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Definition and examples

Example: Population growth (Leslie model)
The Vollmar-Wasserman beetles (revisited)

▶ x1 = number of youths (beetles 0 to 1 years old)

▶ x2 = number of juveniles (beetles 1 to 2 year old)

▶ x3 = number of adults (beetles 2 to 3 year old)

We put these numbers in a vector x =

x1
x2
x3

 .

We want to study the number of youths, juveniles and adults in a
certain year k , assuming that this year is k = 0.
We write xi (k) for the quantity xi in year k , and also write this
information as a vector x(k):

x(k) =

x1(k)
x2(k)
x3(k)

 .
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Definition and examples

We know that:x1(k + 1)
x2(k + 1)
x3(k + 1)

 =

 0 4 3
0.5 0 0
0 0.25 0


︸ ︷︷ ︸

A

x1(k)
x2(k)
x3(k)

 this is, x(k+1) = Ax(k)
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Definition and examples

Definition

Definition
A homogeneous linear discrete dynamical system is a matrix
equation of the form

x(k + 1) = A x(k), k ∈ N,

where A is an n × n square matrix , and

x(k) =

x1(k)
...

xn(k)

 ∈ Rn.

The vector x(0) is called an initial condition.
A solution (or trajectory) is a collection of vectors {x(k)}k≥0 such
that each x(k) satisfies the equation above.
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Definition and examples

Solutions

Lemma
The solutions to the system x(k + 1) = A x(k) are {x(k)}k≥0 with

x(k) = Akx(0), k ≥ 1.

▶ There’s a unique solution with given initial condition x(0).

▶ The constant solutions x(k) = x for all k are called steady
states.

▶ If x is a steady state ⇒ x = Ax, so x is either 0 or an
eigenvector of A of eigenvalue 1.
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Definition and examples

Example

In the previous example, if x(0) =

40
40
20

 , then:

x(0)=


40
40
20

,x(1)=Ax(0)=


220
20
10

,x(2)=A2x(0)=


110
110
5

,x(3)=


455
55
27.5

,...

The eigenvalues of A are 1.5,−1.31,−0.19 (0 is the only steady
state in this case).
Will this population eventually survive?

▶ Study x(k) when k tends to infinity; this is called the
long-term behavior (or asymptotic behavior) of the system.

▶ As x(k) = Akx(0), we need to compute powers of matrices
and study its limit when k tends to infinite.
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Definition and examples

Example (cont.)

In the previous example, if x(0) =

40
40
20

 , then:

x(10)=A10x(0)=


4571.91
2162.37
238.50

,x(20)=


301860.73
110036.15
16541.80

,x(30)=


17971431.25
6129573.17
995030.54

,...

it seems to go to infinite. But, the proportion between populations
seems to stabilize:

s:=x1(10)+x2(10)+x3(10)⇒
x1(10)

s = 0.6558 x2(10)
s = 0.3100 x3(10)

s = 0.0342

s:=x1(20)+x2(20)+x3(20)⇒
x1(20)

s = 0.7046 x2(20)
s = 0.2568 x3(20)

s = 0.0386

s:=x1(30)+x2(30)+x3(30)⇒
x1(30)

s = 0.7161 x2(30)
s = 0.2442 x3(30)

s = 0.0397
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Definition and examples

Example (cont.)

Also the rate between x(k) and x(k + 1) (the “growth rate”)
seems to have a tendency:

x1(31)
x1(30)

= 1.623 x2(31)
x2(30)

= 1.372 x3(31)
x3(30)

= 1.663

x1(41)
x1(40)

= 1.507 x2(41)
x2(40)

= 1.491 x3(41)
x3(40)

= 1.510

This is all related to eigenvectors and eigenvalues!
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Long-term behavior

Diagonalizable matrices: long-term behavior.
Example: x(k + 1) = Ax(k) where

A =

(
0.65 −0.15
−0.15 0.65

)
.

Solutions: x(k) = Akx(0). To compute Ak : diagonalize A.
▶ The eigenvalues of A are 0.8 and 0.5 with respective

eigenvectors and v1 =

(
−1
1

)
and v2 =

(
1
1

)
.

▶ We write x(0) in the basis v1, v2: x(0) = c1v1 + c2v2. For ex.,

if x(0) =

(
−1
3

)
, then c1 = 2, c2 = 1 ,x(0) = 2v1 + 1v2.

▶ As Avi = λivi , we have:

x(k) = Akx(0) = Ak(c1v1+c2v2) = c1A
kv1+c2A

kv2 = c1λ
k
1v1+c2λ

k
2v2

x(k) = c10.8
k

(
−1
1

)
+ c20.5

k

(
1
1

)
−→

(
0
0

)
.
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Long-term behavior

Diagonalizable matrices: long-term behavior
If the system is x(k + 1) = Ax(k) and A diagonalizes, to study the
long-term behavior of the solutions x(k) = Akx(0) depending on
x(0) we do:

▶ Compute and order the eigenvalues such that
|λ1| ≥ |λ2| ≥ . . . |λn|.

▶ Compute the corresponding basis of eigenvectors
v = {v1, . . . , vn}.

▶ Compute the coordinates of x(0) in the basis v1, . . . , vn:
x(0) = c1v1 + · · ·+ cnvn.

▶ Then, as Avi = λivi , the solutions x(k) are:

x(k) = Akx(0) = Ak(c1v1+· · ·+cnvn) = c1A
kv1+· · ·+cnA

kvn =

= c1λ
k
1v1 + · · ·+ cnλ

k
nvn.
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Long-term behavior

As matrices
If A = PDP−1, D = diag(λ1, . . . , λn), P = Av→e

P =

v1 . . . vn

 ,

then Ak = PDkP−1. Given x(0), if P−1x(0) =

c1
...
cn


⇒ x(k) = PDkP−1x(0) = P

λk
1

. . .

λk
n


c1

...
cn

 = P

c1λ
k
1

...
cnλ

k
n

 ,

x(k) =

v1 . . . vn


c1λ

k
1

...
cnλ

k
n

 = c1λ
k
1

v1

+ · · ·+cnλ
k
n

vn

 .
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Long-term behavior

Long-term behavior

We have |λ1| ≥ |λ2| ≥ . . . |λn| and

x(k) = c1λ
k
1v1 + · · ·+ cnλ

k
nvn,

note that:

▶ if x(0) = vi , then x(k) = λk
i vi .

▶ when |λ1| > |λ2|, we’ll see that λ1 and v1 determine the
long-term behaviour
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Long-term behavior

Definition
If there is an eigenvalue λ1 that satisfies |λ1| > |λi |, then λ1 is real
and is called the dominant eigenvalue and the corresponding
eigenvalue is called the dominant eigenvector.
▶ Example: if the eigenvalues of a 4× 4 matrix are −4,−3, 1, 2,

then λ1 = −4 is the dominant eigenvalue.

▶ Example: if the eigenvalues of a 4× 4 matrix are −4,−3, 1, 4,
then there is no dominant eigenvalue.
Note:

▶ If A has complex eigenvalues, |λ| refers to the modulus (or
absolute value) of the complex number: |a+ bi | =

√
a2 + b2

▶ As A is real, non-real eigenvalues appear in conjugate pairs
(a+ bi , a− bi) and have the same modulus

▶ Example: if the eigenvalues of a 3× 3 matrix are 6, −1 + 2i ,
−1− 2i , then 6 is the dominant eigenvalue.

▶ Example: if the eigenvalues of a 2× 2 matrix are −1 + 2i ,
−1− 2i , then there is no dominant eigenvalue.
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Long-term behavior

Long-term behavior
If we have |λ1| > |λ2| ≥ . . . |λn| (λ1 dominant) and

x(k) = c1λ
k
1v1 + · · ·+ cnλ

k
nvn,

then when k is large:

▶ λk
1 grows faster than λk

i so, if c1 ̸= 0,

x(k) ∼ c1λ
k
1v1 for k big, and

▶ If |λ1| < 1, x(k) → 0 when k → ∞.
▶ If λ1 = 1 c1 ̸= 0, then x(k) → c1v1 when k → ∞.
▶ If |λ1| > 1 and c1 ̸= 0, then x(k) tends to a vector with

infinite components in the direction of v1.

▶ the growth rate is given by λ1:
xj (k+1)
xj (k)

∼ λ1, so

x(k + 1) ∼ λ1x(k)

Special things happen with initial conditions that have c1 = 0.
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Long-term behavior

▶ Which matrices have a dominant eigenvalue?

▶ Which matrices have a steady state (x such that Ax = x)
different from 0? This is, which matrices have eigenvalue 1?
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Stochastic matrices

Outline

Definition and examples

Long-term behavior

Stochastic matrices
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Stochastic matrices

Stochastic matrices

Definition
A (column) stochastic matrix is a non-negative n × n matrix
whose columns sum to 1.

A similar definition can be made for rows.
As columns sum to 1, if A is a stochastic matrix we have:

(11 . . . 1)A = (11 . . . 1)

At


1
1
...
1

 =


1
1
...
1


Thus, 1 is an eigenvalue of At and (11 . . . 1)t is a positive
eigenvector for At .
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Stochastic matrices

Properties of stochastic matrices

▶ 1 is an eigenvalue of A

▶ If x sums to 1, then Ax still sums to 1.

Non-negative vectors that sum to 1 are called probability vectors
or distributions.
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Stochastic matrices

Stochastic matrices

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and |λ| ≤ 1 for
any other eigenvalue λ. Moreover, if A is positive,

▶ 1 is the dominant eigenvalue

▶ 1 has a positive eigenvector v (a steady state)

▶ no other eigenvalue has positive eigenvectors.

▶ If we take v to sum to 1, then v is called the stationary
distribution and

limAk = (v v . . . v)

and limAkx = v

for any probability vector x,

▶ and the distribution of x(k) tends to v: x(k)∑
i xi (k)

∼ v.
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