Diagonalization

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Example: Population growth (Leslie model)

The Vollmar-Wasserman beetles (revisited)

- $x_{1}=$ number of youths (beetles 0 to 1 years old)
- $x_{2}=$ number of juveniles (beetles 1 to 2 year old)
- $x_{3}=$ number of adults (beetles 2 to 3 year old)

We put these numbers in a vector $\mathrm{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.
We want to study the number of youths, juveniles and adults in a certain year k, assuming that this year is $k=0$.
We write $x_{i}(k)$ for the quantity x_{i} in year k, and also write this information as a vector $x(k)$:

$$
x(k)=\left(\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right) .
$$

We know that:

$$
\left(\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
0 & 4 & 3 \\
0.5 & 0 & 0 \\
0 & 0.25 & 0
\end{array}\right)}_{A}\left(\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right) \text { this is, } x(k+1)=A x(k)
$$

Definition

Definition

A homogeneous linear discrete dynamical system is a matrix equation of the form

$$
\mathrm{x}(k+1)=A \mathrm{x}(k), \quad k \in \mathbb{N},
$$

where A is an $n \times n$ square matrix, and

$$
\mathrm{x}(k)=\left(\begin{array}{c}
x_{1}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right) \in \mathbb{R}^{n}
$$

The vector $x(0)$ is called an initial condition.
A solution (or trajectory) is a collection of vectors $\{\mathrm{x}(k)\}_{k \geq 0}$ such that each $\mathrm{x}(k)$ satisfies the equation above.

Solutions

Lemma
The solutions to the system $\mathrm{x}(k+1)=A \mathrm{x}(k)$ are $\{\mathrm{x}(k)\}_{k \geq 0}$ with

$$
\mathrm{x}(k)=A^{k} \mathrm{x}(0), k \geq 1
$$

Solutions

Lemma

The solutions to the system $\mathrm{x}(k+1)=A \mathrm{x}(k)$ are $\{\mathrm{x}(k)\}_{k \geq 0}$ with

$$
\mathrm{x}(k)=A^{k} \mathrm{x}(0), k \geq 1
$$

- There's a unique solution with given initial condition $x(0)$.

Solutions

Lemma

The solutions to the system $\mathrm{x}(k+1)=A \mathrm{x}(k)$ are $\{\mathrm{x}(k)\}_{k \geq 0}$ with

$$
\mathrm{x}(k)=A^{k} \mathrm{x}(0), k \geq 1
$$

- There's a unique solution with given initial condition $\mathrm{x}(0)$.
- The constant solutions $\mathrm{x}(k)=\mathrm{x}$ for all k are called steady states.

Solutions

Lemma

The solutions to the system $\mathrm{x}(k+1)=A \mathrm{x}(k)$ are $\{\mathrm{x}(k)\}_{k \geq 0}$ with

$$
\mathrm{x}(k)=A^{k} \mathrm{x}(0), k \geq 1
$$

- There's a unique solution with given initial condition $\mathrm{x}(0)$.
- The constant solutions $\mathrm{x}(k)=\mathrm{x}$ for all k are called steady states.
- If x is a steady state $\Rightarrow \mathrm{x}=A \mathrm{x}$, so x is either 0 or an eigenvector of A of eigenvalue 1 .

Example

In the previous example, if $x(0)=\left(\begin{array}{l}40 \\ 40 \\ 20\end{array}\right)$, then:

$$
x(0)=\left(\begin{array}{l}
40 \\
40 \\
20
\end{array}\right), x(1)=A x(0)=\left(\begin{array}{c}
220 \\
20 \\
10
\end{array}\right), x(2)=A^{2} x(0)=\left(\begin{array}{c}
110 \\
110 \\
5
\end{array}\right), x(3)=\left(\begin{array}{c}
455 \\
55 \\
27.5
\end{array}\right), \ldots
$$

The eigenvalues of A are $1.5,-1.31,-0.19$ (0 is the only steady state in this case).
Will this population eventually survive?

- Study $\mathrm{x}(k)$ when k tends to infinity; this is called the long-term behavior (or asymptotic behavior) of the system.

Example

In the previous example, if $x(0)=\left(\begin{array}{l}40 \\ 40 \\ 20\end{array}\right)$, then:

$$
x(0)=\left(\begin{array}{l}
40 \\
40 \\
20
\end{array}\right), x(1)=A x(0)=\left(\begin{array}{c}
220 \\
20 \\
10
\end{array}\right), x(2)=A^{2} x(0)=\left(\begin{array}{c}
110 \\
110 \\
5
\end{array}\right), x(3)=\left(\begin{array}{c}
455 \\
55 \\
27.5
\end{array}\right), \ldots
$$

The eigenvalues of A are $1.5,-1.31,-0.19$ (0 is the only steady state in this case).
Will this population eventually survive?

- Study $\mathrm{x}(k)$ when k tends to infinity; this is called the long-term behavior (or asymptotic behavior) of the system.
- As $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$, we need to compute powers of matrices and study its limit when k tends to infinite.

Example (cont.)

In the previous example, if $x(0)=\left(\begin{array}{l}40 \\ 40 \\ 20\end{array}\right)$, then:

$$
x(10)=A^{10} x(0)=\left(\begin{array}{c}
4571.91 \\
2162.37 \\
238.50
\end{array}\right), x(20)=\left(\begin{array}{c}
301860.73 \\
110036.15 \\
16541.80
\end{array}\right), x(30)=\left(\begin{array}{c}
17971431.25 \\
6129573.17 \\
995030.54
\end{array}\right), \ldots
$$

it seems to go to infinite. But, the proportion between populations seems to stabilize:

$$
\begin{array}{llll}
s:=x_{1}(10)+x_{2}(10)+x_{3}(10) \Rightarrow & \frac{x_{1}(10)}{s}=0.6558 & \frac{x_{2}(10)}{s}=0.3100 & \frac{x_{3}(10)}{s}=0.0342 \\
s:=x_{1}(20)+x_{2}(20)+x_{3}(20) \Rightarrow & \frac{x_{1}(20)}{s}=0.7046 & \frac{x_{2}(20)}{s}=0.2568 & \frac{x_{3}(20)}{s}=0.0386 \\
s:=x_{1}(30)+x_{2}(30)+x_{3}(30) \Rightarrow & \frac{x_{1}(30)}{s}=0.7161 & \frac{x_{2}(30)}{s}=0.2442 & \frac{x_{3}(30)}{s}=0.0397
\end{array}
$$

Example (cont.)

Also the rate between $x(k)$ and $x(k+1)$ (the "growth rate") seems to have a tendency:

$$
\begin{array}{lll}
\frac{x_{1}(31)}{x_{1}(30)}=1.623 & \frac{x_{2}(31)}{x_{2}(30)}=1.372 & \frac{x_{3}(31)}{x_{3}(30)}=1.663 \\
\frac{x_{1}(41)}{x_{1}(40)}=1.507 & \frac{x_{2}(41)}{x_{2}(40)}=1.491 & \frac{x_{3}(41)}{x_{3}(40)}=1.510
\end{array}
$$

This is all related to eigenvectors and eigenvalues!

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Diagonalizable matrices: long-term behavior.

Example: $\mathrm{x}(k+1)=A \mathrm{x}(k)$ where

$$
A=\left(\begin{array}{cc}
0.65 & -0.15 \\
-0.15 & 0.65
\end{array}\right)
$$

Solutions: $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$. To compute A^{k} : diagonalize A.

- The eigenvalues of A are 0.8 and 0.5 with respective eigenvectors and $v_{1}=\binom{-1}{1}$ and $v_{2}=\binom{1}{1}$.

Diagonalizable matrices: long-term behavior.

Example: $\mathrm{x}(k+1)=A \mathrm{x}(k)$ where

$$
A=\left(\begin{array}{cc}
0.65 & -0.15 \\
-0.15 & 0.65
\end{array}\right)
$$

Solutions: $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$. To compute A^{k} : diagonalize A.

- The eigenvalues of A are 0.8 and 0.5 with respective
eigenvectors and $v_{1}=\binom{-1}{1}$ and $v_{2}=\binom{1}{1}$.
- We write $\mathrm{x}(0)$ in the basis $v_{1}, v_{2}: \mathrm{x}(0)=c_{1} v_{1}+c_{2} v_{2}$. For ex.,
if $\mathrm{x}(0)=\binom{-1}{3}$, then $c_{1}=2, c_{2}=1, \mathrm{x}(0)=2 v_{1}+1 v_{2}$.

Diagonalizable matrices: long-term behavior.

Example: $\mathrm{x}(k+1)=A \mathrm{x}(k)$ where

$$
A=\left(\begin{array}{cc}
0.65 & -0.15 \\
-0.15 & 0.65
\end{array}\right)
$$

Solutions: $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$. To compute A^{k} : diagonalize A.

- The eigenvalues of A are 0.8 and 0.5 with respective
eigenvectors and $v_{1}=\binom{-1}{1}$ and $v_{2}=\binom{1}{1}$.
- We write $\mathrm{x}(0)$ in the basis $v_{1}, v_{2}: \mathrm{x}(0)=c_{1} v_{1}+c_{2} v_{2}$. For ex.,
if $\mathrm{x}(0)=\binom{-1}{3}$, then $c_{1}=2, c_{2}=1, \mathrm{x}(0)=2 v_{1}+1 v_{2}$.
- As $A v_{i}=\lambda_{i} v_{i}$, we have:

$$
\begin{gathered}
\mathrm{x}(k)=A^{k} \mathrm{x}(0)=A^{k}\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} A^{k} v_{1}+c_{2} A^{k} v_{2}=c_{1} \lambda_{1}^{k} v_{1}+c_{2} \lambda_{2}^{k} \\
\mathrm{x}(k)=c_{1} 0.8^{k}\binom{-1}{1}+c_{2} 0.5^{k}\binom{1}{1} \longrightarrow\binom{0}{0} .
\end{gathered}
$$

Diagonalizable matrices: long-term behavior

 If the system is $\mathrm{x}(k+1)=A \mathrm{x}(k)$ and A diagonalizes, to study the long-term behavior of the solutions $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$ depending on $\mathrm{x}(0)$ we do:- Compute and order the eigenvalues such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$.

Diagonalizable matrices: long-term behavior

 If the system is $\mathrm{x}(k+1)=A \mathrm{x}(k)$ and A diagonalizes, to study the long-term behavior of the solutions $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$ depending on $\mathrm{x}(0)$ we do:- Compute and order the eigenvalues such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$.
- Compute the corresponding basis of eigenvectors $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$.

Diagonalizable matrices: long-term behavior

 If the system is $\mathrm{x}(k+1)=A \mathrm{x}(k)$ and A diagonalizes, to study the long-term behavior of the solutions $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$ depending on $\mathrm{x}(0)$ we do:- Compute and order the eigenvalues such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$.
- Compute the corresponding basis of eigenvectors $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$.
- Compute the coordinates of $\mathrm{x}(0)$ in the basis v_{1}, \ldots, v_{n} : $\mathrm{x}(0)=c_{1} v_{1}+\cdots+c_{n} v_{n}$.

Diagonalizable matrices: long-term behavior

If the system is $\mathrm{x}(k+1)=A \mathrm{x}(k)$ and A diagonalizes, to study the long-term behavior of the solutions $\mathrm{x}(k)=A^{k} \mathrm{x}(0)$ depending on $\mathrm{x}(0)$ we do:

- Compute and order the eigenvalues such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$.
- Compute the corresponding basis of eigenvectors

$$
\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\} .
$$

- Compute the coordinates of $\mathrm{x}(0)$ in the basis v_{1}, \ldots, v_{n} :

$$
\mathrm{x}(0)=c_{1} v_{1}+\cdots+c_{n} v_{n} .
$$

- Then, as $A v_{i}=\lambda_{i} v_{i}$, the solutions $\mathrm{x}(k)$ are:

$$
\begin{gathered}
\mathrm{x}(k)=A^{k} \mathrm{x}(0)=A^{k}\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right)=c_{1} A^{k} v_{1}+\cdots+c_{n} A^{k} v_{n}= \\
=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n} .
\end{gathered}
$$

As matrices

If $A=P D P^{-1}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), P=A_{\mathbf{v} \rightarrow e}$

$$
P=\left(\begin{array}{lll}
& & \\
v_{1} & \ldots & v_{n}
\end{array}\right),
$$

then $A^{k}=P D^{k} P^{-1}$. Given $\mathrm{x}(0)$, if $P^{-1} \mathrm{x}(0)=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$
$\Rightarrow \mathrm{x}(k)=P D^{k} P^{-1} \mathrm{x}(0)=P\left(\begin{array}{ccc}\lambda_{1}^{k} & & \\ & \ddots & \\ & & \lambda_{n}^{k}\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)=P\left(\begin{array}{c}c_{1} \lambda_{1}^{k} \\ \vdots \\ c_{n} \lambda_{n}^{k}\end{array}\right)$,
$\mathrm{x}(k)=\left(\begin{array}{ccc}v_{1} & \ldots & v_{n}\end{array}\right)\left(\begin{array}{c}c_{1} \lambda_{1}^{k} \\ \vdots \\ c_{n} \lambda_{n}^{k}\end{array}\right)=c_{1} \lambda_{1}^{k}\left(v_{1}\right)+\cdots+c_{n} \lambda_{n}^{k}\left(\begin{array}{c} \\ v_{n}\end{array}\right)$.

Long-term behavior

We have $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$ and

$$
\mathrm{x}(k)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n},
$$

note that:

- if $\mathrm{x}(0)=v_{i}$, then $\mathrm{x}(k)=\lambda_{i}^{k} v_{i}$.

Long-term behavior

We have $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$ and

$$
\mathrm{x}(k)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n},
$$

note that:

- if $\mathrm{x}(0)=v_{i}$, then $\mathrm{x}(k)=\lambda_{i}^{k} v_{i}$.
- when $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, we'll see that λ_{1} and v_{1} determine the long-term behaviour

Definition

If there is an eigenvalue λ_{1} that satisfies $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1} is real and is called the dominant eigenvalue and the corresponding eigenvalue is called the dominant eigenvector.

Definition

If there is an eigenvalue λ_{1} that satisfies $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1} is real and is called the dominant eigenvalue and the corresponding eigenvalue is called the dominant eigenvector.

- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,2$, then $\lambda_{1}=-4$ is the dominant eigenvalue.

Definition

If there is an eigenvalue λ_{1} that satisfies $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1} is real and is called the dominant eigenvalue and the corresponding eigenvalue is called the dominant eigenvector.

- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,2$, then $\lambda_{1}=-4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,4$, then there is no dominant eigenvalue. Note:

Definition

If there is an eigenvalue λ_{1} that satisfies $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1} is real and is called the dominant eigenvalue and the corresponding eigenvalue is called the dominant eigenvector.

- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,2$, then $\lambda_{1}=-4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,4$, then there is no dominant eigenvalue. Note:
- If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a+b i|=\sqrt{a^{2}+b^{2}}$

Definition

If there is an eigenvalue λ_{1} that satisfies $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1} is real and is called the dominant eigenvalue and the corresponding eigenvalue is called the dominant eigenvector.

- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,2$, then $\lambda_{1}=-4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,4$, then there is no dominant eigenvalue. Note:
- If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a+b i|=\sqrt{a^{2}+b^{2}}$
- As A is real, non-real eigenvalues appear in conjugate pairs ($a+b i, a-b i$) and have the same modulus

Definition

If there is an eigenvalue λ_{1} that satisfies $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1} is real and is called the dominant eigenvalue and the corresponding eigenvalue is called the dominant eigenvector.

- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,2$, then $\lambda_{1}=-4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,4$, then there is no dominant eigenvalue. Note:
- If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a+b i|=\sqrt{a^{2}+b^{2}}$
- As A is real, non-real eigenvalues appear in conjugate pairs ($a+b i, a-b i$) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are $6,-1+2 i$, $-1-2 i$, then 6 is the dominant eigenvalue.

Definition

If there is an eigenvalue λ_{1} that satisfies $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1} is real and is called the dominant eigenvalue and the corresponding eigenvalue is called the dominant eigenvector.

- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,2$, then $\lambda_{1}=-4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are $-4,-3,1,4$, then there is no dominant eigenvalue. Note:
- If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a+b i|=\sqrt{a^{2}+b^{2}}$
- As A is real, non-real eigenvalues appear in conjugate pairs $(a+b i, a-b i)$ and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are $6,-1+2 i$, $-1-2 i$, then 6 is the dominant eigenvalue.
- Example: if the eigenvalues of a 2×2 matrix are $-1+2 i$, $-1-2 i$, then there is no dominant eigenvalue.

Long-term behavior

If we have $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$ (λ_{1} dominant) and

$$
\mathrm{x}(k)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n},
$$

then when k is large:

- λ_{1}^{k} grows faster than λ_{i}^{k} so, if $c_{1} \neq 0$,

$$
\mathrm{x}(k) \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big, and }
$$

Special things happen with initial conditions that have $c_{1}=0$.

Long-term behavior

If we have $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$ (λ_{1} dominant) and

$$
\mathrm{x}(k)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n},
$$

then when k is large:

- λ_{1}^{k} grows faster than λ_{i}^{k} so, if $c_{1} \neq 0$,

$$
\mathrm{x}(k) \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big, and }
$$

- If $\left|\lambda_{1}\right|<1, \mathrm{x}(k) \rightarrow 0$ when $k \rightarrow \infty$.

Special things happen with initial conditions that have $c_{1}=0$.

Long-term behavior

If we have $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$ (λ_{1} dominant) and

$$
\mathrm{x}(k)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n},
$$

then when k is large:

- λ_{1}^{k} grows faster than λ_{i}^{k} so, if $c_{1} \neq 0$,

$$
\mathrm{x}(k) \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big, and }
$$

- If $\left|\lambda_{1}\right|<1, \mathrm{x}(k) \rightarrow 0$ when $k \rightarrow \infty$.
- If $\lambda_{1}=1 c_{1} \neq 0$, then $\mathrm{x}(k) \rightarrow c_{1} v_{1}$ when $k \rightarrow \infty$.

Special things happen with initial conditions that have $c_{1}=0$.

Long-term behavior

If we have $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$ (λ_{1} dominant) and

$$
\mathrm{x}(k)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n},
$$

then when k is large:

- λ_{1}^{k} grows faster than λ_{i}^{k} so, if $c_{1} \neq 0$,

$$
\mathrm{x}(k) \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big, and }
$$

- If $\left|\lambda_{1}\right|<1, \mathrm{x}(k) \rightarrow 0$ when $k \rightarrow \infty$.
- If $\lambda_{1}=1 c_{1} \neq 0$, then $\mathrm{x}(k) \rightarrow c_{1} v_{1}$ when $k \rightarrow \infty$.
- If $\left|\lambda_{1}\right|>1$ and $c_{1} \neq 0$, then $\mathrm{x}(k)$ tends to a vector with infinite components in the direction of v_{1}.

Special things happen with initial conditions that have $c_{1}=0$.

Long-term behavior

If we have $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{n}\right|$ (λ_{1} dominant) and

$$
\mathrm{x}(k)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n},
$$

then when k is large:

- λ_{1}^{k} grows faster than λ_{i}^{k} so, if $c_{1} \neq 0$,

$$
\mathrm{x}(k) \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big, and }
$$

- If $\left|\lambda_{1}\right|<1, \mathrm{x}(k) \rightarrow 0$ when $k \rightarrow \infty$.
- If $\lambda_{1}=1 c_{1} \neq 0$, then $\mathrm{x}(k) \rightarrow c_{1} v_{1}$ when $k \rightarrow \infty$.
- If $\left|\lambda_{1}\right|>1$ and $c_{1} \neq 0$, then $\mathrm{x}(k)$ tends to a vector with infinite components in the direction of v_{1}.
- the growth rate is given by $\lambda_{1}: \frac{\mathrm{x}_{j}(k+1)}{\mathrm{x}_{j}(k)} \sim \lambda_{1}$, so

$$
\mathrm{x}(k+1) \sim \lambda_{1} \mathrm{x}(k)
$$

Special things happen with initial conditions that have $c_{1}=0$.

- Which matrices have a dominant eigenvalue?

- Which matrices have a dominant eigenvalue?
- Which matrices have a steady state (x such that $A \mathrm{x}=\mathrm{x}$) different from 0 ? This is, which matrices have eigenvalue 1 ?

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Stochastic matrices

Definition

A (column) stochastic matrix is a non-negative $n \times n$ matrix whose columns sum to 1 .

A similar definition can be made for rows.
As columns sum to 1 , if A is a stochastic matrix we have:

$$
\begin{aligned}
(11 \ldots 1) A & =(11 \ldots 1) \\
A^{t}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) & =\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

Thus, 1 is an eigenvalue of A^{t} and $(11 \ldots 1)^{t}$ is a positive eigenvector for A^{t}.

Properties of stochastic matrices

- 1 is an eigenvalue of A
- If x sums to 1 , then $A \mathrm{x}$ still sums to 1 .

Non-negative vectors that sum to 1 are called probability vectors or distributions.

Properties of stochastic matrices

- 1 is an eigenvalue of A
- If x sums to 1 , then $A \mathrm{x}$ still sums to 1 .

Non-negative vectors that sum to 1 are called probability vectors or distributions.

Stochastic matrices

Theorem (Perron-Frobenius)
If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ. Moreover, if A is positive,

Stochastic matrices

Theorem (Perron-Frobenius)
If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ. Moreover, if A is positive,

- 1 is the dominant eigenvalue

Stochastic matrices

Theorem (Perron-Frobenius)
If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ. Moreover, if A is positive,

- 1 is the dominant eigenvalue
- 1 has a positive eigenvector v (a steady state)

Stochastic matrices

Theorem (Perron-Frobenius)
If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ. Moreover, if A is positive,

- 1 is the dominant eigenvalue
- 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
for any probability vector x ,

Stochastic matrices

Theorem (Perron-Frobenius)
If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ. Moreover, if A is positive,

- 1 is the dominant eigenvalue
- 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- If we take v to sum to 1 , then v is called the stationary distribution and

$$
\begin{aligned}
& \lim A^{k}=(v v \ldots v) \\
& \text { and } \quad \lim A^{k} \mathrm{x}=v
\end{aligned}
$$

for any probability vector x ,

Stochastic matrices

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ. Moreover, if A is positive,

- 1 is the dominant eigenvalue
- 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- If we take v to sum to 1 , then v is called the stationary distribution and

$$
\begin{aligned}
& \lim A^{k}=(v v \ldots v) \\
& \text { and } \quad \lim A^{k} \mathrm{x}=v
\end{aligned}
$$

for any probability vector x ,

- and the distribution of $\mathrm{x}(k)$ tends to $v: \frac{\mathrm{x}(\mathrm{k})}{\sum_{i} x_{i}(k)} \sim v$.

