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LDefinition and examples
: :

Example: Population growth (Leslie model)
The Vollmar-Wasserman beetles (revisited)
» x; = number of youths (beetles 0 to 1 years old)
> x; = number of juveniles (beetles 1 to 2 year old)
» x3 = number of adults (beetles 2 to 3 year old)
X1
We put these numbers in a vector x = | x»
X3
We want to study the number of youths, juveniles and adults in a
certain year k, assuming that this year is k = 0.
We write x;(k) for the quantity x; in year k, and also write this
information as a vector x(k):

x1 (k)
x(k) = | x2(k)
x3(k)
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We know that:

x1(k 4 1) 0 4 3\ /x(k)
xalk+1) | =05 0 0] | x(k)] thisis, x(k+1) = Ax(k)
<X3(k + 1)) \( 0 0.25 0) (Xg(k))
A




LDefinition and examples
: :

Definition

Definition
A homogeneous linear discrete dynamical system is a matrix
equation of the form

x(k+1)=Ax(k), keN,
where A is an n X n square matrix , and

x1(k)
x(k) = : e R".
xn(k)
The vector x(0) is called an initial condition.

A solution (or trajectory) is a collection of vectors {x(k)}x>o such
that each x(k) satisfies the equation above.
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Solutions

Lemma
The solutions to the system x(k + 1) = Ax(k) are {x(k)}k>0 with

x(k) = A*x(0), k > 1.
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Solutions

Lemma
The solutions to the system x(k + 1) = Ax(k) are {x(k)}k>0 with

x(k) = A*x(0), k > 1.

» There's a unique solution with given initial condition x(0).

» The constant solutions x(k) = x for all k are called steady
states.

> If x is a steady state = x = Ax, so x is either 0 or an
eigenvector of A of eigenvalue 1.
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Example
40
In the previous example, if x(0) = | 40 | , then:
20

40 220 110 455
x(0)=] 40 | ,x(1)=Ax(0)=| 20 |,x(2)=A%x(0)=| 110 |,x(3)=| 55 |,...
20 10 5 27.5

The eigenvalues of A are 1.5,—1.31, —0.19 (0 is the only steady
state in this case).
Will this population eventually survive?
» Study x(k) when k tends to infinity; this is called the
long-term behavior (or asymptotic behavior) of the system.
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40
In the previous example, if x(0) = | 40 | , then:
20

40 220 110 455
x(0)=] 40 | ,x(1)=Ax(0)=| 20 |,x(2)=A%x(0)=| 110 |,x(3)=| 55 |,...
20 10 5 27.5

The eigenvalues of A are 1.5,—1.31, —0.19 (0 is the only steady
state in this case).
Will this population eventually survive?
» Study x(k) when k tends to infinity; this is called the
long-term behavior (or asymptotic behavior) of the system.
> As x(k) = Akx(0), we need to compute powers of matrices
and study its limit when k tends to infinite.
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Example (cont.)

40
In the previous example, if x(0) = [ 40 | , then:
20
4571.91 301860.73 17971431.25
x(10)=A"%(0)=( 2162.37 [,x(20)=| 110036.15 |,x(30)=| 6129573.17 |,...
238.50 16541.80 995030.54

it seems to go to infinite. But, the proportion between populations
seems to stabilize:

s g0 g0 200 — 06558 210 — 93100 209 — 00342

@@ 2D = 07046 229 — 02568 2% — 00386

x1B30) _ 97161 239 _ 90442 M = 0.0397
s s S

5:=x1(30)4x2(30)+x3(30)=
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Example (cont.)

Also the rate between x(k) and x(k + 1) (the “growth rate")

seems to have a tendency:

x1(31) _ x2(31)
(@) = 1623 5050)
xi(41) _ x2(41)
Xi(40) = 1.507 X§(40)

=1.372
=1.491

x3(31)
x3(30)
x3(41)
x3(40)

= 1.663
=1.510

This is all related to eigenvectors and eigenvalues!
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L Long-term behavior

Diagonalizable matrices: long-term behavior.
Example: x(k + 1) = Ax(k) where

A 0.65 —0.15
- \-0.15 065 /°
Solutions: x(k) = A¥x(0). To compute A¥: diagonalize A.
» The eigenvalues of A are 0.8 and 0.5 with respective

. -1 1
eigenvectors and v; = 1 and v» = 1)
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Diagonalizable matrices: long-term behavior.
Example: x(k + 1) = Ax(k) where

A 0.65 —0.15
- \-0.15 065 /°
Solutions: x(k) = A¥x(0). To compute A¥: diagonalize A.
» The eigenvalues of A are 0.8 and 0.5 with respective

. -1 1
eigenvectors and v; = 1 and v» = 1)

» We write x(0) in the basis v1, v»: x(0) = c1vi + cpva. For ex.,

if x(0) = ( 31), then c; =2, & =1 ,x(0) = 2v; + 1ws.
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Diagonalizable matrices: long-term behavior.
Example: x(k + 1) = Ax(k) where

A 0.65 —0.15
- \-0.15 065 /°
Solutions: x(k) = A¥x(0). To compute A¥: diagonalize A.
» The eigenvalues of A are 0.8 and 0.5 with respective

. -1 1
eigenvectors and v; = 1 and v» = 1)

» We write x(0) in the basis v1, v»: x(0) = c1vi + cpva. For ex.,
if x(0) = <_31) then c; =2, & =1 ,x(0) = 2v; + 1ws.
> As Av; = \jv;, we have:

X(k) = AkX(O) = Ak(cl v1-|-C2V2) = C1AkV1+C2AkV2 = Cl)\ll(V1+C2)\l2(

x(k) = ¢,0.8% (_11> + 0.5% G) — <8) .
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Diagonalizable matrices: long-term behavior

If the system is x(k + 1) = Ax(k) and A diagonalizes, to study the
long-term behavior of the solutions x(k) = A*x(0) depending on
x(0) we do:
» Compute and order the eigenvalues such that
A1 > [A2] = .o [ Anl.
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Diagonalizable matrices: long-term behavior

If the system is x(k + 1) = Ax(k) and A diagonalizes, to study the
long-term behavior of the solutions x(k) = A*x(0) depending on
x(0) we do:
» Compute and order the eigenvalues such that
A1 > [A2] = .o [ Anl.
» Compute the corresponding basis of eigenvectors
v={vi,...,Vn}
» Compute the coordinates of x(0) in the basis vi, ..., v,:
X(O) =Cv1+ -+ ChVp.
» Then, as Av; = \jv;, the solutions x(k) are:

x(k) = Akx(0) = AX(civi+- - +cavn) = aAfvi+ -+, ARy, =

= cl)\’fvl + -+ cn)\ﬁv,,.
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As matrices
If A= PDP~1, D = diag(\1,..., ), P = Avse

P= (vl v,,),

then AX = PD¥P~1. Given x(0), if P~1x(0) =

a

)\/1( C1 Cl)\lf
= x(k) = PD*P™'x(0) = P =P

n

Cl)\ll(
X(k)(vl Vn) ol =ad v ek [ v
caAk
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Long-term behavior

We have [A1] > |\2| > ... |A,| and
x(k) = a vy + -+ kv,

note that:
> if x(0) = v;, then x(k) = A\fv;.
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Long-term behavior

We have [A1] > |\2| > ... |A,| and
x(k) = a vy + -+ kv,

note that:
> if x(0) = v;, then x(k) = A\fv;.
» when |A1] > |A2|, we'll see that A\; and v; determine the
long-term behaviour
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Definition

If there is an eigenvalue \; that satisfies |A1] > |A;|, then A1 is real
and is called the dominant eigenvalue and the corresponding
eigenvalue is called the dominant eigenvector.
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L Long-term behavior

Definition

If there is an eigenvalue \; that satisfies |A1] > |A;|, then A1 is real
and is called the dominant eigenvalue and the corresponding
eigenvalue is called the dominant eigenvector.

>

>

Example: if the eigenvalues of a 4 x 4 matrix are —4,—3,1,2,
then A\ = —4 is the dominant eigenvalue.

Example: if the eigenvalues of a 4 x 4 matrix are —4,—3,1,4,
then there is no dominant eigenvalue.

Note:

If A has complex eigenvalues, |A| refers to the modulus (or
absolute value) of the complex number: |a + bi| = /a2 + b2
As A is real, non-real eigenvalues appear in conjugate pairs
(a+ bi,a — bi) and have the same modulus

Example: if the eigenvalues of a 3 x 3 matrix are 6, —1 + 2/,
—1 — 2/, then 6 is the dominant eigenvalue.

Example: if the eigenvalues of a 2 x 2 matrix are —1 + 2/,

—1 — 2/, then there is no dominant eigenvalue.
16
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Long-term behavior
If we have |A1] > |A2] > ...|An| (A1 dominant) and

x(k) = cl)\’fvl 4+ 4 c,,)\ﬁv,,,

then when k is large:
> )\’1‘ grows faster than )\f-‘ so, if c; # 0,

x(k) ~ c1\kv;  for k big, and

Special things happen with initial conditions that have ¢; = 0.
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Long-term behavior
If we have |A1] > |A2] > ...|An| (A1 dominant) and

x(k) = cl)\ll‘vl 4+ 4 c,,)\ﬁvn,

then when k is large:
> )\’f grows faster than )\f-‘ so, if c; # 0,

x(k) ~ ctA\fv;  for k big, and

> If [A1] < 1, x(k) — 0 when k — cc.
> If A1 =1 ¢ #0, then x(k) — c1v1 when k — occ.
> If [A1] > 1 and ¢ # 0, then x(k) tends to a vector with
infinite components in the direction of v;.
» the growth rate is given by \i: Xfif((t)l) ~ A1, SO
J
x(k 4+ 1) ~ A\ix(k)

Special things happen with initial conditions that have ¢; = 0.
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» Which matrices have a dominant eigenvalue?
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» Which matrices have a dominant eigenvalue?

» Which matrices have a steady state (x such that Ax = x)
different from 07 This is, which matrices have eigenvalue 17

18
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LStochastit: matrices
:

Stochastic matrices

Definition
A (column) stochastic matrix is a non-negative n X n matrix
whose columns sum to 1.

A similar definition can be made for rows.
As columns sum to 1, if A is a stochastic matrix we have:

1 1
1 1
Af =|.
1 1

Thus, 1 is an eigenvalue of A* and (11...1)" is a positive
eigenvector for At

20



LStochastic matrices

Properties of stochastic matrices

» 1 is an eigenvalue of A

21
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Properties of stochastic matrices

» 1 is an eigenvalue of A
» If x sums to 1, then Ax still sums to 1.

Non-negative vectors that sum to 1 are called probability vectors
or distributions.

21
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Stochastic matrices

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and |\| <1 for
any other eigenvalue A\. Moreover, if A is positive,
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Stochastic matrices

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and |\| <1 for
any other eigenvalue A\. Moreover, if A is positive,

» 1 is the dominant eigenvalue
» 1 has a positive eigenvector v (a steady state)
» no other eigenvalue has positive eigenvectors.

» [If we take v to sum to 1, then v is called the stationary
distribution and

limAK = (vv...v)

and limAfx = v

for any probability vector x,
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Stochastic matrices

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and |\| <1 for
any other eigenvalue A\. Moreover, if A is positive,

» 1 is the dominant eigenvalue

» 1 has a positive eigenvector v (a steady state)
» no other eigenvalue has positive eigenvectors.
>

If we take v to sum to 1, then v is called the stationary
distribution and

limAK = (vv...v)
and  limAfx = v

for any probability vector x,

» and the distribution of x(k) tends to v: % ~ V.
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