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Motivation

Example: Population growth (Leslie model)

The Vollmar-Wasserman beetle lives for at most 3 years. We divide
the female VW beetles into three age classes and call:

▶ x1 = number of youths (beetles 0 to 1 years old)

▶ x2 = number of juveniles (beetles 1 to 2 year old)

▶ x3 = number of adults (beetles 2 to 3 year old)

We want to study the number of youths, juveniles and adults after
k years.
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Motivation

Example: Population growth (Leslie model)

We know that:

▶ Youths do not lay eggs. Female juveniles have an average of 4
youth females per year and female adults have an average of 3
youth females per year.

▶ The survival rate for youths is 50% (that is, the probability of
a youths surviving to become a juvenile is 0.5), and the
survival rate for juveniles is 25%.

Therefore we have:

youths next year = 4x2 + 3x3

juveniles next year = 0.5x1

adults next year = 0.25x2
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Motivation

Example: Population growth (Leslie model)

If we write the number of youths, juveniles and adults as acolumn
vector, next year we’ll have ♯youths

♯juveniles
♯adults

 =

 0 4 3
0.5 0 0
0 0.25 0


︸ ︷︷ ︸

A

x1
x2
x3

 .

Thus, next year the population will bw Ax and in k years Akx.
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Motivation

Goal: compute powers of matrices
▶ How do we compute Ak easily?
▶ If A is a diagonal matrix it is easy:

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 ⇒ Dk =


λk
1 0 . . . 0
0 λk

2 . . . 0
...

...
. . .

...
0 0 . . . λk

n


▶ If A is not diagonal but we can find a change of basis matrix

P such that P−1AP is diagonal, then A = PDP−1 and

Ak = PD(P)−1PD(P)−1 . . .PD(P)−1PD(P)−1 = PDKP−1

Ak = P


λk
1 0 . . . 0
0 λk

2 . . . 0
...

...
. . .

...
0 0 . . . λk

n

P−1
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Eigenvalues and Eigenvectors

Definitions and properties

Definition
An endomorphism of a vector space Rn is a linear map
f : Rn → Rn.

Endomorphisms ↔ square matrices.
Note: If Mv(f ) is diagonal, then f (vi ) = divi (di=ith value in the
diagonal).

Definition
A vector u ̸= 0 is an eigenvector of f : Rn → Rn with eigenvalue
λ ∈ R if f (u) = λ u. In this case, we say that λ is an eigenvalue of
f .

If A = Me(f ), u is an eigenvector of eigenvalue λ ⇔ Au = λu.
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Eigenvalues and Eigenvectors

Examples

1. Consider f (x , y) = (x , 2y). Then, the standard matrix of f is

M(f ) =

(
1 0
0 2

)
▶ e1 = (1, 0) is an eigenvector of f with eigenvalue 1, and
▶ e2 = (0, 1) is an eigenvector of f with eigenvalue 2.

10



Eigenvalues and Eigenvectors

Examples

2. Consider f (x , y) = (x + 5y , 5x + y). Then,
▶ u1 = (1, 1) is eigenvector with eigenvalue 6;
▶ u2 = (1,−1) is eigenvector with eigenvalue −4.

The standard matrix of f is

M(f ) =

(
1 5
5 1

)
.

In the basis u = {u1, u2}, the matrix of f is diagonal and
equal to

Mu,u(f )(f ) =

(
6 0
0 −4

)
.

The aim of this topic is to study the endomorphisms for which we
can obtain a basis so that the matrix is diagonal.

11



Eigenvalues and Eigenvectors

Properties

Let f be an endomorphism of Rn and let A = Me(f ).

Lemma
▶ u ∈ Rn is an eigenvector of eigenvalue λ ⇔ u ∈ Null(A− λId)

and u ̸= 0.

▶ λ is an eigenvalue of f ⇔ det(A− λId) = 0.

Definition
For each eigenvalue λ of f , Null(A− λId) is called the eigenspace
of λ and contains all eigenvectors of eigenvalue λ (plus 0).

▶ 0 is an eigenvalue of f ⇔ Null(f ) ̸= {0}.
▶ The spectrum of f is the set of all its eigenvalues; it is

denoted by σ(f ).
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Eigenvalues and Eigenvectors

Characteristic polynomial

Definition
Given an endomorphism f of Rn, let A = M(f ) be its standard
matrix. The characteristic polynomial of f is computed as

Pf (x) = det(A− xId) =

∣∣∣∣∣∣∣∣
a1,1 − x a1,2 . . . a1,n
a2,1 a2,2 − x . . . a2,n
. . . . . . . . .
an,1 an,2 . . . an,n − x

∣∣∣∣∣∣∣∣
.

▶ The roots of Pf (x) are the eigenvalues of f , that is,
λ is eigenvalue of f ⇔ Pf (λ) = 0 ⇔ det(A− λI ) = 0.

▶ Pf (x) is a polynomial of degree n.

▶ Pf (x) can be computed from the matrix of f on any basis u
of Rn: Pf (x) = det(Mu,u(f )− x Id).
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Eigenvalues and Eigenvectors

Characteristic polynomial

Example. Consider f (x , y) = (2x + 4y , x + 5y). It has standard
matrix

A =

(
2 4
1 5

)

Its characteristic polynomial is

Pf (x) =

∣∣∣∣ 2− x 4
1 5− x

∣∣∣∣ = (2− x)(5− x)− 4× 1 = x2 − 7x + 6.

The roots of this polynomial are
7±
√

(−7)2−4·6
2 , so 6 and 1. We

have Pf (x) = (x − 6)(x − 1).
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Eigenvalues and Eigenvectors

Roots of polynomials

A root or zero of a polynomial p(x) is a number a such that
p(a) = 0.
Properties:

▶ a is a root of p(x) ⇔ p(x) is a multiple of (x − a),
p(x) = (x − a)q(x).

▶ a is a root of multiplicity m if m is the largest exponent such
that p(x) = (x − a)mq(x) for some q(x).

▶ Any real polynomial factorizes as a product of degree 1 and
degree 2 polynomials with real coefficients.
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Eigenvalues and Eigenvectors

Complex numbers
▶ A polynomial might NOT have real roots:

x2 + 1 = 0 ⇒ x = ±
√
−1

▶ We denote by i the square root of −1, i =
√
−1

▶ A complex number is an expression a+ bi with a, b ∈ R. Ex:
3 + 2i .

▶ The set of complex numbers is denoted as C and contains R.
▶ We can sum and multiply complex numbers

▶ The modulus (or absolute value, or norm) of z = a+ bi is

|z | =
√

a2 + b2.

▶ The conjugate of z = a+ bi is z̄ = a− bi . It satisfies:

|z̄ | = |z |, |z |2 = z · z̄ .

16
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Eigenvalues and Eigenvectors

Fundamental theorem of algebra

All roots of a polynomial are either real or complex numbers:

Theorem
If p(x) is a polynomial of degree n, then it has n complex roots
counted with multiplicity.

If p(x) has coefficients in R, then its (non-real) complex roots go
in pairs z , z̄
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Diagonalization theorem

Multiplicities of eigenvalues

If A = M(f ),

Definition
▶ The algebraic multiplicity of λ, denoted by aλ, is the

multiplicity as a root of Pf (x) (the number of times λ appears
as a root of Pf (x).

▶ The geometric multiplicity of λ, denoted by gλ, is the
dimension of the subspace Null(A− λId), that is,
n − rk(A− λI ).

Proposition

For every eigenvalue λ, we have 1 ≤ gλ ≤ aλ.
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Diagonalization theorem

Diagonalization theorem

Definition
An endomorphism f of Rn is diagonalizable in R if there is a basis
u of Rn such that Mu,u(f ) is diagonal.

Theorem (Diagonalization)

An endomorphism f of Rn is diagonalizable in R if and only if

1. all the roots λ1, . . . , λk of Pf (x) (the eigenvalues of f ) are
real;

2. for every eigenvalue λi , the algebraic multiplicity and
geometric multiplicity are equal: : gλi

= aλi
.

In particular, if all the roots of Pf (x) are real and simple (aλi
= 1

for each λi ), then f diagonalizes.

20



Diagonalization theorem

Diagonalization theorem

Definition
An endomorphism f of Rn is diagonalizable in R if there is a basis
u of Rn such that Mu,u(f ) is diagonal.

Theorem (Diagonalization)

An endomorphism f of Rn is diagonalizable in R if and only if

1. all the roots λ1, . . . , λk of Pf (x) (the eigenvalues of f ) are
real;

2. for every eigenvalue λi , the algebraic multiplicity and
geometric multiplicity are equal: : gλi

= aλi
.

In particular, if all the roots of Pf (x) are real and simple (aλi
= 1

for each λi ), then f diagonalizes.

20



Diagonalization theorem

Diagonalization theorem

Definition
An endomorphism f of Rn is diagonalizable in R if there is a basis
u of Rn such that Mu,u(f ) is diagonal.

Theorem (Diagonalization)

An endomorphism f of Rn is diagonalizable in R if and only if

1. all the roots λ1, . . . , λk of Pf (x) (the eigenvalues of f ) are
real;

2. for every eigenvalue λi , the algebraic multiplicity and
geometric multiplicity are equal: : gλi

= aλi
.

In particular, if all the roots of Pf (x) are real and simple (aλi
= 1

for each λi ), then f diagonalizes.

20



Diagonalization theorem

Diagonalization theorem

Definition
An endomorphism f of Rn is diagonalizable in R if there is a basis
u of Rn such that Mu,u(f ) is diagonal.

Theorem (Diagonalization)

An endomorphism f of Rn is diagonalizable in R if and only if

1. all the roots λ1, . . . , λk of Pf (x) (the eigenvalues of f ) are
real;

2. for every eigenvalue λi , the algebraic multiplicity and
geometric multiplicity are equal: : gλi

= aλi
.

In particular, if all the roots of Pf (x) are real and simple (aλi
= 1

for each λi ), then f diagonalizes.

20



Diagonalization theorem

Diagonalization theorem

Definition
An endomorphism f of Rn is diagonalizable in R if there is a basis
u of Rn such that Mu,u(f ) is diagonal.

Theorem (Diagonalization)

An endomorphism f of Rn is diagonalizable in R if and only if

1. all the roots λ1, . . . , λk of Pf (x) (the eigenvalues of f ) are
real;

2. for every eigenvalue λi , the algebraic multiplicity and
geometric multiplicity are equal: : gλi

= aλi
.

In particular, if all the roots of Pf (x) are real and simple (aλi
= 1

for each λi ), then f diagonalizes.

20



Diagonalization theorem

Diagonalization theorem

Definition
An endomorphism f of Rn is diagonalizable in R if there is a basis
u of Rn such that Mu,u(f ) is diagonal.

Theorem (Diagonalization)

An endomorphism f of Rn is diagonalizable in R if and only if

1. all the roots λ1, . . . , λk of Pf (x) (the eigenvalues of f ) are
real;

2. for every eigenvalue λi , the algebraic multiplicity and
geometric multiplicity are equal: : gλi

= aλi
.

In particular, if all the roots of Pf (x) are real and simple (aλi
= 1

for each λi ), then f diagonalizes.

20



Diagonalization theorem

Diagonalization (in terms of matrices)

Definition
A matrix A ∈ Mn(R) is diagonalizable if there is an invertible
matrix P ∈ Mn(R) such that P−1AP is diagonal.

That is, A is diagonalizable if it is the standard matrix of a
diagonalizable endomorphism f , A = M(f ); in this case P is the
change of basis matrix from a basis u to the standard basis e,
P = Au→e.

A = Au→eDA
−1
u→e = PDP−1,

D = P−1AP = Ae→uM(f )Au→e = Mu(f )
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Diagonalization theorem

Procedure to diagonalize endomorphisms (1)

Given an endomorphism f of Rn, let A = Me(f ) be its standard
matrix.

1. Compute Pf (x) = det(A− x Id).

2. Compute the roots λ1, . . . , λk of Pf (x), these are the
eigenvalues of f . For each eigenvalue λi , its algebraic
multiplicity aλi

is the multiplicity it has as a root of Pf (x).
Note that aλ1 + . . .+ aλk

= n.

3. For each λi , compute Null(A− λi Id), the subspace of all
eigenvectors with eigenvalue λi . The dimension of this space
is the geometric multiplicity gλi

of λi .

4. If gλi
< aλi

for some eigenvalue λi , then f does not
diagonalize (and we are done).
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Diagonalization theorem

Procedure (2)

5. If gλi
= aλi

for all i , for each eigenvalue λi take a basis of
Null(A− λi Id)

6. Let u be the collection of all these vectors

Then,

▶ u is a basis of Rn.

▶ Mu(f ) is a diagonal matrix whose entries are the eigenvalues:

Mu(f ) =

 λ1 . . . 0
...

. . .
...

0 . . . λk

 .
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Diagonalization theorem

Prodecure (3)

Recall that D = Mu(f ) can be computed by doing a change of
basis: if e is the standard basis of Rn, then

Ae→u M(f ) Au→e = D.

(Equivalently, Au→e D Ae→u = M(f )).
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Diagonalization theorem

Properties of the characteristic polynomial

If A = M(f ), we have:

▶ The term of Pf (x) of degree n is (−1)n.

▶ The term of Pf (x) of degree n − 1 is (−1)n−1tr(A) (the trace
tr of a matrix A is defined as the sum of its diagonal entries).

▶ The constant term of Pf (x) is det(A).

Note:

▶ Determinant det(A) = product of all eigenvalues (repeated if
multiplicity > 1)

▶ Trace tr(A) = sum of all eigenvalues (repeated if multiplicity
> 1)

This might help in getting the eigenvalues of 2× 2 or 3× 3
matrices.
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Diagonalization theorem

Diagonalization in C

If we allow ourselves to work with eigenvectors with entries in C,
we have the analogous result (taking into account that Pf (x)
already has all its roots in C):

Theorem (Diagonalization)

An endomorphism f of Rn is diagonalizable in C if and only if

1. for every eigenvalue λi , the algebraic multiplicity and
geometric multiplicity are equal: : gλi

= aλi
.

In particular, if all the roots of Pf (x) are simple (aλi
= 1 for each

λi ), then f diagonalizes.
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Python

Python

>>> import numpy as np

>>> from numpy.linalg import *

>>> A = np.array([[a11, . . . , a1n], . . . , [an1, . . . , ann]])

To get eigenvalues and eigenvectors of A we do:
>>> eigenval, eigenvec = eig(A)

Then we call both outputs to see the list of eigenvalues
>>> eigenval

gives the collection of eigenvalues of A; we can call each:
eigenval[0] is the first eigenvalue, eigenval[1] the second...
>>> eigenvec

gives a matrix P whose columns are eigenvectors of A; we can call
each: eigenvec[:,0] gives the first eigenvector (column)
(corresponding to eigenval[0]), eigenvec[:,1] gives the
second...

28



Python

Python

If we want to create the diagonal matrix with eigenvalues:
>>> D = np.zeros((n,n),dtype=’complex128’)

>>> for i in range(n):

D[i,i] = eigenval[i]

(where it says n we need to put the size of the matrix). Then we
can check if PDP−1 is indeed A:

>>> eigenvec@ D @inv(eigenvec)

To compute the powers of a matrix, Ak :
>>> matrix power(A, k)

Note: In Python the complex number i is denoted as j . Modulus
of a complex number z :
>>> abs(z)
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