Orthogonality

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Linear least squares

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Linear least squares

Definition

Definition

The dot product (or scalar product) $u \cdot v$ of two vectors
$u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right), v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right) \in \mathbb{R}^{n}$ is

$$
u \cdot v:=u^{t} v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n} .
$$

Example:

Definition

Definition

The dot product (or scalar product) $u \cdot v$ of two vectors

$$
\begin{gathered}
u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right), v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \in \mathbb{R}^{n} \text { is } \\
u \cdot v:=u^{t} v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
\end{gathered}
$$

Example:
$u=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), v=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right) \Rightarrow u \cdot v=(123)\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)=1 \times 1+2 \times 0+3 \times 2=7$

Properties:

1. $u \cdot u \geq 0 \forall u$

Properties:

1. $u \cdot u \geq 0 \forall u$
2. $u \cdot u=0 \Leftrightarrow u=0$.

Properties:

1. $u \cdot u \geq 0 \forall u$
2. $u \cdot u=0 \Leftrightarrow u=0$.
3. $u \cdot v=v \cdot u$.

Properties:

1. $u \cdot u \geq 0 \forall u$
2. $u \cdot u=0 \Leftrightarrow u=0$.
3. $u \cdot v=v \cdot u$.
4. $\left(a_{1} u_{1}+a_{2} u_{2}\right) \cdot v=a_{1} u_{1} \cdot v+a_{2} u_{2} \cdot v$;

Properties:

1. $u \cdot u \geq 0 \forall u$
2. $u \cdot u=0 \Leftrightarrow u=0$.
3. $u \cdot v=v \cdot u$.
4. $\left(a_{1} u_{1}+a_{2} u_{2}\right) \cdot v=a_{1} u_{1} \cdot v+a_{2} u_{2} \cdot v$;
5. $u \cdot\left(a_{1} v_{1}+a_{2} v_{2}\right)=a_{1} u \cdot v_{1}+a_{2} u \cdot v_{2}$.

Norm and distance

The norm of $u \in \mathbb{R}^{n}$ is $\|u\|=\sqrt{u \cdot u}$.
Example: $\|(1,2,0)\|=\sqrt{1 \times 1+2 \times 2+0}=\sqrt{5}$.
Properties:

- $\|u\| \geq 0$;

Norm and distance
The norm of $u \in \mathbb{R}^{n}$ is $\|u\|=\sqrt{u \cdot u}$.
Example: $\|(1,2,0)\|=\sqrt{1 \times 1+2 \times 2+0}=\sqrt{5}$.
Properties:

- $\|u\| \geq 0$;
- $\|c u\|=|c|\|u\| c \in \mathbb{R}$;

Norm and distance

The norm of $u \in \mathbb{R}^{n}$ is $\|u\|=\sqrt{u \cdot u}$.
Example: $\|(1,2,0)\|=\sqrt{1 \times 1+2 \times 2+0}=\sqrt{5}$.
Properties:

- $\|u\| \geq 0$;
- $\|c u\|=|c|\|u\| c \in \mathbb{R}$;
- $\|u+v\| \leq\|u\|+\|v\|$ (triangular inequality);

Norm and distance

The norm of $u \in \mathbb{R}^{n}$ is $\|u\|=\sqrt{u \cdot u}$.
Example: $\|(1,2,0)\|=\sqrt{1 \times 1+2 \times 2+0}=\sqrt{5}$.
Properties:

- $\|u\| \geq 0$;
- $\|c u\|=|c|\|u\| c \in \mathbb{R}$;
- $\|u+v\| \leq\|u\|+\|v\|$ (triangular inequality);
- $\|u\|=0 \Leftrightarrow u=0$

Norm and distance

The norm of $u \in \mathbb{R}^{n}$ is $\|u\|=\sqrt{u \cdot u}$.
Example: $\|(1,2,0)\|=\sqrt{1 \times 1+2 \times 2+0}=\sqrt{5}$.
Properties:

- $\|u\| \geq 0$;
- $\|c u\|=|c|\|u\| c \in \mathbb{R}$;
- $\|u+v\| \leq\|u\|+\|v\|$ (triangular inequality);
- $\|u\|=0 \Leftrightarrow u=0$

A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).

Norm and distance

The norm of $u \in \mathbb{R}^{n}$ is $\|u\|=\sqrt{u \cdot u}$.
Example: $\|(1,2,0)\|=\sqrt{1 \times 1+2 \times 2+0}=\sqrt{5}$.
Properties:

- $\|u\| \geq 0$;
- $\|c u\|=|c|\|u\| c \in \mathbb{R}$;
- $\|u+v\| \leq\|u\|+\|v\|$ (triangular inequality);
- $\|u\|=0 \Leftrightarrow u=0$

A vector u is called a unit vector if $\|u\|=1$. Given a vector $v \neq 0$, we can always find a unit vector in its direction: $v /\|v\|$ (we say that we have normalized v).

The distance between two points $P, Q \in \mathbb{R}^{n}$, is $d(P, Q)=\|P-Q\|$.

Angle

- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v=0$.

The angle between two vectors $u, v \in \mathbb{R}^{n}$ is the angle that has $\cos (\widehat{u v})=\frac{u \cdot v}{\|u\| \cdot\|v\|}$ (the sign of $\widehat{u v}$ depends on the orientation we choose).

- Two orthogonal vectors have $\widehat{U V}= \pm \frac{\pi}{2}$

Angle

- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v=0$.
- The angle between two vectors $u, v \in \mathbb{R}^{n}$ is the angle that has $\cos (\widehat{u v})=\frac{u \cdot v}{\|u\| \cdot\|v\|}$ (the sign of $\widehat{u v}$ depends on the orientation we choose).

Angle

- Two vectors u, v are orthogonal (also denoted $u \perp v$) if $u \cdot v=0$.
- The angle between two vectors $u, v \in \mathbb{R}^{n}$ is the angle that has $\cos (\widehat{u v})=\frac{u \cdot v}{\|u\| \cdot\|v\|}$ (the sign of $\widehat{u v}$ depends on the orientation we choose).
- Two orthogonal vectors have $\widehat{u v}= \pm \frac{\pi}{2}$.

Orthonormal basis

Definition
An orthogonal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

Definition Δn orthonorrnal basis is a basis $\left\{v_{1} \ldots . . v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

Example: the standard basis is an orthonormal basis.

Orthonormal basis

Definition
An orthogonal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

- pairwise orthogonal: $v_{i} \cdot v_{j}=0$ if $i \neq j, 1$,

Example: the standard basis is an orthonormal basis.

Orthonormal basis

Definition

An orthogonal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

- pairwise orthogonal: $v_{i} \cdot v_{j}=0$ if $i \neq j, 1$,

Definition
An orthonormal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

Example: the standard basis is an orthonormal basis.

Orthonormal basis

Definition

An orthogonal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

- pairwise orthogonal: $v_{i} \cdot v_{j}=0$ if $i \neq j, 1$,

Definition
An orthonormal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

- pairwise orthogonal: $v_{i} \cdot v_{j}=0$ if $i \neq j, 1$,

Example: the standard basis is an orthonormal basis.

Orthonormal basis

Definition

An orthogonal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

- pairwise orthogonal: $v_{i} \cdot v_{j}=0$ if $i \neq j, 1$,

Definition
An orthonormal basis is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that its vectors are

- pairwise orthogonal: $v_{i} \cdot v_{j}=0$ if $i \neq j, 1$,
- and normalized: $\left\|v_{i}\right\|=1$ for $i=1,2, \ldots, n$.

Example: the standard basis is an orthonormal basis.

Orthonormal basis

Given a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} consider the matrix $A=\left(v_{1} \ldots v_{n}\right)$ then,

- $A^{t} A$ is a diagonal matrix if and only if B is orthogonal.

Orthonormal basis

Given a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} consider the matrix $A=\left(v_{1} \ldots v_{n}\right)$ then,

- $A^{t} A$ is a diagonal matrix if and only if B is orthogonal.
- $A^{t} A=I d$ if and only if B is orthonormal.

Orthonormal basis

Given a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} consider the matrix $A=\left(v_{1} \ldots v_{n}\right)$ then,

- $A^{t} A$ is a diagonal matrix if and only if B is orthogonal.
- $A^{t} A=I d$ if and only if B is orthonormal.

Definition
An $n \times n$ matrix that satisfies $A^{t} A=I d$ is called an orthogonal matrix.

Note: The columns of an orthogonal matrix form an orthonormal
basis.

Orthonormal basis

Given a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} consider the matrix $A=\left(v_{1} \ldots v_{n}\right)$ then,

- $A^{t} A$ is a diagonal matrix if and only if B is orthogonal.
- $A^{t} A=I d$ if and only if B is orthonormal.

Definition
An $n \times n$ matrix that satisfies $A^{t} A=I d$ is called an orthogonal matrix.

Note: The columns of an orthogonal matrix form an orthonormal basis.

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{aligned}
$$

Main properties:

- $v \times u=-u \times v$ (anti-commutative)

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right) .
\end{aligned}
$$

Main properties:

- $v \times u=-u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v

Cross-product in \mathbb{R}^{3}

The cross-product between two vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$, $v=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} is the following vector (in standard basis)

$$
\begin{aligned}
\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right) .
\end{aligned}
$$

Main properties:

- $v \times u=-u \times v$ (anti-commutative)
- $u \times v$ is orthogonal to both u and v
- If u, v are orthogonal and normalized, then $u, v, u \times v$ is an orthonormal basis.

Outline

Distance and angle

Orthogonal complement

Orthogonal projection

Spectral Theorem

Linear least squares

Orthogonal complement

The orthogonal complement to a given subspace $F \subset \mathbb{R}^{n}$ is

$$
F^{\perp}=\left\{u \in \mathbb{R}^{n} \mid u \perp v \text { for all } v \in F\right\} .
$$

If $F=\left[v_{1}, \ldots, v_{d}\right]$, then

$$
F^{\perp}=\left\{\begin{array}{l|c}
u \in \mathbb{R}^{n} & \begin{array}{c}
u \cdot v_{1}=0 \\
\vdots \\
u \cdot v_{d}=0
\end{array}
\end{array}\right\}
$$

- If $F \subseteq \mathbb{R}^{n}$ has dimension d, then F^{\perp} has dimension $n-d$.

Orthogonal complement

The orthogonal complement to a given subspace $F \subset \mathbb{R}^{n}$ is

$$
F^{\perp}=\left\{u \in \mathbb{R}^{n} \mid u \perp v \text { for all } v \in F\right\} .
$$

If $F=\left[v_{1}, \ldots, v_{d}\right]$, then

$$
F^{\perp}=\left\{\begin{array}{l|c}
u \in \mathbb{R}^{n} & \begin{array}{c}
u \cdot v_{1}=0 \\
\vdots \\
u \cdot v_{d}=0
\end{array}
\end{array}\right\}
$$

- If $F \subseteq \mathbb{R}^{n}$ has dimension d, then F^{\perp} has dimension $n-d$.
- The orthogonal of the orthogonal is the subspace itself: $\left(F^{\perp}\right)^{\perp}=F$.

Orthogonal complement

The orthogonal complement to a given subspace $F \subset \mathbb{R}^{n}$ is

$$
F^{\perp}=\left\{u \in \mathbb{R}^{n} \mid u \perp v \text { for all } v \in F\right\} .
$$

If $F=\left[v_{1}, \ldots, v_{d}\right]$, then

$$
F^{\perp}=\left\{\begin{array}{l|c}
u \in \mathbb{R}^{n} & \begin{array}{c}
u \cdot v_{1}=0 \\
\vdots \\
u \cdot v_{d}=0
\end{array}
\end{array}\right\}
$$

- If $F \subseteq \mathbb{R}^{n}$ has dimension d, then F^{\perp} has dimension $n-d$.
- The orthogonal of the orthogonal is the subspace itself: $\left(F^{\perp}\right)^{\perp}=F$.
- $F \cap F^{\perp}=0, F+F^{\perp}=\mathbb{R}^{n}$.
- If F is defined by generators \Rightarrow the equations of F^{\perp} are easy to get: their coefficients are the generators coordinates.

F	F^{\perp}
$[(1,3,2),(-2,1,8)]$	$\left\{\begin{array}{c}x+3 y+2 z=0 \\ -2 x+y+8 z=0\end{array}\right.$
$\left\{3 x-5 y+\frac{11}{2} z\right\}=0$	$\left[\left(3,-5, \frac{11}{2}\right)\right]$

- If F is defined by generators \Rightarrow the equations of F^{\perp} are easy to get: their coefficients are the generators coordinates.
- If F is given by equations \Rightarrow the generators of F^{\perp} are easy to get: their coordinates are the coefficients of the equations.

F	F^{\perp}
$[(1,3,2),(-2,1,8)]$	$\left\{\begin{array}{c}x+3 y+2 z=0 \\ -2 x+y+8 z=0\end{array}\right.$
$\left\{3 x-5 y+\frac{11}{2} z\right\}=0$	$\left[\left(3,-5, \frac{11}{2}\right)\right]$

Outline

Distance and angle

 Orthogonal complement

 Orthogonal complement}

Orthogonal projection

Spectral Theorem

Linear least squares

Orthogonal projection

Theorem (Orthogonal Decomposition)
Any $v \in \mathbb{R}^{n}$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

Orthogonal projection

Theorem (Orthogonal Decomposition)
Any $v \in \mathbb{R}^{n}$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as $\operatorname{proj}_{F}(v)$,

Geometric property: $\operatorname{proj}_{F}(v)$ is the vector of F that is closest to

Orthogonal projection

Theorem (Orthogonal Decomposition)
Any $v \in \mathbb{R}^{n}$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as $\operatorname{proj}_{F}(v)$,
- w^{\prime} is called the orthogonal projection of v on F^{\perp} and is denoted as $\operatorname{proj}_{F^{\perp}}(v)$.

Orthogonal projection

Theorem (Orthogonal Decomposition)

Any $v \in \mathbb{R}^{n}$ can be written in a unique way as $v=w+w^{\prime}$ where $w \in F$ and $w^{\prime} \in F^{\perp}$.

- w is called the orthogonal projection of v on F and is denoted as $\operatorname{proj}_{F}(v)$,
- w^{\prime} is called the orthogonal projection of v on F^{\perp} and is denoted as $\operatorname{proj}_{F^{\perp}}(v)$.
- Thus, $v=\operatorname{proj}_{F}(v)+\operatorname{proj}_{F^{\perp}}(v)$ and $\operatorname{proj}_{F}(v)$ is the unique vector of F such that $v-\operatorname{proj}_{F}(v)$ belongs to F^{\perp}.
Geometric property: $\operatorname{proj}_{F}(v)$ is the vector of F that is closest to v; this is, $\min \{\|v-w\| \mid w \in F\}$ is achieved at $\left\|v-\operatorname{proj}_{F}(v)\right\|$ (and equals $\left\|\operatorname{proj}_{F} \perp(v)\right\|$). The orthogonal projection $\operatorname{proj}_{F}(v)$ is the best approximation to v in F.

Computation of the orthogonal projection

Proposition

$\operatorname{proj}_{F}(v)$ is the unique vector w that satisfies $w \in F$ and
$v-w \in F^{\perp}$. If F has basis u_{1}, \ldots, u_{d}, then $\operatorname{proj}_{F}(v)$ is the unique vector w such that

$$
w=c_{1} u_{1}+\ldots c_{d} u_{d} \in F \quad \text { and }\left\{\begin{array}{c}
u_{1} \cdot w=u_{1} \cdot v \\
\vdots \\
u_{d} \cdot w=u_{d} \cdot v
\end{array}\right.
$$

Thus, $\operatorname{proj}_{F}(v)$ is the vector $c_{1} u_{1}+\cdots+c_{d} u_{d}$ such that c_{1}, \ldots, c_{d} are solution to the system

$$
\left(\begin{array}{ccc}
u_{1} \cdot u_{1} & \ldots & u_{1} \cdot u_{d} \\
\vdots & \vdots & \vdots \\
u_{d} \cdot u_{1} & \ldots & u_{d} \cdot u_{d}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{d}
\end{array}\right)=\left(\begin{array}{c}
v \cdot u_{1} \\
\vdots \\
v \cdot u_{d}
\end{array}\right)
$$

If A is the matrix $\left(\begin{array}{lll}u_{1} & \cdots & u_{d}\end{array}\right)$, then c_{1}, \ldots, c_{d} are the solution to the system

$$
A^{t} A\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{d}
\end{array}\right)=A^{t} v
$$

(If u_{1}, \ldots, u_{d} is a basis, then $A^{t} A$ is invertible).
Corollary
If $\operatorname{dim} F=1, F=[u]$, then $\operatorname{proj}_{F}(v)=\frac{v \cdot u}{u \cdot u} u$.

Orthogonal projection with orthonormal basis

Proposition
If u_{1}, \ldots, u_{d} is an orthonormal basis of F and $v \in \mathbb{R}^{n}$, then

$$
\operatorname{proj}_{F}(v)=\left(v \cdot u_{1}\right) u_{1}+\cdots+\left(v \cdot u_{d}\right) u_{d} .
$$

Outline

Distance and angle
Orthogonal complement
Orthogonal projection
Spectral Theorem
Linear least squares

Spectral theorem

Theorem
Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors. If V has columns v_{1}, \ldots, v_{n} and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$
A=V D V^{t}
$$

The orthonormal basis of eigenvectors is not difficult to find:

Spectral theorem

Theorem
Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors. If V has columns v_{1}, \ldots, v_{n} and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$
A=V D V^{t}
$$

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.

Spectral theorem

Theorem
Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors. If V has columns v_{1}, \ldots, v_{n} and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$
A=V D V^{t}
$$

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.

Spectral theorem

Theorem

Let A be a symmetric $n \times n$ matrix. Then A has real eigenvalues, diagonalizes, and there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors. If V has columns v_{1}, \ldots, v_{n} and D is the diagonal matrix of eigenvalues, then V is an orthogonal matrix and

$$
A=V D V^{t}
$$

The orthonormal basis of eigenvectors is not difficult to find:

- If u, v are eigenvectors of A of eigenvalues $\lambda \neq \mu$, then $u \perp v$.
- If the eigenvalues are all distinct, then normalizing the eigenvectors we obtain an orthonormal basis of eigenvectors.
- If the eigenvalues are not all distinct, use Gram-Schmidt algorithm (not studied in this course).

Outline

Distance and angle
Orthogonal complement
Orthogonal projection
Spectral Theorem
Linear least squares

Linear least squares approximation

Problem: $A x=b$ might be incompatible due to measure errors in b, but we would still like to have an approximated solution:

Incompatible

$$
\begin{aligned}
& A x=b \\
& \text { system }
\end{aligned} \quad \Leftrightarrow \quad b \notin \operatorname{Im}(A)
$$

Want: \tilde{x} such that $A \tilde{x}$ is as close to b as possible.
Definition
A least squares solution of $A x=b$ is a vector \tilde{x} that minimizes
$\|A x-b\|$, that is

$$
\|A \tilde{x}-b\| \leq\|A x-b\| \text { for all } x
$$

Solution of the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A)$, $\operatorname{proj}_{\operatorname{Im}(A)}(b)$.

Solution of the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A), \operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Find a solution \tilde{x} to the compatible system $A x=\operatorname{proj}_{\operatorname{Im}(A)}(b)$

Solution of the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A)$, $\operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Find a solution \tilde{x} to the compatible system $A x=\operatorname{proj}_{\operatorname{Im}(A)}(b)$
- Then \tilde{x} is a least square solution of $A x=b$.
system

Solution of the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A)$, $\operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Find a solution \tilde{x} to the compatible system $A x=\operatorname{proj}_{\operatorname{Im}(A)}(b)$
- Then \tilde{x} is a least square solution of $A x=b$.
- \tilde{x} does not satisfy $A x-b=\overrightarrow{0}$, but minimizes the norm $\|A x-b\|$ among all x.

Solution of the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A)$, $\operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Find a solution \tilde{x} to the compatible system $A x=\operatorname{proj}_{\operatorname{Im}(A)}(b)$
- Then \tilde{x} is a least square solution of $A x=b$.
- \tilde{x} does not satisfy $A x-b=\overrightarrow{0}$, but minimizes the norm $\|A x-b\|$ among all x.
- The residual measures how far \tilde{x} is from a solution to the system:

$$
\text { residual }=A \tilde{x}-b\left(\text { which is }=\operatorname{proj}_{\operatorname{lm}(A)}(b)-b\right)
$$

norm of the residual: $\|A \tilde{x}-b\|$

Solution of the least squares problem

Solution given by Gauss (1801)

- Change b by the vector of $\operatorname{Im}(A)$ that is closest to b : the orthogonal projection of b in $\operatorname{Im}(A)$, $\operatorname{proj}_{\operatorname{Im}(A)}(b)$.
- Find a solution \tilde{x} to the compatible system $A x=\operatorname{proj}_{\operatorname{Im}(A)}(b)$
- Then \tilde{x} is a least square solution of $A x=b$.
- \tilde{x} does not satisfy $A x-b=\overrightarrow{0}$, but minimizes the norm $\|A x-b\|$ among all x.
- The residual measures how far \tilde{x} is from a solution to the system:

$$
\text { residual }=A \tilde{x}-b\left(\text { which is }=\operatorname{proj}_{\operatorname{lm}(A)}(b)-b\right)
$$

norm of the residual: $\|A \tilde{x}-b\|$

- Important point: we do not need to compute $\operatorname{proj}_{\mathrm{Im}(A)}(b)$ (see next slide).

Theorem

```
\(\Rightarrow \tilde{x}\) is a least squares solution of \(A x=b\) if and only if it is a
    solution to the normal equations:
\[
A^{t} A x=A^{t} b
\]
- If the rank of \(A\) equals the number of columns, then the least
squares solution is unique and given by
\[
\tilde{x}=\left(A^{t} A\right)^{-1} A^{t} b
\]
(although computing the inverse is not efficient)
\(\rightarrow\) If the original sustem is romnatible \(\tilde{x}\) is a solution to the original system as well.
```

Theorem

- \tilde{x} is a least squares solution of $A x=b$ if and only if it is a solution to the normal equations:

$$
A^{t} A x=A^{t} b
$$

> (although computing the inverse is not efficient)

- If the original system is compatible, \tilde{x} is a solution to the original system as well.

Theorem

- \tilde{x} is a least squares solution of $A x=b$ if and only if it is a solution to the normal equations:

$$
A^{t} A x=A^{t} b
$$

- If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$
\tilde{x}=\left(A^{t} A\right)^{-1} A^{t} b
$$

(although computing the inverse is not efficient)

Theorem

- \tilde{x} is a least squares solution of $A x=b$ if and only if it is a solution to the normal equations:

$$
A^{t} A x=A^{t} b
$$

- If the rank of A equals the number of columns, then the least squares solution is unique and given by

$$
\tilde{x}=\left(A^{t} A\right)^{-1} A^{t} b
$$

(although computing the inverse is not efficient)

- If the original system is compatible, \tilde{x} is a solution to the original system as well.

Linear regression

Problem: Given n data points $P_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$, find a line $y=a_{1} x+a_{0}$ such that $a_{1} x_{i}+a_{0}=y_{i} \forall i$:

$$
\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right)\binom{a_{1}}{a_{0}}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) .
$$

If the system is incompatible, use linear least squares to find a_{1}, a_{0} \rightarrow the line is called the regression line.

Statistically and numerically speaking, it is better to center the data x and y first.

Quadratic regression

Problem: given n data points $P_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$, find the parabola $y=a_{2} x^{2}+a_{1} x+a_{0}$ such that $a_{2} x_{i}^{2}+a_{1} x_{i}+a_{0}=y_{i} \forall i$.

$$
\left(\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
\vdots & \vdots & \vdots \\
x_{n}^{2} & x_{n} & 1
\end{array}\right)\left(\begin{array}{c}
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) .
$$

If the system is incompatible, use linear least squares approximation.

- This approach can be followed for polynomials of higher degree (polynomial regression)
- This approach can be followed for polynomials of higher degree (polynomial regression)
- The same approach can be followed to fit other types of functions.

