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Definition

Definition

An m× n matrix is a collection of m× n (real or complex) numbers
arranged into a rectangular array of m rows and n columns.

The entry ai ,j is the element at row i and column j of A.

Notation: A = (ai ,j) .

▶ If m = n, A is a square matrix of size n.

▶ The set of m × n matrices is denoted by Mm,n.

▶ The elements of Mn,1 are called vectors or column vectors.

▶ The elements of M1,n are called row vectors.
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Definition

Special matrices

▶ The matrix 0 is the matrix whose elements are all 0.

▶ A square matrix A is a diagonal matrix if ai ,j = 0 for all i ̸= j .

▶ The identity matrix Idn is the diagonal n × n matrix that has
1’s at the diagonal entries.
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Definition

Transpose

The transpose of A ∈ Mm,n is the n ×m matrix At whose
(i , j)-entry is aj ,i :

A =

(
a1,1 . . . a1,n
.
.
.

.

.

.

.

.

.
am,1 . . . am,n

)
→ At =

(
a1,1 . . . am,1

.

.

.

.

.

.

.

.

.
a1,n . . . am,n

)

▶ A square matrix is symmetric if At = A
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Operations

Sum of matrices

If A,B are two m × n matrices, then the sum A+ B is the matrix
whose (i , j)-entry is ci ,j = ai ,j + bi ,j :(

a1,1 . . . a1,n
.
.
.

.

.

.

.

.

.
am,1 . . . am,n

)
+

(
b1,1 . . . b1,n
.
.
.

.

.

.

.

.

.
bm,1 . . . bm,n

)
=

(
a1,1 + b1,1 . . . a1,n + b1,n

.

.

.

.

.

.

.

.

.
am,1 + bm,1 . . . am,n + bm,n

)

Properties: associative, commutative, neutral element 0, opposite
element −A = (−ai ,j),(

a1,1 . . . a1,n
.
.
.

.

.

.

.

.

.
am,1 . . . am,n

)
−

(
b1,1 . . . b1,n
.
.
.

.

.

.

.

.

.
bm,1 . . . bm,n

)
=

(
a1,1 − b1,1 . . . a1,n − b1,n

.

.

.

.

.

.

.

.

.
am,1 − bm,1 . . . am,n − bm,n

)

(A+ B)t = At + Bt
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Operations

Product by a scalar

Let A ∈ Mm,n and let c ∈ R be a number (scalar), then c · A is
the m × n matrix whose (i , j)-element is c ai ,j for all
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}:

c ·

a1,1 . . . a1,n
...

...
...

am,1 . . . am,n

 =

c a1,1 . . . c a1,n
...

...
...

c am,1 . . . c am,n


Properties: 0 · A = 0, c · (A+ B) = c · A+ c · B.
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Operations

Multiplication of matrices

Let A ∈ Mm,n and B ∈ Mn,p, then AB is the matrix C such that

ci ,j = ai ,1b1,j + ai ,2b2,j + · · ·+ ai ,nbn,j .

Note that ci ,j = (ai ,1 ai ,2 . . . ai ,n)

b1,j
...

bn,j

 .

Example:
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Operations

Properties of matrix multiplication

▶ Idn A = A Idn = A (neutral element).

▶ A (B C ) = (AB)C (associative).

▶ A (B + C ) = AB + AC (distributive law).

▶ (A+ B)C = AC + B C (distributive law).

▶ AB ̸= B A.

▶ (AB)t = Bt At .

Given a matrix A, under which conditions does there exist a matrix
B such that

AB = B A = Idn ?
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Operations

Inverse

Let A be an n × n matrix. If there exists a matrix B such that

AB = B A = Idn

then B is called the inverse of A and is denoted as A−1.

A matrix is called invertible (or non-singular) if it has an inverse
and is called singular if it does NOT have an inverse.

Remark. Only AB = Idn or B A = Idn is necessary (the other
comes for free).
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Operations

Properties of the inverse

If A and B are n × n invertible matrices, then

▶ The inverse is unique.

▶ (A−1)−1 = A.

▶ (At)−1 = (A−1)t .

▶ (AB)−1 = B−1A−1.

▶ (Ak)−1 = (A−1)k for k ∈ N
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Operations

Inverse in the 2× 2 case

If A =

(
a b
c d

)
and ad − bc ̸= 0, then

A−1 =
1

ad − bc

(
d −b
−c a

)
.

Computing the inverse for larger matrices: see the section
“Determinant” and the next topic (“Linear Systems”).
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Gaussian elimination

Elementary operations

Given an m × n matrix A, the following are called row elementary
transformations

E1 Exchange two rows.

E2 Multiply a row by a nonzero constant.

E3 Add a multiple of one row to another row.

Similarly, we could define the column elementary transformations.
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Gaussian elimination

Row echelon form
Gaussian elimination is an algorithm that uses row elementary
transformations to transform a matrix to a matrix with row echelon
form:

▶ □: first non-zero element of each row (pivots).

▶ ∗: can be 0 or not.

▶ Everything below the line is 0.

▶ Every pivot is further to the right than the pivot of the
previous row.
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Gaussian elimination

Gaussian elimination:

Any non-zero matrix can be transformed into a matrix with row
echelon form by using row elementary transformations to repeat
these steps for each column from left to right:

1. If it is possible, choose a pivot and put it as high as possible
(E1).

2. Put zeros below the pivot (E2 and/or E3).

Remark: Any non-zero matrix can be transformed into infinitely
many matrices with row echelon form. However, all of them have
the same number of pivots.
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Rank and Determinant

Rank

The rank of a matrix A is the number of pivots (=the number of
nonzero rows) in a row echelon form of A.

Properties:

▶ The rank of A is the same no matter the elementary
transformations we apply to reduce the matrix.

▶ The rank does not change if we perform elementary
operations on a matrix.

▶ rank(A) = rank(At).
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Rank and Determinant

Determinant of a 3× 3 matrix

Sarrus Rule:

∣∣∣ a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣=a1,1a2,2a3,3+a2,1a3,2a1,3+a3,1a1,2a2,3−a1,3a2,2a3,1−a2,3a3,2a1,1−a3,3a1,2a2,1

Warning: Not valid for n ≥ 4.
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Rank and Determinant

Definition of determinant

Let A be an n × n matrix, we define the determinant of A, det(A),
as follows (notation |A| = det(A)):

▶ If n = 1: A = (a1,1), then det(A) = a1,1.

▶ If n = 2: det(A) =

∣∣∣∣ a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = a1,1|a2,2| − a1,2|a2,1|.

▶ If n = 3,

det(A) = a11

∣∣∣∣ a2,2 a2,3
a3,2 a3,3

∣∣∣∣−a1,2

∣∣∣∣ a2,1 a2,3
a3,1 a3,3

∣∣∣∣+a1,3

∣∣∣∣ a2,1 a2,2
a3,1 a3,2

∣∣∣∣
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Rank and Determinant

Definition of determinant

▶ Recursively, if Ai ,j is the matrix obtained by removing row i
and column j from A,

|A| = a11 detA1,1 − a1,2 detA1,2 + · · ·+ (−1)n+1a1,n detA1,n.

The expression above is called the Laplace expansion of the
determinant by the first row.
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Rank and Determinant

Laplace expansion Theorem
Given a square matrix A, we define the cofactor matrix of A as the
matrix co(A) whose (i , j) entry is

Ci ,j = (−1)i+j detAi ,j ,

where Ai ,j is the matrix obtained by removing the row i and the
column j of A.

Theorem (Laplace expansion)

The determinant of an n × n matrix A can be computed as the
cofactor expansion along the i-th row,

detA = ai ,1Ci ,1 + . . .+ ai ,nCi ,n

and also as the cofactor expansion along the j-th column:

detA = a1,jC1,j + . . .+ an,jCn,j .
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Rank and Determinant

Effect of elementary transformations on det

Let A be a square matrix.

E1 If B is obtained by exchanging two rows/columns of A, then:

det(B) = − det(A)

E2 If B is obtained by multiplying a row/column by c ̸= 0, then

det(B) = c det(A).

E3 If B is obtained by changing one row/column by itself plus a
multiple of another row/column, then

det(B) = det(A).

Goal: Do transformations of type E3 (and of type E1 if necessary)
to compute efficiently det(A).
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Rank and Determinant

Properties of the determinant

Properties of the determinant:

▶ If one row or column is 0, then det(A) = 0.

▶ If A is a triangular matrix, det(A) is the product of elements
in the diagonal. In particular, det(Idn) = 1.

▶ det(At) = det(A).

▶ det(c · A) = cndet(A) (where n is the number of
rows/columns of A).

▶ det(AB) = det(A) det(B).

Consequence
If A is invertible (non-singular) ⇒ det(A−1) = 1/det(A)(̸= 0).
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▶ det(AB) = det(A) det(B).

Consequence
If A is invertible (non-singular) ⇒ det(A−1) = 1/det(A)(̸= 0).
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Rank and Determinant

Determinants and rank

A minor of A is the determinant of a square submatrix of A
obtained by removing some rows and columns of A.

Proposition

The maximum size of non-zero minors of A is equal to rank(A).

This can be used to compute rank(A) without transforming it into
a matrix in row echelon form:

▶ An n × n matrix A has rank n (full rank) if and only if
det(A) ̸= 0.

▶ If all m ×m minors of A are 0 then rank(A) < m.
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Rank and Determinant

Existence of inverse

The adjugate or adjoint matrix is the transpose of the cofactor
matrix. We have that

A−1 =
1

det(A)
co(A)t

Warning! This is not the optimal way to compute the inverse for
n ≥ 4.

Theorem
For any square matrix A the following are equivalent:

▶ A is invertible.

▶ det(A) ̸= 0.

▶ A has full rank.
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Python: numpy and linalg

The numpy package allows us to work with matrices in python:
import numpy as np

We can use array to create matrices introducing them by rows:
A = np.array([[a11, . . . , a1n], [a21, . . . , a2n], . . . , [am1, . . . , amn]])

To visualize: print(A)

To work with matrices we need the linalg submodule of numpy:

from numpy.linalg import *



Python: Matrix operations

Command Output

np.zeros((m,n)) the m × n zero matrix.
np.identity(n) the n × n identity matrix.
A.T the transpose of A.
A+B the sum of matrices A and B.
A@B or np.matmul(A, B) the product of matrices A and B.
c*A the product of the matrix A by c ∈ R.
inv(A) the inverse of A.
matrix rank(A) the rank of A.
det(A) the determinant of A.
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