Diagonalization

Bioinformatics Degree Algebra

Departament de Matemàtiques

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

The Vollmar-Wasserman beetle lives for at most 3 years. We divide the female VW beetles into three age classes and call:

• x_1 = number of youths (beetles 0 to 1 years old)

• x_2 = number of juveniles (beetles 1 to 2 year old)

 \blacktriangleright $x_3 =$ number of adults (beetles 2 to 3 year old)

The Vollmar-Wasserman beetle lives for at most 3 years. We divide the female VW beetles into three age classes and call:

- x_1 = number of youths (beetles 0 to 1 years old)
- x_2 = number of juveniles (beetles 1 to 2 year old)

x₃ = number of adults (beetles 2 to 3 year old) We want to study the number of youths, juveniles and adults after k years.

The Vollmar-Wasserman beetle lives for at most 3 years. We divide the female VW beetles into three age classes and call:

- x_1 = number of youths (beetles 0 to 1 years old)
- x_2 = number of juveniles (beetles 1 to 2 year old)
- x_3 = number of adults (beetles 2 to 3 year old)

The Vollmar-Wasserman beetle lives for at most 3 years. We divide the female VW beetles into three age classes and call:

- x_1 = number of youths (beetles 0 to 1 years old)
- x_2 = number of juveniles (beetles 1 to 2 year old)
- x_3 = number of adults (beetles 2 to 3 year old)

The Vollmar-Wasserman beetle lives for at most 3 years. We divide the female VW beetles into three age classes and call:

- x_1 = number of youths (beetles 0 to 1 years old)
- x_2 = number of juveniles (beetles 1 to 2 year old)
- x_3 = number of adults (beetles 2 to 3 year old)

We know that:

- Youths do not lay eggs. Female juveniles have an average of 4 youth females per year and female adults have an average of 3 youth females per year.
- The survival rate for youths is 50% (that is, the probability of a youths surviving to become a juvenile is 0.5), and the survival rate for juveniles is 25%.

Therefore we have:

youths next year = $4x_2 + 3x_3$ juveniles next year = $0.5x_1$ adults next year = $0.25x_2$

We know that:

- Youths do not lay eggs. Female juveniles have an average of 4 youth females per year and female adults have an average of 3 youth females per year.
- The survival rate for youths is 50% (that is, the probability of a youths surviving to become a juvenile is 0.5), and the survival rate for juveniles is 25%.

Therefore we have:

youths next year = $4x_2 + 3x_3$ juveniles next year = $0.5x_1$ adults next year = $0.25x_2$

If we write the number of youths, juveniles and adults as acolumn vector, next year we'll have

$$\begin{pmatrix} \text{\sharpyouths$} \\ \text{$\sharp$juveniles$} \\ \text{\sharpadults$} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 4 & 3 \\ 0.5 & 0 & 0 \\ 0 & 0.25 & 0 \end{pmatrix}}_{A} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Thus, next year the population will be Ax and in k years $A^{k}x$.

Goal: compute powers of matrices

- How do we compute A^k easily?
- If A is a diagonal matrix it is easy:

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \Rightarrow D^k = \begin{pmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{pmatrix}$$

If A is not diagonal but we can find a change of basis matrix P such that P⁻¹AP is diagonal, then A = PDP⁻¹ and

 $A^{k} = PD(P)^{-1}PD(P)^{-1}\dots PD(P)^{-1}PD(P)^{-1} = PD^{K}P^{-1}$

$$A^{k} = P \begin{pmatrix} \lambda_{1}^{k} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{k} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n}^{k} \end{pmatrix} P^{-1}$$

Goal: compute powers of matrices

- How do we compute A^k easily?
- If A is a diagonal matrix it is easy:

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \quad \Rightarrow \quad D^k = \begin{pmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{pmatrix}$$

If A is not diagonal but we can find a change of basis matrix P such that P⁻¹AP is diagonal, then A = PDP⁻¹ and

 $A^{k} = PD(P)^{-1}PD(P)^{-1}\dots PD(P)^{-1}PD(P)^{-1} = PD^{K}P^{-1}$

$$A^{k} = P \begin{pmatrix} \lambda_{1}^{k} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{k} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n}^{k} \end{pmatrix} P^{-1}$$

Goal: compute powers of matrices

- How do we compute A^k easily?
- If A is a diagonal matrix it is easy:

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \quad \Rightarrow \quad D^k = \begin{pmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{pmatrix}$$

If A is not diagonal but we can find a change of basis matrix P such that P⁻¹AP is diagonal, then A = PDP⁻¹ and

$$A^{k} = PD(P)^{-1}PD(P)^{-1}\dots PD(P)^{-1}PD(P)^{-1} = PD^{K}P^{-1}$$
$$A^{k} = P\begin{pmatrix}\lambda_{1}^{k} & 0 & \dots & 0\\ 0 & \lambda_{2}^{k} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \lambda_{n}^{k}\end{pmatrix}P^{-1}$$

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

Definition

An endomorphism of a vector space \mathbb{R}^n is a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$.

Endomorphisms \leftrightarrow square matrices. Note: If $M_{\mathbf{v}}(f)$ is diagonal, then $f(v_i) = d_i v_i$ $(d_i = i$ th value in the diagonal).

Definition

A vector $u \neq 0$ is an eigenvector of $f : \mathbb{R}^n \to \mathbb{R}^n$ with eigenvalue $\lambda \in \mathbb{R}$ if $f(u) = \lambda u$. In this case, we say that λ is an eigenvalue of f.

Definition

An endomorphism of a vector space \mathbb{R}^n is a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$.

Endomorphisms \leftrightarrow square matrices. Note: If $M_{\mathbf{v}}(f)$ is diagonal, then $f(v_i) = d_i v_i$ $(d_i = i$ th value in the diagonal).

Definition

A vector $u \neq 0$ is an eigenvector of $f : \mathbb{R}^n \to \mathbb{R}^n$ with eigenvalue $\lambda \in \mathbb{R}$ if $f(u) = \lambda u$. In this case, we say that λ is an eigenvalue of f.

Definition

An endomorphism of a vector space \mathbb{R}^n is a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$.

Endomorphisms \leftrightarrow square matrices. Note: If $M_{\mathbf{v}}(f)$ is diagonal, then $f(v_i) = d_i v_i$ $(d_i = i$ th value in the diagonal).

Definition

A vector $u \neq 0$ is an eigenvector of $f : \mathbb{R}^n \to \mathbb{R}^n$ with eigenvalue $\lambda \in \mathbb{R}$ if $f(u) = \lambda u$. In this case, we say that λ is an eigenvalue of f.

Definition

An endomorphism of a vector space \mathbb{R}^n is a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$.

Endomorphisms \leftrightarrow square matrices. Note: If $M_{\mathbf{v}}(f)$ is diagonal, then $f(v_i) = d_i v_i$ $(d_i = i$ th value in the diagonal).

Definition

A vector $u \neq 0$ is an eigenvector of $f : \mathbb{R}^n \to \mathbb{R}^n$ with eigenvalue $\lambda \in \mathbb{R}$ if $f(u) = \lambda u$. In this case, we say that λ is an eigenvalue of f.

Examples

1. Consider f(x, y) = (x, 2y). Then, the standard matrix of f is

$$M(f) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right)$$

e₁ = (1,0) is an eigenvector of f with eigenvalue 1, and
 e₂ = (0,1) is an eigenvector of f with eigenvalue 2.

Examples

2. Consider f(x, y) = (x + 5y, 5x + y). Then,
u₁ = (1, 1) is eigenvector with eigenvalue 6;
u₂ = (1, -1) is eigenvector with eigenvalue -4. The standard matrix of f is

The standard matrix of f is

$$M(f)=\left(egin{array}{cc} 1 & 5\ 5 & 1\end{array}
ight).$$

In the basis $\mathbf{u} = \{u_1, u_2\}$, the matrix of f is diagonal and equal to

$$M_{\mathbf{u},\mathbf{u}}(f)(f) = \begin{pmatrix} 6 & 0 \\ 0 & -4 \end{pmatrix}.$$

The aim of this topic is to study the endomorphisms for which we can obtain a basis so that the matrix is diagonal.

Let f be an endomorphism of \mathbb{R}^n and let $A = M_e(f)$.

Lemma

- $u \in \mathbb{R}^n$ is an eigenvector of eigenvalue $\lambda \Leftrightarrow u \in \text{Null}(A \lambda Id)$ and $u \neq 0$.
- ▶ λ is an eigenvalue of $f \Leftrightarrow \det(A \lambda Id) = 0$.

Definition

- ▶ 0 is an eigenvalue of $f \Leftrightarrow \text{Null}(f) \neq \{\mathbf{0}\}.$
- The spectrum of f is the set of all its eigenvalues; it is denoted by σ(f).

Let f be an endomorphism of \mathbb{R}^n and let $A = M_e(f)$.

Lemma

• $u \in \mathbb{R}^n$ is an eigenvector of eigenvalue $\lambda \Leftrightarrow u \in \text{Null}(A - \lambda Id)$ and $u \neq 0$.

• λ is an eigenvalue of $f \Leftrightarrow \det(A - \lambda Id) = 0$.

Definition

- ▶ 0 is an eigenvalue of $f \Leftrightarrow \text{Null}(f) \neq \{\mathbf{0}\}.$
- The spectrum of f is the set of all its eigenvalues; it is denoted by σ(f).

Let f be an endomorphism of \mathbb{R}^n and let $A = M_e(f)$.

Lemma

- $u \in \mathbb{R}^n$ is an eigenvector of eigenvalue $\lambda \Leftrightarrow u \in \text{Null}(A \lambda Id)$ and $u \neq 0$.
- λ is an eigenvalue of $f \Leftrightarrow \det(A \lambda Id) = 0$.

Definition

- ▶ 0 is an eigenvalue of $f \Leftrightarrow \text{Null}(f) \neq \{\mathbf{0}\}.$
- The spectrum of f is the set of all its eigenvalues; it is denoted by σ(f).

Let f be an endomorphism of \mathbb{R}^n and let $A = M_e(f)$.

Lemma

- $u \in \mathbb{R}^n$ is an eigenvector of eigenvalue $\lambda \Leftrightarrow u \in \text{Null}(A \lambda Id)$ and $u \neq 0$.
- λ is an eigenvalue of $f \Leftrightarrow \det(A \lambda Id) = 0$.

Definition

- ▶ 0 is an eigenvalue of $f \Leftrightarrow \text{Null}(f) \neq \{\mathbf{0}\}.$
- The spectrum of f is the set of all its eigenvalues; it is denoted by σ(f).

Let f be an endomorphism of \mathbb{R}^n and let $A = M_e(f)$.

Lemma

- $u \in \mathbb{R}^n$ is an eigenvector of eigenvalue $\lambda \Leftrightarrow u \in \text{Null}(A \lambda Id)$ and $u \neq 0$.
- λ is an eigenvalue of $f \Leftrightarrow \det(A \lambda Id) = 0$.

Definition

For each eigenvalue λ of f, Null $(A - \lambda Id)$ is called the **eigenspace** of λ and contains all eigenvectors of eigenvalue λ (plus **0**).

• 0 is an eigenvalue of $f \Leftrightarrow \text{Null}(f) \neq \{\mathbf{0}\}.$

The spectrum of f is the set of all its eigenvalues; it is denoted by σ(f).

Let f be an endomorphism of \mathbb{R}^n and let $A = M_e(f)$.

Lemma

- $u \in \mathbb{R}^n$ is an eigenvector of eigenvalue $\lambda \Leftrightarrow u \in \text{Null}(A \lambda Id)$ and $u \neq 0$.
- λ is an eigenvalue of $f \Leftrightarrow \det(A \lambda Id) = 0$.

Definition

- 0 is an eigenvalue of $f \Leftrightarrow \text{Null}(f) \neq \{\mathbf{0}\}.$
- The spectrum of f is the set of all its eigenvalues; it is denoted by σ(f).

Definition

$$P_f(x) = det(A - xId) = \begin{vmatrix} a_{1,1} - x & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} - x & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} - x \end{vmatrix}$$

- The roots of $P_f(x)$ are the eigenvalues of f, that is, λ is eigenvalue of $f \Leftrightarrow P_f(\lambda) = 0 \Leftrightarrow \det(A - \lambda I) = 0$.
- $P_f(x)$ is a polynomial of degree *n*.
- P_f(x) can be computed from the matrix of f on any basis u of ℝⁿ: P_f(x) = det(M_{u,u}(f) − x ld).

Definition

$$P_f(x) = det(A - xId) = \begin{vmatrix} a_{1,1} - x & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} - x & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} - x \end{vmatrix}$$

- The roots of P_f(x) are the eigenvalues of f, that is, λ is eigenvalue of f ⇔ P_f(λ) = 0 ⇔ det(A − λI) = 0.
- $P_f(x)$ is a polynomial of degree *n*.
- P_f(x) can be computed from the matrix of f on any basis u of ℝⁿ: P_f(x) = det(M_{u,u}(f) − x Id).

Definition

$$P_f(x) = det(A - xId) = \begin{vmatrix} a_{1,1} - x & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} - x & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} - x \end{vmatrix}$$

- The roots of P_f(x) are the eigenvalues of f, that is, λ is eigenvalue of f ⇔ P_f(λ) = 0 ⇔ det(A − λI) = 0.
- $P_f(x)$ is a polynomial of degree *n*.
- P_f(x) can be computed from the matrix of f on any basis u of ℝⁿ: P_f(x) = det(M_{u,u}(f) − x Id).

Definition

$$P_f(x) = det(A - xId) = \begin{vmatrix} a_{1,1} - x & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} - x & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} - x \end{vmatrix}$$

- The roots of P_f(x) are the eigenvalues of f, that is, λ is eigenvalue of f ⇔ P_f(λ) = 0 ⇔ det(A − λI) = 0.
- $P_f(x)$ is a polynomial of degree *n*.
- P_f(x) can be computed from the matrix of f on any basis u of ℝⁿ: P_f(x) = det(M_{u,u}(f) − x Id).

Example. Consider f(x, y) = (2x + 4y, x + 5y). It has standard matrix

$$A = \left(\begin{array}{rrr} 2 & 4 \\ 1 & 5 \end{array}\right)$$

Its characteristic polynomial is

$$P_f(x) = \begin{vmatrix} 2-x & 4 \\ 1 & 5-x \end{vmatrix} = (2-x)(5-x) - 4 \times 1 = x^2 - 7x + 6.$$

The roots of this polynomial are $\frac{7\pm\sqrt{(-7)^2-4\cdot 6}}{2}$, so 6 and 1. We have $P_f(x) = (x-6)(x-1)$.

Roots of polynomials

A root or zero of a polynomial p(x) is a number *a* such that p(a) = 0. Properties:

- a is a root of $p(x) \Leftrightarrow p(x)$ is a multiple of (x a), p(x) = (x - a)q(x).
- ▶ *a* is a root of multiplicity *m* if *m* is the largest exponent such that $p(x) = (x a)^m q(x)$ for some q(x).
- Any real polynomial factorizes as a product of degree 1 and degree 2 polynomials with real coefficients.

Roots of polynomials

A root or zero of a polynomial p(x) is a number *a* such that p(a) = 0. Properties:

- a is a root of $p(x) \Leftrightarrow p(x)$ is a multiple of (x a), p(x) = (x - a)q(x).
- ▶ a is a root of multiplicity m if m is the largest exponent such that $p(x) = (x a)^m q(x)$ for some q(x).
- Any real polynomial factorizes as a product of degree 1 and degree 2 polynomials with real coefficients.

Roots of polynomials

A root or zero of a polynomial p(x) is a number *a* such that p(a) = 0. Properties:

- a is a root of $p(x) \Leftrightarrow p(x)$ is a multiple of (x a), p(x) = (x - a)q(x).
- ▶ a is a root of multiplicity m if m is the largest exponent such that $p(x) = (x a)^m q(x)$ for some q(x).
- Any real polynomial factorizes as a product of degree 1 and degree 2 polynomials with real coefficients.

A polynomial might NOT have real roots:

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1}$$

- We denote by *i* the square root of -1, $i = \sqrt{-1}$
- A complex number is an expression a + bi with $a, b \in \mathbb{R}$. Ex: 3 + 2i.
- ▶ The set of complex numbers is denoted as C and contains R.
- We can sum and multiply complex numbers
- The modulus (or absolute value, or norm) of z = a + bi is

$$|z| = \sqrt{a^2 + b^2}.$$

$$|\overline{z}| = |z|, \quad |z|^2 = z \cdot \overline{z}.$$

A polynomial might NOT have real roots:

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1}$$

- We denote by *i* the square root of -1, $i = \sqrt{-1}$
- A complex number is an expression a + bi with a, b ∈ ℝ. Ex: 3 + 2i.
- The set of complex numbers is denoted as \mathbb{C} and contains \mathbb{R} .
- We can sum and multiply complex numbers
- The modulus (or absolute value, or norm) of z = a + bi is

$$|z| = \sqrt{a^2 + b^2}.$$

$$|\bar{z}| = |z|, \quad |z|^2 = z \cdot \bar{z}.$$

A polynomial might NOT have real roots:

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1}$$

- We denote by *i* the square root of -1, $i = \sqrt{-1}$
- A complex number is an expression a + bi with $a, b \in \mathbb{R}$. Ex: 3 + 2i.
- The set of complex numbers is denoted as \mathbb{C} and contains \mathbb{R} .
- We can sum and multiply complex numbers
- The modulus (or absolute value, or norm) of z = a + bi is

$$|z| = \sqrt{a^2 + b^2}.$$

$$|\overline{z}| = |z|, \quad |z|^2 = z \cdot \overline{z}.$$

A polynomial might NOT have real roots:

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1}$$

- We denote by *i* the square root of -1, $i = \sqrt{-1}$
- A complex number is an expression a + bi with $a, b \in \mathbb{R}$. Ex: 3 + 2i.
- The set of complex numbers is denoted as \mathbb{C} and contains \mathbb{R} .
- We can sum and multiply complex numbers
- The modulus (or absolute value, or norm) of z = a + bi is

$$|z| = \sqrt{a^2 + b^2}.$$

$$|\overline{z}| = |z|, \quad |z|^2 = z \cdot \overline{z}.$$

A polynomial might NOT have real roots:

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1}$$

- We denote by *i* the square root of -1, $i = \sqrt{-1}$
- A complex number is an expression a + bi with $a, b \in \mathbb{R}$. Ex: 3 + 2i.
- The set of complex numbers is denoted as \mathbb{C} and contains \mathbb{R} .
- We can sum and multiply complex numbers
- The modulus (or absolute value, or norm) of z = a + bi is

$$|z| = \sqrt{a^2 + b^2}.$$

$$|\overline{z}| = |z|, \quad |z|^2 = z \cdot \overline{z}.$$

A polynomial might NOT have real roots:

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1}$$

- We denote by *i* the square root of -1, $i = \sqrt{-1}$
- A complex number is an expression a + bi with $a, b \in \mathbb{R}$. Ex: 3 + 2i.
- The set of complex numbers is denoted as \mathbb{C} and contains \mathbb{R} .
- We can sum and multiply complex numbers
- The modulus (or absolute value, or norm) of z = a + bi is

$$|z|=\sqrt{a^2+b^2}.$$

$$|\overline{z}| = |z|, \quad |z|^2 = z \cdot \overline{z}.$$

A polynomial might NOT have real roots:

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1}$$

- We denote by *i* the square root of -1, $i = \sqrt{-1}$
- A complex number is an expression a + bi with $a, b \in \mathbb{R}$. Ex: 3 + 2i.
- The set of complex numbers is denoted as \mathbb{C} and contains \mathbb{R} .
- We can sum and multiply complex numbers
- The modulus (or absolute value, or norm) of z = a + bi is

$$|z|=\sqrt{a^2+b^2}.$$

$$|\bar{z}| = |z|, \quad |z|^2 = z \cdot \bar{z}$$

Fundamental theorem of algebra

All roots of a polynomial are either real or complex numbers:

Theorem

If p(x) is a polynomial of degree n, then it has n complex roots counted with multiplicity.

If p(x) has coefficients in \mathbb{R} , then its (non-real) complex roots go in pairs z, \overline{z}

Outline

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

Python

If A = M(f),

Definition

- The algebraic multiplicity of λ, denoted by a_λ, is the multiplicity as a root of P_f(x) (the number of times λ appears as a root of P_f(x).
- The geometric multiplicity of λ, denoted by g_λ, is the dimension of the subspace Null(A λId), that is, n rk(A λI).

Proposition

If A = M(f),

Definition

The algebraic multiplicity of λ, denoted by a_λ, is the multiplicity as a root of P_f(x) (the number of times λ appears as a root of P_f(x).

The geometric multiplicity of λ, denoted by g_λ, is the dimension of the subspace Null(A − λId), that is, n − rk(A − λI).

Proposition

If A = M(f),

Definition

- The algebraic multiplicity of λ, denoted by a_λ, is the multiplicity as a root of P_f(x) (the number of times λ appears as a root of P_f(x).
- The geometric multiplicity of λ, denoted by g_λ, is the dimension of the subspace Null(A − λId), that is, n − rk(A − λI).

Proposition

If A = M(f),

Definition

- The algebraic multiplicity of λ, denoted by a_λ, is the multiplicity as a root of P_f(x) (the number of times λ appears as a root of P_f(x).
- The geometric multiplicity of λ, denoted by g_λ, is the dimension of the subspace Null(A − λId), that is, n − rk(A − λI).

Proposition

Definition

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if there is a basis **u** of \mathbb{R}^n such that $M_{\mathbf{u},\mathbf{u}}(f)$ is diagonal.

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if and only if

- all the roots λ₁,..., λ_k of P_f(x) (the eigenvalues of f) are real;
- for every eigenvalue λ_i, the algebraic multiplicity and geometric multiplicity are equal: (g_λ = a_λ)
- In particular, if all the roots of $P_{\ell}(x)$ are real and simple $(a_{\lambda_{\ell}} = 1)$ for each λ_{ℓ} , then ℓ diagonalizes.

Definition

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if there is a basis **u** of \mathbb{R}^n such that $M_{\mathbf{u},\mathbf{u}}(f)$ is diagonal.

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if and only if

- 1. all the roots $\lambda_1, \ldots, \lambda_k$ of $P_f(x)$ (the eigenvalues of f) are real;
- 2. for every eigenvalue λ_i , the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_i} = a_{\lambda_i}$.

In particular, if all the roots of $P_f(x)$ are real and simple $(a_{\lambda_i} = 1$ for each $\lambda_i)$, then f-diagonalizes.

Definition

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if there is a basis **u** of \mathbb{R}^n such that $M_{\mathbf{u},\mathbf{u}}(f)$ is diagonal.

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if and only if

- 1. all the roots $\lambda_1, \ldots, \lambda_k$ of $P_f(x)$ (the eigenvalues of f) are real;
- 2. for every eigenvalue λ_i , the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_i} = a_{\lambda_i}$.

In particular, if all the roots of $P_f(x)$ are real and simple $(a_{\lambda_i} = 1$ for each $\lambda_i)$, then f-diagonalizes.

Definition

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if there is a basis **u** of \mathbb{R}^n such that $M_{\mathbf{u},\mathbf{u}}(f)$ is diagonal.

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if and only if

- 1. all the roots $\lambda_1, \ldots, \lambda_k$ of $P_f(x)$ (the eigenvalues of f) are real;
- 2. for every eigenvalue λ_i , the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_i} = a_{\lambda_i}$.

In particular, if all the roots of $P_f(x)$ are real and simple $(a_{\lambda_i}=1$ for each $\lambda_i)$, then f-diagonalizes.

Definition

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if there is a basis **u** of \mathbb{R}^n such that $M_{\mathbf{u},\mathbf{u}}(f)$ is diagonal.

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if and only if

- 1. all the roots $\lambda_1, \ldots, \lambda_k$ of $P_f(x)$ (the eigenvalues of f) are real;
- 2. for every eigenvalue λ_i , the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_i} = a_{\lambda_i}$.

In particular, if all the roots of $P_f(x)$ are real and simple $(a_{\lambda_i}=1$ for each $\lambda_i)$, then f-diagonalizes.

Definition

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if there is a basis **u** of \mathbb{R}^n such that $M_{\mathbf{u},\mathbf{u}}(f)$ is diagonal.

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{R} if and only if

- 1. all the roots $\lambda_1, \ldots, \lambda_k$ of $P_f(x)$ (the eigenvalues of f) are real;
- 2. for every eigenvalue λ_i , the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_i} = a_{\lambda_i}$.

In particular, if all the roots of $P_f(x)$ are real and simple $(a_{\lambda_i} = 1$ for each λ_i), then f diagonalizes.

Diagonalization (in terms of matrices)

Definition

A matrix $A \in M_n(\mathbb{R})$ is diagonalizable if there is an invertible matrix $P \in M_n(\mathbb{R})$ such that $P^{-1}AP$ is diagonal.

That is, A is diagonalizable if it is the standard matrix of a diagonalizable endomorphism f, A = M(f); in this case P is the change of basis matrix from a basis **u** to the standard basis **e**, $P = A_{\mathbf{u} \to \mathbf{e}}$.

$$A = A_{\mathbf{u} \to \mathbf{e}} D A_{\mathbf{u} \to \mathbf{e}}^{-1} = P D P^{-1},$$
$$D = P^{-1} A P = A_{\mathbf{e} \to \mathbf{u}} M(f) A_{\mathbf{u} \to \mathbf{e}} = M_{\mathbf{u}}(f)$$

- 1. Compute $P_f(x) = det(A x Id)$.
- Compute the roots λ₁,..., λ_k of P_f(x), these are the eigenvalues of f. For each eigenvalue λ_i, its algebraic multiplicity a_{λi} is the multiplicity it has as a root of P_f(x). Note that a_{λ1} + ... + a_{λk} = n.
- For each λ_i, compute Null(A λ_iId), the subspace of all eigenvectors with eigenvalue λ_i. The dimension of this space is the geometric multiplicity g_{λi} of λ_i.
- If g_{λi} < a_{λi} for some eigenvalue λ_i, then f does not diagonalize (and we are done).

- 1. Compute $P_f(x) = det(A x Id)$.
- Compute the roots λ₁,..., λ_k of P_f(x), these are the eigenvalues of f. For each eigenvalue λ_i, its algebraic multiplicity a_{λi} is the multiplicity it has as a root of P_f(x). Note that a_{λ1} + ... + a_{λk} = n.
- For each λ_i, compute Null(A λ_iId), the subspace of all eigenvectors with eigenvalue λ_i. The dimension of this space is the geometric multiplicity g_{λi} of λ_i.
- If g_{λi} < a_{λi} for some eigenvalue λ_i, then f does not diagonalize (and we are done).

- 1. Compute $P_f(x) = det(A x Id)$.
- Compute the roots λ₁,..., λ_k of P_f(x), these are the eigenvalues of f. For each eigenvalue λ_i, its algebraic multiplicity a_{λi} is the multiplicity it has as a root of P_f(x). Note that a_{λ1} + ... + a_{λk} = n.
- For each λ_i, compute Null(A λ_iId), the subspace of all eigenvectors with eigenvalue λ_i. The dimension of this space is the geometric multiplicity g_{λi} of λ_i.
- 4. If $g_{\lambda_i} < a_{\lambda_i}$ for some eigenvalue λ_i , then f does not diagonalize (and we are done).

- 1. Compute $P_f(x) = det(A x Id)$.
- Compute the roots λ₁,..., λ_k of P_f(x), these are the eigenvalues of f. For each eigenvalue λ_i, its algebraic multiplicity a_{λi} is the multiplicity it has as a root of P_f(x). Note that a_{λ1} + ... + a_{λk} = n.
- For each λ_i, compute Null(A λ_iId), the subspace of all eigenvectors with eigenvalue λ_i. The dimension of this space is the geometric multiplicity g_{λi} of λ_i.
- 4. If $g_{\lambda_i} < a_{\lambda_i}$ for some eigenvalue λ_i , then f does not diagonalize (and we are done).

Procedure (2)

 If g_{λi} = a_{λi} for all i, for each eigenvalue λ_i take a basis of Null(A - λ_i Id)

6. Let **u** be the collection of all these vectors

Then,

• **u** is a basis of \mathbb{R}^n .

 \blacktriangleright $M_{\rm u}(f)$ is a diagonal matrix whose entries are the eigenvalues:

$$M_{\mathbf{u}}(f) = \left(egin{array}{ccc} \lambda_1 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & \lambda_k \end{array}
ight).$$

Procedure (2)

 If g_{λi} = a_{λi} for all i, for each eigenvalue λ_i take a basis of Null(A - λ_i Id)

6. Let **u** be the collection of all these vectors

Then,

• **u** is a basis of \mathbb{R}^n .

• $M_{u}(f)$ is a diagonal matrix whose entries are the eigenvalues:

$$M_{\mathbf{u}}(f) = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_k \end{pmatrix}$$

.

Prodecure (3)

Recall that $D = M_u(f)$ can be computed by doing a change of basis: if e is the standard basis of \mathbb{R}^n , then

$$\begin{aligned} & A_{e \to \mathbf{u}} \ M(f) \ A_{\mathbf{u} \to e} = D. \end{aligned}$$
(Equivalently, $A_{\mathbf{u} \to e} \ D \ A_{e \to \mathbf{u}} = M(f)$).

- If A = M(f), we have:
 - The term of $P_f(x)$ of degree *n* is $(-1)^n$.
 - ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).
 - The constant term of $P_f(x)$ is det(A).

Note:

- Determinant det(A) == product of all eigenvalues (repeated if i multiplicity >= (1 >= (1 >=))
- Trace tr(A) == sum of all eigenvalues (repeated if multiplicity > 1).

If A = M(f), we have:

- The term of $P_f(x)$ of degree *n* is $(-1)^n$.
- ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).

• The constant term of $P_f(x)$ is det(A).

Note:

- Determinant det(A) = product of all eigenvalues (repeated if i multiplicity > 1)
- Trace tr(A) == sum of all eigenvalues (repeated if multiplicity ≥ 1)

If A = M(f), we have:

- The term of $P_f(x)$ of degree *n* is $(-1)^n$.
- ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).
- The constant term of $P_f(x)$ is det(A).

Note:

- Determinant det(A) = product of all eigenvalues (repeated if multiplicity > 1)
- Trace tr(A) = sum of all eigenvalues (repeated if multiplicity > 1)

If A = M(f), we have:

- The term of $P_f(x)$ of degree *n* is $(-1)^n$.
- ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).
- The constant term of $P_f(x)$ is det(A).

Note:

- Determinant det(A) = product of all eigenvalues (repeated if multiplicity > 1)
- Trace tr(A) = sum of all eigenvalues (repeated if multiplicity > 1)

If A = M(f), we have:

- The term of $P_f(x)$ of degree *n* is $(-1)^n$.
- ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).

• The constant term of
$$P_f(x)$$
 is det(A).

Note:

- Determinant det(A) = product of all eigenvalues (repeated if multiplicity > 1)
- Trace tr(A) = sum of all eigenvalues (repeated if multiplicity > 1)

If A = M(f), we have:

- The term of $P_f(x)$ of degree *n* is $(-1)^n$.
- ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).

• The constant term of
$$P_f(x)$$
 is det(A).

Note:

- Determinant det(A) = product of all eigenvalues (repeated if multiplicity > 1)
- Trace tr(A) = sum of all eigenvalues (repeated if multiplicity > 1)

If A = M(f), we have:

- The term of $P_f(x)$ of degree *n* is $(-1)^n$.
- ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).

• The constant term of
$$P_f(x)$$
 is det(A).

Note:

- Determinant det(A) = product of all eigenvalues (repeated if multiplicity > 1)
- Trace tr(A) = sum of all eigenvalues (repeated if multiplicity > 1)

If A = M(f), we have:

- The term of $P_f(x)$ of degree *n* is $(-1)^n$.
- ► The term of P_f(x) of degree n − 1 is (−1)^{n−1}tr(A) (the trace tr of a matrix A is defined as the sum of its diagonal entries).

• The constant term of
$$P_f(x)$$
 is det(A).

Note:

- Determinant det(A) = product of all eigenvalues (repeated if multiplicity > 1)
- Trace tr(A) = sum of all eigenvalues (repeated if multiplicity > 1)

Diagonalization in $\ensuremath{\mathbb{C}}$

If we allow ourselves to work with eigenvectors with entries in \mathbb{C} , we have the analogous result (taking into account that $P_f(x)$ already has all its roots in \mathbb{C}):

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{C} if and only if

1. for every eigenvalue λ_i , the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_i} = a_{\lambda_i}$.

In particular, if all the roots of $P_f(x)$ are simple $(a_{\lambda_i} = 1$ for each λ_i), then f diagonalizes.

Diagonalization in $\ensuremath{\mathbb{C}}$

If we allow ourselves to work with eigenvectors with entries in \mathbb{C} , we have the analogous result (taking into account that $P_f(x)$ already has all its roots in \mathbb{C}):

Theorem (Diagonalization)

An endomorphism f of \mathbb{R}^n is diagonalizable in \mathbb{C} if and only if

1. for every eigenvalue λ_i , the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_i} = a_{\lambda_i}$.

In particular, if all the roots of $P_f(x)$ are simple $(a_{\lambda_i} = 1$ for each λ_i), then f diagonalizes.

Outline

Motivation

Eigenvalues and Eigenvectors

Diagonalization theorem

Python

Python

>>> import numpy as np
>>> from numpy.linalg import *
>>> A = np.array([[a₁₁,...,a_{1n}],...,[a_{n1},...,a_{nn}]])
To get eigenvalues and eigenvectors of A we do:

>>> eigenval, eigenvec = eig(A)

Then we call both outputs to see the list of eigenvalues >>> eigenval

gives the collection of eigenvalues of A; we can call each: eigenval[0] is the first eigenvalue, eigenval[1] the second... >>> eigenvec

gives a matrix *P* whose columns are eigenvectors of *A*; we can call each: eigenvec[:,0] gives the first eigenvector (column) (corresponding to eigenval[0]), eigenvec[:,1] gives the second...

Python

If we want to create the diagonal matrix with eigenvalues: >>> D = np.zeros((n,n),dtype='complex128') >>> for i in range(n): D[i,i] = eigenval[i] (where it says n we need to put the size of the matrix). Then we can check if PDP⁻¹ is indeed A:

>>> eigenvec@ D @inv(eigenvec)

To compute the powers of a matrix, A^k : >>> matrix_power(A,k)

Note: In Python the complex number *i* is denoted as *j*. Modulus of a complex number *z*:

>>> abs(z)