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Marta Casanellas
Universitat Politècnica de Catalunya
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Valors i vectors propis

Motivació
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Amx

A =

(
1 0.5
0.5 1

)
,

x =

(
1
1

)
,

(
−5
5

)
(
−4
5

)
,

(
2
1

)
, . . .

[D.Poole]

4



Valors i vectors propis

Motivació
Sigui E un K-e.v. de dimensió finita n i f ∈ End(E ).

▶ Objectiu: calcular potències de matrius.

▶ Si M és diagonal, és fàcil calcular Mm per qualsevol m ∈ N.
▶ Si M no és diagonal, existeix un canvi de base que la

converteixi a diagonal?

Definició
Diem que un endomorfisme f : E → E és diagonalitzable a K si
existeix una base v de E tal que Mv(f ) és una matriu diagonal
D ∈ Mn(K).

És a dir, f és diagonalitzable a K si existeix una matriu invertible
P ∈ Mn(K) tal que

P−1Me(f )P

és una matriu diagonal (P es pot pensar com matriu de canvi de
base).
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Valors i vectors propis

▶ Una matriu n × n diagonalitza si existeix una matriu
invertible P tal que P−1MP és una matriu diagonal.

▶ Si M diagonalitza, aleshores M = PDP−1 per certa matriu
diagonal D i Mm es calcula facilment:

Mm = PDP−1PDP−1 . . .PDP−1PDP−1 = PDmP−1.
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Valors i vectors propis

VAPs i VEPs
Remarca: Si Mv(f ) és diagonal, aleshores f (vi ) = divi (di =
i-èssim valor a la diagonal).

Definició
Sigui f ∈ End(E ). Un vector u ̸= 0 ∈ E és un VEP (eigenvector)
de f si f (u) = λ u per algun λ ∈ K. En tal cas diem que λ és un
VAP (eigenvalue) de f i que u és un VEP de VAP λ.

Exemple

Considerem l’endomorfisme de R2 donat per f (x , y) = (5x , 2y).
Aleshores, e1 = (1, 0) és un VEP de f de VAP 1, i e2 = (0, 1) és
un VEP de f de VAP 2.
La matriu estàndard de f és

Me(f ) =

(
5 0
0 2

)
.
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Valors i vectors propis

Exemple

1. Considerem f (x , y) = (3x + y , x + 3y). Aleshores, u1 = (1, 1)
és VEP de VAP 4; u2 = (1,−1) és VEP de VAP 2.
La matriu estàndard de f és

Me(f ) =

(
3 1
1 3

)
.

En la base {u1, u2}, la matriu de f és diagonal i igual a

Mu(f ) =

(
4 0
0 2

)
.

2. Per λ ∈ K considerem l’homotècia f (v) = λv ∀v ∈ E.
Aleshores, tot vector és VEP de f de VAP λ. La matriu de f
en qualsevol base u és λIdn.

L’objectiu del tema és estudiar per quins endomorfismes f podem
obtenir una base tal que la matriu de f sigui diagonal.
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Aleshores, tot vector és VEP de f de VAP λ. La matriu de f
en qualsevol base u és λIdn.

L’objectiu del tema és estudiar per quins endomorfismes f podem
obtenir una base tal que la matriu de f sigui diagonal.

8



Valors i vectors propis

Exemple

1. Considerem f (x , y) = (3x + y , x + 3y). Aleshores, u1 = (1, 1)
és VEP de VAP 4; u2 = (1,−1) és VEP de VAP 2.
La matriu estàndard de f és
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Valors i vectors propis

VEPs i VAPs

Lema
▶ u ∈ E és un VEP de VAP λ ∈ K ⇔ u ∈ Nuc(f − λId) i u ̸= 0.

▶ λ ∈ K és un VAP de f ⇔ det(f − λId) = 0.

Definició
Per cada λ VAP de f ,

Eλ:=Nuc(f − λId) ⊆ E

s’anomena el subespai propi de λ . És el subespai format per tots els
VEP’s de VAP λ més el 0.

▶ E0 = Nuc(f ); u ̸= 0 és un VEP de VAP 0 ⇔ u ∈ Nuc(f ).

▶ L’ espectre de f és el conjunt de tots els seus VAPs i es
denota per σ(f ).
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Valors i vectors propis

VAPs i Polinomi caracteŕıstic

Definició
El polinomi caracteŕıstic de A ∈ Mn(K) és

PA(x) := det(A− xId) =

∣∣∣∣∣∣∣∣
a1,1 − x a1,2 . . . a1,n
a2,1 a2,2 − x . . . a2,n
. . . . . . . . .
an,1 an,2 . . . an,n − x

∣∣∣∣∣∣∣∣ .
Si f ∈ End(E ), el polinomi caracteŕıstic de f és pA(x) on
A = Mu(f ) per alguna base u.
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Valors i vectors propis

Propietats

Proposició

1. Pf (x) no depèn de la base u escollida.

2. Pf (x) és un polinomi de grau n,
Pf (x) = cnx

n + cn−1x
n−1 + . . .+ c1x + c0. A més, si

Mu(f ) = (ai ,j), ⇒
cn = (−1)n,

cn−1 = (−1)n−1tr(f ) = (−1)n−1(a1,1 + . . .+ an,n),

c0 = det(f ).

3. Les arrels de Pf (x) són els VAPs de f , és a dir,
λ ∈ K és un VAP de f ⇔ Pf (λ) = 0.

11
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Valors i vectors propis

Multiplicitat algebraica i geomètrica dels VAPs

Definició
Si λ és un VAP de f , la multiplicitat algebraica de λ, denotada
com aλ, és la multiplicitat de λ com a arrel de Pf (x).

Definició
La multiplicitat geomètrica de λ, denotada com gλ, és la
dimensió del subespai propi Nuc(f − λId), és a dir, n− rk(A− λI ).

Proposició

Es té 1 ≤ gλ ≤ aλ.
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Si λ és un VAP de f , la multiplicitat algebraica de λ, denotada
com aλ, és la multiplicitat de λ com a arrel de Pf (x).

Definició
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Teorema de Diagonalizació

Independència lineal de VEPs

Sigui f ∈ End(E ). Aleshores,

Lema
▶ Si u, v són VEPs de diferent VAPs ⇒ u, v són l.i.

▶ Si λ1, . . . , λr són diferent VAPs ⇒ la suma Eλ1 + . . .+ Eλr és
suma directa,

Eλ1 + . . .+ Eλr = Eλ1 ⊕ . . .⊕ Eλr

Corollary

Si λ1, . . . λr són diferent VAPs de f i Bi = {v i1, . . . v idi} és una base
de Eλi

per i = 1, . . . , r , aleshores B1 ∪ . . . ∪ Br és una col·lecció de
vectors linealment independents.
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Teorema de Diagonalizació

Teorema de Diagonalizació

Teorema (Teorema de Diagonalizació)

Un endomorfisme f de E és diagonalitzable a K si, i només si

1. Pf (x) té totes les seves arrels λ1, . . . , λk a K (Pf descomposa
totalment a K)
i

2. per cada VAP λi , la multiplicitat algebraica i la geomètrica
coincideixen: gλi

= aλi
.

Si f diagonalitza, ho fa en una base de VEPs.

Corollary

Si totes les arrels de Pf (x) estan a K i són simples (aλi
= 1 ∀λi ),

aleshores f diagonalitza.
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coincideixen: gλi

= aλi
.

Si f diagonalitza, ho fa en una base de VEPs.

Corollary

Si totes les arrels de Pf (x) estan a K i són simples (aλi
= 1 ∀λi ),

aleshores f diagonalitza.

15



Teorema de Diagonalizació

Procediment per diagonalitzar un endomorfisme

Donat un endomorfisme f de Kn, sigui A la seva matriu estàndard.

1. Calculem el polinomi caracteŕıstic Pf (x) = det(A− x Id).

2. Calculem les arrels λ1, . . . , λk de Pf (x): si λi /∈ K per algun
i ⇒ f no diagonalitza a K. Altrament,

3. Per cada VAP λi , calculem la seva multiplicitat com a arrel de
Pf (x), aλi

.

4. Per cada λi , calculem Nuc(A− λi Id): el subespai de VEPs de
VAP λi . La dimensió d’aquest espai és la multiplicitat
geomètrica gλi

de λi .

5. Si λi ∈ K i gλi
= aλi

per tot VAP λi , aleshores f diagonalitza.

16



Teorema de Diagonalizació
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2. Calculem les arrels λ1, . . . , λk de Pf (x): si λi /∈ K per algun
i ⇒ f no diagonalitza a K. Altrament,

3. Per cada VAP λi , calculem la seva multiplicitat com a arrel de
Pf (x), aλi

.

4. Per cada λi , calculem Nuc(A− λi Id): el subespai de VEPs de
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Teorema de Diagonalizació

Procediment per diagonalitzar un endomorfisme
En aquest cas, per cada VAP λi , sigui {v i1, . . . , v iaλi } una base de

Nuc(A− λi Id). Aleshores,

1. v =
⋃k

i=1{v i1, . . . , v iaλi } és base de Kn.

2. Mv(f ) és una matriu diagonal:

Mv(f ) = D =

 λ1 . . . 0
...

. . .
...

0 . . . λk

 .

Notem que Mv(f ) es podria calcular amb un canvi de base: si e és
la base estàndard de Kn, aleshores

Ae→v A Av→e = D.

(Equivalentment, Av→e D Ae→v = A).
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Teorema de Diagonalizació

Triangularització d’endomorfismes

Lema
Per tot f ∈ End(Rn) existeix una base u de Cn en la qual Mu(f )
és triangular, té els VAP’s λ1, . . . , λn (repetits si cal) de f a la
diagonal i

det(A) = λ1 . . . λn,

tr(A) = λ1 + . . .+ λn.

Encara es pot fer més: obtenir una forma canònica de Jordan, i.e.
una matriu diagonal per blocs, amb blocs del tipus:

λ 0 . . . 0
1 λ . . . 0
0 1 . . . 0
...

...
0 . . . 1 λ

 .
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Aplicacions

Estudi de Akx quan k → ∞

Sigui A ∈ Mn(R), amb A = PDP−1, D = diag(λ1, . . . , λn), P =
canvi-de-base = Av→e, v = {v1, . . . , vn}. Aleshores,
▶ Ak = PDkP−1.

▶ Si x = c1v1 + · · ·+ cnvn ⇒ Akx = c1λ
k
1v1 + · · ·+ cnλ

k
nvn

▶ Si |λ1| > |λi |, aleshores λk
1 creix més ràpidament que λk

i i si
c1 ̸= 0,

Akx ∼ c1λ
k
1v1 per k gran,

▶ Això és el “mètode de la potència”: la base tècnica per
calcular VAPs (i VEPs) de forma eficient.
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calcular VAPs (i VEPs) de forma eficient.

20



Aplicacions

Estudi de Akx quan k → ∞

Sigui A ∈ Mn(R), amb A = PDP−1, D = diag(λ1, . . . , λn), P =
canvi-de-base = Av→e, v = {v1, . . . , vn}. Aleshores,
▶ Ak = PDkP−1.

▶ Si x = c1v1 + · · ·+ cnvn ⇒ Akx = c1λ
k
1v1 + · · ·+ cnλ

k
nvn

▶ Si |λ1| > |λi |, aleshores λk
1 creix més ràpidament que λk
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Aplicacions

Sistemes dinàmics lineals discrets

Definició
Un sistema dinàmic lineal discret homogeni és una equació
matricial de la forma

x(k + 1) = A x(k), k ∈ N,

on A és una matriu n × n i

x(k) =

x1(k)
...

xn(k)

 ∈ Rn.

El vector x(0) s’anomena condició inicial.
Una solució (o trajectòria) és una col·lecció de vectors {x(k)}k≥0

tal que cada x(k) satisfà l’equació de dalt.

Lema
Les solucions de x(k + 1) = A x(k) són {x(k) = Akx(0)}k .
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Aplicacions

Sistemes dinàmics discrets (cont.)

Si A diagonalitza amb VAPs λ1, . . . , λn, i v = {v1, . . . , vn} és una
base de VEPs, les solucions x(k) = Akx(0) satisfan

▶ Si x(0) = c1v1 + · · ·+ cnvn ⇒
x(k) = Akx(0) = c1λ

k
1v1 + · · ·+ cnλ

k
nvn

▶ Si |λ1| > |λi | ⇒ λk
1 creix més ràpid que λk

i i si c1 ̸= 0,

x(k) ∼ c1λ
k
1v1 per k gran.

Definició
Si |λ1| > |λi | ∀i , λ1 s’anomena el VAP dominant.
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Aplicacions
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i i si c1 ̸= 0,

x(k) ∼ c1λ
k
1v1 per k gran.

Definició
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Aplicacions

Matrius estocàstiques

Definició
Una matriu estocàstica (per columnes) és una matriu n × n no
negativa on cada columna suma 1.

Es pot definir anàlogament per files.
Si A és una matriu estocàstica es té:

▶ 1 és un VAP de A.

▶ Si x suma 1, aleshores Ax també suma 1.
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Aplicacions

Teorema de Perron-Frobenius per a matriu estocàstiques

Theorem
Si A és una matriu estocàstica positiva, aleshores 1 és VAP i

▶ 1 > |λ| per qualsevol altre VAP λ (1 és VAP dominant)

▶ g1 = 1

▶ 1 té un VEP no-negatiu v .

▶ cap altre VAP té VEPs positius.

▶ Si v és VEP de VAP 1 que suma 1, aleshores

limAk = (v v . . . v)

i limAkx = v

per qualsevol vector x positiu que sumi 1.
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▶ Si v és VEP de VAP 1 que suma 1, aleshores

limAk = (v v . . . v)

i limAkx = v

per qualsevol vector x positiu que sumi 1.

24



Aplicacions

Teorema de Perron-Frobenius per a matriu estocàstiques
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▶ 1 té un VEP no-negatiu v .

▶ cap altre VAP té VEPs positius.
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Aplicacions

Ranking de pàgines web (Google pagerank)

Volem v positiu tal que Av = av (A = S t) per algun a ⇒ v= VEP
dominant, a = 1.
Càlcul de v : limAkx per qualsevol x positiu.
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Aplicacions

Teormea de Cayley-Hamilton

Theorem (Cayley-Hamilton)

Si f ∈ End(Rn) té polinomi caracteŕıstic
Pf (x) = a0 + a1x + . . .+ anx

n i A és la seva matriu estàndard,
aleshores

a0Id + a1A+ · · ·+ anA
n = 0.

Conseqüències:

▶ An es pot calcular com combinació lineal de
Id ,A,A2, . . . ,An−1

▶ Si A és invertible ⇒ A−1 es pot calcular com combinació
lineal de Id ,A, . . . ,An−1

▶ És útil per calcular exp(A) (pàg. següent).
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lineal de Id ,A, . . . ,An−1

▶ És útil per calcular exp(A) (pàg. següent).
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Aplicacions

Exponential d’una matriu

Si f és un endomorfisme diagonalitzable amb matriu estàndard
A ∈ Mn(R), A = P D P−1 amb D diagonal:
D = diag(λ1, . . . , λn), P = Av→e, i v = {v1, . . . , vn} és la base de
VEPs corresponent. Aleshores, definim l’exponential de la matriu
A:

eA = P eD P−1 = P


eλ1 0 . . . 0
0 eλ2 . . . 0
...

...
. . .

...
0 0 . . . eλn

 P−1

i coincideix amb
∑

n≥0
An

n! .
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Aplicacions

Matrius reals amb VAPs compexos

Si A és una matriu real i permetem diagonalització a K = C,
aleshores els VAP’s i VEP’s van “en parelles conjugades”:

▶ pA(x) ∈ R[x ] ⇒ λ és VAP de A si, i només si λ̄ és VAP de A.

▶ Si λ ∈ C \ R, i w ∈ Cn és VEP de VAP λ, aleshores podem
escriure w = u + iv amb u, v ∈ Rn i

▶ w̄ := u − iv és VEP de VAP λ̄.

Si volem treballar només a R, podem reorganitzar els VAPs i VEPs
complexos en parells conjugats per obtenir una “diagonalizació” de
A en blocks 2× 2: cal usar u, v en lloc dels VEPs w ,w̄ .
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