## Matrices

## Bioinformatics Degree Algebra

## Departament de Matemàtiques

## Outline

Definition and examples

Operations with matrices

Gaussian elimination

## Outline

Definition and examples

Operations with matrices

## Gaussian elimination

Rank and Determinant

## Outline

Definition and examples

Operations with matrices

Gaussian elimination

Rank and Determinant

Python

## Outline

Definition and examples

Operations with matrices

Gaussian elimination

Rank and Determinant

Python

## Outline

Definition and examples

Operations with matrices

Gaussian elimination

Rank and Determinant

Python

## Outline

Definition and examples

## Operations with matrices

Gaussian elimination

Rank and Determinant

Python

## Definition

An $m \times n$ matrix is a collection of $m \times n$ (real or complex) numbers arranged into a rectangular array of $m$ rows and $n$ columns.

The entry $a_{i, j}$ is the element at row $i$ and column $j$ of $A$.
Notation: $\quad A=\left(a_{i, j}\right)$.

- If $m=n, A$ is a square matrix of size $n$.


## Definition

An $m \times n$ matrix is a collection of $m \times n$ (real or complex) numbers arranged into a rectangular array of $m$ rows and $n$ columns.

The entry $a_{i, j}$ is the element at row $i$ and column $j$ of $A$.
Notation: $\quad A=\left(a_{i, j}\right)$.

- If $m=n, A$ is a square matrix of size $n$.
- The set of $m \times n$ matrices is denoted by $\mathcal{M}_{m, n}$.


## Definition

An $m \times n$ matrix is a collection of $m \times n$ (real or complex) numbers arranged into a rectangular array of $m$ rows and $n$ columns.

The entry $a_{i, j}$ is the element at row $i$ and column $j$ of $A$.
Notation: $\quad A=\left(a_{i, j}\right)$.

- If $m=n, A$ is a square matrix of size $n$.
- The set of $m \times n$ matrices is denoted by $\mathcal{M}_{m, n}$.
- The elements of $\mathcal{M}_{n, 1}$ are called vectors or column vectors.


## Definition

An $m \times n$ matrix is a collection of $m \times n$ (real or complex) numbers arranged into a rectangular array of $m$ rows and $n$ columns.

The entry $a_{i, j}$ is the element at row $i$ and column $j$ of $A$.
Notation: $\quad A=\left(a_{i, j}\right)$.

- If $m=n, A$ is a square matrix of size $n$.
- The set of $m \times n$ matrices is denoted by $\mathcal{M}_{m, n}$.
- The elements of $\mathcal{M}_{n, 1}$ are called vectors or column vectors.
- The elements of $\mathcal{M}_{1, n}$ are called row vectors.


## Special matrices

- The matrix $\mathbf{0}$ is the matrix whose elements are all 0 .

> A square matrix $A$ is a diagonal matrix if $a_{i, j}=0$ for all $i \neq j$ The identity matrix $I d_{n}$ is the diagonal $n \times n$ matrix that has I's at the diagonal entries.

## Special matrices

- The matrix $\mathbf{0}$ is the matrix whose elements are all 0 .
- A square matrix $A$ is a diagonal matrix if $a_{i, j}=0$ for all $i \neq j$.


## Special matrices

- The matrix $\mathbf{0}$ is the matrix whose elements are all 0 .
- A square matrix $A$ is a diagonal matrix if $a_{i, j}=0$ for all $i \neq j$.
- The identity matrix $I d_{n}$ is the diagonal $n \times n$ matrix that has 1 's at the diagonal entries.


## Transpose

The transpose of $A \in \mathcal{M}_{m, n}$ is the $n \times m$ matrix $A^{t}$ whose $(i, j)$-entry is $a_{j, i}$ :

$$
A=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \vdots & \vdots \\
a_{m, 1} & \ldots & a_{m, n}
\end{array}\right) \rightarrow A^{t}=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{m, 1} \\
\vdots & \vdots & \vdots \\
a_{1, n} & \ldots & a_{m, n}
\end{array}\right)
$$

- A square matrix is symmetric if $A^{t}=A$


## Outline

## Definition and examples

Operations with matrices

## Gaussian elimination

## Rank and Determinant

Python

## Sum of matrices

If $A, B$ are two $m \times n$ matrices, then the sum $A+B$ is the matrix whose $(i, j)$-entry is $c_{i, j}=a_{i, j}+b_{i, j}$ :

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \vdots & \vdots \\
a_{m, 1} & \ldots & a_{m, n}
\end{array}\right)+\left(\begin{array}{ccc}
b_{1,1} & \ldots & b_{1, n} \\
\vdots & \vdots & \vdots \\
b_{m, 1} & \ldots & b_{m, n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1}+b_{1,1} & \ldots & a_{1, n}+b_{1, n} \\
\vdots & \vdots & \vdots \\
a_{m, 1}+b_{m, 1} & \ldots & a_{m, n}+b_{m, n}
\end{array}\right)
$$

Properties: associative, commutative, neutral element 0, opposite element $-A=\left(-a_{i, j}\right)$,

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \vdots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right)-\left(\begin{array}{ccc}
b_{1,1} & \ldots & b_{1, n} \\
\vdots & \vdots & \vdots \\
b_{m, 1} & \ldots & b_{m, n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1}-b_{1,1} & \cdots & a_{1, n}-b_{1, n} \\
\vdots & \vdots & \vdots \\
a_{m, 1}-b_{m, 1} & \cdots & a_{m, n}-b_{m, n}
\end{array}\right) \\
(A+B)^{t}=A^{t}+B^{t}
\end{gathered}
$$

## Product by a scalar

Let $A \in \mathcal{M}_{m, n}$ and let $c \in \mathbb{R}$ be a number (scalar), then $c \cdot A$ is the $m \times n$ matrix whose $(i, j)$-element is $c a_{i, j}$ for all $i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}$ :

$$
c \cdot\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \vdots & \vdots \\
a_{m, 1} & \ldots & a_{m, n}
\end{array}\right)=\left(\begin{array}{ccc}
c a_{1,1} & \ldots & c a_{1, n} \\
\vdots & \vdots & \vdots \\
c a_{m, 1} & \ldots & c a_{m, n}
\end{array}\right)
$$

Properties: $0 \cdot A=\mathbf{0}, c \cdot(A+B)=c \cdot A+c \cdot B$.

## Multiplication of matrices

Let $A \in \mathcal{M}_{m, n}$ and $B \in \mathcal{M}_{n, p}$, then $A B$ is the matrix $C$ such that

$$
c_{i, j}=a_{i, 1} b_{1, j}+a_{i, 2} b_{2, j}+\cdots+a_{i, n} b_{n, j}
$$

Note that $c_{i, j}=\left(\begin{array}{lll}a_{i, 1} & a_{i, 2} \ldots & \ldots a_{i, n}\end{array}\right)\left(\begin{array}{c}b_{1, j} \\ \vdots \\ b_{n, j}\end{array}\right)$.
Example:

$$
\left.\begin{array}{l}
\text { a) } \left.\begin{array}{lll}
1 & 2 & 4 \\
3 & 5 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 2 \\
4 & 6 & 1 \\
3 & 2 & 5
\end{array}\right]=\left[\begin{array}{lll}
22 & 23 & 24 \\
29 & 41 & 16 \\
17 & 18 & 20
\end{array}\right] \\
\text { b) }\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 5 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 2 \\
4 & 6 & 1 \\
3 & 2 & 5
\end{array}\right]
\end{array}\right]=\left[\begin{array}{lll}
22 & 23 & 24 \\
29 & 41 & 16 \\
17 & 18 & 20
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 5 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 2 \\
4 & 6 & 1 \\
3 & 2 & 5
\end{array}\right]=\left[\begin{array}{lll}
22 & 23 & 24 \\
29 & 41 & 16 \\
17 & 18 & 20
\end{array}\right]=
$$

## Properties of matrix multiplication

$-I d_{n} A=A I d_{n}=A$ (neutral element).

## Properties of matrix multiplication

$-\quad l d_{n} A=A I d_{n}=A$ (neutral element).

- $A(B C)=(A B) C$ (associative).


## Properties of matrix multiplication

$-\quad l d_{n} A=A I d_{n}=A$ (neutral element).

- $A(B C)=(A B) C$ (associative).
- $A(B+C)=A B+A C$ (distributive law).


## Properties of matrix multiplication

$-\quad l d_{n} A=A I d_{n}=A$ (neutral element).

- $A(B C)=(A B) C$ (associative).
- $A(B+C)=A B+A C$ (distributive law).
- $(A+B) C=A C+B C$ (distributive law).


## Properties of matrix multiplication

$-I d_{n} A=A I d_{n}=A$ (neutral element).

- $A(B C)=(A B) C$ (associative).
- $A(B+C)=A B+A C$ (distributive law).
- $(A+B) C=A C+B C$ (distributive law).
- $A B \neq B A$.


## Properties of matrix multiplication

$-I d_{n} A=A I d_{n}=A$ (neutral element).

- $A(B C)=(A B) C$ (associative).
- $A(B+C)=A B+A C$ (distributive law).
- $(A+B) C=A C+B C$ (distributive law).
- $A B \neq B A$.
- $(A B)^{t}=B^{t} A^{t}$.


## Properties of matrix multiplication

$-\quad l d_{n} A=A I d_{n}=A$ (neutral element).

- $A(B C)=(A B) C$ (associative).
- $A(B+C)=A B+A C$ (distributive law).
- $(A+B) C=A C+B C$ (distributive law).
- $A B \neq B A$.
- $(A B)^{t}=B^{t} A^{t}$.

Given a matrix $A$, under which conditions does there exist a matrix $B$ such that

$$
A B=B A=I d_{n} ?
$$

## Inverse

Let $A$ be an $n \times n$ matrix. If there exists a matrix $B$ such that

$$
A B=B A=I d_{n}
$$

then $B$ is called the inverse of $A$ and is denoted as $A^{-1}$.

A matrix is called invertible (or non-singular) if it has an inverse and is called singular if it does NOT have an inverse.

Remark. Only $A B=I d_{n}$ or $B A=l d_{n}$ is necessary (the other comes for free).

## Properties of the inverse

If $A$ and $B$ are $n \times n$ invertible matrices, then

- The inverse is unique.


## Properties of the inverse

If $A$ and $B$ are $n \times n$ invertible matrices, then

- The inverse is unique.
- $\left(A^{-1}\right)^{-1}=A$.


## Properties of the inverse

If $A$ and $B$ are $n \times n$ invertible matrices, then

- The inverse is unique.
- $\left(A^{-1}\right)^{-1}=A$.
- $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.


## Properties of the inverse

If $A$ and $B$ are $n \times n$ invertible matrices, then

- The inverse is unique.
- $\left(A^{-1}\right)^{-1}=A$.
- $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
- $(A B)^{-1}=B^{-1} A^{-1}$.


## Properties of the inverse

If $A$ and $B$ are $n \times n$ invertible matrices, then

- The inverse is unique.
- $\left(A^{-1}\right)^{-1}=A$.
- $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
- $(A B)^{-1}=B^{-1} A^{-1}$.
- $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$ for $k \in \mathbb{N}$


## Inverse in the $2 \times 2$ case

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $a d-b c \neq 0$, then

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

Computing the inverse for larger matrices: see the section "Determinant" and the next topic ("Linear Systems").

## Outline

# Definition and examples <br> <br> Operations with matrices 

 <br> <br> Operations with matrices}

Gaussian elimination

Rank and Determinant

Python

## Elementary operations

Given an $m \times n$ matrix $A$, the following are called row elementary transformations
$E_{1}$ Exchange two rows.
$E_{2}$ Multiply a row by a nonzero constant
$E_{3}$ Add a multiple of one row to another row.

## Elementary operations

Given an $m \times n$ matrix $A$, the following are called row elementary transformations
$E_{1}$ Exchange two rows.
$E_{2}$ Multiply a row by a nonzero constant.
$E_{3}$ Add a multiple of one row to another row

## Elementary operations

Given an $m \times n$ matrix $A$, the following are called row elementary transformations
$E_{1}$ Exchange two rows.
$E_{2}$ Multiply a row by a nonzero constant.
$E_{3}$ Add a multiple of one row to another row.
Similarly, we could define the column elementary transformations.

## Row echelon form

Gaussian elimination is an algorithm that uses row elementary transformations to transform a matrix to a matrix with row echelon form:


- $\square$ : first non-zero element of each row (pivots).


## Row echelon form

Gaussian elimination is an algorithm that uses row elementary transformations to transform a matrix to a matrix with row echelon form:


- $\square$ : first non-zero element of each row (pivots).
- *: can be 0 or not.
- Every pivot is further to the right than the pivot of the previous row.


## Row echelon form

Gaussian elimination is an algorithm that uses row elementary transformations to transform a matrix to a matrix with row echelon form:


- $\square$ : first non-zero element of each row (pivots).
- *: can be 0 or not.
- Everything below the line is 0 .


## Row echelon form

Gaussian elimination is an algorithm that uses row elementary transformations to transform a matrix to a matrix with row echelon form:


- $\square$ : first non-zero element of each row (pivots).
- *: can be 0 or not.
- Everything below the line is 0 .
- Every pivot is further to the right than the pivot of the previous row.


## Gaussian elimination:

Any non-zero matrix can be transformed into a matrix with row echelon form by using row elementary transformations to repeat these steps for each column from left to right:

1. If it is possible, choose a pivot and put it as high as possible (E1).

## Gaussian elimination:

Any non-zero matrix can be transformed into a matrix with row echelon form by using row elementary transformations to repeat these steps for each column from left to right:

1. If it is possible, choose a pivot and put it as high as possible (E1).
2. Put zeros below the pivot (E2 and/or E3).

## Gaussian elimination:

Any non-zero matrix can be transformed into a matrix with row echelon form by using row elementary transformations to repeat these steps for each column from left to right:

1. If it is possible, choose a pivot and put it as high as possible (E1).
2. Put zeros below the pivot (E2 and/or E3).

Remark: Any non-zero matrix can be transformed into infinitely many matrices with row echelon form. However, all of them have the same number of pivots.

## Outline

## Definition and examples

## Operations with matrices

## Gaussian elimination

Rank and Determinant

Python

## Rank

The rank of a matrix $A$ is the number of pivots ( $=$ the number of nonzero rows) in a row echelon form of $A$.

Properties:

- The rank of $A$ is the same no matter the elementary transformations we apply to reduce the matrix.


## Rank

The rank of a matrix $A$ is the number of pivots ( $=$ the number of nonzero rows) in a row echelon form of $A$.

Properties:

- The rank of $A$ is the same no matter the elementary transformations we apply to reduce the matrix.
- The rank does not change if we perform elementary operations on a matrix.


## Rank

The rank of a matrix $A$ is the number of pivots ( $=$ the number of nonzero rows) in a row echelon form of $A$.

Properties:

- The rank of $A$ is the same no matter the elementary transformations we apply to reduce the matrix.
- The rank does not change if we perform elementary operations on a matrix.
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$.


## Determinant of a $3 \times 3$ matrix

## Sarrus Rule:

$$
\left|\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right|=a_{1,1} a_{2,2} a_{3,3}+a_{2,1} a_{3,2} a_{1,3}+a_{3,1} a_{1,2} a_{2,3}-a_{1,3} a_{2,2} a_{3,1}-a_{2,3} a_{3,2} a_{1,1}-a_{3,3} a_{1,2} a_{2,1}
$$



Warning: Not valid for $n \geq 4$.

## Definition of determinant

Let $A$ be an $n \times n$ matrix, we define the determinant of $A, \operatorname{det}(A)$, as follows (notation $|A|=\operatorname{det}(A)$ ):

- If $n=1: A=\left(a_{1,1}\right)$, then $\operatorname{det}(A)=a_{1,1}$.


## Definition of determinant

Let $A$ be an $n \times n$ matrix, we define the determinant of $A, \operatorname{det}(A)$, as follows (notation $|A|=\operatorname{det}(A)$ ):

- If $n=1: A=\left(a_{1,1}\right)$, then $\operatorname{det}(A)=a_{1,1}$.
- If $n=2: \operatorname{det}(A)=\left|\begin{array}{ll}a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2}\end{array}\right|=a_{1,1}\left|a_{2,2}\right|-a_{1,2}\left|a_{2,1}\right|$.


## Definition of determinant

Let $A$ be an $n \times n$ matrix, we define the determinant of $A, \operatorname{det}(A)$, as follows (notation $|A|=\operatorname{det}(A)$ ):

- If $n=1: A=\left(a_{1,1}\right)$, then $\operatorname{det}(A)=a_{1,1}$.
- If $n=2: \operatorname{det}(A)=\left|\begin{array}{ll}a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2}\end{array}\right|=a_{1,1}\left|a_{2,2}\right|-a_{1,2}\left|a_{2,1}\right|$.
- If $n=3$,

$$
\operatorname{det}(A)=a_{11}\left|\begin{array}{ll}
a_{2,2} & a_{2,3} \\
a_{3,2} & a_{3,3}
\end{array}\right|-a_{1,2}\left|\begin{array}{ll}
a_{2,1} & a_{2,3} \\
a_{3,1} & a_{3,3}
\end{array}\right|+a_{1,3}\left|\begin{array}{ll}
a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2}
\end{array}\right|
$$

## Definition of determinant

- Recursively, if $A_{i, j}$ is the matrix obtained by removing row $i$ and column $j$ from $A$,
$|A|=a_{11} \operatorname{det} A_{1,1}-a_{1,2} \operatorname{det} A_{1,2}+\cdots+(-1)^{n+1} a_{1, n} \operatorname{det} A_{1, n}$.
The expression above is called the Laplace expansion of the determinant by the first row.


## Laplace expansion Theorem

Given a square matrix $A$, we define the cofactor matrix of $A$ as the matrix $\operatorname{co}(A)$ whose $(i, j)$ entry is

$$
C_{i, j}=(-1)^{i+j} \operatorname{det} A_{i, j},
$$

where $A_{i, j}$ is the matrix obtained by removing the row $i$ and the column $j$ of $A$.

## Laplace expansion Theorem

Given a square matrix $A$, we define the cofactor matrix of $A$ as the matrix $\operatorname{co}(A)$ whose $(i, j)$ entry is

$$
C_{i, j}=(-1)^{i+j} \operatorname{det} A_{i, j},
$$

where $A_{i, j}$ is the matrix obtained by removing the row $i$ and the column $j$ of $A$.
Theorem (Laplace expansion)
The determinant of an $n \times n$ matrix $A$ can be computed as the cofactor expansion along the $i$-th row,

$$
\operatorname{det} A=a_{i, 1} C_{i, 1}+\ldots+a_{i, n} C_{i, n}
$$

and also as the cofactor expansion along the $j$-th column:

$$
\operatorname{det} A=a_{1, j} C_{1, j}+\ldots+a_{n, j} C_{n, j}
$$

## Effect of elementary transformations on det

Let $A$ be a square matrix.
$E_{1}$ If $B$ is obtained by exchanging two rows/columns of $A$, then:

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

$\operatorname{det}(B)=c \operatorname{det}(A)$

Goal: Do transformations of type $E_{3}$ (and of type $E_{1}$ if necessary) to compute efficiently $\operatorname{det}(A)$

## Effect of elementary transformations on det

Let $A$ be a square matrix.
$E_{1}$ If $B$ is obtained by exchanging two rows/columns of $A$, then:

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

$E_{2}$ If $B$ is obtained by multiplying a row/column by $c \neq 0$, then

$$
\operatorname{det}(B)=c \operatorname{det}(A)
$$

## Effect of elementary transformations on det

Let $A$ be a square matrix.
$E_{1}$ If $B$ is obtained by exchanging two rows/columns of $A$, then:

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

$E_{2}$ If $B$ is obtained by multiplying a row/column by $c \neq 0$, then

$$
\operatorname{det}(B)=c \operatorname{det}(A)
$$

$E_{3}$ If $B$ is obtained by changing one row/column by itself plus a multiple of another row/column, then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

Goal: Do transformations of type $E_{3}$ (and of type $E_{1}$ if necessary) to compute efficiently $\operatorname{det}(A)$.

## Properties of the determinant

Properties of the determinant:

- If one row or column is 0 , then $\operatorname{det}(A)=0$.


## Properties of the determinant

Properties of the determinant:

- If one row or column is 0 , then $\operatorname{det}(A)=0$.
- If $A$ is a triangular matrix, $\operatorname{det}(A)$ is the product of elements in the diagonal. In particular, $\operatorname{det}\left(I d_{n}\right)=1$.


## Properties of the determinant

Properties of the determinant:

- If one row or column is 0 , then $\operatorname{det}(A)=0$.
- If $A$ is a triangular matrix, $\operatorname{det}(A)$ is the product of elements in the diagonal. In particular, $\operatorname{det}\left(I d_{n}\right)=1$.
- $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.


## Properties of the determinant

Properties of the determinant:

- If one row or column is 0 , then $\operatorname{det}(A)=0$.
- If $A$ is a triangular matrix, $\operatorname{det}(A)$ is the product of elements in the diagonal. In particular, $\operatorname{det}\left(I d_{n}\right)=1$.
- $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
- $\operatorname{det}(c \cdot A)=c^{n} \operatorname{det}(A)$ (where $n$ is the number of rows/columns of $A$ ).


## Properties of the determinant

Properties of the determinant:

- If one row or column is 0 , then $\operatorname{det}(A)=0$.
- If $A$ is a triangular matrix, $\operatorname{det}(A)$ is the product of elements in the diagonal. In particular, $\operatorname{det}\left(I d_{n}\right)=1$.
- $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
- $\operatorname{det}(c \cdot A)=c^{n} \operatorname{det}(A)$ (where $n$ is the number of rows/columns of $A$ ).
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Consequence
If $A$ is invertible (non-singular) $\Rightarrow \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)(\neq 0)$.

## Determinants and rank

A minor of $A$ is the determinant of a square submatrix of $A$ obtained by removing some rows and columns of $A$.

## Proposition

The maximum size of non-zero minors of $A$ is equal to $\operatorname{rank}(A)$.
This can be used to compute $\operatorname{rank}(A)$ without transforming it into a matrix in row echelon form:

## Determinants and rank

A minor of $A$ is the determinant of a square submatrix of $A$ obtained by removing some rows and columns of $A$.

## Proposition

The maximum size of non-zero minors of $A$ is equal to $\operatorname{rank}(A)$.
This can be used to compute $\operatorname{rank}(A)$ without transforming it into a matrix in row echelon form:

- An $n \times n$ matrix $A$ has rank $n$ (full rank) if and only if $\operatorname{det}(A) \neq 0$.


## Determinants and rank

A minor of $A$ is the determinant of a square submatrix of $A$ obtained by removing some rows and columns of $A$.

## Proposition

The maximum size of non-zero minors of $A$ is equal to $\operatorname{rank}(A)$.
This can be used to compute $\operatorname{rank}(A)$ without transforming it into a matrix in row echelon form:

- An $n \times n$ matrix $A$ has rank $n$ (full rank) if and only if $\operatorname{det}(A) \neq 0$.
- If all $m \times m$ minors of $A$ are 0 then $\operatorname{rank}(A)<m$.


## Existence of inverse

The adjugate or adjoint matrix is the transpose of the cofactor matrix. We have that

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{co}(A)^{t}
$$

Warning! This is not the optimal way to compute the inverse for $n \geq 4$.

## Existence of inverse

The adjugate or adjoint matrix is the transpose of the cofactor matrix. We have that

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{co}(A)^{t}
$$

Warning! This is not the optimal way to compute the inverse for $n \geq 4$.

Theorem
For any square matrix $A$ the following are equivalent:

## Existence of inverse

The adjugate or adjoint matrix is the transpose of the cofactor matrix. We have that

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{co}(A)^{t}
$$

Warning! This is not the optimal way to compute the inverse for $n \geq 4$.

## Theorem

For any square matrix $A$ the following are equivalent:

- $A$ is invertible.


## Existence of inverse

The adjugate or adjoint matrix is the transpose of the cofactor matrix. We have that

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{co}(A)^{t}
$$

Warning! This is not the optimal way to compute the inverse for $n \geq 4$.

## Theorem

For any square matrix $A$ the following are equivalent:

- $A$ is invertible.
- $\operatorname{det}(A) \neq 0$.


## Existence of inverse

The adjugate or adjoint matrix is the transpose of the cofactor matrix. We have that

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{co}(A)^{t}
$$

Warning! This is not the optimal way to compute the inverse for $n \geq 4$.

## Theorem

For any square matrix $A$ the following are equivalent:

- $A$ is invertible.
- $\operatorname{det}(A) \neq 0$.
- A has full rank.


## Outline

Definition and examples<br>Operations with matrices<br>Gaussian elimination<br>Rank and Determinant

Python

## Python: numpy and linalg

The numpy package allows us to work with matrices in python: import numpy as np

We can use array to create matrices introducing them by rows: $\mathrm{A}=\mathrm{np} \cdot \operatorname{array}\left(\left[\left[\mathrm{a}_{11}, \ldots, \mathrm{a}_{1 \mathrm{n}}\right],\left[\mathrm{a}_{21}, \ldots, \mathrm{a}_{2 \mathrm{n}}\right], \ldots,\left[\mathrm{a}_{\mathrm{m} 1}, \ldots, \mathrm{a}_{\mathrm{mn}}\right]\right]\right)$
To visualize: print (A)
To work with matrices we need the linalg submodule of numpy:
from numpy.linalg import *

## Python: Matrix operations

| Command |
| :--- |
| np.zeros $((\mathrm{m}, \mathrm{n}))$ |
| np.identity $(\mathrm{n})$ |
| A.T |
| A+B |
| A@B or np.matmul(A, B) |
| $\mathrm{c} * \mathrm{~A}$ |
| $\operatorname{inv(A)}$ |
| $\operatorname{matrix\_ rank(A)}$ |
| $\operatorname{det}(A)$ |

Output
the $m \times n$ zero matrix.
the $n \times n$ identity matrix.
the transpose of $A$.
the sum of matrices $A$ and $B$.
the product of matrices $A$ and $B$.
the product of the matrix $A$ by $c \in \mathbb{R}$.
the inverse of $A$.
the rank of $A$.
the determinant of $A$.

