
-

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \dots v_n)$ then,

- \blacktriangleright $A^t A$ is a diagonal matrix if and only if B is orthogonal.
- \blacktriangleright $A^t A = Id$ if and only if B is orthonormal.

-
-

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \dots v_n)$ then,

 \blacktriangleright $A^t A$ is a diagonal matrix if and only if B is orthogonal.

 \blacktriangleright $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

-
-

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \ldots v_n)$ then,

 \blacktriangleright $A^t A$ is a diagonal matrix if and only if B is orthogonal.

 \blacktriangleright $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

Note:

▶ The columns of an orthogonal matrix form an orthonormal basis.

If A is orthogonal, then $A^{-1} = A^t$.

Given a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consider the matrix $A = (v_1 \dots v_n)$ then,

 \blacktriangleright $A^t A$ is a diagonal matrix if and only if B is orthogonal.

 \blacktriangleright $A^t A = Id$ if and only if B is orthonormal.

Definition

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

Note:

▶ The columns of an orthogonal matrix form an orthonormal basis.

$$
\blacktriangleright
$$
 If A is orthogonal, then $A^{-1} = A^t$.

Cross-product in \mathbb{R}^3

The cross-product between two vectors $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$ of \mathbb{R}^3 is the following vector (in standard basis)

$$
(u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}
$$

= $(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Main properties:

- ▶ $v \times u = -u \times v$ (anti-commutative)
- $\blacktriangleright u \times v$ is orthogonal to both u and v

If u, v are orthogonal and normalized, then $u, v, u \times v$ is an

Cross-product in \mathbb{R}^3

The cross-product between two vectors $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$ of \mathbb{R}^3 is the following vector (in standard basis)

$$
(u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}
$$

= $(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Main properties:

- ▶ $v \times u = -u \times v$ (anti-commutative)
- \blacktriangleright $u \times v$ is orthogonal to both u and v
- If u, v are orthogonal and normalized, then $u, v, u \times v$ is an

Cross-product in \mathbb{R}^3

The cross-product between two vectors $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$ of \mathbb{R}^3 is the following vector (in standard basis)

$$
(u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}
$$

= $(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Main properties:

- ▶ $v \times u = -u \times v$ (anti-commutative)
- \blacktriangleright $u \times v$ is orthogonal to both u and v
- If u, v are orthogonal and normalized, then $u, v, u \times v$ is an orthonormal basis.

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

- [Orthogonal projection](#page-37-0)
- [Spectral Theorem](#page-45-0)
- [Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Orthogonal complement

The orthogonal complement to a given subspace $F\subset \mathbb{R}^n$ is

$$
\mathsf{F}^\perp = \{ u \in \mathbb{R}^n \, | \, u \bot v \text{ for all } v \in \mathsf{F} \}.
$$

If $F = [v_1, \ldots, v_d]$, then

$$
F^{\perp} = \left\{ u \in \mathbb{R}^n \middle| \begin{array}{c} u \cdot v_1 = 0 \\ \vdots \\ u \cdot v_d = 0 \end{array} \right\}
$$

▶ If $F \subseteq \mathbb{R}^n$ has dimension d, then F^{\perp} has dimension $n - d$. \triangleright The orthogonal of the orthogonal is the subspace itself:

Orthogonal complement

The orthogonal complement to a given subspace $F\subset \mathbb{R}^n$ is

$$
\mathsf{F}^\perp = \{ u \in \mathbb{R}^n \, | \, u \bot v \text{ for all } v \in \mathsf{F} \}.
$$

If $F = [v_1, \ldots, v_d]$, then

$$
F^{\perp} = \left\{ u \in \mathbb{R}^n \middle| \begin{array}{c} u \cdot v_1 = 0 \\ \vdots \\ u \cdot v_d = 0 \end{array} \right\}
$$

▶ If $F \subseteq \mathbb{R}^n$ has dimension d, then F^{\perp} has dimension $n - d$. \triangleright The orthogonal of the orthogonal is the subspace itself: $(F^{\perp})^{\perp} = F.$

- ▶ If F is defined by generators \Rightarrow the equations of F^{\perp} are easy to get: their coefficients are the generators coordinates.
- ▶ If F is given by equations \Rightarrow the generators of F^{\perp} are easy to

- ▶ If F is defined by generators \Rightarrow the equations of F^{\perp} are easy to get: their coefficients are the generators coordinates.
- ▶ If F is given by equations \Rightarrow the generators of F^{\perp} are easy to get: their coordinates are the coefficients of the equations.

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

[Orthogonal projection](#page-37-0)

[Spectral Theorem](#page-45-0)

[Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as $v = w + w'$ where $w \in F$ and $w' \in F^{\perp}$.

- \triangleright w is called the *orthogonal projection* of v on \overline{F} and is denoted
- ▶ w' is called the orthogonal projection of v on F^{\perp} and is
-

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as $v = w + w'$ where $w \in F$ and $w' \in F^{\perp}$.

- \triangleright w is called the *orthogonal projection* of v on \overline{F} and is denoted as $proj_F(v)$,
- ▶ w' is called the orthogonal projection of v on F^{\perp} and is
- ▶ Thus, $v = \text{proj}_{F}(v) + \text{proj}_{F}(v)$ and $\text{proj}_{F}(v)$ is the unique

Geometric property: $proj_F(v)$ is the vector of F that is closest to

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as $v = w + w'$ where $w \in F$ and $w' \in F^{\perp}$.

 \triangleright w is called the *orthogonal projection* of v on \overline{F} and is denoted as $proj_F(v)$,

▶ w' is called the orthogonal projection of v on F^{\perp} and is denoted as $proj_{F^{\perp}}(v)$.

▶ Thus, $v = \text{proj}_{F}(v) + \text{proj}_{F}(v)$ and $\text{proj}_{F}(v)$ is the unique

Geometric property: $proj_F(v)$ is the vector of F that is closest to

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^n$ can be written in a unique way as $v = w + w'$ where $w \in F$ and $w' \in F^{\perp}$.

- \triangleright w is called the *orthogonal projection* of v on \overline{F} and is denoted as *proj_F* (v) ,
- ▶ w' is called the orthogonal projection of v on F^{\perp} and is denoted as $proj_{F^{\perp}}(v)$.
- ▶ Thus, $v = \text{proj}_F(v) + \text{proj}_{F\perp}(v)$ and $\text{proj}_F(v)$ is the unique vector of F such that $v - \textit{proj}_F(v)$ belongs to $F^\perp.$

Geometric property: $proj_F(v)$ is the vector of F that is closest to v; this is, min{ $||v - w|| | w \in F$ } is achieved at $||v - \text{proj}_F(v)||$ (and equals $||proj_{F^{\perp}}(v)||$). The orthogonal projection $proj_{F}(v)$ is the best approximation to v in F .

Computation of the orthogonal projection

Proposition

proj_F(v) is the unique vector w that satisfies $w \in F$ and $v-w\in F^\perp$. If F has basis u_1,\ldots,u_d , then proj $_F(v)$ is the unique vector w such that

$$
w = c_1 u_1 + \dots c_d u_d \in F \quad and \quad \begin{cases} u_1 \cdot w = u_1 \cdot v \\ \vdots \\ u_d \cdot w = u_d \cdot v \end{cases}
$$

Thus, $proj_F(v)$ is the vector $c_1u_1 + \cdots + c_d u_d$ such that c_1, \ldots, c_d are solution to the system

$$
\left(\begin{array}{ccc}u_1\cdot u_1 & \ldots & u_1\cdot u_d \\ \vdots & \vdots & \vdots \\ u_d\cdot u_1 & \ldots & u_d\cdot u_d\end{array}\right)\left(\begin{array}{c}c_1 \\ \vdots \\ c_d\end{array}\right)=\left(\begin{array}{c}v\cdot u_1 \\ \vdots \\ v\cdot u_d\end{array}\right)
$$

If A is the matrix
$$
\begin{pmatrix} u_1 & \cdots & u_d \end{pmatrix}
$$
, then c_1, \ldots, c_d are the solution to the system

$$
AtA\left(\begin{array}{c}c_1\\ \vdots\\ c_d\end{array}\right)=Atv.
$$

(If u_1, \ldots, u_d is a basis, then $A^t A$ is invertible). **Corollary** If dim $F = 1$, $F = [u]$, then $proj_F(v) = \frac{v \cdot u}{u \cdot u} u$.

Orthogonal projection with orthonormal basis

Proposition

If u_1, \ldots, u_d is an orthonormal basis of F and $v \in \mathbb{R}^n$, then

$$
proj_F(v) = (v \cdot u_1)u_1 + \cdots + (v \cdot u_d)u_d.
$$

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

[Orthogonal projection](#page-37-0)

[Spectral Theorem](#page-45-0)

[Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

 $A = VDV^t$.

The orthonormal basis of eigenvectors is not difficult to find:

- ▶ If *u*, *v* are eigenvectors of *A* of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- \blacktriangleright If the eigenvalues are all distinct, then normalizing the
-

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$
A = VDV^t.
$$

The orthonormal basis of eigenvectors is not difficult to find:

- ► If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- \blacktriangleright If the eigenvalues are all distinct, then normalizing the
- \triangleright If the eigenvalues are not all distinct, use Gram-Schmidt

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$
A = VDV^t.
$$

The orthonormal basis of eigenvectors is not difficult to find:

- ▶ If *u*, *v* are eigenvectors of *A* of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- \blacktriangleright If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.

 \triangleright If the eigenvalues are not all distinct, use Gram-Schmidt

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors. If V has columns v_1, \ldots, v_n and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$
A = VDV^t.
$$

The orthonormal basis of eigenvectors is not difficult to find:

- ▶ If *u*, *v* are eigenvectors of *A* of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- \blacktriangleright If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.
- \blacktriangleright If the eigenvalues are not all distinct, use Gram-Schmidt algorithm (not studied in this course).

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

[Orthogonal projection](#page-37-0)

[Spectral Theorem](#page-45-0)

[Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

If we call the columns v_1, \ldots, v_n , $A = (v_1 \ldots v_n)$, then,

 $A^t A = Id$ if and ony if $\{v_1, \ldots, v_n\}$ is an orthonormal basis.

A is orthogonal if and only if $A^{-1} = A^t$.

 \blacktriangleright If A is orthogonal, then the corresponding endomorphism

$$
||Ax|| = ||x||
$$
 for all x,

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

If we call the columns v_1, \ldots, v_n , $A = (v_1 \ldots v_n)$, then,

 $A^t A = Id$ if and ony if $\{v_1, \ldots, v_n\}$ is an orthonormal basis.

A is orthogonal if and only if $A^{-1} = A^t$.

 \blacktriangleright If A is orthogonal, then the corresponding endomorphism

$$
||Ax|| = ||x||
$$
 for all x,

Orthogonal matrices

An $n \times n$ matrix that satisfies $A^t A = Id$ is called an orthogonal matrix.

If we call the columns v_1, \ldots, v_n , $A = (v_1 \ldots v_n)$, then,

 $A^t A = Id$ if and ony if $\{v_1, \ldots, v_n\}$ is an orthonormal basis.

- A is orthogonal if and only if $A^{-1} = A^t$.
- \blacktriangleright If A is orthogonal, then the corresponding endomorphism preserves norms (preserves the measures of vectors):

$$
||Ax|| = ||x||
$$
 for all x,

and preserves dot products and angles (and hence preserves orthogonality).

Singular value decomposition (SVD)

Theorem (Singular value decomposition)

Let A be an $m \times n$ matrix. There there exists a decomposition $\mathcal{A} = U \cdot D \cdot V^t,$ where U is $m \times m,~V$ is $n \times n,~U,~V$ are orthogonal and

$$
D = \left(\begin{array}{cccc} \sigma_1 & 0 & \cdots & 0 \\ & \ddots & & & \vdots \\ 0 & & \sigma_r & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{array}\right)
$$

with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ and $r =$ rank A. $\sigma_1, \ldots, \sigma_r$ are called singular values of A.

The singular values are determined by the matrix A:

$$
A = UDV^t \Rightarrow A^tA = VD^tU^tUDV^t = VD^tDV^t
$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

(1) Diagonalize the symmetric matrix $S = A^t \cdot A$

-
-
-

The singular values are determined by the matrix A:

$$
A = UDV^t \Rightarrow A^tA = VD^tU^tUDV^t = VD^tDV^t
$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

(1) Diagonalize the symmetric matrix $S = A^t \cdot A$

- (2) If $\lambda_1 \geq \cdots \geq \lambda_r$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_1=\sqrt{\lambda_1},\ldots\sigma_r=\sqrt{\lambda_r}$ (fact: A^tA always has non-negative eigenvalues).
-

The singular values are determined by the matrix A:

$$
A = UDV^t \Rightarrow A^tA = VD^tU^tUDV^t = VD^tDV^t
$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

(1) Diagonalize the symmetric matrix $S = A^t \cdot A$

- (2) If $\lambda_1 \geq \cdots \geq \lambda_r$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_1=\sqrt{\lambda_1},\ldots\sigma_r=\sqrt{\lambda_r}$ (fact: A^tA always has non-negative eigenvalues).
- (3) The columns of V are an orthonormal basis v_1, \ldots, v_n of eigenvectors of S.
-

The singular values are determined by the matrix A:

$$
A = UDV^t \Rightarrow A^tA = VD^tU^tUDV^t = VD^tDV^t
$$

but U and V are not (although are almost determined in most cases). Ho do we compute the SVD?

(1) Diagonalize the symmetric matrix $S = A^t \cdot A$

- (2) If $\lambda_1 > \cdots > \lambda_r$ are the non-zero eigenvalues of $S \Rightarrow$ the singular values are $\sigma_1 =$ ™, $\lambda_1, \ldots \sigma_r =$ √ $\overline{\lambda_r}$ (fact: A^tA always has non-negative eigenvalues).
- (3) The columns of V are an orthonormal basis v_1, \ldots, v_n of eigenvectors of S.

(4) $u_1 = \frac{1}{\sigma_1}$ $\frac{1}{\sigma_1}Av_1,\ldots,u_r=\frac{1}{\sigma_r}$ $\frac{1}{\sigma_r}A$ v $_r$ are orthonormal vectors in \mathbb{R}^m (which can be completed to an orthonormal basis of \mathbb{R}^m if necessary) and they form the columns of U .

Significance of the SVD

If A is the standard matrix of a linear map $f : \mathbb{R}^n \to \mathbb{R}^m$, and we call $u_1, \ldots, u_m, v_1, \ldots, v_n$, the columns of U and V respectively, then D the matrix associated to f in orthonormal basis v_1, \ldots, v_n and u_1, \ldots, u_m :

$$
A = M_e(f) = \underbrace{U}_{A_{u \to e}} * \underbrace{D}_{M_{v,u}(f)} * \underbrace{V^t}_{A_{e \to v}}
$$

(note that $V^t = V^{-1} = A_{e\rightarrow v}$).

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition The 2-norm of a matrix A is

$$
||A||_2 = \max_{||x||=1} ||Ax||.
$$

Geometric consequence of the SVD:

-
-
-

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$
||A||_2 = \max_{||x||=1} ||Ax||.
$$

Geometric consequence of the SVD:

Proposition

 \blacktriangleright $||A||_2 = \sigma_1$,

▶ max $||x||=1$ $||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$).

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$
||A||_2 = \max_{||x||=1} ||Ax||.
$$

Geometric consequence of the SVD:

Proposition

 \blacktriangleright $||A||_2 = \sigma_1$,

▶ max $||x||=1$ $||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$).

▶ If A is invertible, $||A^{-1}||_2 = \frac{1}{\sigma}$

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$
||A||_2 = \max_{||x||=1} ||Ax||.
$$

Geometric consequence of the SVD:

Proposition

$$
\blacktriangleright \ \|A\|_2 = \sigma_1,
$$

▶ max $||x||=1$ $||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$). ▶ If A is invertible, $||A^{-1}||_2 = \frac{1}{\sigma}$

To "measure" a linear map we measure how big the image of the unit sphere is under this map:

Definition

The 2-norm of a matrix A is

$$
||A||_2 = \max_{||x||=1} ||Ax||.
$$

Geometric consequence of the SVD:

Proposition

- \blacktriangleright $||A||_2 = \sigma_1$,
- ▶ max $||x||=1$ $||Ax|| = ||Av_1||$ (the maximum is attained at $\pm v_1$).

• If A is invertible,
$$
||A^{-1}||_2 = \frac{1}{\sigma_r}
$$
.

SVD and rank approximation

Theorem

Let A be any matrix. If $A = UDV^t$ and the singular values of A are $\sigma_1, \ldots, \sigma_r$ then for any $k \leq r$,

$$
M = U \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ & \ddots & & & \vdots \\ 0 & & \sigma_k & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix} V^t
$$

is the matrix of rank k closest to A (in the sense that $||A - M||_2$ is minimal among matrices M of rank k).

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

[Orthogonal projection](#page-37-0)

[Spectral Theorem](#page-45-0)

[Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

[Orthogonal projection](#page-37-0)

[Spectral Theorem](#page-45-0)

[Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0)

[Principal component analysis](#page-83-0)

[Python](#page-97-0)

Linear least squares approximation

Problem: $Ax = b$ might be incompatible due to measure errors in b , but we would still like to have an approximated solution:

Incompatible

\n
$$
Ax = b \qquad \Leftrightarrow \qquad b \notin \text{Im}(A)
$$
\nsystem

Want: \tilde{x} such that $A\tilde{x}$ is as close to b as possible.

Definition

A least squares solution of $Ax = b$ is a vector \tilde{x} that minimizes $||Ax - b||$, that is

$$
||A\tilde{x} - b|| \le ||Ax - b|| \text{ for all } x
$$

Solution to the least squares problem

Solution given by Gauss (1801)

- \triangleright Change *b* by the vector of $\text{Im}(A)$ that is closest to *b*: the *orthogonal projection* of *b* in $\text{Im}(A)$, $proj_{\text{Im}(A)}(b)$.
- Find a solution \tilde{x} to the compatible system $Ax = proj_{lm(A)}(b)$
- \triangleright Then \tilde{x} is a least square solution to $Ax = b$.
-
-

Solution to the least squares problem

Solution given by Gauss (1801)

- \triangleright Change *b* by the vector of $Im(A)$ that is closest to *b*: the *orthogonal projection* of *b* in $\text{Im}(A)$, $proj_{\text{Im}(A)}(b)$.
- ▶ Find a solution \tilde{x} to the compatible system $Ax = proj_{lm(A)}(b)$
- \triangleright Then \tilde{x} is a least square solution to $Ax = b$.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm
-

Solution to the least squares problem

Solution given by Gauss (1801)

- \triangleright Change *b* by the vector of $Im(A)$ that is closest to *b*: the *orthogonal projection* of *b* in $\text{Im}(A)$, $proj_{\text{Im}(A)}(b)$.
- ▶ Find a solution \tilde{x} to the compatible system $Ax = proj_{lm(A)}(b)$
- \triangleright Then \tilde{x} is a least square solution to $Ax = b$.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm
- \triangleright The residual measures how far \tilde{x} is from a solution to the
Solution to the least squares problem

Solution given by Gauss (1801)

- \triangleright Change b by the vector of $\text{Im}(A)$ that is closest to b: the *orthogonal projection* of *b* in $\text{Im}(A)$, $proj_{\text{Im}(A)}(b)$.
- ▶ Find a solution \tilde{x} to the compatible system $Ax = proj_{lm(A)}(b)$
- \triangleright Then \tilde{x} is a least square solution to $Ax = b$.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm $||Ax - b||$ among all x.

 \triangleright The residual measures how far \tilde{x} is from a solution to the

Important point: we do not need to compute $proj_{lm(A)}(b)$ (see

Solution to the least squares problem

Solution given by Gauss (1801)

- \triangleright Change b by the vector of $\text{Im}(A)$ that is closest to b: the *orthogonal projection* of *b* in $\text{Im}(A)$, $proj_{\text{Im}(A)}(b)$.
- ▶ Find a solution \tilde{x} to the compatible system $Ax = proj_{lm(A)}(b)$
- \triangleright Then \tilde{x} is a least square solution to $Ax = b$.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm $||Ax - b||$ among all x.
- \blacktriangleright The residual measures how far \tilde{x} is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{\text{Im}(A)}(b) - b$). norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute $proj_{lm(A)}(b)$ (see

Solution to the least squares problem

Solution given by Gauss (1801)

- \triangleright Change b by the vector of $\text{Im}(A)$ that is closest to b: the *orthogonal projection* of *b* in $\text{Im}(A)$, $proj_{\text{Im}(A)}(b)$.
- ▶ Find a solution \tilde{x} to the compatible system $Ax = proj_{lm(A)}(b)$
- \triangleright Then \tilde{x} is a least square solution to $Ax = b$.
- ▶ \tilde{x} does not satisfy $Ax b = \vec{0}$, but minimizes the norm $||Ax - b||$ among all x.
- \blacktriangleright The residual measures how far \tilde{x} is from a solution to the system:

residual = $A\tilde{x} - b$ (which is = $proj_{\text{Im}(A)}(b) - b$).

norm of the residual: $||A\tilde{x} - b||$

Important point: we do not need to compute $proj_{lm(A)}(b)$ (see next slide).

 \triangleright \tilde{x} is a least squares solution to $Ax = b$ if and only if it is a

$$
A^tAx=A^tb.
$$

 \triangleright If the rank of A equals the number of columns, then the least

$$
\tilde{x} = (A^t A)^{-1} A^t b
$$

 \triangleright \tilde{x} is a least squares solution to $Ax = b$ if and only if it is a solution to the normal equations:

$$
A^tAx=A^tb.
$$

 \triangleright If the rank of A equals the number of columns, then the least

$$
\tilde{x} = (A^t A)^{-1} A^t b
$$

 \blacktriangleright If the original system is compatible, \tilde{x} is a solution to the

 \triangleright \tilde{x} is a least squares solution to $Ax = b$ if and only if it is a solution to the normal equations:

$$
A^tAx=A^tb.
$$

 \blacktriangleright If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$
\tilde{x} = (A^t A)^{-1} A^t b
$$

(although computing the inverse is not efficient)

 \blacktriangleright If the original system is compatible, \tilde{x} is a solution to the

 \triangleright \tilde{x} is a least squares solution to $Ax = b$ if and only if it is a solution to the normal equations:

$$
A^tAx=A^tb.
$$

 \blacktriangleright If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$
\tilde{x} = (A^t A)^{-1} A^t b
$$

(although computing the inverse is not efficient)

If the original system is compatible, \tilde{x} is a solution to the original system as well.

Linear regression

Problem: Given *n* data points $P_i = (x_i, y_i) \in \mathbb{R}^2$, find a line $y = a_1x + a_0$ such that $a_1x_i + a_0 = y_i \forall i$:

$$
\left(\begin{array}{cc} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{array}\right) \left(\begin{array}{c} a_1 \\ a_0 \end{array}\right) = \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right).
$$

If the system is incompatible, use linear least squares to find a_1, a_0 \rightarrow the line is called the regression line.

Statistically and numerically speaking, it is better to center the data x and y first.

Quadratic regression

Problem: given *n* data points $P_i = (x_i, y_i) \in \mathbb{R}^2$, find the parabola $y = a_2x^2 + a_1x + a_0$ such that $a_2x_i^2 + a_1x_i + a_0 = y_i \ \forall i$.

$$
\left(\begin{array}{ccc} x_1^2 & x_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n^2 & x_n & 1 \end{array}\right) \left(\begin{array}{c} a_2 \\ a_1 \\ a_0 \end{array}\right) = \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right).
$$

If the system is incompatible, use linear least squares approximation.

- ▶ This approach can be followed for polynomials of higher degree (polynomial regression)
- ▶ The same approach can be followed to fit other types of
- ▶ This approach can be followed for polynomials of higher degree (polynomial regression)
- ▶ The same approach can be followed to fit other types of functions.

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

[Orthogonal projection](#page-37-0)

[Spectral Theorem](#page-45-0)

[Singular value decomposition](#page-50-0)

[Applications](#page-66-0)

[Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, $i = 1, ..., N$ highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}$ has maximum variance:

 \blacktriangleright Note that $proj_{[v_1]}(p_i) = t_i v_1$

- ▶ Then one can look for $v_2 \in [v_1]^\perp$ (2nd principal component)
-

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, $i = 1, ..., N$ highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}$ has maximum variance:

 \blacktriangleright Note that $proj_{[v_1]}(p_i) = t_i v_1$

 $\blacktriangleright \space v_1 = (a, b, c)$ is called the first principal component.

- ▶ Then one can look for $v_2 \in [v_1]^\perp$ (2nd principal component)
- ▶ Keep going or project down to the first components in order

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, $i = 1, ..., N$ highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}$ has maximum variance:

- \blacktriangleright Note that $proj_{[v_1]}(p_i) = t_i v_1$
- $\blacktriangleright \space v_1 = (a, b, c)$ is called the first principal component.
- ▶ Then one can look for $v_2 \in [v_1]^\perp$ (2nd principal component) maximizing variance of $proj_{[v_1]\perp}(p_i)$.
- ▶ Keep going or project down to the first components in order

Goal: Given N data points in \mathbb{R}^3 , $p_i = (x_i, y_i, z_i)$, $i = 1, ..., N$ highly correlated, one wants to find $v_1 = (a, b, c)$ of norm 1 such that the set $\{t_i = ax_i + by_i + cz_i\}$ has maximum variance:

- \blacktriangleright Note that $proj_{[v_1]}(p_i) = t_i v_1$
- $\blacktriangleright \space v_1 = (a, b, c)$ is called the first principal component.
- ▶ Then one can look for $v_2 \in [v_1]^\perp$ (2nd principal component) maximizing variance of $proj_{[v_1]\perp}(p_i)$.
- ▶ Keep going or project down to the first components in order to reduce the dimension of the problem.

$$
M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix}
$$
 so that $\sum_i x_i = \sum_i y_i = \sum_i z_i = 0$.

- \blacktriangleright Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- \blacktriangleright v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- ▶ Then the matrix $M_2 = M M v_1 v_1^t$ has $proj_{[v_1]^{\perp}}(p_i)$ in its
-
-
-

$$
M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix}
$$
 so that $\sum_i x_i = \sum_i y_i = \sum_i z_i = 0$.

- \blacktriangleright Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- \triangleright v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- ▶ Then the matrix $M_2 = M M v_1 v_1^t$ has $proj_{[v_1]^{\perp}}(p_i)$ in its
- $M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t$.
-
-

$$
M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix}
$$
 so that $\sum_i x_i = \sum_i y_i = \sum_i z_i = 0$.

- \blacktriangleright Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- \triangleright v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- ▶ Then the matrix $M_2 = M Mv_1v_1^t$ has $proj_{[v_1]^{\perp}}(p_i)$ in its rows.
- $M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t$.
- \triangleright The direction which maximizes the variance is v_2 (2nd vector
-

Assume that set $\{p_i\}$ is centered at the origin. Let

$$
M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix}
$$
 so that $\sum_i x_i = \sum_i y_i = \sum_i z_i = 0$.

- \blacktriangleright Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- \triangleright v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- ▶ Then the matrix $M_2 = M Mv_1v_1^t$ has $proj_{[v_1]^{\perp}}(p_i)$ in its rows.

$$
M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.
$$

 \triangleright The direction which maximizes the variance is v_2 (2nd vector

▶ Keep going.

Assume that set $\{p_i\}$ is centered at the origin. Let

$$
M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix}
$$
 so that $\sum_i x_i = \sum_i y_i = \sum_i z_i = 0$.

- \blacktriangleright Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- \triangleright v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- ▶ Then the matrix $M_2 = M Mv_1v_1^t$ has $proj_{[v_1]^{\perp}}(p_i)$ in its rows.

$$
M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.
$$

 \blacktriangleright The direction which maximizes the variance is v_2 (2nd vector in V).

▶ Keep going.

$$
M = \begin{pmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_N & y_N & z_N \end{pmatrix}
$$
 so that $\sum_i x_i = \sum_i y_i = \sum_i z_i = 0$.

- \blacktriangleright Want $v_1 = (a, b, c)$ of norm 1 such that $\sum_i t_i^2 = \sum_i (ax_i + by_i + cz_i)^2 = ||Mv_1||$ is maximum.
- \triangleright v_1 is the first column vector of V in the SVD: $M = UDV^t$.
- ▶ Then the matrix $M_2 = M Mv_1v_1^t$ has $proj_{[v_1]^{\perp}}(p_i)$ in its rows.

$$
M_2 = \sigma_2 u_2 v_2^t + \ldots + \sigma_r u_r v_r^t.
$$

- \blacktriangleright The direction which maximizes the variance is v_2 (2nd vector in V).
- ▶ Keep going.

Remarks:

If the set $\{p_i\}$ is not centered at the origin we center it: let $(\bar{x},\bar{y},\bar{z})=\sum_i (x_i,y_i,z_i)/N$, and consider

$$
M = \begin{pmatrix} x_1 - \bar{x} & y_1 - \bar{y} & z_1 - \bar{z} \\ \vdots & \vdots & \vdots \\ x_N - \bar{x} & y_N - \bar{y} & z_N - \bar{z} \end{pmatrix}.
$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

- \blacktriangleright The matrix M^tM is the *empirical covariance* matrix and the
- \blacktriangleright The same can be done for clouds of points in \mathbb{R}^n .

Remarks:

If the set $\{p_i\}$ is not centered at the origin we center it: let $(\bar{x},\bar{y},\bar{z})=\sum_i (x_i,y_i,z_i)/N$, and consider

$$
M = \begin{pmatrix} x_1 - \bar{x} & y_1 - \bar{y} & z_1 - \bar{z} \\ \vdots & \vdots & \vdots \\ x_N - \bar{x} & y_N - \bar{y} & z_N - \bar{z} \end{pmatrix}.
$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

- \blacktriangleright The matrix M^tM is the empirical covariance matrix and the principal component v_1 is the dominant eigenvector of this matrix.
- \blacktriangleright The same can be done for clouds of points in \mathbb{R}^n .

Remarks:

If the set $\{p_i\}$ is not centered at the origin we center it: let $(\bar{x},\bar{y},\bar{z})=\sum_i (x_i,y_i,z_i)/N$, and consider

$$
M = \begin{pmatrix} x_1 - \bar{x} & y_1 - \bar{y} & z_1 - \bar{z} \\ \vdots & \vdots & \vdots \\ x_N - \bar{x} & y_N - \bar{y} & z_N - \bar{z} \end{pmatrix}.
$$

Proceed as before with this M and then sum $(\bar{x}, \bar{y}, \bar{z})$ to the final result.

- \blacktriangleright The matrix M^tM is the empirical covariance matrix and the principal component v_1 is the dominant eigenvector of this matrix.
- \blacktriangleright The same can be done for clouds of points in \mathbb{R}^n .

Outline

[Distance and angle](#page-2-0)

[Orthogonal complement](#page-32-0)

[Orthogonal projection](#page-37-0)

[Spectral Theorem](#page-45-0)

[Singular value decomposition](#page-50-0)

[Applications](#page-66-0) [Linear least squares](#page-67-0) [Principal component analysis](#page-83-0)

[Python](#page-97-0)

Python

>>> import numpy as np >>> from numpy.linalg import * \Rightarrow A = np.array($[[a_{11}, \ldots, a_{1n}], \ldots, [a_{n1}, \ldots, a_{nn}]]$) To get U , V^t and the singular values of A we do: $>> U, d, Vt = svd(A)$ d is not a matrix, it is an array that contains the signular values. To convert it to a matrix we can do: \gg D=np.diag(d) if A is a square matrix; if not, we can do: >>> $D = np{\text{.zeros}}((n,n),\text{dtype='complex128'})$ \gg for i in range (n) : $D[i, i] = eigenval[i]$