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Linear systems

Linear systems

Definition
A system of m linear equations with n variables is a collection of
equations

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

. . .
am1x1 + am2x2 + . . .+ amnxn = bm

where the coefficients aij , the constant terms b1, b2, . . . , bm and
the values that the unknowns x1, x2, . . . , xn are real numbers.

A system is homogenous if bi = 0 for i = 1, . . . ,m.
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Linear systems

Linear systems

A particular solution is a list of values for the unknowns
s = (s1, . . . , sn) ∈ Rn that is a solution to all the equations.
The general solution is the set of all the solutions to the system.

Geometric interpretation
From a geometric point of view, the general solution to a linear
system describes a linear variety (a point, a line, a plane, etc.).
Each particular solution is a point of the linear variety.
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Linear systems

Matrix expression of a linear system

Any linear system can be put as a matrix equation Ax = b by
taking

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . .
am1 am2 . . . amn

 , x =


x1
x2
. . .
xn

 , b =


b1
b2
. . .
bm


The matrix A is called the matrix of the system.
The augmented matrix is (A | b).
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Linear systems

Number of solutions

Theorem
Any linear system has either (i) a unique solution, (ii) no solution,
or (iii) an infinite number of solutions.

A linear system is consistent if it has one or more solutions. If it
does not have solutions, it is inconsistent.

Example

(i)

{
x1 = 1

x2 = 2
(ii)

{
x1 + x2 = 0

x1 + x2 = 1
(iii)

{
x1 − x2 = 0

x2 − x2 = 0
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Linear systems

Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to
know how many solutions the system has:

Theorem (Rouché-Frobenius)

▶ Ax = b is consistent if and only if rank(A) = rank(A|b).

In this case, its set of solutions depends on n − rank(A) free
variables. This value is known as the degrees of freedom of
the system.

▶ In particular, if n = rank(A) the solution is unique.

8



Linear systems
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Solving linear systems

Solving systems: Gaussian elimination

Goal: convert the system Ax = b to a simpler system using
elementary transformations.
Consider the augmented matrix (A | b) and

1st step Reduce (A | b) to row echelon form.

2nd step Solve the system by back substitution if it is
consistent.

▶ The number of pivots (rank) of the row echelon form of A
and (A|b) tells us whether the system is consistent or not.

▶ If the system is consistent, then the leading variables
corresponding to pivots can be written in terms of the other
variables (called free variables).

▶ The number of free variables is the degrees of freedom of
the system.
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Solving linear systems

Back substitution and Gauss-Jordan elimination

The back substitution step can also be performed by elementary
row operations on the row echelon form of (A|b) by Gauss-Jordan
elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E2

to convert it to 1.

2. from bottom to top: make all the entries above the pivot
equal to zero using type E3.

3. Repeat the previous steps the next column to the left (so,
from right to left).
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Solving linear systems

Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form,
that is a matrix of the following form:

A =



1 ∗ 0 0 ∗ ∗ 0 ∗ 0
0 0 1 0 ∗ ∗ 0 ∗ 0
0 0 0 1 ∗ ∗ 0 ∗ 0
0 0 0 0 0 0 1 ∗ 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


Definition
A matrix is in row reduced echelon form if it is in row echelon
form and

▶ all pivots are 1

▶ the pivots are the only non-zero entries in its column.
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Solving linear systems

Row reduced echelon form

▶ If A square and the row reduced echelon form is Idn, then
Ax = b can be trivially solved: the solution is the new
independent term

(A | b) ∼ · · · ∼ (Idn | b′) so Ax = b ⇔ Idnx = b′ ⇔ x = b′

▶ Whereas the row echelon form of A is not unique, the row
reduced echelon form is unique
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Solving linear systems

Solving simultaneous systems
Goal: solve systems with the same m × n matrix A but different
independent terms,

Ax (1) = b(1),Ax (2) = b(2), . . . ,Ax (r) = b(r).

Equivalently: find X m × r matrix such that

AX =
(
b(1) b(2) . . . b(r)

)
︸ ︷︷ ︸

B

.

matrix equation AX = B

Efficient solution: Gauss-Jordan elimination to the following
augmented matrix (

A | b(1) b(2) . . . b(r)
)
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Solving linear systems

Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix.
Input: a square matrix A.
Output: the inverse of A if A is nonsingular, or that the inverse
does not exist (if A is singular).

1. Form the n × 2n matrix M = (A | Idn)
2. Reduce M to row echelon form (Gaussian elimination). This

process generates a zero row in the left half of M if and only
if A has no inverse.

3. Reduce the matrix to its row reduced echelon form
(Gauss-Jordan). In the end, we obtain M ∼ (Idn | B), where
the identity matrix Idn has replaced A in the left half.

4. Then A−1 = B, the matrix that is now in the right half.
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Python

Python

import numpy as np

from numpy.linalg import *

A = np.array([[a11, . . . , a1n], [a21, . . . , a2n], . . . , [an1, . . . , ann]])
b = np.array([b1, b2, . . . , bm])

If A is an invertible square matrix, we can solve the system by
using:
solve(A,b)
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