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Distance and angle

Definition

Definition
The dot product (or scalar product) u · v of two vectors

u =

 u1
...
un

 , v =

 v1
...
vn

 ∈ Rn is

u · v := utv = u1v1 + u2v2 + . . .+ unvn.

Example:

u =

1
2
3

 , v =

1
0
2

 ⇒ u·v = (123)

1
0
2

 = 1×1+2×0+3×2 = 7
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Distance and angle

Properties:

1. u · u ≥ 0 ∀u
2. u · u = 0 ⇔ u = 0.

3. u · v = v · u.
4. (a1u1 + a2u2) · v = a1u1 · v + a2u2 · v ;
5. u · (a1v1 + a2v2) = a1u · v1 + a2u · v2.
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Distance and angle

Norm and distance

The norm of u ∈ Rn is ∥u∥ =
√
u · u.

Example: ∥(1, 2, 0)∥ =
√
1× 1 + 2× 2 + 0 =

√
5.

Properties:

▶ ∥u∥ ≥ 0;

▶ ∥cu∥ = |c |∥u∥ c ∈ R;
▶ ∥u + v∥ ≤ ∥u∥+ ∥v∥ (triangular inequality);

▶ ∥u∥ = 0 ⇔ u = 0

A vector u is called a unit vector if ∥u∥ = 1. Given a vector v ̸= 0,
we can always find a unit vector in its direction: v/∥v∥ (we say
that we have normalized v).

The distance between two points P, Q ∈ Rn, is
d(P,Q) = ∥P − Q∥.
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Distance and angle

Angle

▶ Two vectors u, v are orthogonal (also denoted u⊥v) if
u · v = 0.

▶ The angle between two vectors u, v ∈ Rn is the angle that has
cos(ûv) = u·v

||u||·||v || (the sign of ûv depends on the orientation

we choose).

▶ Two orthogonal vectors have ûv = ±π
2 .
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2 .

7



Distance and angle

Orthonormal basis

Definition
An orthogonal basis is a basis {v1, . . . , vn} of Rn such that its
vectors are

▶ pairwise orthogonal: vi · vj = 0 if i ̸= j , 1,

Definition
An orthonormal basis is a basis {v1, . . . , vn} of Rn such that its
vectors are

▶ pairwise orthogonal: vi · vj = 0 if i ̸= j , 1,

▶ and normalized: ∥vi∥ = 1 for i = 1, 2, . . . , n.

Example: the standard basis is an orthonormal basis.
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Distance and angle

Orthonormal basis

Given a basis B = {v1, . . . , vn} of Rn consider the matrix
A = (v1 . . . vn) then,

▶ AtA is a diagonal matrix if and only if B is orthogonal.

▶ AtA = Id if and only if B is orthonormal.

Definition
An n × n matrix that satisfies AtA = Id is called an orthogonal
matrix.

Note:

▶ The columns of an orthogonal matrix form an orthonormal
basis.

▶ If A is orthogonal, then A−1 = At .
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Distance and angle

Cross-product in R3

The cross-product between two vectors u = (u1, u2, u3),
v = (v1, v2, v3) of R3 is the following vector (in standard basis)

(u1, u2, u3)× (v1, v2, v3) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Main properties:

▶ v × u = −u × v (anti-commutative)

▶ u × v is orthogonal to both u and v

▶ If u, v are orthogonal and normalized, then u, v , u × v is an
orthonormal basis.
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Orthogonal complement

Orthogonal complement

The orthogonal complement to a given subspace F ⊂ Rn is

F⊥ = {u ∈ Rn | u⊥v for all v ∈ F}.

If F = [v1, . . . , vd ], then

F⊥ =

u ∈ Rn

∣∣∣∣∣∣∣
u · v1 = 0

...
u · vd = 0


▶ If F ⊆ Rn has dimension d , then F⊥ has dimension n − d .

▶ The orthogonal of the orthogonal is the subspace itself:
(F⊥)⊥ = F .
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Orthogonal complement

▶ If F is defined by generators ⇒ the equations of F⊥ are easy
to get: their coefficients are the generators coordinates.

▶ If F is given by equations ⇒ the generators of F⊥ are easy to
get: their coordinates are the coefficients of the equations.

F F⊥

[(1, 3, 2), (−2, 1, 8)]

{
x + 3y + 2z = 0
−2x + y + 8z = 0

{3x − 5y + 11
2 z} = 0 [(3,−5, 112 )]
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Orthogonal projection

Orthogonal projection

Theorem (Orthogonal Decomposition)

Any v ∈ Rn can be written in a unique way as v = w + w ′ where
w ∈ F and w ′ ∈ F⊥.

▶ w is called the orthogonal projection of v on F and is denoted
as projF (v),

▶ w ′ is called the orthogonal projection of v on F⊥ and is
denoted as projF⊥(v).

▶ Thus, v = projF (v) + projF⊥(v) and projF (v) is the unique
vector of F such that v − projF (v) belongs to F⊥.

Geometric property: projF (v) is the vector of F that is closest to
v ; this is, min{∥v − w∥ | w ∈ F} is achieved at ∥v − projF (v)∥
(and equals ∥projF⊥(v)∥). The orthogonal projection projF (v) is
the best approximation to v in F .
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Orthogonal projection

Computation of the orthogonal projection

Proposition

projF (v) is the unique vector w that satisfies w ∈ F and
v − w ∈ F⊥. If F has basis u1, . . . , ud , then projF (v) is the unique
vector w such that

w = c1u1 + . . . cdud ∈ F and


u1 · w = u1 · v

...
ud · w = ud · v

Thus, projF (v) is the vector c1u1 + · · ·+ cdud such that c1, . . . , cd
are solution to the system u1 · u1 . . . u1 · ud

...
...

...
ud · u1 . . . ud · ud


 c1

...
cd

 =

 v · u1
...

v · ud
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Orthogonal projection

If A is the matrix

 u1 · · · ud

, then c1, . . . , cd are the

solution to the system

AtA

 c1
...
cd

 = Atv .

(If u1, . . . , ud is a basis, then AtA is invertible).

Corollary

If dimF = 1 , F = [u], then projF (v) =
v ·u
u·u u.
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Orthogonal projection

Orthogonal projection with orthonormal basis

Proposition

If u1, . . . , ud is an orthonormal basis of F and v ∈ Rn, then

projF (v) = (v · u1)u1 + · · ·+ (v · ud)ud .
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Spectral Theorem

Spectral theorem

Theorem
Let A be a symmetric n × n matrix. Then A has real eigenvalues,
diagonalizes, and there exists an orthonormal basis {v1, . . . , vn} of
eigenvectors. If V has columns v1, . . . , vn and D is the diagonal
matrix of eigenvalues, then V is an orthogonal matrix and

A = VDV t .

The orthonormal basis of eigenvectors is not difficult to find:

▶ If u, v are eigenvectors of A of eigenvalues λ ̸= µ, then u ⊥ v .

▶ If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.

▶ If the eigenvalues are not all distinct, use Gram-Schmidt
algorithm (not studied in this course).
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▶ If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.

▶ If the eigenvalues are not all distinct, use Gram-Schmidt
algorithm (not studied in this course).
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Singular value decomposition

Orthogonal matrices

An n × n matrix that satisfies AtA = Id is called an orthogonal
matrix.

▶ If we call the columns v1, . . . , vn, A = (v1 . . . vn), then,

AtA = Id if and ony if {v1, . . . , vn} is an orthonormal basis.

▶ A is orthogonal if and only if A−1 = At .

▶ If A is orthogonal, then the corresponding endomorphism
preserves norms (preserves the measures of vectors):

∥Ax∥ = ∥x∥ for all x ,

and preserves dot products and angles (and hence preserves
orthogonality).
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Singular value decomposition

Singular value decomposition (SVD)

Theorem (Singular value decomposition)

Let A be an m × n matrix. There there exists a decomposition
A = U · D · V t , where U is m ×m, V is n × n, U,V are
orthogonal and

D =



σ1 0 · · · 0
. . .

...

0 σr
...

0 · · · 0 · · · 0
...

...
0 · · · · · · · · · 0


with σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and r = rank A.
σ1, . . . , σr are called singular values of A.
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Singular value decomposition

How to get the SVD?

The singular values are determined by the matrix A:

A = UDV t ⇒ AtA = VDtUtUDV t = VDtDV t

but U and V are not (although are almost determined in most
cases). Ho do we compute the SVD?

(1) Diagonalize the symmetric matrix S = At · A
(2) If λ1 ≥ · · · ≥ λr are the non-zero eigenvalues of S ⇒ the

singular values are σ1 =
√
λ1, . . . σr =

√
λr (fact: AtA always

has non-negative eigenvalues).

(3) The columns of V are an orthonormal basis v1, . . . , vn of
eigenvectors of S .

(4) u1 =
1
σ1
Av1, . . . , ur =

1
σr
Avr are orthonormal vectors in Rm

(which can be completed to an orthonormal basis of Rm if
necessary) and they form the columns of U.
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Singular value decomposition

Significance of the SVD

If A is the standard matrix of a linear map f : Rn → Rm, and we
call u1, . . . , um, v1, . . . , vn, the columns of U and V respectively,
then D the matrix associated to f in orthonormal basis v1, . . . , vn
and u1, . . . , um:

A = Me(f ) = U︸︷︷︸
Au→e

∗ D︸︷︷︸
Mv,u(f )

∗ V t︸︷︷︸
Ae→v

(note that V t = V−1 = Ae→v ).
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Singular value decomposition

2-norm of a matrix

To ”measure” a linear map we measure how big the image of the
unit sphere is under this map:

Definition
The 2-norm of a matrix A is

∥A∥2 = max
||x ||=1

||Ax ||.

Geometric consequence of the SVD:

Proposition

▶ ∥A∥2 = σ1,

▶ max||x ||=1 ∥Ax∥ = ∥Av1∥ (the maximum is attained at ±v1).

▶ If A is invertible, ∥A−1∥2 = 1
σr
.
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Singular value decomposition

SVD and rank approximation

Theorem
Let A be any matrix. If A = UDV t and the singular values of A are
σ1, . . . , σr then for any k ≤ r ,

M = U



σ1 0 · · · 0
. . .

...

0 σk
...

0 · · · 0 · · · 0
...

...
0 · · · · · · · · · 0


V t

is the matrix of rank k closest to A (in the sense that ∥A−M∥2 is
minimal among matrices M of rank k).
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Applications

Linear least squares approximation

Problem: Ax = b might be incompatible due to measure errors in
b, but we would still like to have an approximated solution:

Incompatible
Ax = b
system

⇔ b /∈ Im(A)

Want: x̃ such that Ax̃ is as close to b as possible.

Definition
A least squares solution of Ax = b is a vector x̃ that minimizes
∥Ax − b∥, that is

∥Ax̃ − b∥ ≤ ∥Ax − b∥ for all x

30



Applications

Solution to the least squares problem

Solution given by Gauss (1801)

▶ Change b by the vector of Im(A) that is closest to b: the
orthogonal projection of b in Im(A), projIm(A)(b).

▶ Find a solution x̃ to the compatible system Ax = projIm(A)(b)

▶ Then x̃ is a least square solution to Ax = b.

▶ x̃ does not satisfy Ax − b = 0⃗, but minimizes the norm
∥Ax − b∥ among all x .

▶ The residual measures how far x̃ is from a solution to the
system:

residual = Ax̃ − b (which is = projIm(A)(b)− b).

norm of the residual: ∥Ax̃ − b∥
▶ Important point: we do not need to compute projIm(A)(b) (see

next slide).
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Applications

Theorem
▶ x̃ is a least squares solution to Ax = b if and only if it is a

solution to the normal equations:

AtAx = Atb.

▶ If the rank of A equals the number of columns, then the least
squares solution is unique and given by

x̃ = (AtA)−1Atb

(although computing the inverse is not efficient)

▶ If the original system is compatible, x̃ is a solution to the
original system as well.
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Applications

Linear regression

Problem: Given n data points Pi = (xi , yi ) ∈ R2, find a line
y = a1x + a0 such that a1xi + a0 = yi ∀i : x1 1

...
...

xn 1

(
a1
a0

)
=

 y1
...
yn

 .

If the system is incompatible, use linear least squares to find a1, a0
→ the line is called the regression line.

Statistically and numerically speaking, it is better to center the
data x and y first.
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Applications

Quadratic regression

Problem: given n data points Pi = (xi , yi ) ∈ R2, find the parabola
y = a2x

2 + a1x + a0 such that a2x
2
i + a1xi + a0 = yi ∀i . x21 x1 1

...
...

...
x2n xn 1


 a2

a1
a0

 =

 y1
...
yn

 .

If the system is incompatible, use linear least squares
approximation.

34



Applications

▶ This approach can be followed for polynomials of higher
degree (polynomial regression)

▶ The same approach can be followed to fit other types of
functions.
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Applications

Principal component analysis
Goal: Given N data points in R3, pi = (xi , yi , zi ), i = 1, . . . ,N
highly correlated, one wants to find v1 = (a, b, c) of norm 1 such
that the set {ti = axi + byi + czi}i has maximum variance:

▶ Note that proj[v1](pi ) = tiv1
▶ v1 = (a, b, c) is called the first principal component.
▶ Then one can look for v2 ∈ [v1]

⊥ (2nd principal component)
maximizing variance of proj[v1]⊥(pi ).

▶ Keep going or project down to the first components in order
to reduce the dimension of the problem.
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Applications

Procedure

Assume that set {pi} is centered at the origin. Let

M =

x1 y1 z1
...

...
...

xN yN zN

 so that
∑

i xi =
∑

i yi =
∑

i zi = 0.

▶ Want v1 = (a, b, c) of norm 1 such that∑
i t

2
i =

∑
i (axi + byi + czi )

2 = ||Mv1|| is maximum.

▶ v1 is the first column vector of V in the SVD: M = UDV t .

▶ Then the matrix M2 = M −Mv1v
t
1 has proj[v1]⊥(pi ) in its

rows.

▶ M2 = σ2u2v
t
2 + . . .+ σrurv

t
r .

▶ The direction which maximizes the variance is v2 (2nd vector
in V ).

▶ Keep going.
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Applications

Remarks:

▶ If the set {pi} is not centered at the origin we center it: let
(x̄ , ȳ , z̄) =

∑
i (xi , yi , zi )/N, and consider

M =

x1 − x̄ y1 − ȳ z1 − z̄
...

...
...

xN − x̄ yN − ȳ zN − z̄

 .

Proceed as before with this M and then sum (x̄ , ȳ , z̄) to the
final result.

▶ The matrix MtM is the empirical covariance matrix and the
principal component v1 is the dominant eigenvector of this
matrix.

▶ The same can be done for clouds of points in Rn.
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Python

Python

>>> import numpy as np

>>> from numpy.linalg import *

>>> A = np.array([[a11, . . . , a1n], . . . , [an1, . . . , ann]])

To get U, V t and the singular values of A we do:
>>> U,d,Vt = svd(A)

d is not a matrix, it is an array that contains the signular values.
To convert it to a matrix we can do:
>>> D=np.diag(d)

if A is a square matrix; if not, we can do:
>>> D = np.zeros((n,n),dtype=’complex128’)

>>> for i in range(n):

D[i,i] = eigenval[i]
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