Linear systems

Bioinformatics Degree Algebra

Departament de Matemàtiques

Outline

Linear systems

Solving linear systems

Outline

Linear systems

Solving linear systems

Outline

Linear systems

Solving linear systems

Python

Outline

Linear systems

Solving linear systems

Python

Linear systems

Definition

A system of m linear equations with n variables is a collection of equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

where the coefficients $a_{i j}$, the constant terms $b_{1}, b_{2}, \ldots, b_{m}$ and the values that the unknowns $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers.

A system is homogenous if $b_{i}=0$ for $i=1, \ldots, m$.

Linear systems

A particular solution is a list of values for the unknowns $s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ that is a solution to all the equations.
The general solution is the set of all the solutions to the system.

Geometric interpretation
From a geometric point of view, the general solution to a linear system describes a linear variety (a point, a line, a plane, etc.). Each particular solution is a point of the linear variety.

Matrix expression of a linear system

Any linear system can be put as a matrix equation $A x=b$ by taking
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right), \quad x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right), \quad b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \ldots \\ b_{m}\end{array}\right)$

The matrix A is called the matrix of the system.
The augmented matrix is $(A \mid b)$.

Number of solutions

Theorem
Any linear system has either (i) a unique solution, (ii) no solution, or (iii) an infinite number of solutions.
A linear system is consistent if it has one or more solutions. If it does not have solutions, it is inconsistent.

Number of solutions

Theorem
Any linear system has either (i) a unique solution, (ii) no solution, or (iii) an infinite number of solutions.
A linear system is consistent if it has one or more solutions. If it does not have solutions, it is inconsistent.

Example
(i) $\left\{\begin{array}{l}x_{1}=1 \\ x_{2}=2\end{array} \quad\right.$ (ii) $\left\{\begin{array}{l}x_{1}+x_{2}=0 \\ x_{1}+x_{2}=1\end{array} \quad\right.$ (iii) $\left\{\begin{array}{l}x_{1}-x_{2}=0 \\ x_{2}-x_{2}=0\end{array}\right.$

Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to know how many solutions the system has:

Theorem (Rouché-Frobenius)

In this case, its set of solutions depends on $n-\operatorname{rank}(A)$ free variables. This value is known as the degrees of freedom of the system.

- In particular, if $n=\operatorname{rank}(A)$ the solution is unique.

Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to know how many solutions the system has:

Theorem (Rouché-Frobenius)

- $A x=b$ is consistent if and only if $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)$. In this case, its set of solutions depends on $n-\operatorname{rank}(A)$ free variables. This value is known as the degrees of freedom of the system.

Rouché-Frobenius Theorem

The matrix expression of linear systems of equations allow us to know how many solutions the system has:

Theorem (Rouché-Frobenius)

- $A x=b$ is consistent if and only if $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)$. In this case, its set of solutions depends on $n-\operatorname{rank}(A)$ free variables. This value is known as the degrees of freedom of the system.
- In particular, if $n=\operatorname{rank}(A)$ the solution is unique.

Outline

Linear systems

Solving linear systems

Python

9

Solving systems: Gaussian elimination

Goal: convert the system $A x=b$ to a simpler system using elementary transformations.
Consider the augmented matrix $(A \mid b)$ and
1st step Reduce $(A \mid b)$ to row echelon form.

Solving systems: Gaussian elimination

Goal: convert the system $A x=b$ to a simpler system using elementary transformations.
Consider the augmented matrix $(A \mid b)$ and
1st step Reduce $(A \mid b)$ to row echelon form.

Solving systems: Gaussian elimination

Goal: convert the system $A x=b$ to a simpler system using elementary transformations.
Consider the augmented matrix $(A \mid b)$ and
1st step Reduce $(A \mid b)$ to row echelon form.
2nd step Solve the system by back substitution if it is consistent.

Solving systems: Gaussian elimination

Goal: convert the system $A x=b$ to a simpler system using elementary transformations.
Consider the augmented matrix $(A \mid b)$ and
1st step Reduce $(A \mid b)$ to row echelon form.
2nd step Solve the system by back substitution if it is consistent.

- The number of pivots (rank) of the row echelon form of A and $(A \mid b)$ tells us whether the system is consistent or not.

Solving systems: Gaussian elimination

Goal: convert the system $A x=b$ to a simpler system using elementary transformations.
Consider the augmented matrix $(A \mid b)$ and
1st step Reduce $(A \mid b)$ to row echelon form.
2nd step Solve the system by back substitution if it is consistent.

- The number of pivots (rank) of the row echelon form of A and $(A \mid b)$ tells us whether the system is consistent or not.
- If the system is consistent, then the leading variables corresponding to pivots can be written in terms of the other variables (called free variables).

Solving systems: Gaussian elimination

Goal: convert the system $A x=b$ to a simpler system using elementary transformations.
Consider the augmented matrix $(A \mid b)$ and
1st step Reduce $(A \mid b)$ to row echelon form.
2nd step Solve the system by back substitution if it is consistent.

- The number of pivots (rank) of the row echelon form of A and $(A \mid b)$ tells us whether the system is consistent or not.
- If the system is consistent, then the leading variables corresponding to pivots can be written in terms of the other variables (called free variables).
- The number of free variables is the degrees of freedom of the system.

Back substitution and Gauss-Jordan elimination

The back substitution step can also be performed by elementary row operations on the row echelon form of $(A \mid b)$ by Gauss-Jordan elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E_{2} to convert it to 1 .

Back substitution and Gauss-Jordan elimination

The back substitution step can also be performed by elementary row operations on the row echelon form of $(A \mid b)$ by Gauss-Jordan elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E_{2} to convert it to 1 .
2. from bottom to top: make all the entries above the pivot equal to zero using type E_{3}.

Back substitution and Gauss-Jordan elimination

The back substitution step can also be performed by elementary row operations on the row echelon form of $(A \mid b)$ by Gauss-Jordan elimination:

Once we have a matrix in row echelon form, do:

1. start with the rightmost pivot and use an operation of type E_{2} to convert it to 1 .
2. from bottom to top: make all the entries above the pivot equal to zero using type E_{3}.
3. Repeat the previous steps the next column to the left (so, from right to left).

Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form, that is a matrix of the following form:

$$
A=\left(\begin{array}{lllllllll}
1 & * & 0 & 0 & * & * & 0 & * & 0 \\
0 & 0 & 1 & 0 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 1 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Definition

A matrix is in row reduced echelon form if it is in row echelon form and

Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form, that is a matrix of the following form:

$$
A=\left(\begin{array}{lllllllll}
1 & * & 0 & 0 & * & * & 0 & * & 0 \\
0 & 0 & 1 & 0 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 1 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Definition

A matrix is in row reduced echelon form if it is in row echelon form and

- all pivots are 1

Reduced row echelon form

In this way we obtain a matrix in row reduced echelon form, that is a matrix of the following form:

$$
A=\left(\begin{array}{lllllllll}
1 & * & 0 & 0 & * & * & 0 & * & 0 \\
0 & 0 & 1 & 0 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 1 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Definition

A matrix is in row reduced echelon form if it is in row echelon form and

- all pivots are 1
- the pivots are the only non-zero entries in its column.

Row reduced echelon form

- If A square and the row reduced echelon form is $I d_{n}$, then $A x=b$ can be trivially solved: the solution is the new independent term

$$
(A \mid b) \sim \cdots \sim\left(I d_{n} \mid b^{\prime}\right) \quad \text { so } \quad A x=b \Leftrightarrow I d_{n} x=b^{\prime} \Leftrightarrow x=b^{\prime}
$$

Row reduced echelon form

- If A square and the row reduced echelon form is $l d_{n}$, then $A x=b$ can be trivially solved: the solution is the new independent term

$$
(A \mid b) \sim \cdots \sim\left(I d_{n} \mid b^{\prime}\right) \quad \text { so } \quad A x=b \Leftrightarrow I d_{n} x=b^{\prime} \Leftrightarrow x=b^{\prime}
$$

- Whereas the row echelon form of A is not unique, the row reduced echelon form is unique

Solving simultaneous systems

Goal: solve systems with the same $m \times n$ matrix A but different independent terms,

$$
A x^{(1)}=b^{(1)}, A x^{(2)}=b^{(2)}, \ldots, A x^{(r)}=b^{(r)}
$$

Equivalently: find $X m \times r$ matrix such that

$$
A X=\underbrace{\left(b^{(1)} b^{(2)} \ldots b^{(r)}\right)}_{B} .
$$

$$
\text { matrix equation } A X=B
$$

Efficient solution: Gauss-Jordan elimination to the following

Solving simultaneous systems

Goal: solve systems with the same $m \times n$ matrix A but different independent terms,

$$
A x^{(1)}=b^{(1)}, A x^{(2)}=b^{(2)}, \ldots, A x^{(r)}=b^{(r)}
$$

Equivalently: find $X m \times r$ matrix such that

$$
A X=\underbrace{\left(b^{(1)} b^{(2)} \ldots b^{(r)}\right)}_{B}
$$

$$
\text { matrix equation } A X=B
$$

Efficient solution: Gauss-Jordan elimination to the following augmented matrix

$$
\left(A \mid b^{(1)} b^{(2)} \ldots b^{(r)}\right)
$$

Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix. Input: a square matrix A.
Output: the inverse of A if A is nonsingular, or that the inverse does not exist (if A is singular).

1. Form the $n \times 2 n$ matrix $M=\left(A \mid I d_{n}\right)$

Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix. Input: a square matrix A.
Output: the inverse of A if A is nonsingular, or that the inverse does not exist (if A is singular).

1. Form the $n \times 2 n$ matrix $M=\left(A \mid I d_{n}\right)$
2. Reduce M to row echelon form (Gaussian elimination). This process generates a zero row in the left half of M if and only if A has no inverse.

Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix. Input: a square matrix A.
Output: the inverse of A if A is nonsingular, or that the inverse does not exist (if A is singular).

1. Form the $n \times 2 n$ matrix $M=\left(A \mid I d_{n}\right)$
2. Reduce M to row echelon form (Gaussian elimination). This process generates a zero row in the left half of M if and only if A has no inverse.
3. Reduce the matrix to its row reduced echelon form (Gauss-Jordan). In the end, we obtain $M \sim\left(I d_{n} \mid B\right)$, where the identity matrix $I d_{n}$ has replaced A in the left half.

Application: finding the inverse of a matrix

The previous algorithm is useful to find the inverse of a matrix. Input: a square matrix A.
Output: the inverse of A if A is nonsingular, or that the inverse does not exist (if A is singular).

1. Form the $n \times 2 n$ matrix $M=\left(A \mid I d_{n}\right)$
2. Reduce M to row echelon form (Gaussian elimination). This process generates a zero row in the left half of M if and only if A has no inverse.
3. Reduce the matrix to its row reduced echelon form (Gauss-Jordan). In the end, we obtain $M \sim\left(I d_{n} \mid B\right)$, where the identity matrix $I d_{n}$ has replaced A in the left half.
4. Then $A^{-1}=B$, the matrix that is now in the right half.

Outline

Linear systems

Solving linear systems

Python

Python

import numpy as np
from numpy.linalg import *
$\mathrm{A}=\mathrm{np} \cdot \operatorname{array}\left(\left[\left[\mathrm{a}_{11}, \ldots, \mathrm{a}_{1 \mathrm{n}}\right],\left[\mathrm{a}_{21}, \ldots, \mathrm{a}_{2 \mathrm{n}}\right], \ldots,\left[\mathrm{a}_{\mathrm{n} 1}, \ldots, \mathrm{a}_{\mathrm{nn}}\right]\right]\right)$
$\mathrm{b}=\mathrm{np} . \operatorname{array}\left(\left[\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{m}}\right]\right)$

Python

import numpy as np
from numpy.linalg import *
$\mathrm{A}=\mathrm{np} \cdot \operatorname{array}\left(\left[\left[\mathrm{a}_{11}, \ldots, \mathrm{a}_{1 \mathrm{n}}\right],\left[\mathrm{a}_{21}, \ldots, \mathrm{a}_{2 \mathrm{n}}\right], \ldots,\left[\mathrm{a}_{\mathrm{n} 1}, \ldots, \mathrm{a}_{\mathrm{nn}}\right]\right]\right)$
$\mathrm{b}=\mathrm{np} \cdot \operatorname{array}\left(\left[\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{m}}\right]\right)$
If A is an invertible square matrix, we can solve the system by using:
solve(A, b)

