Algebra lineal i geometria
3. Diagonalitzacié

Grau en Enginyeria Fisica
2025-26

Universitat Politecnica de Catalunya
Departament de Matematiques

Marta Casanellas
Universitat Politecnica de Catalunya

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH



L outline
:

Outline

Valors i vectors propis

Teorema de Diagonalizacié

Aplicacions

Bibliography



I—Valtxrs i vectors propis

Outline

Valors i vectors propis



LVanrs i vectors propis

Motivacié

ATx

[D.Poole]



LVanrs i vectors propis

Motivacié

ATx

[D.Poole]



LVanrs i vectors propis

Motivacié

ATx

[D.Poole]



LVanrs i vectors propis
; ;

Motivacié
Sigui E un K-e.v. de dimensi6 finita ni f € End(E).

» Objectiu: calcular poténcies de matrius.



LValors i vectors propis
; ;

Motivacié
Sigui E un K-e.v. de dimensi6 finita ni f € End(E).
» Objectiu: calcular poténcies de matrius.

» Si M és diagonal, és facil calcular M™ per qualsevol m € N.



LValors i vectors propis
; ;

Motivacié
Sigui E un K-e.v. de dimensi6 finita ni f € End(E).
» Objectiu: calcular poténcies de matrius.
» Si M és diagonal, és facil calcular M™ per qualsevol m € N.

» Si M no és diagonal, existeix un canvi de base que la
converteixi a diagonal?



LValors i vectors propis

Motivacié
Sigui E un K-e.v. de dimensi6 finita ni f € End(E).
» Objectiu: calcular poténcies de matrius.
» Si M és diagonal, és facil calcular M™ per qualsevol m € N.
» Si M no és diagonal, existeix un canvi de base que la
converteixi a diagonal?
Definicié
Diem que un endomorfisme f : E — E és diagonalitzable a K si
existeix una base v de E tal que M,(f) és una matriu diagonal
D € Mp(K).
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Motivacio
Sigui E un K-e.v. de dimensi6 finita ni f € End(E).
» Objectiu: calcular poténcies de matrius.
» Si M és diagonal, és facil calcular M™ per qualsevol m € N.

» Si M no és diagonal, existeix un canvi de base que la
converteixi a diagonal?

Definicié
Diem que un endomorfisme f : E — E és diagonalitzable a K si
existeix una base v de E tal que M,(f) és una matriu diagonal
D € Mp(K).
Es a dir, f és diagonalitzable a K si existeix una matriu invertible
P € Mp(K) tal que

P~ Me(f)P

és una matriu diagonal (P es pot pensar com matriu de canvi de
base).
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» Una matriu n X n diagonalitza si existeix una matriu
invertible P tal que P~'MP és una matriu diagonal.



LValors i vectors propis

» Una matriu n X n diagonalitza si existeix una matriu
invertible P tal que P~'MP és una matriu diagonal.

» Si M diagonalitza, aleshores M = PDP~! per certa matriu
diagonal D i M™ es calcula facilment:

M™ = pDP~*PDP~! ... PDP~*PDP~ = PD™P 1.
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VAPs i VEPs

Remarca: Si M,(f) és diagonal, aleshores f(v;) = djv; (d; =
i-essim valor a la diagonal).

Definicié

Sigui f € End(E). Un vector u # 0 € E és un VEP (eigenvector)
de f si f(u) = A\ u per algun A € K. En tal cas diem que A és un
VAP (eigenvalue) de f i que u és un VEP de VAP \.
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VAPs i VEPs

Remarca: Si M,(f) és diagonal, aleshores f(v;) = djv; (d; =
i-essim valor a la diagonal).

Definicié

Sigui f € End(E). Un vector u # 0 € E és un VEP (eigenvector)
de f si f(u) = A\ u per algun A € K. En tal cas diem que A és un
VAP (eigenvalue) de f i que u és un VEP de VAP \.

Exemple

Considerem I'endomorfisme de R? donat per f(x,y) = (5x,2y).
Aleshores, e; = (1,0) és un VEP de f de VAP 1, ie; = (0,1) és
un VEP de f de VAP 2.

La matriu estandard de f és
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Exemple

L'objectiu del tema és estudiar per quins endomorfismes f podem
obtenir una base tal que la matriu de f sigui diagonal.
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Exemple

1. Considerem f(x,y) = (3x + y,x + 3y). Aleshores, u; = (1,1)
és VEP de VAP 4; up = (1,—1) és VEP de VAP 2.
La matriu estandard de f és

Me(f)=<‘;’ é)

En la base {u1, up}, la matriu de f és diagonal i igual a

I\/lu(f)z(g g)

L'objectiu del tema és estudiar per quins endomorfismes f podem
obtenir una base tal que la matriu de f sigui diagonal.
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Exemple

1. Considerem f(x,y) = (3x + y,x + 3y). Aleshores, u; = (1,1)
és VEP de VAP 4; up = (1,—1) és VEP de VAP 2.
La matriu estandard de f és

Me(f)=<‘;’ é)

En la base {u1, up}, la matriu de f és diagonal i igual a

l\/lu(f)=(g g)

2. Per X € K considerem I'homotécia f(v) = Av Vv € E.
Aleshores, tot vector és VEP de f de VAP \. La matriu de f
en qualsevol base u és \ld,.

L'objectiu del tema és estudiar per quins endomorfismes f podem
obtenir una base tal que la matriu de f sigui diagonal.
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VEPs i VAPs

Lema
» ue E éun VEP de VAP A € K < u € Nuc(f —Ald) i u# 0.
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VEPs i VAPs

Lema
» ue E éun VEP de VAP A € K < u € Nuc(f —Ald) i u# 0.
> X\ €K é un VAP de f < det(f — Ald) = 0.
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Lema
» ue E éun VEP de VAP A € K < u € Nuc(f —Ald) i u# 0.

» A€ K ésun VAP de f < det(f — Ald) = 0.
Definicid
Per cada \ VAP de f,
Ey:=Nuc(f — A\ld) C E

s'anomena el subespai propi de \ . Es el subespai format per tots els
VEP’s de VAP X més el 0.
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VEPs i VAPs

Lema
» ue E éun VEP de VAP A € K < u € Nuc(f —Ald) i u# 0.

» A€ K ésun VAP de f < det(f — Ald) = 0.
Definicid
Per cada \ VAP de f,
Ey:=Nuc(f — A\ld) C E

s'anomena el subespai propi de \ . Es el subespai format per tots els
VEP’s de VAP X més el 0.

» Ep = Nuc(f); u+# 0 és un VEP de VAP 0 < u € Nuc(f).
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VEPs i VAPs

Lema
» ue E éun VEP de VAP A € K < u € Nuc(f —Ald) i u# 0.

> A €K ésun VAP de f < det(f — \ld) = 0.

Definicié
Per cada A\ VAP de f,
Ey:=Nuc(f — A\ld) C E
s'anomena el subespai propi de \ . Es el subespai format per tots els
VEP’s de VAP X més el 0.
» Eg = Nuc(f); u# 0 és un VEP de VAP 0 < u € Nuc(f).

> L' espectre de f és el conjunt de tots els seus VAPs i es
denota per o(f).
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VAPs i Polinomi caracteristic

Definicié
El polinomi caracteristic de A € M,(K) és

a1 — X ai2 e al,n
a a2 — X ... a
Pa(x) := det(A — xId) = 21 22 2
an,1 an2 «v. dnn—X

Si f € End(E), el polinomi caracteristic de f és pa(x) on
A = My(f) per alguna base u.

10
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Propietats

Proposicié

1. P¢(x) no depén de la base u escollida.
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Propietats

Proposicié
1. P¢(x) no depén de la base u escollida.
2. Pg(x) és un polinomi de grau n,
Pr(x) = cox" + cpo1x™ ...+ ax + co. A més, si
Mu(f) = (aij), =
Cn = (_1)n’
o1 = (1) Mer(F) = (=1)" Har1 + - + ann),
co = det(f).
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Propietats

Proposicidé
1. P¢(x) no depén de la base u escollida.

2. Pg(x) és un polinomi de grau n,
Pe(x) = cox" + Cro1X" L4+ .. 4+ cax+ cy. Amés, si
Mu(f) = (aij), =

Ch = (_1)n’
1= (=1)"ter(F) = (=1)" Mar1 + - + ann),
co = det(f).

3. Les arrels de P¢(x) sén els VAPs de f, és a dir,
A€ K ésun VAP de f < Pr(\) = 0.

11
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Multiplicitat algebraica i geométrica dels VAPs

Definicié
Si A és un VAP de f, la multiplicitat algebraica de )\, denotada
com ay, és la multiplicitat de A com a arrel de P¢(x).

12
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Definicié

Si A és un VAP de f, la multiplicitat algebraica de )\, denotada
com ay, és la multiplicitat de A com a arrel de P¢(x).

Definicié

La multiplicitat geomeétrica de )\, denotada com g, és la
dimensié del subespai propi Nuc(f — Ald), és a dir, n — rk(A— Xl).
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Multiplicitat algebraica i geométrica dels VAPs

Definicié
Si A és un VAP de f, la multiplicitat algebraica de )\, denotada
com ay, és la multiplicitat de A com a arrel de P¢(x).

Definicié
La multiplicitat geomeétrica de )\, denotada com g, és la
dimensié del subespai propi Nuc(f — Ald), és a dir, n — rk(A— Xl).

Proposicié
Estél < gy < ay.

12
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Teorema de Diagonalizacié
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Independencia lineal de VEPs

Sigui f € End(E). Aleshores,

Lema
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14



LTt-:c:rema de Diagonalizacié
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Independencia lineal de VEPs

Sigui f € End(E). Aleshores,

Lema
» Siu,v sén VEPs de diferent VAPs = u,v sén I.i.

» Si\i,...,Ar son diferent VAPs = la suma Ey, + ...+ E), és
suma directa,

EA1+---+E)\,:E)\1€B---€BE)\,
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LTecurema de Diagonalizacié
; ;

Independencia lineal de VEPs

Sigui f € End(E). Aleshores,

Lema
» Siu,v sén VEPs de diferent VAPs = u,v sén I.i.

» Si\i,...,Ar son diferent VAPs = la suma Ey, + ...+ E), és
suma directa,

E)\l—i-...—f—E)\r:E)\lEB...@E)\r

Corollary
Si Ai,... )\ son diferent VAPs de f | B; = {v{, .. vc",i} és una base
de E\, peri=1,...,r, aleshores By U ...U B, és una col-leccié de

vectors linealment independents.

14
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Teorema de Diagonalizacié

Teorema (Teorema de Diagonalizacid)
Un endomorfisme f de E és diagonalitzable a K si, i només si

1. P¢(x) té totes les seves arrels A1, ..., \x a K (Pf descomposa
totalment a K)
]

2. per cada VAP X;, la multiplicitat algebraica i la geométrica
coincideixen: gy, = ay;.
Si f diagonalitza, ho fa en una base de VEPs.

15
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; ;

Teorema de Diagonalizacié

Teorema (Teorema de Diagonalizacid)
Un endomorfisme f de E és diagonalitzable a K si, i només si

1. P¢(x) té totes les seves arrels A1, ..., \x a K (Pf descomposa
totalment a K)
]

2. per cada VAP X;, la multiplicitat algebraica i la geométrica
coincideixen: gy, = ay;.

Si f diagonalitza, ho fa en una base de VEPs.

Corollary

Si totes les arrels de P¢(x) estan a K i son simples (ay, = 1 V;),
aleshores f diagonalitza.

15
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Procediment per diagonalitzar un endomorfisme

Donat un endomorfisme f de K", sigui A la seva matriu estandard.

1. Calculem el polinomi caracteristic Pr(x) = det(A — x Id).
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1. Calculem el polinomi caracteristic Pr(x) = det(A — x Id).

2. Calculem les arrels A1,..., Ax de P¢(x): si A\; ¢ K per algun
i = f no diagonalitza a K. Altrament,
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Procediment per diagonalitzar un endomorfisme

Donat un endomorfisme f de K", sigui A la seva matriu estandard.

1. Calculem el polinomi caracteristic Pr(x) = det(A — x Id).

2. Calculem les arrels A1,..., Ax de P¢(x): si A\; ¢ K per algun
i = f no diagonalitza a K. Altrament,

3. Per cada VAP J;, calculem la seva multiplicitat com a arrel de
Pf(X), a>\,..
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Procediment per diagonalitzar un endomorfisme

Donat un endomorfisme f de K", sigui A la seva matriu estandard.

1. Calculem el polinomi caracteristic Pr(x) = det(A — x Id).

2. Calculem les arrels A1,..., Ax de P¢(x): si A\; ¢ K per algun
i = f no diagonalitza a K. Altrament,

3. Per cada VAP J;, calculem la seva multiplicitat com a arrel de
Pf(X), a>\,..

4. Per cada \;, calculem Nuc(A — \;ld): el subespai de VEPs de

VAP );. La dimensié d'aquest espai és la multiplicitat
geometrica gy, de A;.

16



LTeorema de Diagonalizacié
; ;

Procediment per diagonalitzar un endomorfisme

Donat un endomorfisme f de K", sigui A la seva matriu estandard.

1. Calculem el polinomi caracteristic Pr(x) = det(A — x Id).

2. Calculem les arrels A1,..., Ax de P¢(x): si A\; ¢ K per algun
i = f no diagonalitza a K. Altrament,

3. Per cada VAP J;, calculem la seva multiplicitat com a arrel de
Pf(X), ay;-

4. Per cada \;, calculem Nuc(A — \;ld): el subespai de VEPs de
VAP );. La dimensié d'aquest espai és la multiplicitat
geometrica gy, de A;.

5. Si \i € K'i g\, = ay, per tot VAP );, aleshores f diagonalitza.

16
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Procediment per diagonalitzar un endomorfisme

En aquest cas, per cada VAP \;, sigui {v{,..., v} } una base de
Nuc(A — \; Id). Aleshores
Lv=U {v,..., v;, } és base de K".

Notem que M,(f) es podria calcular amb un canvi de base: si e és
la base estandard de K”, aleshores

Ae—)v A Av—>e =D.
(Equivalentment, Ay_e D Ae_yy = A).

17



LTecurema de Diagonalizacié
; ;

Procediment per diagonalitzar un endomorfisme

En aquest cas, per cada VAP \;, sigui {v{,..., v} } una base de
Nuc(A — \; Id). Aleshores
Lv=U {v,..., v;, } és base de K".

2. My(f) és una matriu diagonal:

A1o... 0
M(f)=D=| : -~
0 ... X

Notem que M,(f) es podria calcular amb un canvi de base: si e és

la base estandard de K”, aleshores

Ae—)v A Av—>e =D.
(Equivalentment, Ay_ye D Ae_yy = A).

17
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Triangularitzacié d'endomorfismes

Lema
Per tot f € End(R") existeix una base u de C" en la qual My(f)
és triangular, té els VAP's \1,..., A\, (repetits si cal) de f a la
diagonal i

det(A) = A1 ... An,

tr(A) =M1+ ...+ A\

Encara es pot fer més: obtenir una forma canonica de Jordan, i.e.
una matriu diagonal per blocs, amb blocs del tipus:

A0 ... 0
1 X ... 0

o1 ... 0

18
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LAplicacicms
;

Estudi de A*x quan k — oo

Sigui A € M,(R), amb A= PDP~!, D = diag()\1,...,A\n), P =
canvi-de-base = Ay_ye, V= {vi,...,v,}. Aleshores,

> Ak = PDkPL.
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canvi-de-base = Ay_ye, V= {vi,...,v,}. Aleshores,

> Ak = ppkp-1,
> Six=cwv+- -+ cyv, = Akx = cl)\’fv1+---+c,,)\ﬁv,,

> Si |A1] > |\i|, aleshores A¥ creix més rapidament que A i si

a #0,
Afx ~ cl)\ll‘vl per k gran,
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LAplit:acit:ms

Estudi de A*x quan k — oo

Sigui A € M,(R), amb A= PDP~!, D = diag()\1,...,A\n), P =
canvi-de-base = Ay_ye, V= {vi,...,v,}. Aleshores,

> Ak = ppDkp-1,

> Six=civi+ -+ cavy = Ax = Mvi + -+ e\,

> Si |A1] > |\i|, aleshores A¥ creix més rapidament que A i si
a #0,
Afx ~ cl)\ll‘vl per k gran,

> Aix0 és el "meétode de la poténcia”: la base técnica per
calcular VAPs (i VEPs) de forma eficient.

20
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Sistemes dinamics lineals discrets
Definicio
Un sistema dinamic lineal discret homogeni és una equacié
matricial de la forma

x(k+1)=Ax(k), keN,
on A és una matriu n X n i
x1 (k)
x(k) = : € R".
Xn(k)

El vector x(0) s'anomena condicié inicial.
Una solucié (o trajectoria) és una col-leccié de vectors {x(k)} x>0
tal que cada x(k) satisfa I'equacié de dalt.

21
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Sistemes dinamics lineals discrets
Definicio
Un sistema dinamic lineal discret homogeni és una equacié
matricial de la forma

x(k+1)=Ax(k), keN,

on A és una matriu n X n i
x1 (k)
x(k) = : € R".
Xn(k)

......

Una solucié (o trajectoria) és una col-leccié de vectors {x(k)} x>0
tal que cada x(k) satisfa I'equacié de dalt.

Lema
Les solucions de x(k + 1) = Ax(k) sén {x(k) = A*x(0)}«.

21
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Sistemes dinamics discrets (cont.)

Si A diagonalitza amb VAPs A1,..., Ap, iv={v,..

base de VEPs, les solucions x(k) = A¥x(0) satisfan

> Six(0)=cawvi+-+chva =
x(k) = Akx(0) = ci\fvi + -+ + e )k,

., Vn} és una

29
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Sistemes dinamics discrets (cont.)

Si A diagonalitza amb VAPs A\q,..., A\, iv={w,...,v,} és una
base de VEPs, les solucions x(k) = A¥x(0) satisfan

» Six(0)=cawvi+ -+ cpvy =
x(k) = Akx(0) = ci\fvi + -+ + e )k,
> Si [A1] > |\i| = MK creix més rapid que A isi ¢ #0,

x(k) ~ ciA\fvi  per k gran.

29
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Sistemes dinamics discrets (cont.)

Si A diagonalitza amb VAPs A\q,..., A\, iv={w,...,v,} és una
base de VEPs, les solucions x(k) = A¥x(0) satisfan

» Six(0)=cawvi+ -+ cpvy =
x(k) = Akx(0) = ci\fvi + -+ + e )k,
> Si [A1] > |\i| = MK creix més rapid que A isi ¢ #0,

x(k) ~ ciA\fvi  per k gran.

Definicié
Si |A1] > |Ai| Vi, A1 s'anomena el VAP dominant.

29
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Matrius estocastiques

Definicié

Una matriu estocastica (per columnes) és una matriu n X n no
negativa on cada columna suma 1.

Es pot definir analogament per files.

Si A és una matriu estocastica es té:

27
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> 1 és un VAP de A.
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LApIiA:acit:ms

Matrius estocastiques

Definicié
Una matriu estocastica (per columnes) és una matriu n X n no
negativa on cada columna suma 1.

Es pot definir analogament per files.
Si A és una matriu estocastica es té:

> 1 és un VAP de A.
» Six suma 1, aleshores Ax també suma 1.

27
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Teorema de Perron-Frobenius per a matriu estocastiques

Theorem
Si A és una matriu estocastica positiva, aleshores 1 és VAP i

24
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Teorema de Perron-Frobenius per a matriu estocastiques

Theorem
Si A és una matriu estocastica positiva, aleshores 1 és VAP i

» 1> |\ per qualsevol altre VAP \ (1 és VAP dominant)

24
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Teorema de Perron-Frobenius per a matriu estocastiques

Theorem
Si A és una matriu estocastica positiva, aleshores 1 és VAP i

» 1> |\ per qualsevol altre VAP \ (1 és VAP dominant)
> g=1
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Teorema de Perron-Frobenius per a matriu estocastiques

Theorem
Si A és una matriu estocastica positiva, aleshores 1 és VAP i

» 1> |\ per qualsevol altre VAP \ (1 és VAP dominant)

> g1=1
» 1 té un VEP no-negatiu v.
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Teorema de Perron-Frobenius per a matriu estocastiques

Theorem
Si A és una matriu estocastica positiva, aleshores 1 és VAP i

» 1> |\ per qualsevol altre VAP \ (1 és VAP dominant)
> g =1

» 1 té un VEP no-negatiu v.

» cap altre VAP té VEPs positius.

24
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Teorema de Perron-Frobenius per a matriu estocastiques

Theorem
Si A és una matriu estocastica positiva, aleshores 1 és VAP i

» 1> |\ per qualsevol altre VAP \ (1 és VAP dominant)
> g =1

» 1 té un VEP no-negatiu v.

» cap altre VAP té VEPs positius.

> Siv és VEP de VAP 1 que suma 1, aleshores

limAK = (vv...v)
i limAfx =v

per qualsevol vector x positiu que sumi 1.

24



LAplicacicms

Ranking de pagines web (Google pagerank)

0 12 0 12 0
0 0 1/3 1/3 13
) S=/0 0 0 1 0
0 ORS00
1 0 0.0 0

Links = nonzero elements in matrix

Volem v positiu tal que Av = av (A = S*) per algun a = v= VEP
dominant, a = 1.
Calcul de v: lim A¥x per qualsevol x positiu.
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Teormea de Cayley-Hamilton

Theorem (Cayley-Hamilton)

Si f € End(R") té polinomi caracteristic
Ps¢(x) = a0+ aix + ...+ apx" i A és la seva matriu estandard,
aleshores

aold+alA+-~~+a,,A"=0.

Consegiiéncies:
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Theorem (Cayley-Hamilton)

Si f € End(R") té polinomi caracteristic
Ps¢(x) = a0+ aix + ...+ apx" i A és la seva matriu estandard,
aleshores

aold+alA+-~~+a,,A"=0.

Consegiiéncies:

> A" es pot calcular com combinacié lineal de
Id,A A%, ... A1
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Si f € End(R") té polinomi caracteristic
Ps¢(x) = a0+ aix + ...+ apx" i A és la seva matriu estandard,
aleshores

30/d+21A—|—"'+anAn:0.

Consegiiéncies:

> A" es pot calcular com combinacié lineal de
Id,A A%, ... A1

» Si A és invertible = A™! es pot calcular com combinacié
lineal de Id, A, ..., A1
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Teormea de Cayley-Hamilton

Theorem (Cayley-Hamilton)

Si f € End(R") té polinomi caracteristic
Ps¢(x) = a0+ aix + ...+ apx" i A és la seva matriu estandard,
aleshores

30/d+21A—|—"'+anAn:0.

Consegiiéncies:

> A" es pot calcular com combinacié lineal de
Id,A A%, ... A1

» Si A és invertible = A™! es pot calcular com combinacié
lineal de Id, A, ..., A1

> Es Gtil per calcular exp(A) (pag. segient).
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Exponential d'una matriu

Si f és un endomorfisme diagonalitzable amb matriu estandard
A€ M,(R), A= P D P~ amb D diagonal:

D = diag(A1,...,\n), P=Avse, iv={wv1,...,v,} és la base de
VEPs corresponent. Aleshores, definim I'exponential de la matriu

eM 0 0

0 e2 ... 0
ef=pPlpPpr=p|( | P

0 0 e

. . . . n
i coincideix amb 3 .o 47
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Matrius reals amb VAPs compexos

Si A és una matriu real i permetem diagonalitzacié a K = C,
aleshores els VAP's i VEP's van “en parelles conjugades”:

> pa(x) € R[x] = X és VAP de A si, i només si \ és VAP de A.

Si volem treballar només a R, podem reorganitzar els VAPs i VEPs
complexos en parells conjugats per obtenir una “diagonalizacié” de
A en blocks 2 x 2: cal usar u, v en lloc dels VEPs w,w.
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Matrius reals amb VAPs compexos

Si A és una matriu real i permetem diagonalitzacié a K = C,
aleshores els VAP's i VEP's van “en parelles conjugades”:
> pa(x) € R[x] = X és VAP de A si, i només si \ és VAP de A.
» SiAeC\R,iweC"és VEP de VAP ), aleshores podem
escriure w = u+ iv amb u,v € R" i
> W :=u— iv és VEP de VAP \.

Si volem treballar només a R, podem reorganitzar els VAPs i VEPs
complexos en parells conjugats per obtenir una “diagonalizacié” de
A en blocks 2 x 2: cal usar u, v en lloc dels VEPs w,w.

28



L Bibliography

Outline

Bibliography

20



L Bibliography
. .

Bibliography

Basic:

» D. Poole, Linear Algebra, A modern introduction (3rd
edition), Brooks/Cole, 2011. Chapter 6.

Additional

» Hernandez Rodriguez, E.; Vazquez Gallo, M.J.; Zurro Moro,
M.A. Algebra lineal y geometria [en linia]

20



	Outline
	Main Talk
	Valors i vectors propis
	Teorema de Diagonalizació
	Aplicacions
	Bibliography


