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Example: Population growth (Leslie model)

The Vollmar-Wasserman beetle lives for at most 3 years. We divide
the female VW beetles into three age classes and call:

» x; = number of youths (beetles 0 to 1 years old)
» x, = number of juveniles (beetles 1 to 2 year old)
» x3 = number of adults (beetles 2 to 3 year old)

We want to study the number of youths, juveniles and adults after
k years.
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» Youths do not lay eggs. Female juveniles have an average of 4
youth females per year and female adults have an average of 3
youth females per year.

Therefore we have:

youths next year = 4xp + 3x3
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Example: Population growth (Leslie model)

We know that:

» Youths do not lay eggs. Female juveniles have an average of 4
youth females per year and female adults have an average of 3
youth females per year.

» The survival rate for youths is 50% (that is, the probability of
a youths surviving to become a juvenile is 0.5), and the
survival rate for juveniles is 25%.

Therefore we have:

youths next year = 4x» + 3x3
juveniles next year = 0.5xy

adults next year = 0.25xp
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Example: Population growth (Leslie model)

If we write the number of youths, juveniles and adults as acolumn
vector, next year we'll have

fyouths 0 4 3 X1

fjuveniles | = 105 0 O X2

fadults 0 025 0 X3
A

Thus, next year the population will bw Ax and in k years A¥x.
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Goal: compute powers of matrices

» How do we compute A easily?
> If Ais a diagonal matrix it is easy:

A1 0 ... 0 Moo o0
0 A ... 0 . 0 X ... 0
D={ . . . : = D=1 . . :
0 0 ... X, 0 0 ... Xk

> If Ais not diagonal but we can find a change of basis matrix
P such that P~AP is diagonal, then A= PDP~! and

Ak = PD(P)*PD(P)™*... PD(P)'PD(P)™* = PDK P!
Moo ..o
0 X ... 0

Ak =p p1

0 0 ... X

n
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Definitions and properties

Definition

An endomorphism of a vector space R” is a linear map

f:R" — R".

Endomorphisms <+ square matrices.

Note: If My(f) is diagonal, then f(v;) = d;v; (di=ith value in the
diagonal).



L Eigenvalues and Eigenvectors

Definitions and properties

Definition

An endomorphism of a vector space R” is a linear map

f:R"— R".

Endomorphisms <+ square matrices.

Note: If My(f) is diagonal, then f(v;) = d;v; (di=ith value in the
diagonal).

Definition

A vector u € R" is said to be an eigenvector of f : R” — R" with
eigenvalue A € R if f(u) = X u. In this case, we say that A is an
eigenvalue of f.
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Examples

1. Consider f(x,y) = (x,2y). Then, the standard matrix of f is

wio=(3 )

(1,0) is an eigenvector of f with eigenvalue 1, and
(0,1) is an eigenvector of f with eigenvalue 2.

> ¢
> e
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Examples

2. Consider f(x,y) = (x + 5y,5x + y). Then,
» u; = (1,1) is eigenvector with eigenvalue 6;
» 1, = (1,—1) is eigenvector with eigenvalue —4.

The standard matrix of f is

I\/Ie(f):(é i’)

In the basis u = {uy, up}, the matrix of f is diagonal and
equal to

M) = (o 5, )

The aim of this topic is to study the endomorphisms for which we
can obtain a basis so that the matrix is diagonal.
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Properties

Let f be an endomorphism of R".

Lemma
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Properties

Let f be an endomorphism of R".

Lemma

» u € R" is an eigenvector of eigenvalue \ < u € Null(f — \Id)
and u # 0.

» ) is an eigenvalue of f < det(f — Ald) = 0.

Definition
For each eigenvalue A of f, Null(f — A/d) is called the eigenspace
of A and contains all eigenvectors of eigenvalue A (plus 0).
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Properties

Let f be an endomorphism of R".

Lemma

» u € R" is an eigenvector of eigenvalue \ < u € Null(f — \Id)
and u # 0.

» ) is an eigenvalue of f < det(f — Ald) = 0.

Definition
For each eigenvalue A of f, Null(f — A/d) is called the eigenspace
of A and contains all eigenvectors of eigenvalue A (plus 0).

» 0 is an eigenvalue of f < Null(f) # {0}.
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Properties

Let f be an endomorphism of R".

Lemma

» u € R" is an eigenvector of eigenvalue \ < u € Null(f — \Id)
and u # 0.

» ) is an eigenvalue of f < det(f — Ald) = 0.

Definition
For each eigenvalue A of f, Null(f — A/d) is called the eigenspace
of A and contains all eigenvectors of eigenvalue A (plus 0).

» 0 is an eigenvalue of f < Null(f) # {0}.

» The spectrum of f is the set of all its eigenvalues; it is
denoted by o(f).
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LEigenvalues and Eigenvectors

Characteristic polynomial

Definition
Given an endomorphism f of R”, let A = M(f) be its standard
matrix. The characteristic polynomial of f is computed as

a1 —x a2 ... ain
Pe(x) = det(A—xid) = | 921 @227 X ... a2

an,1 an,2 «v. dpnp— X

13
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Characteristic polynomial

Definition
Given an endomorphism f of R”, let A = M(f) be its standard
matrix. The characteristic polynomial of f is computed as

a1 — X ai2 . ai,n
a a2 — X ... a
Ps(x) = det(A — xId) = 2L 922 20
an,1 an,2 «v. dpnp— X

» The roots of P¢(x) are the eigenvalues of f, that is,
A is eigenvalue of f < Pf(\) =0 < det(A—\)=0.
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L Eigenvalues and Eigenvectors
;

Characteristic polynomial

Definition
Given an endomorphism f of R”, let A = M(f) be its standard
matrix. The characteristic polynomial of f is computed as

a1 — X ai2 . ai,n
a a2 — X ... a
Ps(x) = det(A — xId) = 2L 922 20
an,1 an,2 «v. dpnp— X

» The roots of Pr(x) are the eigenvalues of f, that is,
A is eigenvalue of f < Pf(A) =0 < det(A— \) =0.

> P¢(x) is a polynomial of degree n.

» Pf(x) can be computed from the matrix of f on any basis u
of R™: P¢(x) = det(Myu(f) — x Id).

13
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Characteristic polynomial

Example. Consider f(x,y) = (2x + 4y, x + 5y). It has standard
matrix
2 4
= (1%)

Its characteristic polynomial is

2—x 4
Pr)=|"1" 5 4

74£+/(~7)2—46

The roots of this polynomial are , 50 6 and 1. We

have Pf(x) = (x — 6)(x — 1).

=(Q2-x)(5-x)—4x1=x>—-Tx+6.

14



LEigenvalues and Eigenvectors

Roots of polynomials

A root or zero of a polynomial p(x) is a number a such that

p(a) =0.
Properties:

> ais a root of p(x) < p(x) is a multiple of (x — a)

(p(x) = (x = a)q(x)).
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Roots of polynomials

A root or zero of a polynomial p(x) is a number a such that

p(a) =0.
Properties:

> ais a root of p(x) < p(x) is a multiple of (x — a)
(p(x) = (x = a)q(x)).

» ais a root of multiplicity m if p(x) = (x — a)™q(x) for some
q(x).
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L Eigenvalues and Eigenvectors

Roots of polynomials

A root or zero of a polynomial p(x) is a number a such that

p(a) =0.
Properties:
> ais a root of p(x) < p(x) is a multiple of (x — a)
(p(x) = (x = a)a(x)).
» ais a root of multiplicity m if p(x) = (x — a)™q(x) for some
q(x)-
» Any real polynomial factorizes as a product of degree 1 and
degree 2 polynomials with real coefficients.
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Fundamental theorem of algebra

» A polynomial might NOT have real roots:

X*4+1=0=x=+V-1
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Fundamental theorem of algebra

» A polynomial might NOT have real roots:
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» We denote by / the square root of —1, i = v/—1

> A complex number is an expression a + bi with a,b € R. Ex:
3+ 2i.
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> A complex number is an expression a + bi with a,b € R. Ex:
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Fundamental theorem of algebra

» A polynomial might NOT have real roots:
X*4+1=0=x=+V-1

» We denote by / the square root of —1, i = v/—1

> A complex number is an expression a + bi with a,b € R. Ex:

3+ 2.

» The set of complex numbers is denoted as C and contains R.

» All roots of a polynomial are either real or complex numbers.

Theorem
If p(x) is a polynomial of degree n, then it has n complex roots
counted with multiplicity.
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Multiplicities of eigenvalues

Definition
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Multiplicities of eigenvalues

Definition
» The algebraic multiplicity of A\, denoted by a,, is the
multiplicity as a root of P¢(x) (the number of times A appears
as a root of Pr(x).
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L Diagonalization theorem

Multiplicities of eigenvalues

Definition
» The algebraic multiplicity of A\, denoted by a,, is the
multiplicity as a root of P¢(x) (the number of times A\ appears
as a root of Pr(x).
> The geometric multiplicity of )\, denoted by gy, is the
dimension of the vector subspace Null(f — Ald), that is,
n—rk(M(f)—Al) > 0.
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L Diagonalization theorem

Multiplicities of eigenvalues

Definition
» The algebraic multiplicity of A\, denoted by a,, is the

multiplicity as a root of P¢(x) (the number of times A\ appears
as a root of Pr(x).

> The geometric multiplicity of )\, denoted by gy, is the
dimension of the vector subspace Null(f — Ald), that is,
n—rk(M(f)—Al) > 0.

Proposition
For every eigenvalue A\, we have 1 < gy < ay.

18



LDiagonalizaticm theorem

Diagonalization theorem

Definition
An endomorphism f of R" is diagonalizable in R if there is a basis
u of R” such that M, 4(f) is diagonal.
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Diagonalization theorem

Definition
An endomorphism f of R" is diagonalizable in R if there is a basis
u of R” such that M, 4(f) is diagonal.

Theorem (Diagonalization)
An endomorphism f of R" is diagonalizable in R if and only if
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L Diagonalization theorem

Diagonalization theorem

Definition
An endomorphism f of R" is diagonalizable in R if there is a basis
u of R” such that M, 4(f) is diagonal.

Theorem (Diagonalization)
An endomorphism f of R" is diagonalizable in R if and only if

1. all the roots A1, ..., Ak of P¢(x) (the eigenvalues of f) are
real;

19
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Diagonalization theorem

Definition
An endomorphism f of R" is diagonalizable in R if there is a basis
u of R” such that M, 4(f) is diagonal.

Theorem (Diagonalization)
An endomorphism f of R" is diagonalizable in R if and only if

1. all the roots A1, ..., \x of Pg(x) (the eigenvalues of f) are
real;

2. for every eigenvalue \;, the algebraic multiplicity and
geometric multiplicity are equal: : g\, = ay,;.

109
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Diagonalization theorem

Definition
An endomorphism f of R" is diagonalizable in R if there is a basis
u of R” such that M, 4(f) is diagonal.

Theorem (Diagonalization)
An endomorphism f of R" is diagonalizable in R if and only if

1. all the roots A1, ..., \x of Pg(x) (the eigenvalues of f) are
real;

2. for every eigenvalue \;, the algebraic multiplicity and
geometric multiplicity are equal: : g\, = ay,;.

In particular, if all the roots of P¢(x) are real and simple (ay, =1
for each \;), then f diagonalizes.

109
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Diagonalization for matrices

Definition

A matrix A € M,p(R) is diagonalizable if there is an invertible
matrix P € M,(R) such that P~ AP is diagonal.

That is, A is diagonalizable if it is the standard matrix of a
diagonalizable endomorphism f, A = M(f); in this case P is the
change of basis matrix from a basis u to the standard basis e,
P= Au—)e-

A= Au—)eDAJie = PDP™Y,
D=PlAP = AesuM(f)Aumse = Mu(f)

20
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Procedure to diagonalize an endomorphism

Given an endomorphism f of R”, let A = M,(f) be its standard
matrix.

1. Compute Pf(x) = det(A — x Id).

21
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Given an endomorphism f of R”, let A = M,(f) be its standard
matrix.

1. Compute Pr(x) = det(A — x Id).

2. Compute the roots A1, ..., Ak of Ps(x), these are the
eigenvalues of . For each eigenvalue );, its algebraic
multiplicity ay, is the multiplicity it has as a root of Pr(x).
Note that ay, +...+ay, = n.
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2. Compute the roots A1, ..., Ak of Ps(x), these are the
eigenvalues of . For each eigenvalue );, its algebraic
multiplicity ay, is the multiplicity it has as a root of Pr(x).
Note that ay, +...+ay, = n.

3. For each \;, compute Null(A — A;/d), the subspace of all
eigenvectors with eigenvalue )\;. The dimension of this space
is the geometric multiplicity gy, of A;.
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L Diagonalization theorem

Procedure to diagonalize an endomorphism

Given an endomorphism f of R”, let A = M,(f) be its standard
matrix.

1. Compute Pf(x) = det(A — x Id).

2. Compute the roots A1, ..., Ak of Ps(x), these are the
eigenvalues of f. For each eigenvalue J;, its algebraic
multiplicity ay, is the multiplicity it has as a root of Pr(x).
Note that ay, +...+ay, = n.

3. For each \;, compute Null(A — A;/d), the subspace of all
eigenvectors with eigenvalue )\;. The dimension of this space
is the geometric multiplicity gy, of A;.

4. If g\, < ay,; for some eigenvalue );, then f does not
diagonalize (and we are done).

21



LDiagonalization theorem
; ;

Procedure to diagonalize an endomorphism

5. If gy, = ay, for all i, for each eigenvalue )\; take a basis of
Null(A — \; Id)
6. Let u be the collection of all these vectors
Then,
» u is a basis of R".

29
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Procedure to diagonalize an endomorphism

5. If gy, = ay, for all i, for each eigenvalue )\; take a basis of
Null(A — \; Id)

6. Let u be the collection of all these vectors
Then,

» uis a basis of R".

» My(f) is a diagonal matrix whose entries are the eigenvalues:
A1o... 0
0 ... X

29
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Diagonalizing endomorphisms

Recall that D = My, (f) can be computed by doing a change of
basis: if e is the standard basis of R", then

Aesu M(f) Ause = D.
(Equivalently, Ay—e D Aeyy = M(F)).

27
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Properties of the characteristic polynomial

If A= M(f), we have:
» The term of Pr(x) of degree nis (—1)".
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tr of a matrix A is defined as the sum of its diagonal entries).
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Properties of the characteristic polynomial

If A= M(f), we have:
» The term of Pr(x) of degree nis (—1)".

» The term of Pr(x) of degree n — 1 is (—1)"1tr(A) (the trace
tr of a matrix A is defined as the sum of its diagonal entries).

» The constant term of P¢(x) is det(A).
Note:

» Determinant det(A) = product of all eigenvalues (repeated if
multiplicity > 1)
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Properties of the characteristic polynomial

If A= M(f), we have:
» The term of Pr(x) of degree nis (—1)".

» The term of Pr(x) of degree n — 1 is (—1)"1tr(A) (the trace
tr of a matrix A is defined as the sum of its diagonal entries).

» The constant term of P¢(x) is det(A).
Note:

» Determinant det(A) = product of all eigenvalues (repeated if
multiplicity > 1)

» Trace tr(A) = sum of all eigenvalues (repeated if multiplicity
> 1)
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Properties of the characteristic polynomial

If A= M(f), we have:
» The term of Pr(x) of degree nis (—1)".

» The term of Pr(x) of degree n — 1 is (—1)"1tr(A) (the trace
tr of a matrix A is defined as the sum of its diagonal entries).

» The constant term of P¢(x) is det(A).
Note:

» Determinant det(A) = product of all eigenvalues (repeated if
multiplicity > 1)
» Trace tr(A) = sum of all eigenvalues (repeated if multiplicity
> 1)
This might help in getting the eigenvalues of 2 x 2 or 3 x 3
matrices.
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L Python

Python

>>> import numpy as np

>>> from numpy.linalg import *

>>> A = np.array([[ai1, ..., 2], -, [@n1,-- -, 2nn]])
To get eigenvalues and eigenvectors of A we do:

>>> eigenval, eigenvec = eig(A)

Then we call both outputs to see the list of eigenvalues

>>> eigenval

gives the collection of eigenvalues of A; we can call each:
eigenval[0] is the first eigenvalue, eigenval[1] the second...
>>> eigenvec

gives a matrix P whose columns are eigenvectors of A; we can call
each: eigenvec[:,0] gives the first eigenvector (column)
(corresponding to eigenval[0]), eigenvec[:,1] gives the
second...

26
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Python

If we want to create the diagonal matrix with eigenvalues:
>>> D = np.zeros((n,n),dtype=’complex128’)
>>> for i in range(n):
D[i,i] = eigenvalli]
(where it says n we need to put the size of the matrix). Then we
can check if PDP~1 is indeed A:

>>> eigenvec@ D Qinv(eigenvec)
Note: In Python the complex number i is denoted as j.

To compute the powers of a matrix, A:
>>> matrix_power(A, k)

27
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