Àlgebra lineal i geometria 3. Diagonalització

Grau en Enginyeria Física 2023-24

Universitat Politècnica de Catalunya
Departament de Matemàtiques

Marta Casanellas
Universitat Politècnica de Catalunya

UNIVERSITAT POLITĖCNICA
DE CATALUNYA
BARCELONATECH

Outline

Eigenvalues and Eigenvectors

Diagonalization theorem

Applications

Bibliography

Outline

Eigenvalues and Eigenvectors

Diagonalization theorem

Applications

Bibliography

Motivation

$$
A^{m} x
$$

[D.Poole]

Motivation

$$
A^{m} x
$$

[D.Poole]

Motivation

$$
A^{m} x
$$

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right) \\
x=\binom{1}{1},\binom{-5}{5} \\
\binom{-4}{5},\binom{2}{1}, \ldots \\
{[\text { D.Poole }}
\end{gathered}
$$

Motivation

From now on, E is a \mathbb{K}-e.v. of finite dimension n and $f \in \operatorname{End}(E)$.

- Goal: compute powers of matrices.

Motivation

From now on, E is a \mathbb{K}-e.v. of finite dimension n and $f \in \operatorname{End}(E)$.

- Goal: compute powers of matrices.
- If M is a diagonal matrix, then it is easy to compute M^{m} for any $m \in \mathbb{N}$.

Motivation

From now on, E is a \mathbb{K}-e.v. of finite dimension n and $f \in \operatorname{End}(E)$.

- Goal: compute powers of matrices.
- If M is a diagonal matrix, then it is easy to compute M^{m} for any $m \in \mathbb{N}$.
- If M is not diagonal, is there a change of basis that converts it to a diagonal matrix?

Motivation

From now on, E is a \mathbb{K}-e.v. of finite dimension n and $f \in \operatorname{End}(E)$.

- Goal: compute powers of matrices.
- If M is a diagonal matrix, then it is easy to compute M^{m} for any $m \in \mathbb{N}$.
- If M is not diagonal, is there a change of basis that converts it to a diagonal matrix?

Definition

We say that an endomorphism $f: E \rightarrow E$ is diagonalizable in \mathbb{K} if there exists a basis \mathbf{v} of E such that $M_{\mathbf{v}}(f)$ is a diagonal matrix $D \in \mathcal{M}_{n}(\mathbb{K})$.

Motivation

From now on, E is a \mathbb{K}-e.v. of finite dimension n and $f \in \operatorname{End}(E)$.

- Goal: compute powers of matrices.
- If M is a diagonal matrix, then it is easy to compute M^{m} for any $m \in \mathbb{N}$.
- If M is not diagonal, is there a change of basis that converts it to a diagonal matrix?

Definition

We say that an endomorphism $f: E \rightarrow E$ is diagonalizable in \mathbb{K} if there exists a basis \mathbf{v} of E such that $M_{\mathbf{v}}(f)$ is a diagonal matrix $D \in \mathcal{M}_{n}(\mathbb{K})$.
In other words, f is diagonalizable in \mathbb{K} if there exists an invertible matrix $P \in \mathcal{M}_{n}(\mathbb{K})$ such that

$$
P^{-1} M_{\mathbf{e}}(f) P
$$

is a diagonal matrix (P can be thought as a change of basis matrix).

- An $n \times n$ matrix diagonalizes if there exists an invertible matrix P such that $P^{-1} M P$ is a diagonal matrix.
- An $n \times n$ matrix diagonalizes if there exists an invertible matrix P such that $P^{-1} M P$ is a diagonal matrix.
- If M diagonalizes, then $M=P D P^{-1}$ for a certain diagonal matrix D. Hence, M^{m} can be easily computed:

$$
M^{m}=P D P^{-1} P D P^{-1} \ldots P D P^{-1} P D P^{-1}=P D^{m} P^{-1} .
$$

Eigenvalues and eigenvectors

Remark: If $M_{\mathbf{v}}(f)$ is diagonal, then $f\left(v_{i}\right)=d_{i} v_{i}\left(d_{i}=i\right.$ th value in the diagonal).

Definition

Let $f \in \operatorname{End}(E)$. A vector $u \neq 0 \in E$ is an eigenvector (VEP) of f if $f(u)=\lambda u$ for some $\lambda \in \mathbb{K}$. In this case, we say that λ is an eigenvalue (VAP) of f and that u is an eigenvector with eigenvalue λ.

Eigenvalues and eigenvectors

Remark: If $M_{v}(f)$ is diagonal, then $f\left(v_{i}\right)=d_{i} v_{i}\left(d_{i}=i\right.$ th value in the diagonal).

Definition

Let $f \in \operatorname{End}(E)$. A vector $u \neq 0 \in E$ is an eigenvector (VEP) of f if $f(u)=\lambda u$ for some $\lambda \in \mathbb{K}$. In this case, we say that λ is an eigenvalue (VAP) of f and that u is an eigenvector with eigenvalue λ.

Example

Consider the endomorphism of \mathbb{R}^{2} given by $f(x, y)=(5 x, 2 y)$. Then, $e_{1}=(1,0)$ is an eigenvector of f with eigenvalue 1 , and $e_{2}=(0,1)$ is an eigenvector of f with eigenvalue 2 .
The standard matrix of f is

$$
M_{e}(f)=\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

Geometric interpretation

In black v; in blue $f(v)$.

Geometric interpretation

In black v; in blue $f(v)$.

A map with eigenvectors
$[(1,1)]$ and $[(1,-1)]$

A map with no
eigenvectors in \mathbb{R}

Geometric interpretation

In black v; in blue $f(v)$.

[D.Poole]
A map with no eigenvectors in \mathbb{R}.

A map with eigenvectors
$[(1,1)]$ and $[(1,-1)]$

Eigenvectors and eigenvalues

Lemma
> $u \in E$ is a VEP of VAP $\lambda \in \mathbb{K} \Leftrightarrow u \in \operatorname{Nuc}(f-\lambda / d)$ and - $\lambda \in \mathbb{K}$ is a VAP of $f \Leftrightarrow \operatorname{det}(f-\lambda / d)=0$.

Eigenvectors and eigenvalues

Lemma

- $u \in E$ is a VEP of VAP $\lambda \in \mathbb{K} \Leftrightarrow u \in \operatorname{Nuc}(f-\lambda / d)$ and $u \neq 0$.

Definition
is called the eigenspace of λ (subespai propi). This is the subspace formed bv all VEP's of VAP λ olus 0.

Eigenvectors and eigenvalues

Lemma

- $u \in E$ is a VEP of VAP $\lambda \in \mathbb{K} \Leftrightarrow u \in \operatorname{Nuc}(f-\lambda / d)$ and $u \neq 0$.
- $\lambda \in \mathbb{K}$ is a VAP of $f \Leftrightarrow \operatorname{det}(f-\lambda / d)=0$.

Eigenvectors and eigenvalues

Lemma

- $u \in E$ is a VEP of VAP $\lambda \in \mathbb{K} \Leftrightarrow u \in \operatorname{Nuc}(f-\lambda / d)$ and $u \neq 0$.
- $\lambda \in \mathbb{K}$ is a VAP of $f \Leftrightarrow \operatorname{det}(f-\lambda / d)=0$.

Definition

For each λ VAP of f,

$$
E_{\lambda}:=\operatorname{Nuc}(f-\lambda / d) \subseteq E
$$

is called the eigenspace of λ (subespai propi). This is the subspace formed by all VEP's of VAP λ plus $\mathbf{0}$.

Eigenvectors and eigenvalues

Lemma

- $u \in E$ is a VEP of VAP $\lambda \in \mathbb{K} \Leftrightarrow u \in \operatorname{Nuc}(f-\lambda / d)$ and $u \neq 0$.
- $\lambda \in \mathbb{K}$ is a VAP of $f \Leftrightarrow \operatorname{det}(f-\lambda / d)=0$.

Definition

For each λ VAP of f,

$$
E_{\lambda}:=\operatorname{Nuc}(f-\lambda / d) \subseteq E
$$

is called the eigenspace of λ (subespai propi). This is the subspace formed by all VEP's of VAP λ plus $\mathbf{0}$.

- $E_{0}=\operatorname{Nuc}(f) ; u \neq 0$ is a VEP with VAP $0 \Leftrightarrow u \in \operatorname{Nuc}(f)$.

Eigenvectors and eigenvalues

Lemma

- $u \in E$ is a VEP of VAP $\lambda \in \mathbb{K} \Leftrightarrow u \in \operatorname{Nuc}(f-\lambda / d)$ and $u \neq 0$.
- $\lambda \in \mathbb{K}$ is a VAP of $f \Leftrightarrow \operatorname{det}(f-\lambda / d)=0$.

Definition

For each λ VAP of f,

$$
E_{\lambda}:=\operatorname{Nuc}(f-\lambda / d) \subseteq E
$$

is called the eigenspace of λ (subespai propi). This is the subspace formed by all VEP's of VAP λ plus $\mathbf{0}$.

- $E_{0}=\operatorname{Nuc}(f) ; u \neq 0$ is a VEP with VAP $0 \Leftrightarrow u \in \operatorname{Nuc}(f)$.
- The spectrum of f is the set of all its eigenvalues in \mathbb{K} and is denoted by $\sigma(f)$.

Eigenvalues

Definition

The characteristic polynomial of $A \in \mathcal{M}_{n}(\mathbb{K})$ is
$P_{A}(x):=\operatorname{det}(A-x / d)=\left|\begin{array}{cccc}a_{1,1}-x & a_{1,2} & \ldots & a_{1, n} \\ a_{2,1} & a_{2,2}-x & \ldots & a_{2, n} \\ \ldots & \ldots & & \ldots \\ a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}-x\end{array}\right|$.
If $f \in \operatorname{End}(E)$, the characteristic polynomial of f is $p_{A}(x)$ where $A=M_{\mathbf{u}}(f)$ for some basis \mathbf{u}.

Properties

Proposition

Properties

Proposition

1. $P_{f}(x)$ does not depend on the basis \mathbf{u} chosen.
2. $P_{f}(x)$ is a polynomial of degree n,

3. The roots of $P_{f}(x)$ are the eigenvalues of f, that is, $\lambda \in \mathbb{K}$ is an eigenvalue of $f \Leftrightarrow P_{f}(\lambda)=0$.

Properties

Proposition

1. $P_{f}(x)$ does not depend on the basis \mathbf{u} chosen.
2. $P_{f}(x)$ is a polynomial of degree n, $P_{f}(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}$. Moreover, if $M_{\mathbf{u}}(f)=\left(a_{i, j}\right), \Rightarrow$

$$
c_{n}=(-1)^{n},
$$

$$
\begin{aligned}
c_{n-1}=(-1)^{n-1} \operatorname{tr}(f) & =(-1)^{n-1}\left(a_{1,1}+\ldots+a_{n, n}\right), \\
c_{0} & =\operatorname{det}(f) .
\end{aligned}
$$

Properties

Proposition

1. $P_{f}(x)$ does not depend on the basis \mathbf{u} chosen.
2. $P_{f}(x)$ is a polynomial of degree n, $P_{f}(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}$. Moreover, if $M_{\mathbf{u}}(f)=\left(a_{i, j}\right), \Rightarrow$

$$
c_{n}=(-1)^{n}
$$

$$
\begin{aligned}
c_{n-1}=(-1)^{n-1} \operatorname{tr}(f) & =(-1)^{n-1}\left(a_{1,1}+\ldots+a_{n, n}\right), \\
c_{0} & =\operatorname{det}(f) .
\end{aligned}
$$

3. The roots of $P_{f}(x)$ are the eigenvalues of f, that is, $\lambda \in \mathbb{K}$ is an eigenvalue of $f \Leftrightarrow P_{f}(\lambda)=0$.

Algebraic and geometric multiplicity of an eigenvalue

Definition
If λ is an eigenvalue of f, the algebraic multiplicity of λ, denoted by a_{λ}, is the multiplicity as a root of $P_{f}(x)$.

Definition
The geometric multiplicity of λ, denoted by g_{λ}, is the dimension of the vector subspace $\operatorname{Nuc}(f-\lambda I d)$, that is, $n-r k(A-\lambda I)$.

Algebraic and geometric multiplicity of an eigenvalue

Definition

If λ is an eigenvalue of f, the algebraic multiplicity of λ, denoted by a_{λ}, is the multiplicity as a root of $P_{f}(x)$.

Definition
The geometric multiplicity of λ, denoted by g_{λ}, is the dimension of the vector subspace $\operatorname{Nuc}(f-\lambda / d)$, that is, $n-r k(A-\lambda I)$.

Algebraic and geometric multiplicity of an eigenvalue

Definition

If λ is an eigenvalue of f, the algebraic multiplicity of λ, denoted by a_{λ}, is the multiplicity as a root of $P_{f}(x)$.

Definition
The geometric multiplicity of λ, denoted by g_{λ}, is the dimension of the vector subspace $\operatorname{Nuc}(f-\lambda / d)$, that is, $n-r k(A-\lambda I)$.

Proposition
For every eigenvalue λ, we have $1 \leq g_{\lambda} \leq a_{\lambda}$.

Outline

Eigenvalues and Eigenvectors

Diagonalization theorem

Applications

Bibliography

Linear independency of VEPs

Let $f \in \operatorname{End}(E)$. Then,
Lemma
a direct sum,

Linear independency of VEPs

Let $f \in \operatorname{End}(E)$. Then,
Lemma

- If u, v are VEP's of different VAP's $\Rightarrow u, v$ are l.i.

basis of E_{λ}linearly independent vectors.

Linear independency of VEPs

Let $f \in \operatorname{End}(E)$. Then,
Lemma

- If u, v are VEP's of different VAP's $\Rightarrow u, v$ are l.i.
- If $\lambda_{1}, \ldots, \lambda_{r}$ are different VAP's \Rightarrow the sum $E_{\lambda_{1}}+\ldots+E_{\lambda_{r}}$ is a direct sum,

$$
E_{\lambda_{1}}+\ldots+E_{\lambda_{r}}=E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{r}}
$$

Linear independency of VEPs

Let $f \in \operatorname{End}(E)$. Then,
Lemma

- If u, v are VEP's of different VAP's $\Rightarrow u, v$ are l.i.
- If $\lambda_{1}, \ldots, \lambda_{r}$ are different VAP's \Rightarrow the sum $E_{\lambda_{1}}+\ldots+E_{\lambda_{r}}$ is a direct sum,

$$
E_{\lambda_{1}}+\ldots+E_{\lambda_{r}}=E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{r}}
$$

Corollary
If $\lambda_{1}, \ldots \lambda_{r}$ are different eigenvalues of f and $B_{i}=\left\{v_{1}^{i}, \ldots v_{d_{i}}^{i}\right\}$ is a basis of $E_{\lambda_{i}}$ for $i=1, \ldots, r$, then $B_{1} \cup \ldots \cup B_{r}$ is a collection of linearly independent vectors.

Diagonalization theorem

Theorem (First Diagonalization Thm)
An endomorphism f of E is diagonalizable in \mathbb{K} if and only if

1. $P_{f}(x)$ has all its roots $\lambda_{1}, \ldots, \lambda_{k}$ in \mathbb{K} (P_{f} fully decomposes in \mathbb{K})
and
2. for every VAP λ_{i}, the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_{i}}=a_{\lambda_{i}}$.
If it diagonalizes, it does so in a basis of VEP's.

Diagonalization theorem

Theorem (First Diagonalization Thm)
An endomorphism f of E is diagonalizable in \mathbb{K} if and only if

1. $P_{f}(x)$ has all its roots $\lambda_{1}, \ldots, \lambda_{k}$ in \mathbb{K} (P_{f} fully decomposes in \mathbb{K})
and
2. for every VAP λ_{i}, the algebraic multiplicity and geometric multiplicity are equal: $g_{\lambda_{i}}=a_{\lambda_{i}}$.
If it diagonalizes, it does so in a basis of VEP's.
Corollary
If all the roots of $P_{f}(x)$ are in \mathbb{K} and simple ($a_{\lambda_{i}}=1$ for each λ_{i}), then f diagonalizes.

Procedure to diagonalize an endomorphism

Given an endomorphism f of \mathbb{R}^{n}, let A be its standard matrix.

1. Compute the characteristic polynomial $P_{f}(x)=\operatorname{det}(A-x I d)$.

Procedure to diagonalize an endomorphism

Given an endomorphism f of \mathbb{R}^{n}, let A be its standard matrix.

1. Compute the characteristic polynomial $P_{f}(x)=\operatorname{det}(A-x I d)$.
2. Compute the roots $\lambda_{1}, \ldots, \lambda_{k}$ of $P_{f}(x)$: if some $\lambda_{i} \notin \mathbb{R} \Rightarrow f$ does not diagonalize in \mathbb{R}. Otherwise,

Procedure to diagonalize an endomorphism

Given an endomorphism f of \mathbb{R}^{n}, let A be its standard matrix.

1. Compute the characteristic polynomial $P_{f}(x)=\operatorname{det}(A-x I d)$.
2. Compute the roots $\lambda_{1}, \ldots, \lambda_{k}$ of $P_{f}(x)$: if some $\lambda_{i} \notin \mathbb{R} \Rightarrow f$ does not diagonalize in \mathbb{R}. Otherwise,
3. For each eigenvalue λ_{i}, compute its algebraic multiplicity as a root of $P_{f}(x), a_{\lambda_{i}}$.

Procedure to diagonalize an endomorphism

Given an endomorphism f of \mathbb{R}^{n}, let A be its standard matrix.

1. Compute the characteristic polynomial $P_{f}(x)=\operatorname{det}(A-x I d)$.
2. Compute the roots $\lambda_{1}, \ldots, \lambda_{k}$ of $P_{f}(x)$: if some $\lambda_{i} \notin \mathbb{R} \Rightarrow f$ does not diagonalize in \mathbb{R}. Otherwise,
3. For each eigenvalue λ_{i}, compute its algebraic multiplicity as a root of $P_{f}(x), a_{\lambda_{i}}$.
4. For each λ_{i}, compute $\operatorname{Nuc}\left(A-\lambda_{i} l d\right)$: this is the set of all eigenvectors of f with eigenvalue λ_{i}. The dimension of this space is the geometric multiplicity $g_{\lambda_{i}}$ of λ_{i}.

Procedure to diagonalize an endomorphism

Given an endomorphism f of \mathbb{R}^{n}, let A be its standard matrix.

1. Compute the characteristic polynomial $P_{f}(x)=\operatorname{det}(A-x I d)$.
2. Compute the roots $\lambda_{1}, \ldots, \lambda_{k}$ of $P_{f}(x)$: if some $\lambda_{i} \notin \mathbb{R} \Rightarrow f$ does not diagonalize in \mathbb{R}. Otherwise,
3. For each eigenvalue λ_{i}, compute its algebraic multiplicity as a root of $P_{f}(x), a_{\lambda_{i}}$.
4. For each λ_{i}, compute $\operatorname{Nuc}\left(A-\lambda_{i} / d\right)$: this is the set of all eigenvectors of f with eigenvalue λ_{i}. The dimension of this space is the geometric multiplicity $g_{\lambda_{i}}$ of λ_{i}.
5. If $\lambda_{i} \in \mathbb{R}$ and $g_{\lambda_{i}}=a_{\lambda_{i}}$ for each eigenvalue λ_{i}, then f diagonalizes.

Procedure to diagonalize an endomorphism

In this case, for each eigenvalue λ_{i}, let $\left\{v_{1}^{i}, \ldots, v_{\lambda_{i}}^{i}\right\}$ be a basis for $\operatorname{Nuc}\left(A-\lambda_{i} I d\right)$. Then,

1. $\mathbf{v}=\bigcup_{i=1}^{k}\left\{v_{1}^{i}, \ldots, v_{a_{\lambda_{i}}}^{i}\right\}$ is a basis of \mathbb{R}^{n}.

Procedure to diagonalize an endomorphism

In this case, for each eigenvalue λ_{i}, let $\left\{v_{1}^{i}, \ldots, v_{a_{i}}^{i}\right\}$ be a basis for $\operatorname{Nuc}\left(A-\lambda_{i} l d\right)$. Then,

1. $\mathbf{v}=\bigcup_{i=1}^{k}\left\{v_{1}^{i}, \ldots, v_{a_{\lambda_{i}}}^{i}\right\}$ is a basis of \mathbb{R}^{n}.
2. $M_{\mathbf{v}}(f)$ is a diagonal matrix:

$$
M_{\mathbf{v}}(f)=D=\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{k}
\end{array}\right)
$$

Procedure to diagonalize an endomorphism

In this case, for each eigenvalue λ_{i}, let $\left\{v_{1}^{i}, \ldots, v_{a_{\lambda_{i}}}^{i}\right\}$ be a basis for
$\operatorname{Nuc}\left(A-\lambda_{i} l d\right)$. Then,

1. $\mathbf{v}=\bigcup_{i=1}^{k}\left\{v_{1}^{i}, \ldots, v_{a_{\lambda_{i}}}^{i}\right\}$ is a basis of \mathbb{R}^{n}.
2. $M_{\mathbf{v}}(f)$ is a diagonal matrix:

$$
M_{\mathbf{v}}(f)=D=\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{k}
\end{array}\right)
$$

Recall that $M_{\mathbf{v}}(f)$ can be computed by doing a change of basis: if \mathbf{e} is the standard basis of \mathbb{R}^{n} and, then

$$
A_{\mathrm{e} \rightarrow \mathrm{v}} A A_{\mathrm{v} \rightarrow \mathrm{e}}=D
$$

(Equivalently, $A_{\mathbf{v} \rightarrow \mathbf{e}} D A_{\mathbf{e} \rightarrow \mathbf{v}}=A$).

Triangularization of endomorphisms

Lemma
For any $f \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ there exists a basis \mathbf{u} of \mathbb{C}^{n} in which $M_{\mathbf{u}}(f)$ is triangular, has VAP's $\lambda_{1}, \ldots, \lambda_{n}$ (repeated if necessary) of f in the diagonal and

$$
\begin{gathered}
\operatorname{det}(A)=\lambda_{1} \ldots \lambda_{n}, \\
\operatorname{tr}(A)=\lambda_{1}+\ldots+\lambda_{n} .
\end{gathered}
$$

Better than triangular: we could get a Jordan canonical form, i.e. a block-diagonal matrix formed by blocks of type:

$$
\left(\begin{array}{cccc}
\lambda & 0 & \ldots & 0 \\
1 & \lambda & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & & \vdots & \\
0 & \ldots & 1 & \lambda
\end{array}\right) .
$$

Outline

Eigenvalues and Eigenvectors

Diagonalization theorem

Applications

Bibliography

Study of $A^{k} x$ when $k \rightarrow \infty$

Let $A \in \mathcal{M}_{n}(\mathbb{R})$, with $A=P D P^{-1}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), P=$ change-of-basis $=A_{\mathbf{v} \rightarrow \mathbf{e}}, \mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then,

- $A^{k}=P D^{k} P^{-1}$.

Study of $A^{k} x$ when $k \rightarrow \infty$

Let $A \in \mathcal{M}_{n}(\mathbb{R})$, with $A=P D P^{-1}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), P=$ change-of-basis $=A_{\mathbf{v} \rightarrow \mathbf{e}}, \mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then,

- $A^{k}=P D^{k} P^{-1}$.
- If $x=c_{1} v_{1}+\cdots+c_{n} v_{n} \Rightarrow A^{k} x=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n}$

Study of $A^{k} x$ when $k \rightarrow \infty$

Let $A \in \mathcal{M}_{n}(\mathbb{R})$, with $A=P D P^{-1}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), P=$ change-of-basis $=A_{\mathbf{v} \rightarrow \mathbf{e}}, \mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then,

- $A^{k}=P D^{k} P^{-1}$.
- If $x=c_{1} v_{1}+\cdots+c_{n} v_{n} \Rightarrow A^{k} x=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n}$
- If $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1}^{k} grows faster than λ_{i}^{k} so, if $c_{1} \neq 0$,

$$
A^{k} x \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big, and }
$$

Study of $A^{k} x$ when $k \rightarrow \infty$

Let $A \in \mathcal{M}_{n}(\mathbb{R})$, with $A=P D P^{-1}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), P=$ change-of-basis $=A_{\mathbf{v} \rightarrow \mathbf{e}}, \mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then,

- $A^{k}=P D^{k} P^{-1}$.
- If $x=c_{1} v_{1}+\cdots+c_{n} v_{n} \Rightarrow A^{k} x=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n}$
- If $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then λ_{1}^{k} grows faster than λ_{i}^{k} so, if $c_{1} \neq 0$,

$$
A^{k} x \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big, and }
$$

- This is the "power method": the technical basis to efficiently compute VAPs (and VEPs).

Discrete dynamical systems

Definition
A homogeneous linear discrete dynamical system is a matrix equation of the form

$$
\mathrm{x}(k+1)=A \mathrm{x}(k), \quad k \in \mathbb{N},
$$

where A is an $n \times n$ square matrix , and

$$
\mathrm{x}(k)=\left(\begin{array}{c}
x_{1}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right) \in \mathbb{R}^{n} .
$$

The vector $x(0)$ is called an initial condition. A solution (or trajectory) is a collection of vectors $\{\mathrm{x}(k)\}_{k \geq 0}$ such that each $\mathrm{x}(k)$ satisfies the equation above.

Discrete dynamical systems

Definition
A homogeneous linear discrete dynamical system is a matrix equation of the form

$$
\mathrm{x}(k+1)=A \mathrm{x}(k), \quad k \in \mathbb{N},
$$

where A is an $n \times n$ square matrix, and

$$
\mathrm{x}(k)=\left(\begin{array}{c}
x_{1}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right) \in \mathbb{R}^{n} .
$$

The vector $x(0)$ is called an initial condition. A solution (or trajectory) is a collection of vectors $\{\mathrm{x}(k)\}_{k \geq 0}$ such that each $\mathrm{x}(k)$ satisfies the equation above.
Lemma
The solutions to $\mathrm{x}(k+1)=A \mathrm{x}(k)$ are $\left\{\mathrm{x}(k)=A^{k} \mathrm{x}(0)\right\}_{k}$.

Discrete linear systems (cont.)

If A diagonalizes with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of eigenvectors, the solutions $x(k)=A^{k} x(0)$ satisfy

- If $x(0)=c_{1} v_{1}+\cdots+c_{n} v_{n} \Rightarrow$

$$
x(k)=A^{k} x(0)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n}
$$

Discrete linear systems (cont.)

If A diagonalizes with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of eigenvectors, the solutions $x(k)=A^{k} x(0)$ satisfy

- If $x(0)=c_{1} v_{1}+\cdots+c_{n} v_{n} \Rightarrow$

$$
x(k)=A^{k} x(0)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n}
$$

- If $\left|\lambda_{1}\right|>\left|\lambda_{i}\right| \Rightarrow \lambda_{1}^{k}$ grows faster than λ_{i}^{k} and if $c_{1} \neq 0$,

$$
x(k) \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big. }
$$

Discrete linear systems (cont.)

If A diagonalizes with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of eigenvectors, the solutions $x(k)=A^{k} x(0)$ satisfy

- If $x(0)=c_{1} v_{1}+\cdots+c_{n} v_{n} \Rightarrow$

$$
x(k)=A^{k} x(0)=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n}
$$

- If $\left|\lambda_{1}\right|>\left|\lambda_{i}\right| \Rightarrow \lambda_{1}^{k}$ grows faster than λ_{i}^{k} and if $c_{1} \neq 0$,

$$
x(k) \sim c_{1} \lambda_{1}^{k} v_{1} \quad \text { for } k \text { big. }
$$

Definition

If $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|, \lambda_{1}$ is called the dominant eigenvalue.

Stochastic matrices

Definition
A (column) stochastic matrix is a non-negative $n \times n$ matrix whose columns sum to 1 .
A similar definition can be made for rows.
If A is a stochastic matrix we have:

Stochastic matrices

Definition
A (column) stochastic matrix is a non-negative $n \times n$ matrix whose columns sum to 1 .
A similar definition can be made for rows.
If A is a stochastic matrix we have:

- 1 is an eigenvalue of A.

Stochastic matrices

Definition

A (column) stochastic matrix is a non-negative $n \times n$ matrix whose columns sum to 1 .
A similar definition can be made for rows.
If A is a stochastic matrix we have:

- 1 is an eigenvalue of A.
- If x sums to 1 , then $A x$ still sums to 1 .

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

- $1>|\lambda|$ for any other VAP λ

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

- $1>|\lambda|$ for any other VAP λ
- $g_{1}=1$

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

- $1>|\lambda|$ for any other VAP λ
- $g_{1}=1$
- 1 has a nonegative VEP v.
for any positive vector x that sums to 1

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

- $1>|\lambda|$ for any other VAP λ
- $g_{1}=1$
- 1 has a nonegative VEP v.
- no other VAP has positive eigenvectors.

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

- $1>|\lambda|$ for any other VAP λ
- $g_{1}=1$
- 1 has a nonegative VEP v.
- no other VAP has positive eigenvectors.
- If we take v to sum to 1 , then we have

$$
\begin{aligned}
& \lim A^{k}=(v v \ldots v) \\
& \text { and } \quad \lim A^{k} \mathrm{x}=v
\end{aligned}
$$

for any positive vector x that sums to 1 .

Ranking de pàgines web (Google pagerank)

Want v positive such that $A v=a v\left(A=S^{t}\right)$ for some $a \Rightarrow v=$ dominant eigenvector, $a=1$.
Computation of $v: \lim A^{k} \mathrm{x}$ for any positive x .

Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)
If $f \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ has characteristic polynomial
$P_{f}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and A is its standard matrix of, then

$$
a_{0} l d+a_{1} A+\cdots+a_{n} A^{n}=0 .
$$

Consequences:

Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)
If $f \in E n d\left(\mathbb{R}^{n}\right)$ has characteristic polynomial
$P_{f}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and A is its standard matrix of, then

$$
a_{0} / d+a_{1} A+\cdots+a_{n} A^{n}=0
$$

Consequences:

- A^{n} can be computed as a linear combination of Id $, A, A^{2}, \ldots, A^{n-1}$

Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)
If $f \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ has characteristic polynomial
$P_{f}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and A is its standard matrix of, then

$$
a_{0} / d+a_{1} A+\cdots+a_{n} A^{n}=0
$$

Consequences:

- A^{n} can be computed as a linear combination of Id $, A, A^{2}, \ldots, A^{n-1}$
- If A is invertible $\Rightarrow A^{-1}$ can be computed as a linear combination of $I d, A, \ldots, A^{n-1}$

Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)
If $f \in E n d\left(\mathbb{R}^{n}\right)$ has characteristic polynomial
$P_{f}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and A is its standard matrix of, then

$$
a_{0} / d+a_{1} A+\cdots+a_{n} A^{n}=0
$$

Consequences:

- A^{n} can be computed as a linear combination of Id $, A, A^{2}, \ldots, A^{n-1}$
- If A is invertible $\Rightarrow A^{-1}$ can be computed as a linear combination of $I d, A, \ldots, A^{n-1}$
- Useful to compute $\exp (A)$ (next slide).

Exponential of a matrix

If f is a diagonalizable endomorphism with standard matrix $A \in M_{n}(\mathbb{R})$, so that $A=S D S^{-1}$, where D diagonal:
$D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), S=A_{\mathbf{v} \rightarrow \mathbf{e}}$, and $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ is the corresponding basis of eigenvectors. Then, we define the exponential of the matrix A :

$$
e^{A}=S e^{D} S^{-1}=S\left(\begin{array}{cccc}
e^{\lambda_{1}} & 0 & \ldots & 0 \\
0 & e^{\lambda_{2}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{\lambda_{n}}
\end{array}\right) S^{-1}
$$

and this coincides with $\sum_{n \geq 0} \frac{A^{n}}{n!}$.

Real matrices with complex eigenvalues

If A is a real matrix and we allow diagonalization in $\mathbb{K}=\mathbb{C}$, then VAP's and VEP's go "in pairs":
$p_{A}(x) \in \mathbb{R}[x] \Rightarrow \lambda$ is a VAP of A if and only if $\bar{\lambda}$ is also a VAP.

Real matrices with complex eigenvalues

If A is a real matrix and we allow diagonalization in $\mathbb{K}=\mathbb{C}$, then VAP's and VEP's go "in pairs":

- $p_{A}(x) \in \mathbb{R}[x] \Rightarrow \lambda$ is a VAP of A if and only if $\bar{\lambda}$ is also a VAP.
- If $\lambda \in \mathbb{C} \backslash \mathbb{R}$, and $w \in \mathbb{C}^{n}$ is a VEP with VAP λ, then we can write $w=u+i v$ where $u, v \in \mathbb{R}^{n}$.

Real matrices with complex eigenvalues

If A is a real matrix and we allow diagonalization in $\mathbb{K}=\mathbb{C}$, then VAP's and VEP's go "in pairs":
$-p_{A}(x) \in \mathbb{R}[x] \Rightarrow \lambda$ is a VAP of A if and only if $\bar{\lambda}$ is also a VAP.

- If $\lambda \in \mathbb{C} \backslash \mathbb{R}$, and $w \in \mathbb{C}^{n}$ is a VEP with VAP λ, then we can write $w=u+i v$ where $u, v \in \mathbb{R}^{n}$.
- Then, $\bar{w}:=u-i v$ is an eigenvector with eigenvalue $\bar{\lambda}$.

Real matrices with complex eigenvalues

If A is a real matrix and we allow diagonalization in $\mathbb{K}=\mathbb{C}$, then VAP's and VEP's go "in pairs":
$-p_{A}(x) \in \mathbb{R}[x] \Rightarrow \lambda$ is a VAP of A if and only if $\bar{\lambda}$ is also a VAP.

- If $\lambda \in \mathbb{C} \backslash \mathbb{R}$, and $w \in \mathbb{C}^{n}$ is a VEP with VAP λ, then we can write $w=u+i v$ where $u, v \in \mathbb{R}^{n}$.
- Then, $\bar{w}:=u-i v$ is an eigenvector with eigenvalue $\bar{\lambda}$.

If we want to work only in \mathbb{R}, the one can rearrange complex VAP's and VEP's in conjugate pairs to obtain a "diagonalization" of A in 2×2 blocks: use $[u, v$] instead of w, \bar{w}.

Outline

Eigenvalues and Eigenvectors

Diagonalization theorem

Applications

Bibliography

Bibliography

Basic:

- D. Poole, Linear Algebra, A modern introduction (3rd edition), Brooks/Cole, 2011. Chapter 6.
Additional
- Hernández Rodríguez, E.; Vàzquez Gallo, M.J.; Zurro Moro, M.A. Álgebra lineal y geometría [en línia]

