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Definition

Definition

An m× n matrix is a collection of m× n (real or complex) numbers
arranged into a rectangular array of m rows and n columns.

The entry ai ,j is the element at row i and column j of A.

Notation: A = (ai ,j) .

▶ If m = n, A is a square matrix of size n.

▶ The set of m × n matrices is denoted by Mm,n.

▶ The elements of Mn,1 are called vectors or column vectors.

▶ The elements of M1,n are called row vectors.
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Definition

Special matrices

▶ The matrix 0 is the matrix whose elements are all 0.

▶ A square matrix A is a diagonal matrix if ai ,j = 0 for all i ̸= j .

▶ The identity matrix Idn is the diagonal n × n matrix that has
1’s at the diagonal entries.

▶ A square matrix A is a lower triangular matrix if ai ,j = 0 for
all i < j .

▶ A square matrix A is an upper triangular matrix if ai ,j = 0 for
all i > j .
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Definition

Transpose

The transpose of A ∈ Mm,n is the n ×m matrix At whose
(i , j)-entry is aj ,i :

A =

(
a1,1 . . . a1,n
.
.
.

.

.

.

.

.

.
am,1 . . . am,n

)
→ At =

(
a1,1 . . . am,1

.

.

.

.

.

.

.

.

.
a1,n . . . am,n

)

▶ A square matrix is symmetric if At = A
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Operations

Sum of matrices

If A,B are two m × n matrices, then the sum A+ B is the matrix
whose (i , j)-entry is ci ,j = ai ,j + bi ,j :(

a1,1 . . . a1,n
.
.
.

.

.

.

.

.

.
am,1 . . . am,n

)
+

(
b1,1 . . . b1,n
.
.
.

.

.

.

.

.

.
bm,1 . . . bm,n

)
=

(
a1,1 + b1,1 . . . a1,n + b1,n

.

.

.

.

.

.

.

.

.
am,1 + bm,1 . . . am,n + bm,n

)

Properties: associative, commutative, neutral element 0, opposite
element −A = (−ai ,j),(

a1,1 . . . a1,n
.
.
.

.

.

.

.

.

.
am,1 . . . am,n

)
−

(
b1,1 . . . b1,n
.
.
.

.

.

.

.

.

.
bm,1 . . . bm,n

)
=

(
a1,1 − b1,1 . . . a1,n − b1,n

.

.

.

.

.

.

.

.

.
am,1 − bm,1 . . . am,n − bm,n

)

(A+ B)t = At + Bt
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Operations

Product by a scalar

Let A ∈ Mm,n and let c ∈ R be a number (scalar), then c · A is
the m × n matrix whose (i , j)-element is c ai ,j for all
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}:

c ·

a1,1 . . . a1,n
...

...
...

am,1 . . . am,n

 =

c a1,1 . . . c a1,n
...

...
...

c am,1 . . . c am,n


Properties: 0 · A = 0, c · (A+ B) = c · A+ c · B.
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Operations

Multiplication of matrices

Let A ∈ Mm,n and B ∈ Mn,p, then AB is the matrix C such that

ci ,j = ai ,1b1,j + ai ,2b2,j + · · ·+ ai ,nbn,j .

Note that ci ,j = (ai ,1 ai ,2 . . . ai ,n)

b1,j
...

bn,j

 .

Example:
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Operations

Properties of matrix multiplication

▶ Idn A = A Idn = A (neutral element).

▶ A (B C ) = (AB)C (associative).

▶ A (B + C ) = AB + AC (distributive law).

▶ (A+ B)C = AC + B C (distributive law).

▶ AB ̸= B A.

▶ (AB)t = Bt At .

Given a matrix A, under which conditions does there exist a matrix
B such that

AB = B A = Idn ?
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Operations

Inverse

Let A be an n × n matrix. If there exists a matrix B such that

AB = B A = Idn

then B is called the inverse of A and is denoted as A−1.

A matrix is called invertible (or non-singular) if it has an inverse
and is called singular if it does NOT have an inverse.

Remark. Only AB = Idn or B A = Idn is necessary (the other
comes for free).
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Operations

Properties of the inverse

If A and B are n × n invertible matrices, then

▶ The inverse is unique.

▶ (A−1)−1 = A.

▶ (At)−1 = (A−1)t .

▶ (AB)−1 = B−1A−1.

▶ (Ak)−1 = (A−1)k for k ∈ N
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Operations

Inverse in the 2× 2 case

If A =

(
a b
c d

)
and ad − bc ̸= 0, then

A−1 =
1

ad − bc

(
d −b
−c a

)
.

Computing the inverse for larger matrices: see the section
“Determinant” and the next topic (“Linear Systems”).
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Gaussian elimination

Elementary operations

Given an m × n matrix A, the following are called row elementary
transformations

E1 Exchange two rows.

E2 Multiply a row by a nonzero constant.

E3 Add a multiple of one row to another row.

Similarly, we could define the column elementary transformations.
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Gaussian elimination

Row echelon form
Gaussian elimination is an algorithm that uses row elementary
transformations to transform a matrix to a matrix with row echelon
form:

▶ □: first non-zero element of each row (pivots).

▶ ∗: can be 0 or not.

▶ Everything below the line is 0.

▶ Every pivot is further to the right than the pivot of the
previous row.
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Gaussian elimination

Gaussian elimination:

Any non-zero matrix can be transformed into a matrix with row
echelon form by using row elementary transformations to repeat
these steps for each column from left to right:

1. If it is possible, choose a pivot and put it as high as possible
(E1).

2. Put zeros below the pivot (E3).

Remark: We can transform a matrix into row echelon form by
doing elementary transformations in many different ways.
However, all of them lead to the same number of pivots.
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Rank and Determinant

Rank

The rank of a matrix A is the number of pivots (=the number of
nonzero rows) in a row echelon form of A.

Properties:

▶ The rank does not change if we perform elementary
operations on a matrix.

▶ rank(A) = rank(At).
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Rank and Determinant

Determinant of a 3× 3 matrix

Sarrus Rule:

∣∣∣ a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣=a1,1a2,2a3,3+a2,1a3,2a1,3+a3,1a1,2a2,3−a1,3a2,2a3,1−a2,3a3,2a1,1−a3,3a1,2a2,1

Warning: Not valid for n ≥ 4.
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Rank and Determinant

Definition of determinant

Let A be an n × n matrix, we define the determinant of A, det(A),
as follows (notation |A| = det(A)):

▶ If n = 1: A = (a1,1), then det(A) = a1,1.

▶ If n = 2: det(A) =

∣∣∣∣ a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = a1,1|a2,2| − a1,2|a2,1|.

▶ If n = 3,

det(A) = a11

∣∣∣∣ a2,2 a2,3
a3,2 a3,3

∣∣∣∣−a1,2

∣∣∣∣ a2,1 a2,3
a3,1 a3,3

∣∣∣∣+a1,3

∣∣∣∣ a2,1 a2,2
a3,1 a3,2

∣∣∣∣
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Rank and Determinant

Definition of determinant

▶ Recursively, if Ai ,j is the matrix obtained by removing row i
and column j from A,

|A| = a11 detA1,1 − a1,2 detA1,2 + · · ·+ (−1)n+1a1,n detA1,n.

The expression above is called the Laplace expansion of the
determinant by the first row.
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Rank and Determinant

Laplace expansion Theorem
Given a square matrix A, we define the cofactor matrix of A as the
matrix co(A) whose (i , j) entry is

Ci ,j = (−1)i+j detAi ,j ,

where Ai ,j is the matrix obtained by removing the row i and the
column j of A.

Theorem (Laplace expansion)

The determinant of an n × n matrix A can be computed as the
cofactor expansion along the i-th row,

detA = ai ,1Ci ,1 + . . .+ ai ,nCi ,n

and also as the cofactor expansion along the j-th column:

detA = a1,jC1,j + . . .+ an,jCn,j .
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Rank and Determinant

Effect of elementary transformations on det

Let A be a square matrix.

E1 If B is obtained by exchanging two rows/columns of A, then:

det(B) = − det(A)

E2 If B is obtained by multiplying a row/column by c ̸= 0, then

det(B) = c det(A).

E3 If B is obtained by changing one row/column by itself plus a
multiple of another row/column, then

det(B) = det(A).

Goal: Do transformations of type E3 (and of type E1 if necessary)
to compute efficiently det(A).
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Rank and Determinant

Properties of the determinant

Properties of the determinant:

▶ If one row or column is 0, then det(A) = 0.

▶ If A is a triangular matrix, det(A) is the product of elements
in the diagonal. In particular, det(Idn) = 1.

▶ det(At) = det(A).

▶ det(c · A) = cndet(A) (where n is the number of
rows/columns of A).

▶ det(AB) = det(A) det(B).

Consequence
If A is invertible (non-singular) ⇒ det(A−1) = 1/det(A)(̸= 0).

26



Rank and Determinant

Properties of the determinant

Properties of the determinant:

▶ If one row or column is 0, then det(A) = 0.

▶ If A is a triangular matrix, det(A) is the product of elements
in the diagonal. In particular, det(Idn) = 1.

▶ det(At) = det(A).

▶ det(c · A) = cndet(A) (where n is the number of
rows/columns of A).

▶ det(AB) = det(A) det(B).

Consequence
If A is invertible (non-singular) ⇒ det(A−1) = 1/det(A)(̸= 0).

26



Rank and Determinant

Determinants and rank

A minor of A is the determinant of a square submatrix of A
(obtained by selecting some rows and columns of A).

Proposition

The maximum size of non-zero minors of A is equal to rank(A).

This can be used to compute rank(A) without transforming it into
a matrix in row echelon form:

▶ An n × n matrix A has rank n (full rank) if and only if
det(A) ̸= 0.

▶ If all m ×m minors of A are 0 then rank(A) < m.
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Rank and Determinant

Existence of inverse

The adjugate or adjoint matrix is the transpose of the cofactor
matrix. We have that

A−1 =
1

det(A)
co(A)t

Warning! This is not the optimal way to compute the inverse for
n ≥ 4.

Theorem
For any square matrix A the following are equivalent:

▶ A is invertible.

▶ det(A) ̸= 0.

▶ A has full rank.
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Linear systems

Linear systems

Definition
A system of m linear equations with n variables is a collection of
equations

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

. . .
am1x1 + am2x2 + . . .+ amnxn = bm

where the coefficients aij , the constant terms b1, b2, . . . , bm and
the values that the unknowns x1, x2, . . . , xn are real numbers.

A system is homogenous if bi = 0 for i = 1, . . . ,m.

30



Linear systems

Linear systems

A particular solution is a list of values for the unknowns
s = (s1, . . . , sn) ∈ Rn that is a solution to all the equations.
The general solution is the set of all the solutions to the system.

Geometric interpretation
From a geometric point of view, the general solution to a linear
system describes a linear variety (a point, a line, a plane, etc.).
Each particular solution is a point of the linear variety.
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Linear systems

Matrix expression of a linear system

Any linear system can be put as a matrix equation Ax = b by
taking

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . .
am1 am2 . . . amn

 , x =


x1
x2
. . .
xn

 , b =


b1
b2
. . .
bm


The matrix A is called the matrix of the system.
The augmented matrix is (A | b).
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Linear systems

Number of solutions

Theorem
Any linear system has either (i) a unique solution, (ii) no solution,
or (iii) an infinite number of solutions.

A linear system is consistent if it has one or more solutions. If it
does not have solutions, it is inconsistent.

Example

(i)

{
x1 = 1

x2 = 2
(ii)

{
x1 + x2 = 0

x1 + x2 = 1
(iii)

{
x1 − x2 = 0

x2 − x2 = 0
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Linear systems

Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to
know how many solutions the system has:

Theorem (Rouché-Frobenius)

▶ Ax = b is consistent if and only if rank(A) = rank(A|b).

In this case, its set of solutions depends on n − rank(A) free
variables. This value is known as the degrees of freedom of
the system.

▶ In particular, if n = rank(A) the solution is unique.
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Solving linear systems

Solving systems: Gaussian elimination

Goal: convert the system Ax = b to a simpler system using
elementary transformations.
Consider the augmented matrix (A | b) and

1st step Reduce (A | b) to row echelon form.

2nd step Solve the system by back substitution if it is
consistent.

▶ The number of pivots (rank) of the row echelon form of A
and (A|b) tells us whether the system is consistent or not.

▶ If the system is consistent, then the leading variables
corresponding to pivots can be written in terms of the other
variables (called free variables).

▶ The number of free variables is the degrees of freedom of
the system.
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Solving linear systems

Back substitution and Gauss-Jordan elimination

The back substitution step can also be performed by elementary
row operations on the row echelon form of (A|b) by Gauss-Jordan
elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E2

to convert it to 1.

2. from bottom to top: make all the entries above the pivot
equal to zero using type E3.

3. Repeat the previous steps the next column to the left (so,
from right to left).

37



Solving linear systems

Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form,
that is a matrix of the following form:

A =



1 ∗ 0 0 ∗ ∗ 0 ∗ 0
0 0 1 0 ∗ ∗ 0 ∗ 0
0 0 0 1 ∗ ∗ 0 ∗ 0
0 0 0 0 0 0 1 ∗ 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


Definition
A matrix is in row reduced echelon form if it is in row echelon
form and

▶ all pivots are 1

▶ the pivots are the only non-zero entries in its column.
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Solving linear systems

Row reduced echelon form

▶ If A square and the row reduced echelon form is Idn, then
Ax = b can be trivially solved: the solution is the new
independent term

(A | b) ∼ · · · ∼ (Idn | b′) so Ax = b ⇔ Idnx = b′ ⇔ x = b′

▶ Whereas the row echelon form of A is not unique, the row
reduced echelon form is unique.
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Solving linear systems

Solving simultaneous systems
Goal: solve systems with the same m × n matrix A but different
independent terms,

Ax (1) = b(1),Ax (2) = b(2), . . . ,Ax (r) = b(r).

Equivalently: find X m × r matrix such that

AX =
(
b(1) b(2) . . . b(r)

)
︸ ︷︷ ︸

B

.

matrix equation AX = B

Efficient solution: Gauss-Jordan elimination to the following
augmented matrix (

A | b(1) b(2) . . . b(r)
)
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Solving linear systems

Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix.
Input: a square matrix A.
Output: the inverse of A if A is nonsingular, or that the inverse
does not exist (if A is singular).

1. Form the n × 2n matrix M = (A | Idn)
2. Reduce M to row echelon form (Gaussian elimination). This

process generates a zero row in the left half of M if and only
if A has no inverse.

3. Reduce the matrix to its row reduced echelon form
(Gauss-Jordan). In the end, we obtain M ∼ (Idn | B), where
the identity matrix Idn has replaced A in the left half.

4. Then A−1 = B, the matrix that is now on the right.

41



Python

Outline

Definition and examples

Operations with matrices

Gaussian elimination

Rank and Determinant

Linear systems

Solving linear systems

Python

42



Python

Python: numpy and linalg

▶ The numpy package allows us to work with matrices in
python:
import numpy as np

▶ We can use array to create matrices introducing them by
rows:
A = np.array([[a11, . . . , a1n], [a21, . . . , a2n], . . . , [am1, . . . , amn]])

▶ To visualize: print(A)

▶ To operate with matrices we need the linalg submodule of
numpy:

from numpy.linalg import *
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Python: Matrix operations

Command Output

np.zeros((m,n)) the m × n zero matrix.
np.identity(n) the n × n identity matrix.
A.T the transpose of A.
A+B the sum of matrices A and B.
A@B or np.matmul(A, B) the product of matrices A and B.
c*A the product of the matrix A by c ∈ R.
inv(A) the inverse of A.
matrix rank(A) the rank of A.
det(A) the determinant of A.



Python

Python for Linear Systems

import numpy as np

from numpy.linalg import *

A = np.array([[a11, . . . , a1n], [a21, . . . , a2n], . . . , [an1, . . . , ann]])
b = np.array([b1, b2, . . . , bm])

If A is an invertible square matrix, we can solve the system by
using:
solve(A,b)
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