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Definition and examples

Definition
A linear map (or linear transformation) between Rn and Rm is a
map that preserves linear combinations. More precisely,

Definition
f : Rn −→ Rm is a linear map if

1. f (u + v) = f (u) + f (v) for all u, v ∈ Rn, and

2. f (cv) = cf (v) for any c ∈ R and any v ∈ Rn.

Examples

▶ f (x) = 5x

▶ f (x , y) = (x + 2y , 3x , y − x)

▶ f (x , y , z) = x − 3y + z

▶ f (x , y , z) = (x , 2y , z)

▶ f (x1, . . . , xn) = (0, . . . , 0) is the zero map.

▶ f (x1, . . . , xn) = (x1, . . . , xn) is the identity map Id .
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Definition and examples

Properties of linear maps

If f is a linear map, then:

▶ f (0) = 0

▶ f (c1v1 + · · ·+ ckvk) = c1f (v1) + · · ·+ ck f (vk). This is
equivalent to properties 1 and 2.

▶ f is determined by the image of a basis.
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Definition and examples

Standard matrix of a linear map

When we use coordinates in the standard bases, then linear maps

f : Rn → Rm

(x1, . . . , xn) 7→ (a11x1 + . . .+ a1nxn, · · · , am1x1 + . . .+ amnxn)

can be written in matrix notation as follows:

u 7→ M(f )u, where M(f ) = (ai ,j).

The matrix M(f ) is called the standard matrix of the linear map f .
It is a m × n matrix, and its columns are the vectors f (ei ),
i = 1, . . . , n:

M(f ) =
(
f (e1), · · · , f (en)

)
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Nullspace and Range

Definitions

Let f : Rn −→ Rm be a map.

▶ f is injective if different vectors always have different images
(u ̸= v implies f (u) ̸= f (v)).

▶ f is surjective if every vector v in Rm is the image of some
vector u ∈ Rn, v = f (u).

▶ f is bijective if it is at the same time injective and surjective.
A bijective linear map is called an isomorphism.
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Nullspace and Range

Null space of a linear map
Let f : Rn −→ Rm be a linear map and let A be its standard
matrix.

Definition
The null space (or kernel) of a f is the subspace

Null(f ) = {v ∈ Rn | f (v) = 0} = {x ∈ Rn | Ax = 0} = f −1(0).

The null space of f is the solution space of the homogeneous linear
system M(f ) x = 0. Hence, dimNull(f ) = n − rank(M(f )).

Proposition

The following are equivalent:

1. f is injective;

2. Null(f ) = 0;

3. rank(M(f )) = n.
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Nullspace and Range

Range of a linear map

Let f : Rn −→ Rm be a linear map and let A be its standard
matrix.

Definition
The range (or image) of f is the vector subspace given by all the
images of vectors, that is,
R(f ) = {v ∈ Rm | v = f (u) for some u ∈ Rn}.
The range of f is the vector space generated by the columns of
M(f ), and dimR(f ) = rank(M(f )).
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The following are equivalent:

1. f is surjective;

2. R(f ) = Rm;
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Nullspace and Range

Dimensions of Nullspace and Range

Let f : Rn −→ Rm be a linear map and let A be its standard
matrix.

Theorem (The rank theorem)

dimNull(f ) + dimR(f ) = n

Consequences:

▶ f is injective ⇔ Null(f ) = 0 ⇔ dimR(f ) = n.

▶ f is surjective ⇔ dimR(f ) = m ⇔ dimNull(f ) = n −m.

▶ f is bijective ⇔ n = m and rank(M(f )) = n.
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Composition

Composition of linear maps

Let f : Rn −→ Rm and g : Rm −→ Rp be linear maps, the
composition of g with f is the linear map g ◦ f : Rn −→ Rp

defined as:

g ◦ f : Rn f−→ Rm g−→ Rp

v 7→ f (v) 7→ g(f (v))
.

If M(f ) and M(g) are the standard matrix of f and g respectively,
then the standard matrix of g ◦ f is

M(g ◦ f ) = M(g)M(f ).

13



Composition

Composition of linear maps

Let f : Rn −→ Rm and g : Rm −→ Rp be linear maps, the
composition of g with f is the linear map g ◦ f : Rn −→ Rp

defined as:

g ◦ f : Rn f−→ Rm g−→ Rp

v 7→ f (v) 7→ g(f (v))
.

If M(f ) and M(g) are the standard matrix of f and g respectively,
then the standard matrix of g ◦ f is

M(g ◦ f ) = M(g)M(f ).

13



Composition

Inverse linear maps

Definition
If f , g : Rn −→ Rn be linear maps, we say that g is the inverse of
f (denoted as g = f −1) if g ◦ f = f ◦ g = Id .

Proposition

a) If f has standard matrix M(f ) and g is the inverse of f , then
the standard matrix of g is M(g) = M(f −1) = (M(f ))−1.

b) The following are equivalent:

1. f is invertible (f is bijective)
2. detM(f ) ̸= 0
3. rank(M(f )) = n
4. f is injective
5. f is surjective
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Change of basis

Let f : Rn −→ Rm be a linear map, let B = {u1, . . . , un} be a
basis of Rn and C = {v1, . . . , vm} be a basis of Rm.

Definition
The matrix of f in bases B,C has as columns the coordinates of
f (u1), . . . , f (un) in the basis C :

MB,C (f ) =
(
f (u1)C · · · f (un)C

)
Properties:

▶ MB,C (f )(wB) = (f (w))C .

▶ If B and C are the standard bases, MB,C (f ) = M(f ).

▶ If we compute Null(f ) using MB,C (f ) instead of M(f ), we
obtain the vectors of Null(f ) expressed in the basis B.

▶ If we compute R(f ) using MB,C (f ) instead of M(f ), we
obtain the vectors of R(f ) expressed in the basis C .
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f (u1), . . . , f (un) in the basis C :

MB,C (f ) =
(
f (u1)C · · · f (un)C

)
Properties:

▶ MB,C (f )(wB) = (f (w))C .

▶ If B and C are the standard bases, MB,C (f ) = M(f ).

▶ If we compute Null(f ) using MB,C (f ) instead of M(f ), we
obtain the vectors of Null(f ) expressed in the basis B.

▶ If we compute R(f ) using MB,C (f ) instead of M(f ), we
obtain the vectors of R(f ) expressed in the basis C .
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Change of basis

Change of basis

If AC→B is the change-of-basis matrix from C to B (the standard
basis of Rn), and AC ′→B′ is the change-of-basis matrix from C ′ to
B ′ (the standard basis of Rm), then:

MB,B′(f ) = AC ′→B′MC ,C ′(f )A−1
C→B ,

MC ,C ′(f ) = A−1
C ′→B′MB,B′(f )AC→B .
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