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Definition
Definition
The dot product (or scalar product) u - v of two vectors
uy 41
u= : V= : eR"is
Un Vi

u-v::utv:u1v1+u2v2—i—...+u,,v,,.



LDistance and angle
; ;

Definition
Definition
The dot product (or scalar product) u - v of two vectors
uy vi
u= : V= : eR"is
Un Vi
u-v:i=uv= uvy + v+ ...+ Uupvy.
Example:

1 1
u=[2],v=[0] = uv=123)[0] =1x142x04+3x2=7
3 2
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LDistam:t-: and angle

Properties:

u-u>0Vu
u-u=0<u=0.
u-v=yv-u.

(a1 + aow) - v=ajug - v+ agun - v

O

u- (31V1 + 32V2) = aju-vy+ axu- .
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Norm and distance

The norm of u € R" is |Ju]| = Vu - u.
Example: [|(1,2,0)| = vVIx1+2x2+0=+/5.
Properties:

> flull = 0;
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Norm and distance

The norm of u € R" is ||u]| = /u - u.
Example: [|(1,2,0)| = vVIx1+2x2+0=+/5.

Properties:
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Norm and distance

The norm of u € R" is ||u]| = /u - u.
Example: [|(1,2,0)| = vVIx1+2x2+0=+/5.

Properties:
> [Jull = 0;
> Jleull = lef[Jull c € R;
» ||u+ v|| <|ul| +|v] (triangular inequality);
» |u| =0 u=0
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Norm and distance

The norm of u € R" is ||u]| = /u - u.
Example: [|(1,2,0)| = vVIx1+2x2+0=+/5.

Properties:
> |Jul] = 0;
> [[eull = [cl[u]] c € R;

» ||u+ v|| <|ul| +|v] (triangular inequality);
» |lu| =0 u=0
A vector u is called a unit vector if ||u|| = 1. Given a vector v # 0,

we can always find a unit vector in its direction: v/||v|| (we say
that we have normalized v).



LDistance and angle
;

Norm and distance

The norm of u € R" is ||u]| = /u - u.
Example: [|(1,2,0)| = vVIx1+2x2+0=+/5.

Properties:
> |Jul] = 0;
> [[eull = [cl[u]] c € R;

» ||u+ v|| <|ul| +|v] (triangular inequality);
» |lu| =0 u=0
A vector u is called a unit vector if ||u|| = 1. Given a vector v # 0,

we can always find a unit vector in its direction: v/||v|| (we say
that we have normalized v).

The distance between two points P, @ € R", is
d(P,Q) =P -Ql.
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» Two vectors u, v are orthogonal (also denoted u_Lv) if
u-v=_0.
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Angle

» Two vectors u, v are orthogonal (also denoted u_Lv) if
u-v=_0.

» The angle between two vectors u, v € R” is the angle that has
cos(uv) = ¥ (the sign of uv depends on the orientation

we choose).

Luf[-[IvI]



LDistance and angle
;

Angle

» Two vectors u, v are orthogonal (also denoted u_Lv) if
u-v=_0.

» The angle between two vectors u, v € R” is the angle that has

cos(uv) = ¥ (the sign of uv depends on the orientation
[uf[-]]v]]
we choose).

» Two orthogonal vectors have uv = +3.
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Orthonormal basis

Definition
An orthogonal basis is a basis {v1,...,v,} of R" such that its
vectors are

Example: the standard basis is an orthonormal basis.
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Definition
An orthogonal basis is a basis {v1,...,v,} of R" such that its
vectors are

» pairwise orthogonal: v;-v; =0if i # j, 1,

Example: the standard basis is an orthonormal basis.
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Orthonormal basis

Definition
An orthogonal basis is a basis {v1,...,v,} of R" such that its
vectors are

> pairwise orthogonal: v;-v; =0 if i # j, 1,

Definition
An orthonormal basis is a basis {v1,...,v,} of R" such that its
vectors are

» pairwise orthogonal: v;-v; =0if i # j, 1,
» and normalized: ||vj|| =1 fori=1,2,...,n.

Example: the standard basis is an orthonormal basis.
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Orthonormal basis

Given a basis B = {vi,...,v,} of R” consider the matrix
A= (vi...vp) then,

» A'Ais a diagonal matrix if and only if B is orthogonal.
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Orthonormal basis

Given a basis B = {vi,...,v,} of R” consider the matrix
A= (vi...vp) then,
» A'Ais a diagonal matrix if and only if B is orthogonal.
» A'A = Id if and only if B is orthonormal.

Definition
An n x n matrix that satisfies A'tA = Id is called an orthogonal
matrix.
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Orthonormal basis

Given a basis B = {vi,...,v,} of R” consider the matrix
A= (v1...vy) then,
» A'Ais a diagonal matrix if and only if B is orthogonal.
» A'A = Id if and only if B is orthonormal.
Definition
An n x n matrix that satisfies A'tA = Id is called an orthogonal
matrix.

Note: The columns of an orthogonal matrix form an orthonormal
basis.



LDistance and angle

Cross-product in R3

The cross-product between two vectors u = (u1, u2, u3),
v = (v1, vo, v3) of R3 is the following vector (in standard basis)

A
(ug, 0, u3) X (vi,vo,v3) = |y wy w3
Vi V2 V3

(u2v3 — U3V, U3vy — UpV3, U1VD — Lo Vy).

Main properties:
» v X u=—ux v (anti-commutative)

10
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Cross-product in R3

The cross-product between two vectors u = (u1, u2, u3),
v = (v1, vo, v3) of R3 is the following vector (in standard basis)

A
(ug, 0, u3) X (vi,vo,v3) = |y wy w3
Vi V2 V3

(u2v3 — U3V, U3vy — UpV3, U1VD — Lo Vy).

Main properties:
» v X u=—ux v (anti-commutative)

» u X v is orthogonal to both v and v

10



LDistance and angle

Cross-product in R3

The cross-product between two vectors u = (u1, u2, u3),
v = (v1, vo, »3) of R3 is the following vector (in standard basis)

- - —

R
(ug, 0, u3) X (vi,vo,v3) = |y wy w3
Vi V2 V3

= (u2v3 — U3V, U3vy — UyV3, U1Vo — UoVy).

Main properties:
» v X u=—ux v (anti-commutative)
> u X v is orthogonal to both u and v
» If u, v are orthogonal and normalized, then u, v, u X v is an
orthonormal basis.

10
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LOrththonaI complement
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Orthogonal complement
The orthogonal complement to a given subspace F C R" is
Ft={ueR"|ulv forallveF}.
If F={[vi,...,vq], then

u-vi=0
Fr=SueR"
u-vg=0

» If F C R" has dimension d, then FX has dimension n — d.

12
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LOrththonaI complement

Orthogonal complement
The orthogonal complement to a given subspace F C R" is

Ft={ueR"|ulv forallveF}.

If F= [Vl,.. .,Vd], then

u-vi=0
Fr=SueR" ;
u-vg=0

» If F C R" has dimension d, then F* has dimension n — d.

» The orthogonal of the orthogonal is the subspace itself:
(FHYt =F.

> FNF- =0 F+FL=R"

12
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» If F is defined by generators = the equations of F are easy
to get: their coefficients are the generators coordinates.

F FT

x+3y+2z=0
[(1737 2)a(_2a1’8)] { —2x+y+8z=0

{3x —5y + 3z} =0 [(3, -5, 3)]




LOrththonaI complement

» If F is defined by generators = the equations of F are easy
to get: their coefficients are the generators coordinates.

» If F is given by equations = the generators of F are easy to
get: their coordinates are the coefficients of the equations.

F FT

xX+3y+2z=0
[(1’3a 2)a(_2a1’8)] { —2x+y+8z=0

{3x —5y + 3z} =0 [(3,-5, )]
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Orthogonal projection
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LOrthogonal projection

Orthogonal projection

Theorem (Orthogonal Decomposition)

Any v € R" can be written in a unique way as v = w + w’ where
weF andw € Ft.

15
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LOrththonaI projection

Orthogonal projection

Theorem (Orthogonal Decomposition)
Any v € R" can be written in a unique way as v = w + w’ where
weF andw € FL.
» w is called the orthogonal projection of v on F and is denoted
as proje(v),
» ' is called the orthogonal projection of v on F* and is
denoted as projg. (v).

15



L Orthogonal projection

Orthogonal projection

Theorem (Orthogonal Decomposition)

Any v € R" can be written in a unique way as v = w + w’ where
weF andw € FL.

» w is called the orthogonal projection of v on F and is denoted
as proje(v),
» ' is called the orthogonal projection of v on F* and is
denoted as projgi(v).
» Thus, v = proje(v) + projei(v) and proje(v) is the unique
vector of F such that v — projr(v) belongs to F*.
Geometric property: projr(v) is the vector of F that is closest to
v; this is, min{||lv — w|| | w € F} is achieved at ||v — proje(v)||
(and equals ||projgi(v)||). The orthogonal projection projr(v) is
the best approximation to v in F.

15



LOrththcmaI projection
; ;

Computation of the orthogonal projection

Proposition
proje(v) is the unique vector w that satisfies w € F and
v—w € FL. If F has basis uy,. .., uq, then projr(v) is the unique
vector w such that
u-w=ug-v
w=ciu+...cqug € F and

Ug-wW = uq -V

Thus, proje(v) is the vector cius + - - - + cqug such that ci,...,¢cq
are solution to the system

up-up ... Up- Uy 1 V- u

Ug-uy ... Uq4- Uy Cd V- Uy

16



LOrththonaI projection
; ;

If Ais the matrix up -+ ug |,then cy,...,cq are the

solution to the system

o]
ATA [ = Alv.
Cd
(If u1,...,uy is a basis, then A'A is invertible).

Corollary
IfdimF =1, F = [u], then proje(v) = %Y u.

17



LOrtht:\gonal projection

Orthogonal projection with orthonormal basis

Proposition
If u1,...,uq is an orthonormal basis of F and v € R", then

proje(v) = (v - u1)ur + -+ (v - ug)ug.

18
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Spectral Theorem
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LSpectral Theorem
:

Spectral theorem

Theorem

Let A be a symmetric n X n matrix. Then A has real eigenvalues,
diagonalizes, and there exists an orthonormal basis {vi,...,vp} of
eigenvectors. If V' has columns vy, ... v, and D is the diagonal
matrix of eigenvalues, then V is an orthogonal matrix and

A= VDV'.

The orthonormal basis of eigenvectors is not difficult to find:

20
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diagonalizes, and there exists an orthonormal basis {vi,...,vp} of
eigenvectors. If V' has columns vy, ... v, and D is the diagonal
matrix of eigenvalues, then V is an orthogonal matrix and

A= VDV"
The orthonormal basis of eigenvectors is not difficult to find:

> If u, v are eigenvectors of A of eigenvalues A # p, then u | v.

> If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.
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L Spectral Theorem
: :

Spectral theorem

Theorem

Let A be a symmetric n X n matrix. Then A has real eigenvalues,
diagonalizes, and there exists an orthonormal basis {vi,...,vp} of
eigenvectors. If V has columns vi,...,v, and D is the diagonal
matrix of eigenvalues, then V is an orthogonal matrix and

A= VDV'.

The orthonormal basis of eigenvectors is not difficult to find:
» If u, v are eigenvectors of A of eigenvalues A\ # pu, then u L v.

> If the eigenvalues are all distinct, then normalizing the
eigenvectors we obtain an orthonormal basis of eigenvectors.

> If the eigenvalues are not all distinct, use Gram-Schmidt
algorithm (not studied in this course).

20
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Linear least squares
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L Linear least squares
; ;

Linear least squares approximation

Problem: Ax = b might be incompatible due to measure errors in
b, but we would still like to have an approximated solution:

Incompatible
Ax=0b & b ¢ Im(A)
system

Want: X such that AX is as close to b as possible.

Definition
A least squares solution of Ax = b is a vector X that minimizes
||Ax — b|, that is

|AX — b|| < ||Ax — b|| for all x

29



LLinear least squares
; ;

Solution of the least squares problem

Solution given by Gauss (1801)

» Change b by the vector of Im(A) that is closest to b: the
orthogonal projection of b in Im(A), projimay(b).

27
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Solution of the least squares problem

Solution given by Gauss (1801)
» Change b by the vector of Im(A) that is closest to b: the
orthogonal projection of b in Im(A), projimay(b).
> Find a solution X to the compatible system Ax = projim(a)(b)
» Then X is a least square solution of Ax = b.

» X does not satisfy Ax — b= 0, but minimizes the norm
||Ax — b|| among all x.

27



L Linear least squares

Solution of the least squares problem

Solution given by Gauss (1801)

>

>
>
>

Change b by the vector of Im(A) that is closest to b: the
orthogonal projection of b in Im(A), projimay(b).

Find a solution X to the compatible system Ax = projim(a)(b)
Then X is a least square solution of Ax = b.

X does not satisfy Ax — b= 0, but minimizes the norm
||Ax — b|| among all x.

The residual measures how far X is from a solution to the
system:

residual = A% — b (which is = projima)(b) — b).

norm of the residual: ||AX — b||

27



L Linear least squares

Solution of the least squares problem

Solution given by Gauss (1801)

>

v

Change b by the vector of Im(A) that is closest to b: the
orthogonal projection of b in Im(A), projimay(b).

Find a solution X to the compatible system Ax = projim(a)(b)
Then X is a least square solution of Ax = b.

% does not satisfy Ax — b = 0, but minimizes the norm
||Ax — b|| among all x.

The residual measures how far X is from a solution to the
system:

residual = A% — b (which is = projima)(b) — b).
norm of the residual: ||AX — b||

Important point: we do not need to compute projima)(b) (see
next slide).
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LLinear least squares

Theorem

» X is a least squares solution of Ax = b if and only if it is a
solution to the normal equations:

AfAx = Atb.
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L Linear least squares

Theorem

» X is a least squares solution of Ax = b if and only if it is a
solution to the normal equations:

AtAx = Afb.

» [f the rank of A equals the number of columns, then the least
squares solution is unique and given by

X = (A*A)"LAh

(although computing the inverse is not efficient)

24



L Linear least squares

Theorem

» X is a least squares solution of Ax = b if and only if it is a
solution to the normal equations:

AtAx = Afb.

» [f the rank of A equals the number of columns, then the least
squares solution is unique and given by

X = (A*A)"LAh

(although computing the inverse is not efficient)

» [f the original system is compatible, X is a solution to the
original system as well.

24



L Linear least squares
; ;

Linear regression

Problem: Given n data points P; = (x;, y;) € R?, find a line
y = a1x + ag such that aijx; + ap = y; Vi:

x1 1 1
x, 1 Yn

If the system is incompatible, use linear least squares to find a1, ag
— the line is called the regression line.

Statistically and numerically speaking, it is better to center the
data x and y first.

25



L Linear least squares

Quadratic regression

Problem: given n data points P; = (x;, y;) € R?, find the parabola
y = axx? + ayx + ap such that 82X,-2 + a1x; + ap = y; Vi.

2

xi x1 1 a5 %1
: : a | = :
2 1 ao

X5 Xn Yn

If the system is incompatible, use linear least squares
approximation.

26
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» This approach can be followed for polynomials of higher
degree (polynomial regression)
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L
LLinear least squares
; ;

» This approach can be followed for polynomials of higher
degree (polynomial regression)

> The same approach can be followed to fit other types of
functions.

27
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