Linear maps

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

Definition and examples

Nullspace and Range

Outline

Definition and examples

Nullspace and Range

Composition

Change of basis

Outline

Definition and examples

Nullspace and Range

Composition

Change of basis

Outline

Definition and examples

Nullspace and Range

Composition

Change of basis

Outline

Definition and examples

Nullspace and Range

Composition

Change of basis

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition
$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

Examples

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

$$
\text { 1. } f(u+v)=f(u)+f(v) \text { for all } u, v \in \mathbb{R}^{n} \text {, and }
$$

Examples

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in \mathbb{R}^{n}$, and 2. $f(c v)=c f(v)$ for any $c \in \mathbb{R}$ and any $v \in \mathbb{R}^{n}$.

Examples

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in \mathbb{R}^{n}$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{R}$ and any $v \in \mathbb{R}^{n}$.

Examples

- $f(x)=5 x$

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in \mathbb{R}^{n}$, and 2. $f(c v)=c f(v)$ for any $c \in \mathbb{R}$ and any $v \in \mathbb{R}^{n}$.

Examples

- $f(x)=5 x$
- $f(x, y)=(x+2 y, 3 x, y-x)$

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in \mathbb{R}^{n}$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{R}$ and any $v \in \mathbb{R}^{n}$.

Examples

- $f(x)=5 x$
- $f(x, y)=(x+2 y, 3 x, y-x)$
- $f(x, y, z)=x-3 y+z$

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in \mathbb{R}^{n}$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{R}$ and any $v \in \mathbb{R}^{n}$.

Examples

- $f(x)=5 x$
- $f(x, y)=(x+2 y, 3 x, y-x)$
- $f(x, y, z)=x-3 y+z$
- $f(x, y, z)=(x, 2 y, z)$

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in \mathbb{R}^{n}$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{R}$ and any $v \in \mathbb{R}^{n}$.

Examples

- $f(x)=5 x$
- $f(x, y)=(x+2 y, 3 x, y-x)$
- $f(x, y, z)=x-3 y+z$
- $f(x, y, z)=(x, 2 y, z)$
- $f\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)$ is the zero map.

Definition

A linear map (or linear transformation) between \mathbb{R}^{n} and \mathbb{R}^{m} is a map that preserves linear combinations. More precisely,

Definition

$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in \mathbb{R}^{n}$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{R}$ and any $v \in \mathbb{R}^{n}$.

Examples

- $f(x)=5 x$
- $f(x, y)=(x+2 y, 3 x, y-x)$
- $f(x, y, z)=x-3 y+z$
- $f(x, y, z)=(x, 2 y, z)$
- $f\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)$ is the zero map.
- $f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$ is the identity map Id.

Properties of linear maps

If f is a linear map, then:

- $f(0)=0$

Properties of linear maps

If f is a linear map, then:

- $f(0)=0$
- $f\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)=c_{1} f\left(v_{1}\right)+\cdots+c_{k} f\left(v_{k}\right)$. This is equivalent to properties 1 and 2.

Properties of linear maps

If f is a linear map, then:

- $f(0)=0$
- $f\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)=c_{1} f\left(v_{1}\right)+\cdots+c_{k} f\left(v_{k}\right)$. This is equivalent to properties 1 and 2 .
- f is determined by the image of a basis.

Standard matrix of a linear map

When we use coordinates in the standard bases, then linear maps

$$
\begin{aligned}
f: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(a_{11} x_{1}+\ldots+a_{1 n} x_{n}, \cdots, a_{m 1} x_{1}+\ldots+a_{m n} x_{n}\right)
\end{aligned}
$$

can be written in matrix notation as follows:

$$
u \mapsto M(f) u, \text { where } M(f)=\left(a_{i, j}\right)
$$

The matrix $M(f)$ is called the standard matrix of the linear map f. It is a $m \times n$ matrix, and its columns are the vectors $f\left(e_{i}\right)$, $i=1, \ldots, n$:

$$
M(f)=\left(f\left(e_{1}\right), \cdots, f\left(e_{n}\right)\right)
$$

Outline

Definition and examples

Nullspace and Range

Composition

Change of basis

Definitions

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a map.

- f is injective if different vectors always have different images $(u \neq v$ implies $f(u) \neq f(v))$.

Definitions

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a map.

- f is injective if different vectors always have different images $(u \neq v$ implies $f(u) \neq f(v))$.
- f is surjective if every vector v in \mathbb{R}^{m} is the image of some vector $u \in \mathbb{R}^{n}, v=f(u)$.

Definitions

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a map.

- f is injective if different vectors always have different images $(u \neq v$ implies $f(u) \neq f(v))$.
- f is surjective if every vector v in \mathbb{R}^{m} is the image of some vector $u \in \mathbb{R}^{n}, v=f(u)$.
- f is bijective if it is at the same time injective and surjective. A bijective linear map is called an isomorphism.

Null space of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The null space (or kernel) of a f is the subspace

$$
\operatorname{Null}(f)=\left\{v \in \mathbb{R}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}=f^{-1}(0) .
$$

The null space of f is the solution space of the homogeneous linear system $M(f) x=0$. Hence, $\operatorname{dim} \operatorname{Null}(f)=n-\operatorname{rank}(M(f))$.

Null space of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The null space (or kernel) of a f is the subspace

$$
\operatorname{Null}(f)=\left\{v \in \mathbb{R}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}=f^{-1}(0) .
$$

The null space of f is the solution space of the homogeneous linear system $M(f) x=0$. Hence, $\operatorname{dim} \operatorname{Null}(f)=n-\operatorname{rank}(M(f))$.

Proposition
The following are equivalent:

Null space of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The null space (or kernel) of a f is the subspace

$$
\operatorname{Null}(f)=\left\{v \in \mathbb{R}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}=f^{-1}(0) .
$$

The null space of f is the solution space of the homogeneous linear system $M(f) x=0$. Hence, $\operatorname{dim} \operatorname{Null}(f)=n-\operatorname{rank}(M(f))$.

Proposition
The following are equivalent:

1. f is injective;

Null space of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The null space (or kernel) of a f is the subspace

$$
\operatorname{Null}(f)=\left\{v \in \mathbb{R}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}=f^{-1}(0) .
$$

The null space of f is the solution space of the homogeneous linear system $M(f) x=0$. Hence, $\operatorname{dim} \operatorname{Null}(f)=n-\operatorname{rank}(M(f))$.

Proposition
The following are equivalent:

1. f is injective;
2. $\operatorname{Null}(f)=0$;

Null space of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The null space (or kernel) of a f is the subspace

$$
\operatorname{Null}(f)=\left\{v \in \mathbb{R}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}=f^{-1}(0)
$$

The null space of f is the solution space of the homogeneous linear system $M(f) x=0$. Hence, $\operatorname{dim} \operatorname{Null}(f)=n-\operatorname{rank}(M(f))$.

Proposition
The following are equivalent:

1. f is injective;
2. $\operatorname{Null}(f)=0$;
3. $\operatorname{rank}(M(f))=n$.

Range of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The range (or image) of f is the vector subspace given by all the images of vectors, that is, $R(f)=\left\{v \in \mathbb{R}^{m} \mid v=f(u)\right.$ for some $\left.u \in \mathbb{R}^{n}\right\}$.
The range of f is the vector space generated by the columns of $M(f)$, and $\operatorname{dim} \mathrm{R}(f)=\operatorname{rank}(M(f))$.

Range of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The range (or image) of f is the vector subspace given by all the images of vectors, that is,
$R(f)=\left\{v \in \mathbb{R}^{m} \mid v=f(u)\right.$ for some $\left.u \in \mathbb{R}^{n}\right\}$.
The range of f is the vector space generated by the columns of $M(f)$, and $\operatorname{dim} \mathrm{R}(f)=\operatorname{rank}(M(f))$.
Proposition
The following are equivalent:

Range of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The range (or image) of f is the vector subspace given by all the images of vectors, that is,
$R(f)=\left\{v \in \mathbb{R}^{m} \mid v=f(u)\right.$ for some $\left.u \in \mathbb{R}^{n}\right\}$.
The range of f is the vector space generated by the columns of $M(f)$, and $\operatorname{dim} \mathrm{R}(f)=\operatorname{rank}(M(f))$.

Proposition

The following are equivalent:

1. f is surjective;

Range of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The range (or image) of f is the vector subspace given by all the images of vectors, that is,
$R(f)=\left\{v \in \mathbb{R}^{m} \mid v=f(u)\right.$ for some $\left.u \in \mathbb{R}^{n}\right\}$.
The range of f is the vector space generated by the columns of $M(f)$, and $\operatorname{dim} \mathrm{R}(f)=\operatorname{rank}(M(f))$.

Proposition

The following are equivalent:

1. f is surjective;
2. $R(f)=\mathbb{R}^{m}$;

Range of a linear map

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Definition

The range (or image) of f is the vector subspace given by all the images of vectors, that is,
$R(f)=\left\{v \in \mathbb{R}^{m} \mid v=f(u)\right.$ for some $\left.u \in \mathbb{R}^{n}\right\}$.
The range of f is the vector space generated by the columns of $M(f)$, and $\operatorname{dim} \mathrm{R}(f)=\operatorname{rank}(M(f))$.

Proposition

The following are equivalent:

1. f is surjective;
2. $\mathbb{R}(f)=\mathbb{R}^{m}$;
3. $\operatorname{rank}(M(f))=m$.

Dimensions of Nullspace and Range

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Theorem (The rank theorem)

$$
\operatorname{dim} \operatorname{Null}(f)+\operatorname{dim} \mathrm{R}(f)=n
$$

Consequences:

Dimensions of Nullspace and Range

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Theorem (The rank theorem)

$$
\operatorname{dim} \operatorname{Null}(f)+\operatorname{dim} \mathrm{R}(f)=n
$$

Consequences:

- f is injective $\Leftrightarrow \operatorname{Null}(f)=0 \Leftrightarrow \operatorname{dim} \mathrm{R}(f)=n$.

Dimensions of Nullspace and Range

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Theorem (The rank theorem)

$$
\operatorname{dim} \operatorname{Null}(f)+\operatorname{dim} \mathrm{R}(f)=n
$$

Consequences:

- f is injective $\Leftrightarrow \operatorname{Null}(f)=0 \Leftrightarrow \operatorname{dim} \mathrm{R}(f)=n$.
- f is surjective $\Leftrightarrow \operatorname{dim} \mathrm{R}(f)=m \Leftrightarrow \operatorname{dim} \operatorname{Null}(f)=n-m$.

Dimensions of Nullspace and Range

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map and let A be its standard matrix.

Theorem (The rank theorem)

$$
\operatorname{dim} \operatorname{Null}(f)+\operatorname{dim} \mathrm{R}(f)=n
$$

Consequences:

- f is injective $\Leftrightarrow \operatorname{Null}(f)=0 \Leftrightarrow \operatorname{dim} \mathrm{R}(f)=n$.
- f is surjective $\Leftrightarrow \operatorname{dim} \mathrm{R}(f)=m \Leftrightarrow \operatorname{dim} \operatorname{Null}(f)=n-m$.
- f is bijective $\Leftrightarrow n=m$ and $\operatorname{rank}(M(f))=n$.

Outline

Definition and examples

Nullspace and Range

Composition

Change of basis

Composition of linear maps

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{p}$ be linear maps, the composition of g with f is the linear map $g \circ f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p}$ defined as:

$$
\begin{array}{rllll}
g \circ f: \mathbb{R}^{n} & \xrightarrow{f} & \mathbb{R}^{m} & \xrightarrow{g} & \mathbb{R}^{p} \\
v & \mapsto & f(v) & \mapsto & g(f(v))
\end{array}
$$

$M(g \circ f)=M(g) M(f)$.

Composition of linear maps

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{p}$ be linear maps, the composition of g with f is the linear map $g \circ f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p}$ defined as:

$$
\begin{array}{rllll}
g \circ f: \mathbb{R}^{n} & \xrightarrow{f} & \mathbb{R}^{m} & \xrightarrow{g} & \mathbb{R}^{p} \\
v & \mapsto & f(v) & \mapsto & g(f(v))
\end{array}
$$

If $M(f)$ and $M(g)$ are the standard matrix of f and g respectively, then the standard matrix of $g \circ f$ is

$$
M(g \circ f)=M(g) M(f)
$$

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.

Inverse linear maps

Definition
If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.

Proposition

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.

Proposition
a) If f has standard matrix $M(f)$ and g is the inverse of f, then the standard matrix of g is $M(g)=M\left(f^{-1}\right)=(M(f))^{-1}$.

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.

Proposition
a) If f has standard matrix $M(f)$ and g is the inverse of f, then the standard matrix of g is $M(g)=M\left(f^{-1}\right)=(M(f))^{-1}$.
b) The following are equivalent:

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=I d$.

Proposition
a) If f has standard matrix $M(f)$ and g is the inverse of f, then the standard matrix of g is $M(g)=M\left(f^{-1}\right)=(M(f))^{-1}$.
b) The following are equivalent:

1. f is invertible (f is bijective)

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.

Proposition
a) If f has standard matrix $M(f)$ and g is the inverse of f, then the standard matrix of g is $M(g)=M\left(f^{-1}\right)=(M(f))^{-1}$.
b) The following are equivalent:

1. f is invertible (f is bijective)
2. $\operatorname{det} M(f) \neq 0$

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of
f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.
Proposition
a) If f has standard matrix $M(f)$ and g is the inverse of f, then the standard matrix of g is $M(g)=M\left(f^{-1}\right)=(M(f))^{-1}$.
b) The following are equivalent:

1. f is invertible (f is bijective)
2. $\operatorname{det} M(f) \neq 0$
3. $\operatorname{rank}(M(f))=n$

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of
f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.
Proposition
a) If f has standard matrix $M(f)$ and g is the inverse of f, then the standard matrix of g is $M(g)=M\left(f^{-1}\right)=(M(f))^{-1}$.
b) The following are equivalent:

1. f is invertible (f is bijective)
2. $\operatorname{det} M(f) \neq 0$
3. $\operatorname{rank}(M(f))=n$
4. f is injective

Inverse linear maps

Definition

If $f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be linear maps, we say that g is the inverse of
f (denoted as $g=f^{-1}$) if $g \circ f=f \circ g=l d$.
Proposition
a) If f has standard matrix $M(f)$ and g is the inverse of f, then the standard matrix of g is $M(g)=M\left(f^{-1}\right)=(M(f))^{-1}$.
b) The following are equivalent:

1. f is invertible (f is bijective)
2. $\operatorname{det} M(f) \neq 0$
3. $\operatorname{rank}(M(f))=n$
4. f is injective
5. f is surjective

Outline

Definition and examples
Nullspace and Range
\section*{Composition}

Change of basis

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map, let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis of \mathbb{R}^{n} and $C=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of \mathbb{R}^{m}.

Definition

The matrix of f in bases B, C has as columns the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis C :

$$
M_{B, C}(f)=\left(f\left(u_{1}\right)_{\mathbf{C}} \cdots f\left(u_{n}\right)_{\mathbf{C}}\right)
$$

Properties:

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map, let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis of \mathbb{R}^{n} and $C=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of \mathbb{R}^{m}.

Definition

The matrix of f in bases B, C has as columns the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis C :

$$
M_{B, C}(f)=\left(f\left(u_{1}\right) \mathbf{c} \cdots f\left(u_{n}\right) \mathbf{c}\right)
$$

Properties:

- $M_{B, C}(f)\left(w_{B}\right)=(f(w))_{C}$.

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map, let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis of \mathbb{R}^{n} and $C=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of \mathbb{R}^{m}.

Definition

The matrix of f in bases B, C has as columns the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis C :

$$
M_{B, C}(f)=\left(f\left(u_{1}\right) \mathbf{c} \cdots f\left(u_{n}\right) \mathbf{c}\right)
$$

Properties:

- $M_{B, C}(f)\left(w_{B}\right)=(f(w))_{C}$.
- If B and C are the standard bases, $M_{B, C}(f)=M(f)$.

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map, let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis of \mathbb{R}^{n} and $C=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of \mathbb{R}^{m}.

Definition

The matrix of f in bases B, C has as columns the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis C :

$$
M_{B, C}(f)=\left(f\left(u_{1}\right) \mathbf{c} \cdots f\left(u_{n}\right) \mathbf{c}\right)
$$

Properties:

- $M_{B, C}(f)\left(w_{B}\right)=(f(w))_{C}$.
- If B and C are the standard bases, $M_{B, C}(f)=M(f)$.
- If we compute $\operatorname{Null}(f)$ using $M_{B, C}(f)$ instead of $M(f)$, we obtain the vectors of $\operatorname{Null}(f)$ expressed in the basis B.

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear map, let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis of \mathbb{R}^{n} and $C=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of \mathbb{R}^{m}.

Definition

The matrix of f in bases B, C has as columns the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis C :

$$
M_{B, C}(f)=\left(f\left(u_{1}\right) \mathbf{c} \cdots f\left(u_{n}\right) \mathbf{c}\right)
$$

Properties:

- $M_{B, C}(f)\left(w_{B}\right)=(f(w))_{C}$.
- If B and C are the standard bases, $M_{B, C}(f)=M(f)$.
- If we compute $\operatorname{Null}(f)$ using $M_{B, C}(f)$ instead of $M(f)$, we obtain the vectors of $\operatorname{Null}(f)$ expressed in the basis B.
- If we compute $\mathrm{R}(f)$ using $M_{B, C}(f)$ instead of $M(f)$, we obtain the vectors of $\mathrm{R}(f)$ expressed in the basis C.

Change of basis

If $A_{C \rightarrow B}$ is the change-of-basis matrix from C to B (the standard basis of \mathbb{R}^{n}), and $A_{C^{\prime} \rightarrow B^{\prime}}$ is the change-of-basis matrix from C^{\prime} to B^{\prime} (the standard basis of \mathbb{R}^{m}), then:

$$
\begin{aligned}
& M_{B, B^{\prime}}(f)=A_{C^{\prime} \rightarrow B^{\prime}} M_{C, C^{\prime}}(f) A_{C \rightarrow B}^{-1} \\
& M_{C, C^{\prime}}(f)=A_{C^{\prime} \rightarrow B^{\prime}}^{-1} M_{B, B^{\prime}}(f) A_{C \rightarrow B}
\end{aligned}
$$

