Linear discrete dynamical systems

Bioinformatics Degree Algebra

Departament de Matemàtiques

1

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Example: Population growth (Leslie model)

The Vollmar-Wasserman beetles (revisited)

- $ightharpoonup x_1 = \text{number of youths (beetles 0 to 1 years old)}$
- $ightharpoonup x_2 = \text{number of juveniles (beetles 1 to 2 year old)}$
- $ightharpoonup x_3 = \text{number of adults (beetles 2 to 3 year old)}$

We put these numbers in a vector
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
.

We want to study the number of youths, juveniles and adults in a certain year k, assuming that this year is k = 0.

We write $x_i(k)$ for the quantity x_i in year k, and also write this information as a vector x(k):

$$x(k) = \begin{pmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{pmatrix}.$$

4

We know that:

$$\begin{pmatrix} x_1(k+1) \\ x_2(k+1) \\ x_3(k+1) \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 4 & 3 \\ 0.5 & 0 & 0 \\ 0 & 0.25 & 0 \end{pmatrix}}_{} \begin{pmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{pmatrix} \text{ this is, } \mathbf{x}(k+1) = A\mathbf{x}(k)$$

5

Definition

A homogeneous linear discrete dynamical system is a matrix equation of the form

$$x(k+1) = Ax(k), \quad k \in \mathbb{N},$$

where A is an $n \times n$ square matrix, and

$$\mathbf{x}(k) = \begin{pmatrix} x_1(k) \\ \vdots \\ x_n(k) \end{pmatrix} \in \mathbb{R}^n.$$

The vector $\mathbf{x}(0)$ is called an **initial condition**.

A **solution** (or trajectory) is a collection of vectors $\{x(k)\}_{k\geq 0}$ such that each x(k) satisfies the equation above.

Lemma

The solutions to the system $\mathbf{x}(k+1) = A\mathbf{x}(k)$ are $\{\mathbf{x}(k)\}_{k\geq 0}$ with $\mathbf{x}(k) = A^k\mathbf{x}(0), \ k\geq 1.$

- ▶ There's a unique solution with given initial condition x(0).
- ▶ The constant solutions x(k) = x for all k are called steady states.
- ▶ If x is a steady state \Rightarrow x = Ax, so x is either 0 or an eigenvector of A of eigenvalue 1.

7

Lemma

The solutions to the system $x(k+1)=A\,x(k)$ are $\{x(k)\}_{k\geq 0}$ with $x(k)=A^kx(0),\ k\geq 1.$

- ▶ There's a unique solution with given initial condition x(0).
- ► The constant solutions x(k) = x for all k are called steady states.
- ▶ If x is a steady state \Rightarrow x = Ax, so x is either 0 or an eigenvector of A of eigenvalue 1.

Lemma

The solutions to the system $\mathbf{x}(k+1) = A\mathbf{x}(k)$ are $\{\mathbf{x}(k)\}_{k\geq 0}$ with $\mathbf{x}(k) = A^k\mathbf{x}(0), \ k\geq 1.$

- ▶ There's a unique solution with given initial condition x(0).
- ► The constant solutions x(k) = x for all k are called steady states.
- If x is a steady state \Rightarrow x = Ax, so x is either 0 or an eigenvector of A of eigenvalue 1.

Lemma

The solutions to the system $\mathbf{x}(k+1) = A\mathbf{x}(k)$ are $\{\mathbf{x}(k)\}_{k\geq 0}$ with $\mathbf{x}(k) = A^k\mathbf{x}(0), \ k \geq 1.$

- ▶ There's a unique solution with given initial condition x(0).
- ▶ The constant solutions x(k) = x for all k are called steady states.
- ▶ If x is a steady state \Rightarrow x = Ax, so x is either 0 or an eigenvector of A of eigenvalue 1.

7

Example

In the previous example, if $x(0) = \begin{pmatrix} 40 \\ 40 \\ 20 \end{pmatrix}$, then:

$$\mathbf{x}(0) = \begin{pmatrix} 40 \\ 40 \\ 20 \end{pmatrix}, \mathbf{x}(1) = A\mathbf{x}(0) = \begin{pmatrix} 220 \\ 20 \\ 10 \end{pmatrix}, \mathbf{x}(2) = A^2\mathbf{x}(0) = \begin{pmatrix} 110 \\ 110 \\ 5 \end{pmatrix}, \mathbf{x}(3) = \begin{pmatrix} 455 \\ 55 \\ 27.5 \end{pmatrix}, \dots$$

The eigenvalues of A are 1.5, -1.31, -0.19 (0 is the only steady state in this case).

Will this population eventually survive?

- ➤ Study x(k) when k tends to infinity; this is called the long-term behavior (or asymptotic behavior) of the system.
- As $x(k) = A^k x(0)$, we need to compute powers of matrices and study its limit when k tends to infinite.

Example

In the previous example, if $x(0) = \begin{pmatrix} 40 \\ 40 \\ 20 \end{pmatrix}$, then:

$$\mathbf{x}(0) = \begin{pmatrix} 40 \\ 40 \\ 20 \end{pmatrix}, \mathbf{x}(1) = A\mathbf{x}(0) = \begin{pmatrix} 220 \\ 20 \\ 10 \end{pmatrix}, \mathbf{x}(2) = A^2\mathbf{x}(0) = \begin{pmatrix} 110 \\ 110 \\ 5 \end{pmatrix}, \mathbf{x}(3) = \begin{pmatrix} 455 \\ 55 \\ 27.5 \end{pmatrix}, \dots$$

The eigenvalues of A are 1.5, -1.31, -0.19 (0 is the only steady state in this case).

Will this population eventually survive?

- ► Study x(k) when k tends to infinity; this is called the long-term behavior (or asymptotic behavior) of the system.
- As $x(k) = A^k x(0)$, we need to compute powers of matrices and study its limit when k tends to infinite.

Example (cont.)

In the previous example, if $x(0) = \begin{pmatrix} 40 \\ 40 \\ 20 \end{pmatrix}$, then:

$$\mathbf{x}(10) = A^{10}\mathbf{x}(0) = \begin{pmatrix} 4571.91 \\ 2162.37 \\ 238.50 \end{pmatrix}, \mathbf{x}(20) = \begin{pmatrix} 301860.73 \\ 110036.15 \\ 16541.80 \end{pmatrix}, \mathbf{x}(30) = \begin{pmatrix} 17971431.25 \\ 6129573.17 \\ 995030.54 \end{pmatrix}, \dots$$

it seems to go to infinite. But, the proportion between populations seems to stabilize:

$$\begin{array}{lll} s:=x_1(10)+x_2(10)+x_3(10) \Rightarrow & \frac{x_1(10)}{s} = 0.6558 & \frac{x_2(10)}{s} = 0.3100 & \frac{x_3(10)}{s} = 0.0342 \\ s:=x_1(20)+x_2(20)+x_3(20) \Rightarrow & \frac{x_1(20)}{s} = 0.7046 & \frac{x_2(20)}{s} = 0.2568 & \frac{x_3(20)}{s} = 0.0386 \\ s:=x_1(30)+x_2(30)+x_3(30) \Rightarrow & \frac{x_1(30)}{s} = 0.7161 & \frac{x_2(30)}{s} = 0.2442 & \frac{x_3(30)}{s} = 0.0397 \end{array}$$

g

Example (cont.)

Also the rate between x(k) and x(k+1) (the "growth rate") seems to have a tendency:

$$\begin{array}{l} \frac{x_1(31)}{x_1(30)} = 1.623 \quad \frac{x_2(31)}{x_2(30)} = 1.372 \quad \frac{x_3(31)}{x_3(30)} = 1.663 \\ \frac{x_1(41)}{x_1(40)} = 1.507 \quad \frac{x_2(41)}{x_2(40)} = 1.491 \quad \frac{x_3(41)}{x_3(40)} = 1.510 \end{array}$$

This is all related to eigenvectors and eigenvalues!

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Example: x(k+1) = Ax(k) where

$$A = \begin{pmatrix} 0.65 & -0.15 \\ -0.15 & 0.65 \end{pmatrix}.$$

Solutions: $x(k) = A^k x(0)$. To compute A^k : diagonalize A.

- The eigenvalues of A are 0.8 and 0.5 with respective eigenvectors and $v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- We write x(0) in the basis v_1, v_2 : $x(0) = c_1v_1 + c_2v_2$. For ex., if $x(0) = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$, then $c_1 = 2$, $c_2 = 1$, $x(0) = 2v_1 + 1v_2$.
- As $Av_i = \lambda_i v_i$, we have:

$$\mathbf{x}(k) = A^{k}\mathbf{x}(0) = A^{k}(c_{1}v_{1} + c_{2}v_{2}) = c_{1}A^{k}v_{1} + c_{2}A^{k}v_{2} = c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}$$
$$\mathbf{x}(k) = c_{1}0.8^{k} \begin{pmatrix} -1\\ 1 \end{pmatrix} + c_{2}0.5^{k} \begin{pmatrix} 1\\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

Example: x(k+1) = Ax(k) where

$$A = \begin{pmatrix} 0.65 & -0.15 \\ -0.15 & 0.65 \end{pmatrix}.$$

Solutions: $x(k) = A^k x(0)$. To compute A^k : diagonalize A.

- The eigenvalues of A are 0.8 and 0.5 with respective eigenvectors and $v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- We write x(0) in the basis v_1, v_2 : $x(0) = c_1v_1 + c_2v_2$. For ex., if $x(0) = {1 \choose 3}$, then $c_1 = 2$, $c_2 = 1$, $x(0) = 2v_1 + 1v_2$.
- As $Av_i = \lambda_i v_i$, we have:

$$\mathbf{x}(k) = A^{k}\mathbf{x}(0) = A^{k}(c_{1}v_{1} + c_{2}v_{2}) = c_{1}A^{k}v_{1} + c_{2}A^{k}v_{2} = c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}$$
$$\mathbf{x}(k) = c_{1}0.8^{k} \begin{pmatrix} -1\\1 \end{pmatrix} + c_{2}0.5^{k} \begin{pmatrix} 1\\1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\0 \end{pmatrix}.$$

Example: x(k+1) = Ax(k) where

$$A = \begin{pmatrix} 0.65 & -0.15 \\ -0.15 & 0.65 \end{pmatrix}.$$

Solutions: $x(k) = A^k x(0)$. To compute A^k : diagonalize A.

- The eigenvalues of A are 0.8 and 0.5 with respective eigenvectors and $v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- We write x(0) in the basis v_1, v_2 : x(0) = $c_1v_1 + c_2v_2$. For ex., if x(0) = $\binom{-1}{3}$, then $c_1 = 2$, $c_2 = 1$, x(0) = $2v_1 + 1v_2$.
- As $Av_i = \lambda_i v_i$, we have:

$$\mathbf{x}(k) = A^k \mathbf{x}(0) = A^k (c_1 v_1 + c_2 v_2) = c_1 A^k v_1 + c_2 A^k v_2 = c_1 \lambda_1^k v_1 + c_2 \lambda_2^k$$
 $\mathbf{x}(k) = c_1 0.8^k \begin{pmatrix} -1 \\ 1 \end{pmatrix} + c_2 0.5^k \begin{pmatrix} 1 \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$

- ► Compute and order the eigenvalues such that $|\lambda_1| \ge |\lambda_2| \ge \dots |\lambda_n|$.
- Compute the corresponding basis of eigenvectors $\mathbf{v} = \{v_1, \dots, v_n\}.$
- Compute the coordinates of x(0) in the basis v_1, \ldots, v_n : $x(0) = c_1v_1 + \cdots + c_nv_n$.
- ▶ Then, as $Av_i = \lambda_i v_i$, the solutions $\mathbf{x}(k)$ are:

$$\mathbf{x}(k) = A^{k}\mathbf{x}(0) = A^{k}(c_{1}v_{1} + \dots + c_{n}v_{n}) = c_{1}A^{k}v_{1} + \dots + c_{n}A^{k}v_{n} =$$

$$= c_{1}\lambda_{1}^{k}v_{1} + \dots + c_{n}\lambda_{n}^{k}v_{n}.$$

- ► Compute and order the eigenvalues such that $|\lambda_1| \ge |\lambda_2| \ge \dots |\lambda_n|$.
- Compute the corresponding basis of eigenvectors $\mathbf{v} = \{v_1, \dots, v_n\}.$
- Compute the coordinates of x(0) in the basis v_1, \ldots, v_n : $x(0) = c_1v_1 + \cdots + c_nv_n$.
- ► Then, as $Av_i = \lambda_i v_i$, the solutions $\mathbf{x}(k)$ are:

$$\mathbf{x}(k) = A^{k}\mathbf{x}(0) = A^{k}(c_{1}v_{1} + \dots + c_{n}v_{n}) = c_{1}A^{k}v_{1} + \dots + c_{n}A^{k}v_{n} =$$

$$= c_{1}\lambda_{1}^{k}v_{1} + \dots + c_{n}\lambda_{n}^{k}v_{n}.$$

- Compute and order the eigenvalues such that $|\lambda_1| \ge |\lambda_2| \ge \dots |\lambda_n|$.
- Compute the corresponding basis of eigenvectors $\mathbf{v} = \{v_1, \dots, v_n\}.$
- Compute the coordinates of x(0) in the basis v_1, \ldots, v_n : $x(0) = c_1v_1 + \cdots + c_nv_n$.
- ► Then, as $Av_i = \lambda_i v_i$, the solutions $\mathbf{x}(k)$ are:

$$\mathbf{x}(k) = A^{k}\mathbf{x}(0) = A^{k}(c_{1}v_{1} + \dots + c_{n}v_{n}) = c_{1}A^{k}v_{1} + \dots + c_{n}A^{k}v_{n} =$$

$$= c_{1}\lambda_{1}^{k}v_{1} + \dots + c_{n}\lambda_{n}^{k}v_{n}.$$

- Compute and order the eigenvalues such that $|\lambda_1| \ge |\lambda_2| \ge \dots |\lambda_n|$.
- Compute the corresponding basis of eigenvectors $\mathbf{v} = \{v_1, \dots, v_n\}.$
- Compute the coordinates of x(0) in the basis v_1, \ldots, v_n : $x(0) = c_1v_1 + \cdots + c_nv_n$.
- ▶ Then, as $Av_i = \lambda_i v_i$, the solutions x(k) are:

$$x(k) = A^{k}x(0) = A^{k}(c_{1}v_{1} + \dots + c_{n}v_{n}) = c_{1}A^{k}v_{1} + \dots + c_{n}A^{k}v_{n} =$$

$$= c_{1}\lambda_{1}^{k}v_{1} + \dots + c_{n}\lambda_{n}^{k}v_{n}.$$

As matrices

If $A = PDP^{-1}$, $D = diag(\lambda_1, \dots, \lambda_n)$, $P = A_{\mathbf{v} \to e}$

$$P = \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix}, \quad P = A_n$$

then
$$A^k = PD^kP^{-1}$$
. Given $\mathbf{x}(0)$, if $P^{-1}\mathbf{x}(0) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$

$$\Rightarrow \mathbf{x}(k) = PD^kP^{-1}\mathbf{x}(0) = P\begin{pmatrix} \lambda_1^k \\ \vdots \\ \lambda_n^k \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ \vdots \\ c_n \end{pmatrix} = PD^kP^{-1}\mathbf{x}(0) = PD^k$$

$$\Rightarrow \mathbf{x}(k) = PD^{k}P^{-1}\mathbf{x}(0) = P\begin{pmatrix} \lambda_{1}^{k} & & \\ & \ddots & \\ & & \lambda_{n}^{k} \end{pmatrix} \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} \end{pmatrix} = P\begin{pmatrix} c_{1}\lambda_{1}^{k} \\ \vdots \\ c_{n}\lambda_{n}^{k} \end{pmatrix},$$

$$\Rightarrow \mathbf{x}(k) = PD^{k}P^{-1}\mathbf{x}(0) = P\begin{pmatrix} v_{1} & & \\ & \ddots & \\ & & \lambda_{n}^{k} \end{pmatrix} \begin{pmatrix} c_{1} & \\ \vdots & \\ c_{n} & \lambda_{n}^{k} \end{pmatrix} = P\begin{pmatrix} c_{1} & \\ \vdots & \\ c_{n} & \lambda_{n}^{k} \end{pmatrix},$$

$$\mathbf{x}(k) = \begin{pmatrix} v_{1} & \dots & v_{n} \end{pmatrix} \begin{pmatrix} c_{1} & \lambda_{1}^{k} \\ \vdots & \\ c_{n} & \lambda_{n}^{k} \end{pmatrix} = c_{1} & \lambda_{1}^{k} \begin{pmatrix} v_{1} \\ \end{pmatrix} + \dots + c_{n} & \lambda_{n}^{k} \begin{pmatrix} v_{n} \\ \end{pmatrix}.$$

We have
$$|\lambda_1| \geq |\lambda_2| \geq \dots |\lambda_n|$$
 and

$$x(k) = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n,$$

note that:

- if $x(0) = v_i$, then $x(k) = \lambda_i^k v_i$.
- when $|\lambda_1| > |\lambda_2|$, we'll see that λ_1 and v_1 determine the long-term behaviour

We have $|\lambda_1| \geq |\lambda_2| \geq \dots |\lambda_n|$ and

$$x(k) = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n,$$

note that:

- if $x(0) = v_i$, then $x(k) = \lambda_i^k v_i$.
- when $|\lambda_1| > |\lambda_2|$, we'll see that λ_1 and v_1 determine the long-term behaviour

- Example: if the eigenvalues of a 4 \times 4 matrix are -4, -3, 1, 2, then $\lambda_1 = -4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are -4, -3, 1, 4, then there is no dominant eigenvalue. Note:
- If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a + bi| = \sqrt{a^2 + b^2}$
- As A is real, non-real eigenvalues appear in conjugate pairs (a + bi, a bi) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are 6, -1 + 2i, -1 2i, then 6 is the dominant eigenvalue.
- Example: if the eigenvalues of a 2×2 matrix are -1 + 2i, -1 2i, then there is no dominant eigenvalue.

- ► Example: if the eigenvalues of a 4 × 4 matrix are -4, -3, 1, 2, then $\lambda_1 = -4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are -4, -3, 1, 4, then there is no dominant eigenvalue. Note:
- ▶ If *A* has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a + bi| = \sqrt{a^2 + b^2}$
- As A is real, non-real eigenvalues appear in conjugate pairs (a + bi, a bi) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are 6, -1 + 2i, -1 2i, then 6 is the dominant eigenvalue.
- Example: if the eigenvalues of a 2×2 matrix are -1 + 2i, -1 2i, then there is no dominant eigenvalue.

- ► Example: if the eigenvalues of a 4 × 4 matrix are -4, -3, 1, 2, then $\lambda_1 = -4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4 × 4 matrix are −4, −3, 1, 4, then there is no dominant eigenvalue.
 Note:
- ▶ If *A* has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a + bi| = \sqrt{a^2 + b^2}$
- As A is real, non-real eigenvalues appear in conjugate pairs (a + bi, a bi) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are 6, -1 + 2i, -1 2i, then 6 is the dominant eigenvalue.
- Example: if the eigenvalues of a 2×2 matrix are -1 + 2i, -1 2i, then there is no dominant eigenvalue.

- ► Example: if the eigenvalues of a 4 × 4 matrix are -4, -3, 1, 2, then $\lambda_1 = -4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4 × 4 matrix are −4, −3, 1, 4, then there is no dominant eigenvalue.
 Note:
- ▶ If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a + bi| = \sqrt{a^2 + b^2}$
- As A is real, non-real eigenvalues appear in conjugate pairs (a + bi, a bi) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are 6, -1 + 2i, -1 2i, then 6 is the dominant eigenvalue.
- ▶ Example: if the eigenvalues of a 2×2 matrix are -1 + 2i, -1 2i, then there is no dominant eigenvalue.

- ► Example: if the eigenvalues of a 4 × 4 matrix are -4, -3, 1, 2, then $\lambda_1 = -4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are -4, -3, 1, 4, then there is no dominant eigenvalue. Note:
- ▶ If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a + bi| = \sqrt{a^2 + b^2}$
- As A is real, non-real eigenvalues appear in conjugate pairs (a + bi, a bi) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are 6, -1 + 2i, -1 2i, then 6 is the dominant eigenvalue.
- Example: if the eigenvalues of a 2×2 matrix are -1 + 2i, -1 2i, then there is no dominant eigenvalue.

- ► Example: if the eigenvalues of a 4 × 4 matrix are -4, -3, 1, 2, then $\lambda_1 = -4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are -4, -3, 1, 4, then there is no dominant eigenvalue. Note:
- ▶ If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a + bi| = \sqrt{a^2 + b^2}$
- As A is real, non-real eigenvalues appear in conjugate pairs (a + bi, a bi) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are 6, -1 + 2i, -1 2i, then 6 is the dominant eigenvalue.
- Example: if the eigenvalues of a 2×2 matrix are -1 + 2i, -1 2i, then there is no dominant eigenvalue.

- ▶ Example: if the eigenvalues of a 4 × 4 matrix are -4, -3, 1, 2, then $\lambda_1 = -4$ is the dominant eigenvalue.
- Example: if the eigenvalues of a 4×4 matrix are -4, -3, 1, 4, then there is no dominant eigenvalue. Note:
- ▶ If A has complex eigenvalues, $|\lambda|$ refers to the modulus (or absolute value) of the complex number: $|a + bi| = \sqrt{a^2 + b^2}$
- As A is real, non-real eigenvalues appear in conjugate pairs (a + bi, a bi) and have the same modulus
- Example: if the eigenvalues of a 3×3 matrix are 6, -1 + 2i, -1 2i, then 6 is the dominant eigenvalue.
- Example: if the eigenvalues of a 2×2 matrix are -1 + 2i, -1 2i, then there is no dominant eigenvalue.

If we have $|\lambda_1| > |\lambda_2| \ge \dots |\lambda_n|$ (λ_1 dominant) and

$$\mathbf{x}(k) = c_1 \lambda_1^k \mathbf{v}_1 + \cdots + c_n \lambda_n^k \mathbf{v}_n,$$

then when k is large:

 λ_1^k grows faster than λ_i^k so, if $c_1 \neq 0$,

$$\mathbf{x}(k) \sim c_1 \lambda_1^k v_1$$
 for k big, and

- ▶ If $|\lambda_1| < 1$, $\mathbf{x}(k) \to 0$ when $k \to \infty$.
- ▶ If $\lambda_1 = 1$ $c_1 \neq 0$, then $x(k) \rightarrow c_1 v_1$ when $k \rightarrow \infty$.
- If $|\lambda_1| > 1$ and $c_1 \neq 0$, then x(k) tends to a vector with infinite components in the direction of v_1 .
- ▶ the **growth rate** is given by λ_1 : $\frac{\mathbf{x}_j(k+1)}{\mathbf{x}_j(k)} \sim \lambda_1$, so $\mathbf{x}(k+1) \sim \lambda_1 \mathbf{x}(k)$

If we have $|\lambda_1| > |\lambda_2| \ge \dots |\lambda_n|$ (λ_1 dominant) and

$$\mathbf{x}(k) = c_1 \lambda_1^k \mathbf{v}_1 + \cdots + c_n \lambda_n^k \mathbf{v}_n,$$

then when k is large:

 λ_1^k grows faster than λ_i^k so, if $c_1 \neq 0$,

$$\mathbf{x}(k) \sim c_1 \lambda_1^k v_1$$
 for k big, and

- ▶ If $|\lambda_1| < 1$, $x(k) \to 0$ when $k \to \infty$.
- ▶ If $\lambda_1 = 1$ $c_1 \neq 0$, then $x(k) \rightarrow c_1 v_1$ when $k \rightarrow \infty$.
- If $|\lambda_1| > 1$ and $c_1 \neq 0$, then x(k) tends to a vector with infinite components in the direction of v_1 .
- ▶ the **growth rate** is given by λ_1 : $\frac{\mathbf{x}_j(k+1)}{\mathbf{x}_j(k)} \sim \lambda_1$, so $\mathbf{x}(k+1) \sim \lambda_1 \mathbf{x}(k)$

If we have $|\lambda_1| > |\lambda_2| \ge \dots |\lambda_n|$ (λ_1 dominant) and

$$x(k) = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n,$$

then when k is large:

 \triangleright λ_1^k grows faster than λ_i^k so, if $c_1 \neq 0$,

$$x(k) \sim c_1 \lambda_1^k v_1$$
 for k big, and

- ▶ If $|\lambda_1| < 1$, $x(k) \to 0$ when $k \to \infty$.
- ▶ If $\lambda_1 = 1$ $c_1 \neq 0$, then $x(k) \rightarrow c_1 v_1$ when $k \rightarrow \infty$.
- If $|\lambda_1| > 1$ and $c_1 \neq 0$, then x(k) tends to a vector with infinite components in the direction of v_1 .
- ▶ the **growth rate** is given by λ_1 : $\frac{x_j(k+1)}{x_j(k)} \sim \lambda_1$, so $x(k+1) \sim \lambda_1 x(k)$

If we have $|\lambda_1| > |\lambda_2| \ge \dots |\lambda_n|$ (λ_1 dominant) and

$$x(k) = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n,$$

then when k is large:

 λ_1^k grows faster than λ_i^k so, if $c_1 \neq 0$,

$$\mathbf{x}(k) \sim c_1 \lambda_1^k v_1$$
 for k big, and

- If $|\lambda_1| < 1$, $x(k) \to 0$ when $k \to \infty$.
- ▶ If $\lambda_1 = 1$ $c_1 \neq 0$, then $x(k) \rightarrow c_1 v_1$ when $k \rightarrow \infty$.
- If $|\lambda_1| > 1$ and $c_1 \neq 0$, then x(k) tends to a vector with infinite components in the direction of v_1 .
- ▶ the **growth rate** is given by λ_1 : $\frac{\mathbf{x}_j(k+1)}{\mathbf{x}_j(k)} \sim \lambda_1$, so $\mathbf{x}(k+1) \sim \lambda_1 \mathbf{x}(k)$

Long-term behavior

If we have $|\lambda_1| > |\lambda_2| \ge \dots |\lambda_n|$ (λ_1 dominant) and

$$x(k) = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n,$$

then when k is large:

 $\triangleright \lambda_1^k$ grows faster than λ_i^k so, if $c_1 \neq 0$,

$$x(k) \sim c_1 \lambda_1^k v_1$$
 for k big, and

- ▶ If $|\lambda_1| < 1$, $x(k) \to 0$ when $k \to \infty$.
- ▶ If $\lambda_1 = 1$ $c_1 \neq 0$, then $x(k) \rightarrow c_1 v_1$ when $k \rightarrow \infty$.
- ▶ If $|\lambda_1| > 1$ and $c_1 \neq 0$, then x(k) tends to a vector with infinite components in the direction of v_1 .
- ▶ the **growth rate** is given by λ_1 : $\frac{x_j(k+1)}{x_j(k)} \sim \lambda_1$, so $x(k+1) \sim \lambda_1 x(k)$

Special things happen with initial conditions that have $c_1 = 0$.

- ▶ Which matrices have a dominant eigenvalue?
- Which matrices have a steady state (x such that Ax = x) different from 0? This is, which matrices have eigenvalue 1?

- ▶ Which matrices have a dominant eigenvalue?
- Which matrices have a steady state (x such that Ax = x) different from 0? This is, which matrices have eigenvalue 1?

Outline

Definition and examples

Long-term behavior

Stochastic matrices

Definition

A (column) **stochastic matrix** is a non-negative $n \times n$ matrix whose columns sum to 1.

A similar definition can be made for rows.

As columns sum to 1, if A is a stochastic matrix we have:

$$(11\dots 1)A = (11\dots 1)$$
 $A^t \begin{pmatrix} 1\\1\\\vdots \end{pmatrix} = \begin{pmatrix} 1\\1\\\vdots \end{pmatrix}$

Thus, 1 is an eigenvalue of A^t and $(11...1)^t$ is a positive eigenvector for A^t .

Properties of stochastic matrices

- ▶ 1 is an eigenvalue of A
- ightharpoonup If x sums to 1, then Ax still sums to 1.

Non-negative vectors that sum to 1 are called **probability vectors** or distributions.

Properties of stochastic matrices

- ▶ 1 is an eigenvalue of A
- ▶ If x sums to 1, then Ax still sums to 1.

Non-negative vectors that sum to 1 are called **probability vectors** or distributions.

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ . Moreover, if A is positive,

- ▶ 1 is the dominant eigenvalue
- 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- ► If we take v to sum to 1, then v is called the stationary distribution and

$$\lim A^k = (v \ v \dots v)$$

and
$$\lim A^k \mathbf{x} = \mathbf{v}$$

- for any probability vector x,
- ▶ and the distribution of $\mathbf{x}(k)$ tends to $v: \frac{\mathbf{x}(k)}{\sum_{i} x_{i}(k)} \sim v$

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ . Moreover, if A is positive,

- ▶ 1 is the dominant eigenvalue
- 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- ► If we take v to sum to 1, then v is called the stationary distribution and

$$\lim A^k = (v \ v \dots v)$$
and
$$\lim A^k \mathbf{x} = v$$

for any probability vector x,

lacktriangle and the distribution of ${f x}(k)$ tends to $v\colon rac{{f x}(k)}{\sum_i ec s_i(k)} \sim v$

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ . Moreover, if A is positive,

- ▶ 1 is the dominant eigenvalue
- ▶ 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- ► If we take v to sum to 1, then v is called the stationary distribution and

$$\lim A^k = (v \ v \dots v)$$
and
$$\lim A^k \mathbf{x} = v$$

for any probability vector x,

lacktriangle and the distribution of $\mathrm{x}(k)$ tends to $v\colon rac{\mathrm{x}(k)}{\sum_i x_i(k)} \sim v$

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ . Moreover, if A is positive,

- 1 is the dominant eigenvalue
- ▶ 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- ► If we take v to sum to 1, then v is called the stationary distribution and

$$\lim A^k = (v \ v \dots v)$$
and
$$\lim A^k \mathbf{x} = v$$

for any probability vector x,

▶ and the distribution of $\mathbf{x}(k)$ tends to \mathbf{v} : $\frac{\mathbf{x}(k)}{\sum_i x_i(k)} \sim \mathbf{v}$.

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \leq 1$ for any other eigenvalue λ . Moreover, if A is positive,

- 1 is the dominant eigenvalue
- ▶ 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- ► If we take v to sum to 1, then v is called the stationary distribution and

$$\lim A^k = (v \ v \dots v)$$
and
$$\lim A^k \mathbf{x} = v$$

for any probability vector x,

▶ and the distribution of $\mathbf{x}(k)$ tends to \mathbf{v} : $\frac{\mathbf{x}(k)}{\sum_i x_i(k)} \sim \mathbf{v}$.

Theorem (Perron-Frobenius)

If A is a stochastic matrix, then 1 is an eigenvalue and $|\lambda| \le 1$ for any other eigenvalue λ . Moreover, if A is positive,

- 1 is the dominant eigenvalue
- ▶ 1 has a positive eigenvector v (a steady state)
- no other eigenvalue has positive eigenvectors.
- ► If we take v to sum to 1, then v is called the stationary distribution and

$$\lim A^k = (v \ v \dots v)$$
and
$$\lim A^k \mathbf{x} = v$$

for any probability vector x,

▶ and the distribution of x(k) tends to $v: \frac{x(k)}{\sum_i x_i(k)} \sim v$.