Linear maps

Bioinformatics Degree
Algebra

Departament de Matematiques

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH



QOutline

Definition and examples



Outline

Definition and examples

Nullspace and Range



Outline

Definition and examples

Nullspace and Range

Composition



Outline

Definition and examples

Nullspace and Range

Composition

Change of basis



I—Definition and examples

Outline

Definition and examples



LDefinition and examples
:

Definition

A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,
Definition

f:R"” — R™ is a linear map if

Examples



LDefinition and examples
:

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,
Definition
f:R"” — R™ is a linear map if

1. f(u+v)="f(u)+f(v) forall u,v € R", and

Examples



LDefinition and examples
: :

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,

Definition

f:R"” — R™ is a linear map if
1. f(u+v)="f(u)+f(v) forall u,v € R", and
2. f(ev) = cf(v) for any c € R and any v € R".

Examples



LDefinition and examples
: :

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,
Definition
f:R"” — R™ is a linear map if
1. f(u+v)="f(u)+f(v) forall u,v € R", and
2. f(ev) = cf(v) for any c € R and any v € R".

Examples
> f(x)=bx



LDefinition and examples
: :

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,

Definition
f:R"” — R™ is a linear map if
1. f(u+v)="f(u)+f(v) forall u,v € R", and
2. f(ev) = cf(v) for any c € R and any v € R".
Examples
> f(x)=>5x
> f(x,y) = (x+2y,3x,y — x)



LDefinition and examples
: :

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,
Definition
f:R"” — R™ is a linear map if
1. f(u+v)="f(u)+f(v) forall u,v € R", and
2. f(ev) = cf(v) for any c € R and any v € R".

Examples
> f(x)=>5x
> f(x,y) = (x+2y,3x,y — x)
> f(x,y,z)=x—3y+z



LDefinition and examples
: :

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,
Definition
f:R"” — R™ is a linear map if
1. f(u+v)="f(u)+f(v) forall u,v € R", and
2. f(ev) = cf(v) for any c € R and any v € R".

Examples
> f(x)=>5x
> f(x,y) = (x+2y,3x,y — x)
> f(x,y,z)=x—3y+z
> f(x,y,2) =(x,2y,2)



LDefinition and examples
: :

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,
Definition
f:R"” — R™ is a linear map if
1. f(u+v)="f(u)+f(v) forall u,v € R", and
2. f(ev) = cf(v) for any c € R and any v € R".

Examples
> f(x)=>5x
> f(x,y) = (x+2y,3x,y — x)
> f(x,y,z)=x—3y+z
> f(xy,z) = (x,2y,2)
» f(x1,...,xn) =(0,...,0) is the zero map.



LDefinition and examples
: :

Definition
A linear map (or linear transformation) between R” and R is a
map that preserves linear combinations. More precisely,
Definition
f:R"” — R™ is a linear map if
1. f(u+v)="f(u)+f(v) forall u,v € R", and
2. f(ev) = cf(v) for any c € R and any v € R".

Examples
> f(x)=>5x
> f(x,y) = (x+2y,3x,y — x)
> f(x,y,z)=x—3y+z
> f(x,y,2) =(x,2y,2)
» f(x1,...,xn) =(0,...,0) is the zero map.
> f(x1,...,%n) = (X1,...,Xn) is the identity map Id.
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LDefinition and examples
:

Properties of linear maps

If fis a linear map, then:
> f(0)=0
> f(cava+ -+ cevk) = af(va) + -+ cef(vk). Thisis
equivalent to properties 1 and 2.

» f is determined by the image of a basis.
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Standard matrix of a linear map

When we use coordinates in the standard bases, then linear maps
f:R" — RM™
(X1,.-yxn) = (a11x2+ ...+ a1nXn, -+, am1X1 + - - + amnXn)
can be written in matrix notation as follows:
u— M(f)u, where M(f) = (ai;).

The matrix M(f) is called the standard matrix of the linear map f.
It is a m X n matrix, and its columns are the vectors f(¢;),
i=1,...,m

M(f) = (f(e1),- -, f(en))
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Definitions

Let f: R” — R™ be a map.
> f is injective if different vectors always have different images
(u # v implies f(u) # f(v)).
P f is surjective if every vector v in R is the image of some
vector u € R"”, v = f(u).
» f is bijective if it is at the same time injective and surjective.
A bijective linear map is called an isomorphism.
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Let f : R" — R™ be a linear map and let A be its standard
matrix.

Definition

The null space (or kernel) of a f is the subspace

Null(f) = {v € R" | f(v) =0} = {x € R"| Ax =0} = f~(0).

The null space of f is the solution space of the homogeneous linear
system M(f) x = 0. Hence, dim Null(f) = n — rank(M(f)).
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Let f : R" — R™ be a linear map and let A be its standard
matrix.

Definition

The range (or image) of f is the vector subspace given by all the
images of vectors, that is,
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The range of f is the vector space generated by the columns of
M(f), and dim R(f) = rank(M(f)).
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Let f : R" — R™ be a linear map and let A be its standard
matrix.
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The range (or image) of f is the vector subspace given by all the
images of vectors, that is,
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Range of a linear map

Let f : R" — R™ be a linear map and let A be its standard
matrix.

Definition

The range (or image) of f is the vector subspace given by all the
images of vectors, that is,

R(f) ={veR"| v=f(u) for someu € R"}.
The range of f is the vector space generated by the columns of
M(f), and dim R(f) = rank(M(f)).
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Let f : R” — R™ be a linear map and let A be its standard
matrix.

Theorem (The rank theorem)

dim Null(f) + dim R(f) = n

Consequences:
» f is injective < Null(f) =0 < dimR(f) = n.
» f is surjective < dimR(f) = m < dim Null(f) = n—m.
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Dimensions of Nullspace and Range

Let f : R” — R™ be a linear map and let A be its standard
matrix.

Theorem (The rank theorem)

dim Null(f) + dim R(f) = n

Consequences:
» f is injective < Null(f) =0 < dimR(f) = n.
» f is surjective < dimR(f) = m < dim Null(f) = n—m.
» f is bijective & n = m and rank(M(f)) = n.
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Composition of linear maps

Let f : R” — R™ and g : R™ — RP be linear maps, the
composition of g with f is the linear map go f : R" — RP
defined as:

gof:R" Ly Rm £, Re
v o= f(v) = g(f(v)
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L Composition

Composition of linear maps

Let f : R” — R™ and g : R™ — RP” be linear maps, the
composition of g with f is the linear map go f : R" — RP
defined as:
gof:R" Ly Rm £, Re
v fv) = g(f(v)

If M(f) and M(g) are the standard matrix of f and g respectively,
then the standard matrix of go f is

M(g o f) = M(g) M(f).

13
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Definition
If f,g:R" — R” be linear maps, we say that g is the inverse of
f (denoted as g =f 1) ifgof =fog=1Id.
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Inverse linear maps

Definition
If f,g:R" — R” be linear maps, we say that g is the inverse of
f (denoted as g = f 1) ifgof =fog=1d.

Proposition

a) If f has standard matrix M(f) and g is the inverse of f, then
the standard matrix of g is M(g) = M(f~1) = (M(f))~*.
b) The following are equivalent:

1. f is invertible (f is bijective)
2. detM(f)#0

3. rank(M(f))=n

4. f is injective
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Inverse linear maps

Definition
If f,g:R" — R” be linear maps, we say that g is the inverse of
f (denoted as g = f 1) ifgof =fog=1d.

Proposition

a) If f has standard matrix M(f) and g is the inverse of f, then
the standard matrix of g is M(g) = M(f~1) = (M(f))~*.
b) The following are equivalent:
1. f is invertible (f is bijective)
. det M(f) #0
rank(M(f)) =n
f is injective
f is surjective

oA wN
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LChange of basis
: :

Let f : R" — R™ be a linear map, let B = {u1,...,up} be a
basis of R” and C = {v1,..., v} be a basis of R™.
Definition

The matrix of f in bases B, C has as columns the coordinates of
f(u1),...,f(un) in the basis C:

Mg, c(f) = (f(u)c-- - f(un)c)

Properties:
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: :

Change of basis

If Ac_ g is the change-of-basis matrix from C to B (the standard
basis of R"), and Ac/_, g’ is the change-of-basis matrix from C’ to
B’ (the standard basis of R™), then:

Mg g/(f) = Acrg'Mc,cr(F)AZL, g,
Mc,c/(f) = Ac g Mg g/ (f)AcB-

17
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