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Motivation
From now on, E is a K-e.v. of finite dimension n and f € End(E).
» Goal: compute powers of matrices.
» If M is a diagonal matrix, then it is easy to compute M™ for
any m e N.
> If M is not diagonal, is there a change of basis that converts
it to a diagonal matrix?
Definition
We say that an endomorphism f : E — E is diagonalizable in K if
there exists a basis v of E such that M,(f) is a diagonal matrix
D € M,(K).
In other words, f is diagonalizable in K if there exists an invertible
matrix P € Mp(K) such that

P~ Me(f)P

is a diagonal matrix (P can be thought as a change of basis
matrix).
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» An n x n matrix diagonalizes if there exists an invertible
matrix P such that P~1MP is a diagonal matrix.
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;

» An n x n matrix diagonalizes if there exists an invertible
matrix P such that P~*MP is a diagonal matrix.

» If M diagonalizes, then M = PDP~! for a certain diagonal
matrix D. Hence, M™ can be easily computed:

M™ = pDP~*PDP~* ... PDP~*PDP~ = PD™P.
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Eigenvalues and eigenvectors
Remark: If M,(f) is diagonal, then f(v;) = d;v; (d; = ith value in
the diagonal).
Definition
Let f € End(E). A vector u # 0 € E is an eigenvector (VEP) of
f if f(u) = A u for some A € K. In this case, we say that \ is an
eigenvalue (VAP) of f and that u is an eigenvector with
eigenvalue A.
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Eigenvalues and eigenvectors
Remark: If M,(f) is diagonal, then f(v;) = d;v; (d; = ith value in
the diagonal).
Definition
Let f € End(E). A vector u # 0 € E is an eigenvector (VEP) of
f if f(u) = A u for some A € K. In this case, we say that \ is an
eigenvalue (VAP) of f and that u is an eigenvector with
eigenvalue A.

Example

Consider the endomorphism of R? given by f(x,y) = (5x,2y).
Then, e; = (1,0) is an eigenvector of f with eigenvalue 1, and
e» = (0,1) is an eigenvector of f with eigenvalue 2.

The standard matrix of f is

Me(f):(g g)
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In black v; in blue f(v).

[D.Poole]



LEigenvaIues and Eigenvectors
:

Geometric interpretation

In black v; in blue f(v).

[D.Poole]

A map with eigenvectors

[(1,1)] and [(1, —1)]



LEigenvalues and Eigenvectors
; ;

Geometric interpretation

In black v; in blue f(v).

[D.Poole]

A map with eigenvectors A map with no
[(1,1)] and [(1,-1)] eigenvectors in R.
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Lemma

» ucEisa VEP of VAP A € K < u € Nuc(f — Ald) and
u#0.

> NeKisa VAP of f & det(f — Ald) = 0.
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Eigenvectors and eigenvalues

Lemma
» ucEisa VEP of VAP A € K < u € Nuc(f — Ald) and

u#0.
> M€K isa VAP of f < det(f — Ald) = 0.

Definition
For each X\ VAP of f,
Ey:=Nuc(f — A\ld) C E
is called the eigenspace of A (subespai propi). This is the
subspace formed by all VEP's of VAP X plus 0.

» Eg = Nuc(f); u# 0is a VEP with VAP 0 < u € Nuc(f).

> The spectrum of f is the set of all its eigenvalues in K and is
denoted by o(f).
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Eigenvalues

Definition
The characteristic polynomial of A € M,(K) is

a1 — X ai2 e al,n
a a2 — X ... a
Pa(x) := det(A — xId) = 21 22 2
an,1 an2 «v. dnn—X

If f € End(E), the characteristic polynomial of f is pa(x) where
A = My(f) for some basis u.

10
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2. P¢(x) is a polynomial of degree n,
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L Eigenvalues and Eigenvectors

Properties

Proposition

1. P¢(x) does not depend on the basis u chosen.
2. P¢(x) is a polynomial of degree n,

Pr(x) = cox™ + cpo1x™ L+ ...+ cix + co. Moreover, if
Mu(f) = (aij), =

Ch = (_1)n’
1= (=1)"ter(F) = (=1)" Mar1 + - + ann),
co = det(f).

3. The roots of P¢(x) are the eigenvalues of f, that is,
X € K is an eigenvalue of f < Pf(\) = 0.

11
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Algebraic and geometric multiplicity of an eigenvalue

Definition
If X is an eigenvalue of f, the algebraic multiplicity of X\ ,
denoted by ay, is the multiplicity as a root of Pr(x).

12
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If X is an eigenvalue of f, the algebraic multiplicity of X\ ,
denoted by ay, is the multiplicity as a root of Pr(x).

Definition
The geometric multiplicity of ), denoted by g, is the dimension
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Algebraic and geometric multiplicity of an eigenvalue

Definition
If X is an eigenvalue of f, the algebraic multiplicity of X\ ,
denoted by ay, is the multiplicity as a root of Pr(x).

Definition
The geometric multiplicity of ), denoted by g, is the dimension
of the vector subspace Nuc(f — AId), that is, n — rk(A — AI).

Proposition
For every eigenvalue \, we have 1 < gy < ay.

12
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Let f € End(E). Then,

Lemma
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» If A1,..., A are different VAP's = the sum E\, + ...+ Ey, is
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L Diagonalization theorem
;

Linear independency of VEPs

Let f € End(E). Then,

Lemma
» If u,v are VEP's of different VAP's = u, v are I.i.

» If A1,..., A are different VAP's = the sum E\, + ...+ Ey, is
a direct sum,

EA1+-..+E)\,:E)\1€B.--@E)\,

Corollary

If M1, ...\, are different eigenvalues of f and B; = {v{, . v(",i} is a
basis of Ey, fori =1,...,r, then BiU...U B, is a collection of
linearly independent vectors.

14
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Diagonalization theorem

Theorem (First Diagonalization Thm)
An endomorphism f of E is diagonalizable in K if and only if

1. P¢(x) has all its roots A1, ..., Ak in K (P¢ fully decomposes
in K)
and

2. for every VAP \;, the algebraic multiplicity and geometric
multiplicity are equal: gy, = ay,.
If it diagonalizes, it does so in a basis of VEP's.

15
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Diagonalization theorem

Theorem (First Diagonalization Thm)
An endomorphism f of E is diagonalizable in K if and only if

1. P¢(x) has all its roots A1, ..., Ak in K (P¢ fully decomposes
in K)
and

2. for every VAP \;, the algebraic multiplicity and geometric
multiplicity are equal: gy, = ay,.

If it diagonalizes, it does so in a basis of VEP's.

Corollary

If all the roots of P¢(x) are in K and simple (ay, = 1 for each \;),
then f diagonalizes.

15



LDiagonalization theorem
; ;

Procedure to diagonalize an endomorphism

Given an endomorphism f of R”, let A be its standard matrix.

1. Compute the characteristic polynomial P¢(x) = det(A — x Id).
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Procedure to diagonalize an endomorphism

Given an endomorphism f of R”, let A be its standard matrix.
1. Compute the characteristic polynomial P¢(x) = det(A — x Id).

2. Compute the roots A1, ..., Ak of Ps(x): if some \; ¢ R = f
does not diagonalize in R. Otherwise,

16
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Procedure to diagonalize an endomorphism

Given an endomorphism f of R”, let A be its standard matrix.

1.
2.

Compute the characteristic polynomial Pr(x) = det(A — x Id).

Compute the roots A1, ..., Ak of Pr(x): if some \; ¢ R = f
does not diagonalize in R. Otherwise,

For each eigenvalue )\;, compute its algebraic multiplicity as a
root of Pr(x), ay,.
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Given an endomorphism f of R”, let A be its standard matrix.
1. Compute the characteristic polynomial P¢(x) = det(A — x Id).
2. Compute the roots A1, ..., Ak of Ps(x): if some \; ¢ R = f
does not diagonalize in R. Otherwise,
3. For each eigenvalue \;, compute its algebraic multiplicity as a
root of Pr(x), ay,.

4. For each \;, compute Nuc(A — \;Id): this is the set of all
eigenvectors of f with eigenvalue \;. The dimension of this
space is the geometric multiplicity gy, of A;.
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L Diagonalization theorem

Procedure to diagonalize an endomorphism

Given an endomorphism f of R”, let A be its standard matrix.

1. Compute the characteristic polynomial P¢(x) = det(A — x Id).

2. Compute the roots A1, ..., Ak of Ps(x): if some \; ¢ R = f
does not diagonalize in R. Otherwise,

3. For each eigenvalue \;, compute its algebraic multiplicity as a
root of Pr(x), ay,.

4. For each \;, compute Nuc(A — \;Id): this is the set of all
eigenvectors of f with eigenvalue \;. The dimension of this
space is the geometric multiplicity gy, of A;.

5. If \; € R and gy, = a, for each eigenvalue J;, then f
diagonalizes.

16



LDiagonalizaticm theorem

Procedure to diagonalize an endomorphism
In this case, for each eigenvalue \;, let {v{, ..
Nuc(A — \; Id). Then,

Lv=U {v,... v v;, } is a basis of R,

7a>\

} be a basis for

17
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Procedure to diagonalize an endomorphism
In this case, for each eigenvalue \;, let {v{, ..
Nuc(A — \; Id). Then,

Lv=U (v, ..., Vi, '} is a basis of R".
2. M,(f) is a diagonal matrix:

7a>\

A ... O
MV(f):

} be a basis for
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L Diagonalization theorem

Procedure to diagonalize an endomorphism
In this case, for each eigenvalue \;, let {v{, ..
Nuc(A — \; Id). Then,

Lv=U (v, ..., Vi, '} is a basis of R".
2. M,(f) is a diagonal matrix:

} be a basis for

) a>\

A1 ... 0
M(f)=D=| : -~
0 ... X

Recall that My (f) can be computed by doing a change of basis: if
e is the standard basis of R” and , then

Aesv AAy e = D.
(Equivalently, Ay_ye D Ae_yy = A).

17
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Triangularization of endomorphisms

Lemma
For any f € End(R") there exists a basis u of C" in which M,(f)
is triangular, has VAP's \1,..., A\, (repeated if necessary) of f in
the diagonal and

det(A) = A1 ... An,

tr(A) =M1+ ...+ A\

Better than triangular: we could get a Jordan canonical form, i.e.
a block-diagonal matrix formed by blocks of type:

A0 ... 0
1 X ... 0

o1 ... 0

18
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Study of A¥x when k — oo

Let A€ M,(R), with A= PDP~L, D = diag(\1,...,\n), P =
change-of-basis = Ay_e, v={vi,...,vp}. Then,

> Ak = PDkP1.
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Let A€ M,(R), with A= PDP~L, D = diag(\1,...,\n), P =
change-of-basis = Ay_e, v={vi,...,vp}. Then,

> Ak = ppDkp-1,
> Ifx=cw+ - +cpv, = Akx:cl)\’l‘vl-l—----i—c,,)\ﬁv,,
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Study of A¥x when k — oo

Let A€ M,(R), with A= PDP~, D = diag(\1,...,A\n), P =
change-of-basis = Ay_e, v={vi,...,vp}. Then,

> Ak = pDkp—1,
> If x=cwvi+ -4+ cpvy :>Akx:c1)\’1‘v1+---+c,,)\ﬁv,,
> If |A1] > |\i|, then Ak grows faster than ¥ so, if ¢; # 0,

Akx ~ cl)\ll‘vl for k big, and

» This is the " power method”: the technical basis to efficiently
compute VAPs (and VEPs).

20
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Discrete dynamical systems

Definition
A homogeneous linear discrete dynamical system is a matrix
equation of the form

x(k+1)=Ax(k), keN,

where A is an n X n square matrix , and
x1(k)

The vector x(0) is called an initial condition.
A solution (or trajectory) is a collection of vectors {x(k)}x>o such
that each x(k) satisfies the equation above.

21
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Discrete dynamical systems

Definition
A homogeneous linear discrete dynamical system is a matrix
equation of the form

x(k+1)=Ax(k), keN,

where A is an n X n square matrix , and
x1(k)
x(k) = : e R".
Xn (k)

The vector x(0) is called an initial condition.
A solution (or trajectory) is a collection of vectors {x(k)}x>o such
that each x(k) satisfies the equation above.

Lemma
The solutions to x(k + 1) = Ax(k) are {x(k) = A¥x(0)}«.

21
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Discrete linear systems (cont.)

If A diagonalizes with eigenvalues A\1,..., Ay, and v ={vi,...,vp}
is a basis of eigenvectors, the solutions x(k) = A¥x(0) satisfy

> If x(0)=cwvi+ -+ cpvy =
x(k) = Akx(0) = ci Mk vy + -+ + e )k,

29
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Discrete linear systems (cont.)

If A diagonalizes with eigenvalues \1,..., A, and v={vg,...

is a basis of eigenvectors, the solutions x(k) = A¥x(0) satisfy
> If x(0)=cwvi+ -+ cpvy =
x(k) = Ax(0) = alMfvi + - + cuAjvi
> If |A\1] > |\i| = AK grows faster than A\¥ and if ¢; # 0,

x(k) ~ ciMfvi  for k big.

) Vn}

29
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Discrete linear systems (cont.)

If A diagonalizes with eigenvalues A\1,...,A\p, and v={wvq,..., vy}
is a basis of eigenvectors, the solutions x(k) = A¥x(0) satisfy

> If x(0)=cwvi+ -+ cpvy =
x(k) = Akx(0) = ci Mk vy + -+ + e )k,
> If |A\1] > |\i| = AK grows faster than A\¥ and if ¢; # 0,

x(k) ~ ciMfvi  for k big.

Definition
If [A1] > |Ai], A1 is called the dominant eigenvalue.

29
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Stochastic matrices

Definition

A (column) stochastic matrix is a non-negative n x n matrix
whose columns sum to 1.

A similar definition can be made for rows.

If Ais a stochastic matrix we have:

27
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Stochastic matrices

Definition
A (column) stochastic matrix is a non-negative n x n matrix
whose columns sum to 1.
A similar definition can be made for rows.
If Ais a stochastic matrix we have:
> 1 is an eigenvalue of A.
» If x sums to 1, then Ax still sums to 1.

27
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Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

24
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Theorem
If A is a positive stochastic matrix, then 1 is VAP and

» 1> |\ for any other VAP \
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» 1 has a nonegative VEP v.
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;

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

» 1> |\ for any other VAP \
> g=1
» 1 has a nonegative VEP v.

» no other VAP has positive eigenvectors.

24
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;

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

» 1> |\ for any other VAP \

> g =1

» 1 has a nonegative VEP v.

» no other VAP has positive eigenvectors.

» [f we take v to sum to 1, then we have
limAK = (vv...v)

and  limAfx = v

for any positive vector x that sums to 1.

24
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Ranking de pagines web (Google pagerank)

0 12 0 12 0
0 0 1/3 1/3 13
) S=/0 0 0 1 0
OO0 P
1 0 0.0 0

Links = nonzero elements in matrix

Want v positive such that Av = av (A = S*) for some a = v=
dominant eigenvector, a = 1.
Computation of v: lim A¥x for any positive x.

75
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Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)

If f € End(R") has characteristic polynomial
P¢(x) = ap+ aix+ ...+ anx™ and A is its standard matrix of, then

aold+alA+-~-+a,,A":0.

Consequences:

26
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Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)
If f € End(R") has characteristic polynomial
P¢(x) = ao + a1x+ ...+ anx" and A is its standard matrix of, then

30/d+31A+"'+anAn:0.

Consequences:

> A" can be computed as a linear combination of
Id,A A%, ... A1

» If Ais invertible = A~ can be computed as a linear
combination of Id, A, ..., A"t

26
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Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)

If f € End(R") has characteristic polynomial
P¢(x) = ao + a1x+ ...+ anx" and A is its standard matrix of, then

aold+a1A+-~-—|—a,,A":0.

Consequences:

> A" can be computed as a linear combination of
Id,A A%, ... A1

» If Ais invertible = A~ can be computed as a linear
combination of Id, A, ..., A"t

> Useful to compute exp(A) (next slide).

26
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Exponential of a matrix

If f is a diagonalizable endomorphism with standard matrix
A€ M,(R), sothat A=SD S~1, where D diagonal:

D = diag(M1,...,An), S = Avse, and v ={v1,...,v,} is the
corresponding basis of eigenvectors. Then, we define the
exponential of the matrix A:

e 0 0

0 e ... 0
A=SePst=s| . . |s!

0 0 et

and this coincides with Zn>0 AL

27
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Real matrices with complex eigenvalues

If Ais a real matrix and we allow diagonalization in K = C, then
VAP’s and VEP’s go “in pairs”:
> pa(x) € R[x] = X is a VAP of A if and only if X is also a VAP.

28



LAppIiA:aticms
;

Real matrices with complex eigenvalues

If Ais a real matrix and we allow diagonalization in K = C, then
VAP’s and VEP’s go “in pairs”:
> pa(x) € R[x] = X is a VAP of A if and only if X is also a VAP.

» If A€ C\R, and w € C" is a VEP with VAP J, then we can
write w = u + iv where u,v € R".

28
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Real matrices with complex eigenvalues

If Ais a real matrix and we allow diagonalization in K = C, then
VAP’s and VEP’s go “in pairs”:

> pa(x) € R[x] = X is a VAP of A if and only if X is also a VAP.

» If A€ C\R, and w € C" is a VEP with VAP J, then we can
write w = u + iv where u,v € R".

» Then, w := u — iv is an eigenvector with eigenvalue .

28
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;

Real matrices with complex eigenvalues

If Ais a real matrix and we allow diagonalization in K = C, then
VAP’s and VEP’s go “in pairs”:

> pa(x) € R[x] = X is a VAP of A if and only if X is also a VAP.

» If A€ C\R, and w € C" is a VEP with VAP J, then we can
write w = u + iv where u,v € R".

» Then, w := u — iv is an eigenvector with eigenvalue ).
If we want to work only in R, the one can rearrange complex

VAP’s and VEP’s in conjugate pairs to obtain a “diagonalization”
of Aiin 2 x 2 blocks: use [u, v] instead of w,w.

28
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