Linear discrete dynamical systems

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

[Definition and examples](#page-2-0)

[Long-term behavior](#page-10-0)

[Stochastic matrices](#page-17-0)

Outline

[Definition and examples](#page-2-0)

[Long-term behavior](#page-10-0)

[Stochastic matrices](#page-17-0)

Example: Population growth (Leslie model)

The Vollmar-Wasserman beetles (revisited)

- \blacktriangleright x_1 = number of youths (beetles 0 to 1 years old)
- \triangleright x_2 = number of juveniles (beetles 1 to 2 year old)
- \triangleright x_3 = number of adults (beetles 2 to 3 year old)

We put these numbers in a vector $\mathrm{x} =$ $\sqrt{ }$ $\overline{1}$ x_1 x_2 x_3 \setminus $\vert \cdot$

We want to study the number of youths, juveniles and adults in a certain year k, assuming that this year is $k = 0$. We write $x_i(k)$ for the quantity x_i in year k , and also write this information as a vector $x(k)$:

$$
x(k) = \begin{pmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{pmatrix}.
$$

We know that:

$$
\begin{pmatrix} x_1(k+1) \\ x_2(k+1) \\ x_3(k+1) \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 4 & 3 \\ 0.5 & 0 & 0 \\ 0 & 0.25 & 0 \end{pmatrix}}_{A} \begin{pmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{pmatrix}
$$

This is,

and

$$
\mathrm{x}(k+1)=A\mathrm{x}(k)
$$

We observe that

$$
x(1) = Ax(0), \quad x(2) = A^2x(0), \quad x(3) = A^3x(0)...
$$

 $x(k) = A^kx(0)$

Definition

Definition

A homogeneous linear discrete dynamical system is a matrix equation of the form

$$
x(k+1)=A x(k), \quad k\in\mathbb{N},
$$

where A is an $n \times n$ square matrix, and

$$
\mathbf{x}(k) = \begin{pmatrix} x_1(k) \\ \vdots \\ x_n(k) \end{pmatrix} \in \mathbb{R}^n.
$$

The vector $x(0)$ is called an initial condition. A solution (or trajectory) is a collection of vectors $\{x(k)\}_{k\geq0}$ such that each $x(k)$ satisfies the equation above.

Solutions

Lemma

The solutions to the system $x(k + 1) = Ax(k)$ are ${x(k)}_{k>0}$ with

$$
x(k) = A^k x(0), k \ge 1.
$$

- \blacktriangleright There's a unique solution with given initial condition $x(0)$.
- \blacktriangleright The constant solutions $x(k) = x$ for all k are called steady states.
- ▶ If x is a steady state \Rightarrow x = Ax, so x is either 0 or an eigenvector of A of eigenvalue 1.

Example

In the previous example, if $\mathrm{x}(0) =$ $\sqrt{ }$ \mathcal{L} 40 40 20 \setminus $\Big\}$, then:

$$
x(0) = \begin{pmatrix} 40 \\ 40 \\ 20 \end{pmatrix}, x(1) = Ax(0) = \begin{pmatrix} 220 \\ 20 \\ 10 \end{pmatrix}, x(2) = A^2x(0) = \begin{pmatrix} 110 \\ 110 \\ 5 \end{pmatrix}, x(3) = \begin{pmatrix} 455 \\ 55 \\ 27.5 \end{pmatrix}, \dots
$$

The eigenvalues of A are $1.5, -1.31, -0.19$ (0 is the only steady state in this case).

Will this population eventually survive?

- \triangleright Study $x(k)$ when k tends to infinity; this is called the long-term behavior (or asymptotic behavior) of the system.
- As $x(k) = A^k x(0)$, we need to compute powers of matrices and study its limit when k tends to infinite.

Example (cont.)

In the previous example, if
$$
x(0) = \begin{pmatrix} 40 \\ 40 \\ 20 \end{pmatrix}
$$
, then:

$$
\mathtt{x}(10){=}A^{10}\mathtt{x}(0){=} \begin{pmatrix} 4571.91 \\ 2162.37 \\ 238.50 \end{pmatrix}, \mathtt{x}(20){=} \begin{pmatrix} 301860.73 \\ 110036.15 \\ 16541.80 \end{pmatrix}, \mathtt{x}(30){=} \begin{pmatrix} 17971431.25 \\ 6129573.17 \\ 995030.54 \end{pmatrix}, ...
$$

it seems to go to infinite. But, the proportion between populations seems to stabilize:

$$
\begin{array}{ccccccccc}\ns:=x_1(10)+x_2(10)+x_3(10) & \frac{x_1(10)}{s} = 0.6558 & \frac{x_2(10)}{s} = 0.3100 & \frac{x_3(10)}{s} = 0.0342\\ \ns:=x_1(20)+x_2(20)+x_3(20) & \frac{x_1(20)}{s} = 0.7046 & \frac{x_2(20)}{s} = 0.2568 & \frac{x_3(20)}{s} = 0.0386\\ \ns:=x_1(30)+x_2(30)+x_3(30) & \frac{x_1(30)}{s} = 0.7161 & \frac{x_2(30)}{s} = 0.2442 & \frac{x_3(30)}{s} = 0.0397\n\end{array}
$$

Example (cont.)

Also the rate between $x(k)$ and $x(k + 1)$ (the "growth rate") seems to have a tendency:

$$
\frac{x_1(31)}{x_1(30)} = 1.623
$$
\n
$$
\frac{x_2(31)}{x_2(30)} = 1.372
$$
\n
$$
\frac{x_3(31)}{x_3(30)} = 1.663
$$
\n
$$
\frac{x_1(41)}{x_1(40)} = 1.507
$$
\n
$$
\frac{x_2(41)}{x_2(40)} = 1.491
$$
\n
$$
\frac{x_3(41)}{x_3(40)} = 1.510
$$

This is all related to eigenvectors and eigenvalues!

Outline

[Definition and examples](#page-2-0)

[Long-term behavior](#page-10-0)

[Stochastic matrices](#page-17-0)

Solutions for diagonalizable matrices

Example: $x(k + 1) = Ax(k)$ where

$$
A=\begin{pmatrix}0.65&-0.15\\-0.15&0.65\end{pmatrix}.
$$

Solutions: $x(k) = A^k x(0)$. To compute A^k : diagonalize A.

 \blacktriangleright The eigenvalues of A are 0.8 and 0.5 with respective eigenvectors and $v_1 = \left(\frac{-1}{1} \right)$ 1) and $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 1 $\big).$

▶ We write $x(0)$ in the basis v_1, v_2 : $x(0) = c_1v_1 + c_2v_2$. For ex., if $x(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ 3), then $c_1 = 2, c_2 = 1$,x $(0) = 2v_1 + 1v_2$.

As $Av_i = \lambda_i v_i$, we have:

$$
x(k) = Akx(0) = Ak(c1v1+c2v2) = c1Akv1+c2Akv2 = c1\lambda1kv1+c2\lambda2k
$$

$$
x(k) = c10.8k\begin{pmatrix} -1 \\ 1 \end{pmatrix} + c20.5k\begin{pmatrix} 1 \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
$$

Solutions for diagonalizable matrices

If the system is $x(k + 1) = Ax(k)$ and A diagonalizes, to study the long-term behavior of the solutions $\mathrm{x}(k) = A^k \mathrm{x}(0)$ depending on $x(0)$ we do:

- \triangleright Compute and order the eigenvalues such that $|\lambda_1| > |\lambda_2| > \ldots |\lambda_n|.$
- \triangleright Compute the corresponding basis of eigenvectors ${\bf v} = \{v_1, \ldots, v_n\}.$
- \triangleright Compute the coordinates of $x(0)$ in the basis v_1, \ldots, v_n : $x(0) = c_1v_1 + \cdots + c_nv_n$.
- Then, as $Av_i = \lambda_i v_i$, the solutions $x(k)$ are:

$$
x(k) = Akx(0) = Ak(c1v1 + \cdots + cnvn) = c1Akv1 + \cdots + cnAkvn =
$$

= c₁ λ ^k₁v₁ + \cdots + c_n λ ^k_nv_n.

Long-term behavior

We have $|\lambda_1| \geq |\lambda_2| \geq \ldots |\lambda_n|$ and

$$
x(k) = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n,
$$

note that:

• if
$$
x(0) = v_i
$$
, then $x(k) = \lambda_i^k v_i$.

 \blacktriangleright when $|\lambda_1| > |\lambda_2|$, we'll see that λ_1 and ν_1 determine the long-term behaviour

Long-term behavior

If we have $|\lambda_1| > |\lambda_2| \geq \ldots |\lambda_n|$ (λ_1 dominant) and

$$
x(k) = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n,
$$

then when k is large:

 \blacktriangleright λ_1^k grows faster than λ_i^k so, if $c_1 \neq 0$,

$$
\mathbf{x}(k) \sim c_1 \lambda_1^k v_1 \quad \text{ for } k \text{ big, and}
$$

\n- If
$$
|\lambda_1| < 1
$$
, $x(k) \to 0$ when $k \to \infty$.
\n- If $\lambda_1 = 1$ $c_1 \neq 0$, then $x(k) \to c_1v_1$ when $k \to \infty$.
\n

If $|\lambda_1| > 1$ and $c_1 \neq 0$, then $x(k)$ tends to a vector with infinite components in the direction of v_1 .

► the growth rate is given by
$$
\lambda_1
$$
: $\frac{x_j(k+1)}{x_j(k)} \sim \lambda_1$, so $x(k+1) \sim \lambda_1 x(k)$

Special things happen with initial conditions that have $c_1 = 0$.

Definition

If there is an eigenvalue λ_1 that satisfies $|\lambda_1| > |\lambda_i|$, then λ_1 is real and is called the **dominant** eigenvalue and the corresponding eigenvector is called the **dominant eigenvector**.

- ▶ Example: if the eigenvalues of a 4×4 matrix are $-4, -3, 1, 2$, then $\lambda_1 = -4$ is the dominant eigenvalue.
- ▶ Example: if the eigenvalues of a 4×4 matrix are $-4, -3, 1, 4$, then there is no dominant eigenvalue. Note:
- ▶ If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a+bi| = \sqrt{a^2 + b^2}$
- \triangleright As A is real, non-real eigenvalues appear in conjugate pairs $(a + bi, a - bi)$ and have the same modulus
- ▶ Example: if the eigenvalues of a 3×3 matrix are 6, $-1 + 2i$, $-1 - 2i$, then 6 is the dominant eigenvalue.
- ▶ Example: if the eigenvalues of a 2×2 matrix are $-1 + 2i$, $-1 - 2i$, then there is no dominant eigenvalue.
- ▶ Which matrices have a dominant eigenvalue?
- \triangleright Which matrices have a steady state (x such that $Ax = x$) different from 0? This is, which matrices have eigenvalue 1?

Outline

[Definition and examples](#page-2-0)

[Long-term behavior](#page-10-0)

[Stochastic matrices](#page-17-0)

Stochastic matrices

Definition

A (column) stochastic matrix is a non-negative $n \times n$ matrix whose columns sum to 1

A similar definition can be made for rows.

As columns sum to 1, if A is a stochastic matrix we have:

$$
(11...1)A = (11...1)
$$

$$
At \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}
$$

Thus, 1 is an eigenvalue of A^t and $(11\ldots1)^t$ is a positive eigenvector for A^t .

Properties of stochastic matrices

\blacktriangleright 1 is an eigenvalue of A

\blacktriangleright If x sums to 1, then Ax still sums to 1.

Non-negative vectors that sum to 1 are called **probability vectors** or distributions.

Properties of stochastic matrices

 \blacktriangleright 1 is an eigenvalue of A

 \blacktriangleright If x sums to 1, then Ax still sums to 1.

Non-negative vectors that sum to 1 are called **probability vectors** or distributions.

Stochastic matrices

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ . Moreover, if A is positive,

- \blacktriangleright 1 is the dominant eigenvalue
- \triangleright 1 has a positive eigenvector v (a steady state)
- \triangleright no other eigenvalue has positive eigenvectors.
- \blacktriangleright If we take v to sum to 1, then v is called the stationary distribution and

$$
\lim A^k=(v\,v\ldots v)
$$

and $\lim A^k x = v$

for any probability vector x.

▶ and the distribution of $\mathrm{x}(k)$ tends to $\mathrm{v} \colon \frac{\mathrm{x}(k)}{\sum_i x_i(k)} \sim \mathrm{v}$.