Vectors and coordinates

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

Vectors spaces

Key definitions

Vector Subspaces

2

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

The vector space \mathbb{R}^{n}

We consider the set of n-tuples of real numbers:

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}
$$

and we call its elements vectors.
column vector,

The vector space \mathbb{R}^{n}

We consider the set of n-tuples of real numbers:

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}
$$

and we call its elements vectors.
Notation: When we talk about $v \in \mathbb{R}^{n}$ we usually think of v as a column vector,

$$
v=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

\mathbb{R}^{2} : Physical interpretation

- View $(x, y) \in \mathbb{R}^{2}$ as a directed line segment between two points A and $B,(x, y)=$ "vector" $\overrightarrow{A B}$.
- $\overrightarrow{A B}$: the displacement needed to get from A to B : x units along the x-axis and y along the y-axis.
- Two vectors are equal if they represent the same displacement (\Leftrightarrow they have the same length, direction, and sense).
- We can always think (x, y) as a vector of initial point $(0,0)$ and end point (x, y).

Operations in \mathbb{R}^{2}

We can sum or substract vectors

and multiply a vector by a constant (scalar)

- Vectors in \mathbb{R}^{3} have a similar physical interpretation
- We can also sum two vectors and multiply a vector by a scalar. These operations can be done in coordinates: if $u=\left(x_{1}, x_{2}, x_{3}\right)$ and $v=\left(y_{1}, y_{2}, y_{3}\right)$, then

$$
\begin{gathered}
u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right), \\
c \cdot u=\left(c x_{1}, c x_{2}, c x_{3}\right) \text { for any } c \in \mathbb{R} .
\end{gathered}
$$

Operations in \mathbb{R}^{n}

In \mathbb{R}^{n} we define the following operations:

$$
\begin{aligned}
& \text { sum: if } u=\left(x_{1}, x_{2}, \ldots, x_{n}\right), v=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text {, then } \\
& \qquad u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \in \mathbb{R}^{n} .
\end{aligned}
$$

Operations in \mathbb{R}^{n}

In \mathbb{R}^{n} we define the following operations:

$$
\begin{aligned}
& \text { sum: if } u=\left(x_{1}, x_{2}, \ldots, x_{n}\right), v=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text {, then } \\
& \qquad u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \in \mathbb{R}^{n} .
\end{aligned}
$$

scalar multiplication: if $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right), c \in \mathbb{R}$, then

$$
c \cdot u=\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right) \in \mathbb{R}^{n} .
$$

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity
6. $(c+d) \cdot u=c \cdot u+d \cdot u$. Distributivity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity
6. $(c+d) \cdot u=c \cdot u+d \cdot u$. Distributivity
7. $c \cdot(d \cdot u)=(c d) \cdot u$.

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity
6. $(c+d) \cdot u=c \cdot u+d \cdot u$. Distributivity
7. $c \cdot(d \cdot u)=(c d) \cdot u$.
8. $1 \cdot u=u$.

Examples

Any set that has two operations + and \cdot satisfying the previous property is called a vector space Some other examples of vector spaces are:

- Solutions of a homogeneous linear system of equations.

Examples

Any set that has two operations + and \cdot satisfying the previous property is called a vector space Some other examples of vector spaces are:

- Solutions of a homogeneous linear system of equations.
- $m \times n$ matrices
- Real functions

Examples

Any set that has two operations + and \cdot satisfying the previous property is called a vector space Some other examples of vector spaces are:

- Solutions of a homogeneous linear system of equations.
- $m \times n$ matrices
- Polynomials of degree $\leq k, k \geq 1$

Examples

Any set that has two operations + and \cdot satisfying the previous property is called a vector space Some other examples of vector spaces are:

- Solutions of a homogeneous linear system of equations.
- $m \times n$ matrices
- Polynomials of degree $\leq k, k \geq 1$
- Real functions

Vector subspaces

F is a vector subspace of the vector space E if
F is a vector space and $F \subseteq E$.
Definition
Let F be a nonempty subset of \mathbb{R}^{n}. Then F is a vector subspace of \mathbb{R}^{n} if the following conditions hold:

Vector subspaces

F is a vector subspace of the vector space E if
F is a vector space and $F \subseteq E$.

Definition

Let F be a nonempty subset of \mathbb{R}^{n}. Then F is a vector subspace of \mathbb{R}^{n} if the following conditions hold:

1. If u and v are in F, then $u+v$ is in F.

Vector subspaces

F is a vector subspace of the vector space E if
F is a vector space and $F \subseteq E$.

Definition

Let F be a nonempty subset of \mathbb{R}^{n}. Then F is a vector subspace of \mathbb{R}^{n} if the following conditions hold:

1. If u and v are in F, then $u+v$ is in F.
2. If u is in F and c is a scalar, then $c \cdot u$ is in F.

Vector subspaces

The following are examples of vector subspaces:

- $V=\{\overrightarrow{0}\}$

Vector subspaces

The following are examples of vector subspaces:

- $V=\{\overrightarrow{0}\}$
- $V=\mathbb{R}^{n}$

Vector subspaces

The following are examples of vector subspaces:

- $V=\{\overrightarrow{0}\}$
- $V=\mathbb{R}^{n}$
- $F_{1}=\{(\alpha,-2 \alpha) \mid \alpha \in \mathbb{R}\}$

Vector subspaces

The following are examples of vector subspaces:

- $V=\{\overrightarrow{0}\}$
- $V=\mathbb{R}^{n}$
- $F_{1}=\{(\alpha,-2 \alpha) \mid \alpha \in \mathbb{R}\}$
- $F_{2}=\left\{(a+2 b, 0, b) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}$

Vector subspaces

The following are examples of vector subspaces:

- $V=\{\overrightarrow{0}\}$
- $V=\mathbb{R}^{n}$
- $F_{1}=\{(\alpha,-2 \alpha) \mid \alpha \in \mathbb{R}\}$
- $F_{2}=\left\{(a+2 b, 0, b) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}$
- $G_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid 2 x-5 y=0\right\}$

Vector subspaces

The following are examples of vector subspaces:

- $V=\{\overrightarrow{0}\}$
- $V=\mathbb{R}^{n}$
- $F_{1}=\{(\alpha,-2 \alpha) \mid \alpha \in \mathbb{R}\}$
- $F_{2}=\left\{(a+2 b, 0, b) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}$
- $G_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid 2 x-5 y=0\right\}$
- $G_{2}=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid 2 x-5 y+3 z=0, x-y+z+2 t=0\right\}$

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

Linear Combination

Definition

We say that $u \in \mathbb{R}^{n}$ is a linear combination of $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ if there are $c_{1}, \ldots, c_{k} \in \mathbb{R}$ such that $u=c_{1} v_{1}+\ldots+c_{k} v_{k}$
Finding out if a given vector is a linear combination of a collection of vectors is equivalent to check whether a linear system of equations is consistent.

$$
\left(\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \ldots & v_{k} \\
\mid & & \mid
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right)=\left(\begin{array}{l}
\mid \\
u \\
\mid
\end{array}\right)
$$

Generators

Let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in \mathbb{R}^{n}.

Definition

The span of $v_{1}, v_{2}, \ldots, v_{k}$ is the set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$:

$$
\left[v_{1}, v_{2}, \ldots, v_{k}\right]=\left\{c_{1} v_{1}+\ldots+c_{k} v_{k} \mid c_{1}, \ldots, c_{n} \in \mathbb{R}\right\} .
$$

If $\left[v_{1}, \ldots, v_{k}\right]=F$, we say that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a system of generators for F, and also that F is spanned by $v_{1}, v_{2}, \ldots, v_{k}$.

Linear independence

Definition

The vectors $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$, at least one of which is not zero, such that $c_{1} v_{1}+\ldots+c_{k} v_{k}=\overrightarrow{0}$.
Otherwise, we say that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent.

Linear independence

Definition

The vectors $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$, at least one of which is not zero, such that $c_{1} v_{1}+\ldots+c_{k} v_{k}=\overrightarrow{0}$.
Otherwise, we say that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent.

Theorem

The vectors $v_{1}, v_{2}, \ldots, v_{k}$ in \mathbb{R}^{n} are linearly dependent if and only if at least one of the vectors can be expressed as a linear combination of the others.

Basis

Definition
Let $F \subseteq \mathbb{R}^{n}$ be a vector subspace. An ordered collection of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of F if

Basis

Definition
Let $F \subseteq \mathbb{R}^{n}$ be a vector subspace. An ordered collection of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of F if

1. $F=\left[v_{1}, \ldots, v_{k}\right]$ (that is, $\left\{v_{1}, \ldots v_{k}\right\}$ is a system of generators of F),

Basis

Definition
Let $F \subseteq \mathbb{R}^{n}$ be a vector subspace. An ordered collection of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of F if

1. $F=\left[v_{1}, \ldots, v_{k}\right]$ (that is, $\left\{v_{1}, \ldots v_{k}\right\}$ is a system of generators of F),
2. v_{1}, \ldots, v_{k} are linearly independent.

Basis

Definition

Let $F \subseteq \mathbb{R}^{n}$ be a vector subspace. An ordered collection of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of F if

1. $F=\left[v_{1}, \ldots, v_{k}\right]$ (that is, $\left\{v_{1}, \ldots v_{k}\right\}$ is a system of generators of F),
2. v_{1}, \ldots, v_{k} are linearly independent.

Example-Definition

If $e_{i}=(0, \ldots, 1, \ldots, 0)$ for $i=1,2, \ldots, n$, then $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis for \mathbb{R}^{n}. This basis is called the standard basis for \mathbb{R}^{n}.

Basis

Definition

Let $F \subseteq \mathbb{R}^{n}$ be a vector subspace. An ordered collection of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of F if

1. $F=\left[v_{1}, \ldots, v_{k}\right]$ (that is, $\left\{v_{1}, \ldots v_{k}\right\}$ is a system of generators of F),
2. v_{1}, \ldots, v_{k} are linearly independent.

Example-Definition

If $e_{i}=(0, \ldots, 1, \ldots, 0)$ for $i=1,2, \ldots, n$, then $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis for \mathbb{R}^{n}. This basis is called the standard basis for \mathbb{R}^{n}.
Notation: $\left[v_{1}, \ldots, v_{k}\right]$ is the generated set (the vector space), $\left\{v_{1}, \ldots, v_{k}\right\}$ is a set of k vectors (the basis).

The importance of rank

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{R}^{n}$, write $A=\left(v_{1}, \ldots, v_{k}\right) \in M_{n, k}(\mathbb{R})$. Then,

The importance of rank

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{R}^{n}$, write $A=\left(v_{1}, \ldots, v_{k}\right) \in M_{n, k}(\mathbb{R})$. Then,
i) the vectors are linearly independent if and only if $\operatorname{rank}(A)=k$.

The importance of rank

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{R}^{n}$, write $A=\left(v_{1}, \ldots, v_{k}\right) \in M_{n, k}(\mathbb{R})$.
Then,
i) the vectors are linearly independent if and only if $\operatorname{rank}(A)=k$.
ii) the vectors are a system of generators of \mathbb{R}^{n} if and only if $\operatorname{rank}(A)=n$.

The importance of rank

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{R}^{n}$, write $A=\left(v_{1}, \ldots, v_{k}\right) \in M_{n, k}(\mathbb{R})$.
Then,
i) the vectors are linearly independent if and only if $\operatorname{rank}(A)=k$.
ii) the vectors are a system of generators of \mathbb{R}^{n} if and only if $\operatorname{rank}(A)=n$.
i) + ii) the vectors are a basis for \mathbb{R}^{n} if and only if $k=\operatorname{rank}(A)=n$.

Dimension

Theorem (The Basis Theorem)

1. Each basis of the space \mathbb{R}^{n} has n vectors.
2. If F is a vector subspace, all basis of F have the same cardinal.

Dimension

Theorem (The Basis Theorem)

1. Each basis of the space \mathbb{R}^{n} has n vectors.
2. If F is a vector subspace, all basis of F have the same cardinal.

Dimension

Theorem (The Basis Theorem)

1. Each basis of the space \mathbb{R}^{n} has n vectors.
2. If F is a vector subspace, all basis of F have the same cardinal.

Dimension

Theorem (The Basis Theorem)

1. Each basis of the space \mathbb{R}^{n} has n vectors.
2. If F is a vector subspace, all basis of F have the same cardinal.

Definition

The cardinal of a basis of F is called the dimension of F.

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

Vector subspaces

Proposition

```
>}V=[\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{k}{}]\mathrm{ is a vector subspace of }\mp@subsup{\mathbb{R}}{}{n
Let Ax = 0 be a linear system, where }A\in\mp@subsup{M}{m,n}{}(\mathbb{R})\mathrm{ . Then,
the set of solutions }V={v\in\mp@subsup{\mathbb{R}}{}{n}|Av=0} is a vecto
subspace of }\mp@subsup{\mathbb{R}}{}{n
```

In general, there are two ways to describe a vector subspace $F \subset \mathbb{R}^{n}$:

Vector subspaces

Proposition

- $V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is a vector subspace of \mathbb{R}^{n}.

Let $A x=0$ be a linear system, where $A \in M_{m, n}(\mathbb{R})$. Then, the set of solutions $V=\left\{v \in \mathbb{R}^{n} \mid A v=0\right\}$ is a vector subspace of \mathbb{R}^{n}

Vector subspaces

Proposition

- $V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is a vector subspace of \mathbb{R}^{n}.
- Let $A x=0$ be a linear system, where $A \in M_{m, n}(\mathbb{R})$. Then, the set of solutions $V=\left\{v \in \mathbb{R}^{n} \mid A v=0\right\}$ is a vector subspace of \mathbb{R}^{n}.

In general, there are two ways to describe a vector subspace $F \subset \mathbb{R}^{n}$:

Vector subspaces

Proposition

- $V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is a vector subspace of \mathbb{R}^{n}.
- Let $A x=0$ be a linear system, where $A \in M_{m, n}(\mathbb{R})$. Then, the set of solutions $V=\left\{v \in \mathbb{R}^{n} \mid A v=0\right\}$ is a vector subspace of \mathbb{R}^{n}.

In general, there are two ways to describe a vector subspace
$F \subset \mathbb{R}^{n}$:

- through a system of generators: $F=\left[v_{1}, \ldots, v_{k}\right]$

Vector subspaces

Proposition

- $V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is a vector subspace of \mathbb{R}^{n}.
- Let $A x=0$ be a linear system, where $A \in M_{m, n}(\mathbb{R})$. Then, the set of solutions $V=\left\{v \in \mathbb{R}^{n} \mid A v=0\right\}$ is a vector subspace of \mathbb{R}^{n}.

In general, there are two ways to describe a vector subspace
$F \subset \mathbb{R}^{n}:$

- through a system of generators: $F=\left[v_{1}, \ldots, v_{k}\right]$
- through an homogeneous linear system of equations:
$F=\left\{u \in \mathbb{R}^{n} \mid A u=0\right\}$

Compute a basis of a vector subspace

If $F=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$, a basis of F can be obtained by applying any of the following methods:

- Write the vectors v_{1}, \ldots, v_{k} as the rows of a matrix A, and reduce A to row echelon form \bar{A} (Gaussian elimination). The nonzero rows of \bar{A} are a basis of F.

Compute a basis of a vector subspace

If $F=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$, a basis of F can be obtained by applying any of the following methods:

- Write the vectors v_{1}, \ldots, v_{k} as the rows of a matrix A, and reduce A to row echelon form \bar{A} (Gaussian elimination). The nonzero rows of \bar{A} are a basis of F.
- Write the vectors v_{1}, \ldots, v_{k} as the columns of a matrix B and reduce B to row echelon form \bar{B} (Gaussian elimination). The columns of \bar{B} with pivots indicate the vectors among v_{1}, \ldots, v_{k} to choose to obtain a basis of F.

Compute the dimension of a subspace

Proposition

Compute the dimension of a subspace

Proposition

- If $F=\left[v_{1}, \ldots, v_{k}\right]$, then $\operatorname{dim}(F)=\operatorname{rank}\left(v_{1}, \ldots, v_{k}\right)$

Compute the dimension of a subspace

Proposition

- If $F=\left[v_{1}, \ldots, v_{k}\right]$, then $\operatorname{dim}(F)=\operatorname{rank}\left(v_{1}, \ldots, v_{k}\right)$
- If $F=\left\{u \in \mathbb{R}^{n} \mid A u=0\right\}$, then $\operatorname{dim}(F)=n-\operatorname{rank}(A)$.

Compute the dimension of a subspace

Proposition

- If $F=\left[v_{1}, \ldots, v_{k}\right]$, then $\operatorname{dim}(F)=\operatorname{rank}\left(v_{1}, \ldots, v_{k}\right)$
- If $F=\left\{u \in \mathbb{R}^{n} \mid A u=0\right\}$, then $\operatorname{dim}(F)=n-\operatorname{rank}(A)$.

Compute the dimension of a subspace

Proposition

- If $F=\left[v_{1}, \ldots, v_{k}\right]$, then $\operatorname{dim}(F)=\operatorname{rank}\left(v_{1}, \ldots, v_{k}\right)$
- If $F=\left\{u \in \mathbb{R}^{n} \mid A u=0\right\}$, then $\operatorname{dim}(F)=n-\operatorname{rank}(A)$.

Theorem
Let $F \subseteq G$ be subspaces of \mathbb{R}^{n}. Then:

Compute the dimension of a subspace

Proposition

- If $F=\left[v_{1}, \ldots, v_{k}\right]$, then $\operatorname{dim}(F)=\operatorname{rank}\left(v_{1}, \ldots, v_{k}\right)$
- If $F=\left\{u \in \mathbb{R}^{n} \mid A u=0\right\}$, then $\operatorname{dim}(F)=n-\operatorname{rank}(A)$.

Theorem
Let $F \subseteq G$ be subspaces of \mathbb{R}^{n}. Then:

- F, G are finite-dimensional and $\operatorname{dim} F \leq \operatorname{dim} G \leq n$.

Compute the dimension of a subspace

Proposition

- If $F=\left[v_{1}, \ldots, v_{k}\right]$, then $\operatorname{dim}(F)=\operatorname{rank}\left(v_{1}, \ldots, v_{k}\right)$
- If $F=\left\{u \in \mathbb{R}^{n} \mid A u=0\right\}$, then $\operatorname{dim}(F)=n-\operatorname{rank}(A)$.

Theorem
Let $F \subseteq G$ be subspaces of \mathbb{R}^{n}. Then:

- F, G are finite-dimensional and $\operatorname{dim} F \leq \operatorname{dim} G \leq n$.
- $\operatorname{dimF}=\operatorname{dim} G$ if and only if $F=G$.

Subspaces: Equations \leftrightarrow Generators

It is important to know how to pass from one presentation to the other.

From "equations" to "generators"

It is enough to solve the system to obtain a system of generators.
We will obtain a basis if we do it correctly.
From "generators" to "equations"
Write the matrix $M=\left(v_{1}, \ldots, v_{k}\right)$, and add an extra column with entries $x_{1}, x_{2}, \ldots, x_{n}$. Reduce the matrix to echelon form by applying elementary row transformations. A linear system of equations for F is obtained by collecting all expressions in the last column with only zero entries on the left.

Outline

> Vectors spaces

> Key definitions

> Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

Coordinates

Theorem
Any element of a vector space can be written as a unique linear combination of the vectors of any basis of that space.
Given $u \in \mathbb{R}^{n}$ and $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for \mathbb{R}^{n}, there exist $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $u=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ and these c_{1}, \ldots, c_{n} are unique.

Coordinates

Theorem

Any element of a vector space can be written as a unique linear combination of the vectors of any basis of that space.
Given $u \in \mathbb{R}^{n}$ and $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for \mathbb{R}^{n}, there exist $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $u=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ and these c_{1}, \ldots, c_{n} are unique.

Definition

The $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of v with respect to
B. We will use the notation

$$
v_{B}=\left(\begin{array}{c}
c_{1} \\
\ldots \\
c_{n}
\end{array}\right)
$$

Examples

1 In the standard basis B of \mathbb{R}^{3}, the coordinates of

$$
v=(-1,2,-1) \text { are } v_{B}=(-1,2,-1) \text {, because }
$$

$$
(-1,2,-1)=(-1) \cdot(1,0,0)+2 \cdot(0,1,0)+(-1) \cdot(0,0,1)
$$

Examples

1 In the standard basis B of \mathbb{R}^{3}, the coordinates of
$v=(-1,2,-1)$ are $v_{B}=(-1,2,-1)$, because $(-1,2,-1)=(-1) \cdot(1,0,0)+2 \cdot(0,1,0)+(-1) \cdot(0,0,1)$.

2 In the basis $B^{\prime}=\{(1,0,1),(0,1,1),(2,-1,3)\}$, the coordinates of v relative to B^{\prime} are $v_{B^{\prime}}=(1,1,-1)$, because $(-1,2,-1)=1 \cdot(1,0,1)+1 \cdot(0,1,1)+(-1) \cdot(2,-1,3)$.

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be two bases of \mathbb{R}^{n}. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors of the basis B with respect to C :

$$
A_{B \rightarrow C}=\left(\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}\right) .
$$

This is the change-of-basis matrix from B to C.
Proposition

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be two bases of \mathbb{R}^{n}. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors of the basis B with respect to C :

$$
A_{B \rightarrow C}=\left(\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}\right) .
$$

This is the change-of-basis matrix from B to C.
Proposition

1. $A_{B \rightarrow C} \cdot w_{B}=w_{C}$ for all $w \in \mathbb{R}^{n}$.

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be two bases of \mathbb{R}^{n}. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors of the basis B with respect to C :

$$
A_{B \rightarrow C}=\left(\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}\right) .
$$

This is the change-of-basis matrix from B to C.
Proposition

1. $A_{B \rightarrow C} \cdot w_{B}=w_{C}$ for all $w \in \mathbb{R}^{n}$.
2. $A_{B \rightarrow C}$ is invertible, and $\left(A_{B \rightarrow C}\right)^{-1}=A_{C \rightarrow B}$.

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be two bases of \mathbb{R}^{n}. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors of the basis B with respect to C :

$$
A_{B \rightarrow C}=\left(\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}\right) .
$$

This is the change-of-basis matrix from B to C.
Proposition

1. $A_{B \rightarrow C} \cdot w_{B}=w_{C}$ for all $w \in \mathbb{R}^{n}$.
2. $A_{B \rightarrow C}$ is invertible, and $\left(A_{B \rightarrow C}\right)^{-1}=A_{C \rightarrow B}$.
3. If D is another basis for \mathbb{R}^{n}, then $A_{C \rightarrow D} \cdot A_{B \rightarrow C}=A_{B \rightarrow D}$.

Example

In \mathbb{R}^{3}, take the standard basis $B=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $B^{\prime}=\{(1,0,1),(0,1,1),(2,-1,3)\}$.
Then,

$$
\begin{aligned}
& A_{B^{\prime} \rightarrow B}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
1 & 1 & 3
\end{array}\right) \\
& A_{B \rightarrow B^{\prime}}=A_{B^{\prime} \rightarrow B}^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
4 & 2 & -2 \\
-1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

Then,

1. $\left(A_{B^{\prime} \mapsto B}\right)\left(v_{B^{\prime}}\right)=\left(v_{B}\right)$, and

Example

In \mathbb{R}^{3}, take the standard basis $B=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $B^{\prime}=\{(1,0,1),(0,1,1),(2,-1,3)\}$.
Then,

$$
\begin{aligned}
& A_{B^{\prime} \rightarrow B}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
1 & 1 & 3
\end{array}\right) \\
& A_{B \rightarrow B^{\prime}}=A_{B^{\prime} \rightarrow B}^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
4 & 2 & -2 \\
-1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

Then,

1. $\left(A_{B^{\prime} \mapsto B}\right)\left(v_{B^{\prime}}\right)=\left(v_{B}\right)$, and
2. $\left(A_{B \mapsto B^{\prime}}\right)\left(v_{B}\right)=\left(v_{B^{\prime}}\right)$

Outline

Vectors spaces

Key definitions

Vector Subspaces

Coordinates and change of basis

Intersection and sum of subspaces

Python

Intersection and sum of subspaces

Let F, G be vector subspaces in \mathbb{R}^{n} then:
The intersection of F and G is $F \cap G=\left\{v \in \mathbb{R}^{n} \mid v \in F, v \in G\right\}$.
The sum of F and G is $F+G=\left\{v+w \in \mathbb{R}^{n} \mid v \in F, w \in G\right\}$.
Computation:
If $F=\left\{x \in \mathbb{R}^{n} \mid A_{F} x=0\right\}$ and $G=\left\{x \in \mathbb{R}^{n} \mid A_{G} x=0\right\}$, then

$$
F \cap G=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}, \text { where } A=\binom{A_{F}}{A_{G}} .
$$

If $F=\left[v_{1}, \ldots, v_{r}\right]$ and $G=\left[w_{1}, \ldots, w_{s}\right]$, then

$$
F+G=\left[v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{s}\right] .
$$

Grassmann Formula

Theorem

- $F \cap G$ and $F+G$ are vector subspaces of \mathbb{R}^{n}
- $\operatorname{dim}(F+G)=\operatorname{dim}(F)+\operatorname{dim}(G)-\operatorname{dim}(F \cap G)$

Grassmann Formula

Theorem

- $F \cap G$ and $F+G$ are vector subspaces of \mathbb{R}^{n}.

Example

Grassmann Formula

Theorem

- $F \cap G$ and $F+G$ are vector subspaces of \mathbb{R}^{n}.
- $\operatorname{dim}(F+G)=\operatorname{dim}(F)+\operatorname{dim}(G)-\operatorname{dim}(F \cap G)$.

Example

Grassmann Formula

Theorem

- $F \cap G$ and $F+G$ are vector subspaces of \mathbb{R}^{n}.
- $\operatorname{dim}(F+G)=\operatorname{dim}(F)+\operatorname{dim}(G)-\operatorname{dim}(F \cap G)$.

Example

$$
\begin{aligned}
& F=[(1,0,1),(0,2,3)] \\
& G=[(0,1,0),(1,1,1)] \\
& F \cap G=[(1,0,1)] \\
& F+G=\mathbb{R}^{3}
\end{aligned}
$$

Outline

> Vectors spaces

> Key definitions

> Vector Subspaces

> Coordinates and change of basis

> Intersection and sum of subspaces

Python

Python: vectors and operations

Vectors are introduced in numpy as $n \times 1$ matrices:
$\mathrm{u}=\mathrm{np} \cdot \operatorname{array}([1,2,0,-3]) \quad$ or $\quad \mathrm{v}=\mathrm{np} \cdot \operatorname{array}([0,5,-2,7])$.
The sum of vectors in the same space is introduced with + and the scalar multiplication with $*$:

$$
\begin{aligned}
\mathrm{u}+\mathrm{v} & =\mathrm{np} \cdot \operatorname{array}([1,7,-2,4]) \\
(-3) * \mathrm{u} & =\operatorname{np} \cdot \operatorname{array}([-3,-6,0,9])
\end{aligned}
$$

Python: Subspaces

If $F=\left[v_{1}, \ldots, v_{k}\right]$ we can compute $\operatorname{dim}(F)$ with Python:

$$
\mathrm{M}=\operatorname{np} \cdot \operatorname{array}\left(\left[\left[\mathrm{v}_{1}\right], \ldots,\left[\mathrm{v}_{\mathrm{k}}\right]\right]\right) ;
$$

matrix_rank(M)

If $F=\left\{u \in \mathbb{R}^{n} \mid A u=0\right\}$ we can compute $\operatorname{dim}(F)$ with Python:
n-matrix_rank(A)

