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Linear systems

Definition
A system of m linear equations with n variables is a collection of
equations

ai11x1 +awxp + ...+ ainxp = by

ax1x1 + axxo + ... + azxpxp = by

amix1 + amex2 + ...+ amnXp = by

where the coefficients ajj, the constant terms by, by, ..., by and
the values that the unknowns xi, x2, ..., x, are real numbers.

A system is homogenous if bj=0fori=1,..., m.
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Linear systems

A particular solution is a list of values for the unknowns
s = (s1,...,sn) € R" that is a solution to all the equations.
The general solution is the set of all the solutions to the system.

Geometric interpretation

From a geometric point of view, the general solution to a linear
system describes a linear variety (a point, a line, a plane, etc.).
Each particular solution is a point of the linear variety.
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Matrix expression of a linear system

Any linear system can be put as a matrix equation Ax = b by

taking
ail a2 ... ain X1 b
a a ... a X b,
A— 21 a2 N I 2 | b=
ami am2 ... amn Xn bm

The matrix A is called the matrix of the system.
The augmented matrix is (A | b).
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Number of solutions

Theorem
Any linear system has either (i) a unique solution, (ii) no solution,
or (iii) an infinite number of solutions.

A linear system is consistent if it has one or more solutions. If it
does not have solutions, it is inconsistent.



L Linear systems
; ;

Number of solutions

Theorem
Any linear system has either (i) a unique solution, (ii) no solution,
or (iii) an infinite number of solutions.

A linear system is consistent if it has one or more solutions. If it
does not have solutions, it is inconsistent.

Example

(i) {Xl =1 (I'I') {Xl +x=0 (iif) {Xl —x0=0
Xp = 2

X2—X2:0
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Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to
know how many solutions the system has:

Theorem (Rouché-Frobenius)
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Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to
know how many solutions the system has:

Theorem (Rouché-Frobenius)

» Ax = b is consistent if and only if rank(A) = rank(A|b).

In this case, its set of solutions depends on n — rank(A) free

variables. This value is known as the degrees of freedom of
the system.
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Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to
know how many solutions the system has:

Theorem (Rouché-Frobenius)
» Ax = b is consistent if and only if rank(A) = rank(A|b).

In this case, its set of solutions depends on n — rank(A) free

variables. This value is known as the degrees of freedom of
the system.

» In particular, if n = rank(A) the solution is unique.
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LStJIving linear systems

Solving systems: Gaussian elimination

Goal: convert the system Ax = b to a simpler system using
elementary transformations.
Consider the augmented matrix (A | b) and

1st step Reduce (A | b) to row echelon form.
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Solving systems: Gaussian elimination
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1st step Reduce (A | b) to row echelon form.

2nd step Solve the system by back substitution if it is
consistent.
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Goal: convert the system Ax = b to a simpler system using
elementary transformations.

Consider the augmented matrix (A | b) and
1st step Reduce (A | b) to row echelon form.
2nd step Solve the system by back substitution if it is
consistent.

» The number of pivots (rank) of the row echelon form of A
and (A|b) tells us whether the system is consistent or not.
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Solving systems: Gaussian elimination

Goal: convert the system Ax = b to a simpler system using
elementary transformations.
Consider the augmented matrix (A | b) and

1st step Reduce (A | b) to row echelon form.
2nd step Solve the system by back substitution if it is
consistent.
» The number of pivots (rank) of the row echelon form of A
and (A|b) tells us whether the system is consistent or not.

> If the system is consistent, then the leading variables
corresponding to pivots can be written in terms of the other
variables (called free variables).
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Solving systems: Gaussian elimination

Goal: convert the system Ax = b to a simpler system using
elementary transformations.
Consider the augmented matrix (A | b) and

1st step Reduce (A | b) to row echelon form.
2nd step Solve the system by back substitution if it is
consistent.
» The number of pivots (rank) of the row echelon form of A
and (A|b) tells us whether the system is consistent or not.

> If the system is consistent, then the leading variables
corresponding to pivots can be written in terms of the other
variables (called free variables).

» The number of free variables is the degrees of freedom of
the system.

10
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Back substitution and Gauss-Jordan elimination

The back substitution step can also be performed by elementary
row operations on the row echelon form of (A|b) by Gauss-Jordan
elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E;
to convert it to 1.
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The back substitution step can also be performed by elementary
row operations on the row echelon form of (A|b) by Gauss-Jordan
elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E;
to convert it to 1.

2. from bottom to top: make all the entries above the pivot
equal to zero using type E3.
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LSolving linear systems
: :

Back substitution and Gauss-Jordan elimination

The back substitution step can also be performed by elementary
row operations on the row echelon form of (A|b) by Gauss-Jordan
elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E;
to convert it to 1.

2. from bottom to top: make all the entries above the pivot
equal to zero using type Es.

3. Repeat the previous steps the next column to the left (so,
from right to left).
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Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form,
that is a matrix of the following form:

O o oo o
O O O O O %
O O O o+ Oo
OO O+~ OO
O O O % % *
O O O % % *
OO O OO
O O % % * %
O OO OO

Definition
A matrix is in row reduced echelon form if it is in row echelon
form and

12



LSolving linear systems
: :

Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form,
that is a matrix of the following form:

1 = 00 x x 0 % O
001 0 x = 0 % O
A 0 001 *x x 0 % 0
0000OO0OT1S=xO0
000O0OOOT OLT1
0 0O0O0OOOTODOQO
Definition
A matrix is in row reduced echelon form if it is in row echelon
form and

> all pivots are 1
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Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form,
that is a matrix of the following form:

1 = 00 x x 0 % O
001 0 x = 0 % O
A 0 001 *x x 0 % 0
0000OO0OT1S=xO0
000O0OOOT OLT1
0 0O0O0OOOTODOQO
Definition
A matrix is in row reduced echelon form if it is in row echelon
form and

> all pivots are 1

> the pivots are the only non-zero entries in its column.
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Row reduced echelon form

» If A square and the row reduced echelon form is Id,, then
Ax = b can be trivially solved: the solution is the new
independent term

(A|b) ~ -+~ (ldy | ) so Ax=b< ldx=b < x=b
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Row reduced echelon form

» If A square and the row reduced echelon form is Id,, then
Ax = b can be trivially solved: the solution is the new
independent term

(A|b) ~ -+~ (ldy | ) so Ax=b< ldx=b < x=b

» Whereas the row echelon form of A is not unique, the row
reduced echelon form is unique
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Solving simultaneous systems

Goal: solve systems with the same m x n matrix A but different
independent terms,

Ax) = pM) Ax() = p(D) Ax() = pn),
Equivalently: find X m x r matrix such that
AX = (b® b . b))

B

matrix equation AX = B
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Solving simultaneous systems

Goal: solve systems with the same m x n matrix A but different
independent terms,

Ax(D) = pM) Ax®) = p()Ax() = pn),
Equivalently: find X m x r matrix such that
AX = (b® b . b))

B

matrix equation AX = B

Efficient solution: Gauss-Jordan elimination to the following
augmented matrix

<A|b(1) b b(r))

14
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Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix.
Input: a square matrix A.

Output: the inverse of A if A is nonsingular, or that the inverse
does not exist (if A is singular).

1. Form the n x 2n matrix M = (A | Id,)
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Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix.
Input: a square matrix A.

Output: the inverse of A if A is nonsingular, or that the inverse
does not exist (if A is singular).

1. Form the n x 2n matrix M = (A | Id,)

2. Reduce M to row echelon form (Gaussian elimination). This
process generates a zero row in the left half of M if and only
if A has no inverse.

3. Reduce the matrix to its row reduced echelon form
(Gauss-Jordan). In the end, we obtain M ~ (Id, | B), where
the identity matrix /d, has replaced A in the left half.

4. Then A~! = B, the matrix that is now in the right half.
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Python

import numpy as np
from numpy.linalg import *

A = np.array([[ai1, ..., 2], [221, ..., 22n],- -, [2n1, -

b = np.array([bs, ba, ..., by])

-+, am]])
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Python

import numpy as np
from numpy.linalg import *

A = np.array([[ai1, ..., 2], [221,-- -, 2n], -+, [@n1, - - -, 2nn]])
b = np.array([bs, ba, ..., by])

If Ais an invertible square matrix, we can solve the system by
using:
solve(A,b)

17
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