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Eigenvalues and Eigenvectors
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Eigenvalues and Eigenvectors

Motivation
From now on, E is a K-e.v. of finite dimension n and f ∈ End(E ).
▶ Goal: compute powers of matrices.
▶ If M is a diagonal matrix, then it is easy to compute Mm for

any m ∈ N.
▶ If M is not diagonal, is there a change of basis that converts

it to a diagonal matrix?

Definition
We say that an endomorphism f : E → E is diagonalizable in K if
there exists a basis v of E such that Mv(f ) is a diagonal matrix
D ∈ Mn(K).

In other words, f is diagonalizable in K if there exists an invertible
matrix P ∈ Mn(K) such that

P−1Me(f )P

is a diagonal matrix (P can be thought as a change of basis
matrix).
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Eigenvalues and Eigenvectors

▶ An n × n matrix diagonalizes if there exists an invertible
matrix P such that P−1MP is a diagonal matrix.

▶ If M diagonalizes, then M = PDP−1 for a certain diagonal
matrix D. Hence, Mm can be easily computed:

Mm = PDP−1PDP−1 . . .PDP−1PDP−1 = PDmP−1.
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors
Remark: If Mv(f ) is diagonal, then f (vi ) = divi (di = ith value in
the diagonal).

Definition
Let f ∈ End(E ). A vector u ̸= 0 ∈ E is an eigenvector (VEP) of
f if f (u) = λ u for some λ ∈ K. In this case, we say that λ is an
eigenvalue (VAP) of f and that u is an eigenvector with
eigenvalue λ.

Example

Consider the endomorphism of R2 given by f (x , y) = (5x , 2y).
Then, e1 = (1, 0) is an eigenvector of f with eigenvalue 1, and
e2 = (0, 1) is an eigenvector of f with eigenvalue 2.
The standard matrix of f is

Me(f ) =

(
5 0
0 2

)
.
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Eigenvalues and Eigenvectors

Geometric interpretation

In black v ; in blue f (v).

[D.Poole]

A map with eigenvectors
[(1, 1)] and [(1,−1)]

A map with no
eigenvectors in R.
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Eigenvalues and Eigenvectors

Eigenvectors and eigenvalues

Lemma
▶ u ∈ E is a VEP of VAP λ ∈ K ⇔ u ∈ Nuc(f − λId) and

u ̸= 0.

▶ λ ∈ K is a VAP of f ⇔ det(f − λId) = 0.

Definition
For each λ VAP of f ,

Eλ:=Nuc(f − λId) ⊆ E

is called the eigenspace of λ (subespai propi). This is the
subspace formed by all VEP’s of VAP λ plus 0.

▶ E0 = Nuc(f ); u ̸= 0 is a VEP with VAP 0 ⇔ u ∈ Nuc(f ).

▶ The spectrum of f is the set of all its eigenvalues in K and is
denoted by σ(f ).
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Eigenvalues and Eigenvectors

Eigenvalues

Definition
The characteristic polynomial of A ∈ Mn(K) is

PA(x) := det(A− xId) =

∣∣∣∣∣∣∣∣
a1,1 − x a1,2 . . . a1,n
a2,1 a2,2 − x . . . a2,n
. . . . . . . . .
an,1 an,2 . . . an,n − x

∣∣∣∣∣∣∣∣ .
If f ∈ End(E ), the characteristic polynomial of f is pA(x) where
A = Mu(f ) for some basis u.
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Eigenvalues and Eigenvectors

Properties

Proposition

1. Pf (x) does not depend on the basis u chosen.

2. Pf (x) is a polynomial of degree n,
Pf (x) = cnx

n + cn−1x
n−1 + . . .+ c1x + c0. Moreover, if

Mu(f ) = (ai ,j), ⇒
cn = (−1)n,

cn−1 = (−1)n−1tr(f ) = (−1)n−1(a1,1 + . . .+ an,n),

c0 = det(f ).

3. The roots of Pf (x) are the eigenvalues of f , that is,
λ ∈ K is an eigenvalue of f ⇔ Pf (λ) = 0.
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Eigenvalues and Eigenvectors

Algebraic and geometric multiplicity of an eigenvalue

Definition
If λ is an eigenvalue of f , the algebraic multiplicity of λ ,
denoted by aλ, is the multiplicity as a root of Pf (x).

Definition
The geometric multiplicity of λ, denoted by gλ, is the dimension
of the vector subspace Nuc(f − λId), that is, n − rk(A− λI ).

Proposition

For every eigenvalue λ, we have 1 ≤ gλ ≤ aλ.
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Diagonalization theorem

Linear independency of VEPs

Let f ∈ End(E ). Then,

Lemma
▶ If u, v are VEP’s of different VAP’s ⇒ u, v are l.i.

▶ If λ1, . . . , λr are different VAP’s ⇒ the sum Eλ1 + . . .+ Eλr is
a direct sum,

Eλ1 + . . .+ Eλr = Eλ1 ⊕ . . .⊕ Eλr

Corollary

If λ1, . . . λr are different eigenvalues of f and Bi = {v i1, . . . v idi} is a
basis of Eλi

for i = 1, . . . , r , then B1 ∪ . . . ∪ Br is a collection of
linearly independent vectors.
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Diagonalization theorem

Diagonalization theorem

Theorem (First Diagonalization Thm)

An endomorphism f of E is diagonalizable in K if and only if

1. Pf (x) has all its roots λ1, . . . , λk in K (Pf fully decomposes
in K)
and

2. for every VAP λi , the algebraic multiplicity and geometric
multiplicity are equal: gλi

= aλi
.

If it diagonalizes, it does so in a basis of VEP’s.

Corollary

If all the roots of Pf (x) are in K and simple (aλi
= 1 for each λi ),

then f diagonalizes.
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Diagonalization theorem

Procedure to diagonalize an endomorphism

Given an endomorphism f of Rn, let A be its standard matrix.

1. Compute the characteristic polynomial Pf (x) = det(A− x Id).

2. Compute the roots λ1, . . . , λk of Pf (x): if some λi /∈ R ⇒ f
does not diagonalize in R. Otherwise,

3. For each eigenvalue λi , compute its algebraic multiplicity as a
root of Pf (x), aλi

.

4. For each λi , compute Nuc(A− λi Id): this is the set of all
eigenvectors of f with eigenvalue λi . The dimension of this
space is the geometric multiplicity gλi

of λi .

5. If λi ∈ R and gλi
= aλi

for each eigenvalue λi , then f
diagonalizes.

16



Diagonalization theorem

Procedure to diagonalize an endomorphism

Given an endomorphism f of Rn, let A be its standard matrix.

1. Compute the characteristic polynomial Pf (x) = det(A− x Id).

2. Compute the roots λ1, . . . , λk of Pf (x): if some λi /∈ R ⇒ f
does not diagonalize in R. Otherwise,

3. For each eigenvalue λi , compute its algebraic multiplicity as a
root of Pf (x), aλi

.

4. For each λi , compute Nuc(A− λi Id): this is the set of all
eigenvectors of f with eigenvalue λi . The dimension of this
space is the geometric multiplicity gλi

of λi .

5. If λi ∈ R and gλi
= aλi

for each eigenvalue λi , then f
diagonalizes.

16



Diagonalization theorem

Procedure to diagonalize an endomorphism

Given an endomorphism f of Rn, let A be its standard matrix.

1. Compute the characteristic polynomial Pf (x) = det(A− x Id).

2. Compute the roots λ1, . . . , λk of Pf (x): if some λi /∈ R ⇒ f
does not diagonalize in R. Otherwise,

3. For each eigenvalue λi , compute its algebraic multiplicity as a
root of Pf (x), aλi

.

4. For each λi , compute Nuc(A− λi Id): this is the set of all
eigenvectors of f with eigenvalue λi . The dimension of this
space is the geometric multiplicity gλi

of λi .

5. If λi ∈ R and gλi
= aλi

for each eigenvalue λi , then f
diagonalizes.

16



Diagonalization theorem

Procedure to diagonalize an endomorphism

Given an endomorphism f of Rn, let A be its standard matrix.

1. Compute the characteristic polynomial Pf (x) = det(A− x Id).

2. Compute the roots λ1, . . . , λk of Pf (x): if some λi /∈ R ⇒ f
does not diagonalize in R. Otherwise,

3. For each eigenvalue λi , compute its algebraic multiplicity as a
root of Pf (x), aλi

.

4. For each λi , compute Nuc(A− λi Id): this is the set of all
eigenvectors of f with eigenvalue λi . The dimension of this
space is the geometric multiplicity gλi

of λi .

5. If λi ∈ R and gλi
= aλi

for each eigenvalue λi , then f
diagonalizes.

16



Diagonalization theorem

Procedure to diagonalize an endomorphism

Given an endomorphism f of Rn, let A be its standard matrix.

1. Compute the characteristic polynomial Pf (x) = det(A− x Id).

2. Compute the roots λ1, . . . , λk of Pf (x): if some λi /∈ R ⇒ f
does not diagonalize in R. Otherwise,

3. For each eigenvalue λi , compute its algebraic multiplicity as a
root of Pf (x), aλi

.

4. For each λi , compute Nuc(A− λi Id): this is the set of all
eigenvectors of f with eigenvalue λi . The dimension of this
space is the geometric multiplicity gλi

of λi .

5. If λi ∈ R and gλi
= aλi

for each eigenvalue λi , then f
diagonalizes.

16



Diagonalization theorem

Procedure to diagonalize an endomorphism
In this case, for each eigenvalue λi , let {v i1, . . . , v iaλi } be a basis for

Nuc(A− λi Id). Then,

1. v =
⋃k

i=1{v i1, . . . , v iaλi } is a basis of Rn.

2. Mv(f ) is a diagonal matrix:

Mv(f ) = D =

 λ1 . . . 0
...

. . .
...

0 . . . λk

 .

Recall that Mv(f ) can be computed by doing a change of basis: if
e is the standard basis of Rn and , then

Ae→v A Av→e = D.

(Equivalently, Av→e D Ae→v = A).

17
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Diagonalization theorem

Triangularization of endomorphisms

Lemma
For any f ∈ End(Rn) there exists a basis u of Cn in which Mu(f )
is triangular, has VAP’s λ1, . . . , λn (repeated if necessary) of f in
the diagonal and

det(A) = λ1 . . . λn,

tr(A) = λ1 + . . .+ λn.

Better than triangular: we could get a Jordan canonical form, i.e.
a block-diagonal matrix formed by blocks of type:

λ 0 . . . 0
1 λ . . . 0
0 1 . . . 0
...

...
0 . . . 1 λ

 .
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Applications

Study of Akx when k → ∞

Let A ∈ Mn(R), with A = PDP−1, D = diag(λ1, . . . , λn), P =
change-of-basis = Av→e, v = {v1, . . . , vn}. Then,
▶ Ak = PDkP−1.

▶ If x = c1v1 + · · ·+ cnvn ⇒ Akx = c1λ
k
1v1 + · · ·+ cnλ

k
nvn

▶ If |λ1| > |λi |, then λk
1 grows faster than λk

i so, if c1 ̸= 0,

Akx ∼ c1λ
k
1v1 for k big, and

▶ This is the ”power method”: the technical basis to efficiently
compute VAPs (and VEPs).
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Applications

Discrete dynamical systems

Definition
A homogeneous linear discrete dynamical system is a matrix
equation of the form

x(k + 1) = A x(k), k ∈ N,

where A is an n × n square matrix , and

x(k) =

x1(k)
...

xn(k)

 ∈ Rn.

The vector x(0) is called an initial condition.
A solution (or trajectory) is a collection of vectors {x(k)}k≥0 such
that each x(k) satisfies the equation above.

Lemma
The solutions to x(k + 1) = A x(k) are {x(k) = Akx(0)}k .
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Applications

Discrete linear systems (cont.)

If A diagonalizes with eigenvalues λ1, . . . , λn, and v = {v1, . . . , vn}
is a basis of eigenvectors, the solutions x(k) = Akx(0) satisfy

▶ If x(0) = c1v1 + · · ·+ cnvn ⇒
x(k) = Akx(0) = c1λ

k
1v1 + · · ·+ cnλ

k
nvn

▶ If |λ1| > |λi | ⇒ λk
1 grows faster than λk

i and if c1 ̸= 0,

x(k) ∼ c1λ
k
1v1 for k big.

Definition
If |λ1| > |λi |, λ1 is called the dominant eigenvalue.
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Applications

Stochastic matrices

Definition
A (column) stochastic matrix is a non-negative n × n matrix
whose columns sum to 1.

A similar definition can be made for rows.
If A is a stochastic matrix we have:

▶ 1 is an eigenvalue of A.

▶ If x sums to 1, then Ax still sums to 1.
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Applications

Perron-Frobenius Theorem for stochastic matrices

Theorem
If A is a positive stochastic matrix, then 1 is VAP and

▶ 1 > |λ| for any other VAP λ

▶ g1 = 1

▶ 1 has a nonegative VEP v.

▶ no other VAP has positive eigenvectors.

▶ If we take v to sum to 1, then we have

limAk = (v v . . . v)

and limAkx = v

for any positive vector x that sums to 1.
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Applications

Ranking de pàgines web (Google pagerank)

Want v positive such that Av = av (A = S t) for some a ⇒ v=
dominant eigenvector, a = 1.
Computation of v : limAkx for any positive x.
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Applications

Cayley-Hamilton theorem

Theorem (Cayley-Hamilton)

If f ∈ End(Rn) has characteristic polynomial
Pf (x) = a0 + a1x + . . .+ anx

n and A is its standard matrix of, then

a0Id + a1A+ · · ·+ anA
n = 0.

Consequences:

▶ An can be computed as a linear combination of
Id ,A,A2, . . . ,An−1

▶ If A is invertible ⇒ A−1 can be computed as a linear
combination of Id ,A, . . . ,An−1

▶ Useful to compute exp(A) (next slide).
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Applications

Exponential of a matrix

If f is a diagonalizable endomorphism with standard matrix
A ∈ Mn(R), so that A = S D S−1, where D diagonal:
D = diag(λ1, . . . , λn), S = Av→e, and v = {v1, . . . , vn} is the
corresponding basis of eigenvectors. Then, we define the
exponential of the matrix A:

eA = S eD S−1 = S


eλ1 0 . . . 0
0 eλ2 . . . 0
...

...
. . .

...
0 0 . . . eλn

 S−1

and this coincides with
∑

n≥0
An

n! .

27



Applications

Real matrices with complex eigenvalues

If A is a real matrix and we allow diagonalization in K = C, then
VAP’s and VEP’s go “in pairs”:

▶ pA(x) ∈ R[x ] ⇒ λ is a VAP of A if and only if λ̄ is also a VAP.

▶ If λ ∈ C \ R, and w ∈ Cn is a VEP with VAP λ, then we can
write w = u + iv where u, v ∈ Rn.

▶ Then, w̄ := u − iv is an eigenvector with eigenvalue λ̄.

If we want to work only in R, the one can rearrange complex
VAP’s and VEP’s in conjugate pairs to obtain a “diagonalization”
of A in 2× 2 blocks: use [u, v ] instead of w ,w̄ .
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