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LR” and other vector spaces
;

The vector space R”

We consider the set of n-tuples of real numbers:
R" = {(x1,x2,...,xn) | x; € R}

and we call its elements vectors.
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; ;

The vector space R”

We consider the set of n-tuples of real numbers:
R" = {(x1,x2,...,xn) | x; € R}

and we call its elements vectors.
Notation: When we talk about v € R"” we usually think of v as a
column vector,

X1

Xn



L]R" and other vector spaces

R?: Physical interpretation

>

View (x,y) € R? as a directed line segment between two
points A and B, (x,y) = "vector" A

/@ : the displacement needed to get from A to B: x units
along the x-axis and y along the y-axis.

Two vectors are equal if they represent the same displacement
(< they have the same length, direction, and sense).

We can always think (x, y) as a vector of initial point (0, 0)
and end point (x, y).




LR" and other vector spaces

Operations in R?

We can sum or substract vectors




LR" and other vector spaces
; ;

R3

» Vectors in R3 have a similar physical interpretation

» We can also sum two vectors and multiply a vector by a
scalar. These operations can be done in coordinates: if
u=(x1,x,x3) and v = (y1,y2, y3), then

u+v=(x1+y,x+y2,x3+ys),

¢ u=(cx,cx, cx3) for any c € R.



LR” and other vector spaces
; ;

Operations in R”

In R" we define the following operations:

sum: if u=(x1,x2,...,%n),v=(y1,Y2,-..,¥n), then

U+V:(X1+y1,X2+y2,...,xn_|_yn)GRn.
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Operations in R”

In R" we define the following operations:

sum: if u= (x1,%2, .., Xn), V= (¥1,¥2,--,¥n), then
U+V:(X1 +y1,X2+y2,...,xn_|_yn) e R".

scalar multiplication: if u = (x1,x2,...,Xn),c € R,
then

c-u=(cxi,cx,...,cxy) €R"
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Proposition
These operations in R" satisfy the following properties:
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3. 3 an element 0 € R", called the zero vector, such that
u+0=u.
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Proposition
These operations in R" satisfy the following properties:
1. u+ v =v+ u. Commutativity
2. (u+v)+w=u+(v+ w). Associativity
3. 3 an element 0 € R", called the zero vector, such that
u+0=u.
4. For each u € R", 3 an element —u € R" such that
u+(—u)=0.



L]R" and other vector spaces

Proposition

These operations in R" satisfy the following properties:

1.
2.
3.

u+ v = v+ u. Commutativity
(u+v)+w=u+(v+ w). Associativity

3 an element 0 € R", called the zero vector, such that
u+0=u.

For each u € R", 3 an element —u € R" such that
u+(—u)=0.

c-(u+v)=c-u+c-v. Distributivity
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;

Proposition

These operations in R" satisfy the following properties:
1. u+ v =v+ u. Commutativity
2. (u+v)+w=u+(v+ w). Associativity

3. 3 an element 0 € R", called the zero vector, such that

u+0=u.
4. For each u € R", 34 an element —u € R" such that
u+(—u)=0.

5. c-(u+v)=c-u+c-v. Distributivity
. (c+d)-u=c-u+d-u. Distributivity
. c-(d-u)=(cd) - u.
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Proposition

These operations in R" satisfy the following properties:
1. u+ v =v+ u. Commutativity
2. (u+v)+w=u+(v+ w). Associativity

3. 3 an element 0 € R", called the zero vector, such that

u+0=u.
4. For each u € R", 34 an element —u € R" such that
u+(—u)=0.

c-(u+v)=c-u+c-v. Distributivity
(c+d)-u=c-u+d-u. Distributivity
c-(d-u)=(cd)-u.

. lou=u.
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L]R" and other vector spaces

Vector space over K
Let K be Q, R, C or any (commutative) field ( “cos”).

A vector space over K (or K-e.v.) is a set E with two operations
+ and -,
+ given u,v € E, it assigns another element u + v of E.
- given u € E and a scalar ¢ € K, it assigns an element c-u € E
that satisfy the previous properties, i.e,

» -+ is commutative, associative, has a neutral element (denoted
0 or 0) and every u € E has an opposite with respect to +
(denoted —u),

» . and + satisfy:
c-(u+v) = c-utcv, (c+d)-u=cu+td-u, c(d-u)=(cd)u, lL.u=u
forany u,v € E and ¢, d € K.

The elements of a K-e.v. are called vectors.

10



LR” and other vector spaces

Examples of vector spaces

» K" ={(x1,...,xp) | xi € K} is a K-e.v. with the natural sum
and product inherited by K.

11
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Examples of vector spaces
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and product inherited by K.
» M pmxn(R)=m x n matrices with entries in R and the natural

operations of sum of matrices and multiplication by scalars is
an R-e.v.
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Examples of vector spaces

» K" = {(x1,...,%1) | xi € K} is a K-e.v. with the natural sum
and product inherited by K.

» M pmxn(R)=m x n matrices with entries in R and the natural
operations of sum of matrices and multiplication by scalars is
an R-e.v.

P> The set of polynomials of degree < d,

Ry[x] = {p(x) = ap + a1x + ...+ agx? | a; € R}, is an R-e.v.
with the usual sum of polynomials and multplication by a
scalar.
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Examples of vector Spaces

» K" = {(x1,...,%1) | xi € K} is a K-e.v. with the natural sum
and product inherited by K.

» M pmxn(R)=m x n matrices with entries in R and the natural
operations of sum of matrices and multiplication by scalars is
an R-e.v.

P> The set of polynomials of degree < d,

Ry[x] = {p(x) = ap + a1x + ...+ agx? | a; € R}, is an R-e.v.
with the usual sum of polynomials and multplication by a
scalar.

| 4 R[x] =
{polynomials in one variable x and coefficients in R} is an
R-e.v.
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Examples of vector spaces

» K" = {(x1,...,%1) | xi € K} is a K-e.v. with the natural sum
and product inherited by K.

» M pmxn(R)=m x n matrices with entries in R and the natural
operations of sum of matrices and multiplication by scalars is
an R-e.v.

P> The set of polynomials of degree < d,

Ry[x] = {p(x) = ap + a1x + ...+ agx? | a; € R}, is an R-e.v.
with the usual sum of polynomials and multplication by a
scalar.

| 2 R[x] =
{polynomials in one variable x and coefficients in R} is an
R-e.v.

» The set F(R,R) of functions f : R — R is an R-e.v. with
the usual sum of functions (f + g is the function
(f + g)(x) = f(x) + g(x)) and product by a scalar (c-f is
the function (c - f)(x) = cf(x)).

11



L]R" and other vector spaces

Properties

If E is a K-e.v., then, Vu € E, c € K,
(a) 0-u=0=c-0,
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Properties
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LR” and other vector spaces
; ;

Properties

f E is a K-e.v.,, then, Vu € E, c € K,
(a) 0-u=0=c-0,

(b) (-1) - u=—u,
(c)

—c)-u=c-(—u)=—(c-u) (so we denote it by —cu),

12



LR" and other vector spaces

Properties

If E is a K-e.v., then, Vu € E, c € K,
(a) 0-u=0=c-0,
b) (1) -u=—u,

d ccu=0c=0o0ru=0

Note: Usually we omit the dot ""

(b)
(c) (—¢)-u=c-(—u)=—(c- u) (so we denote it by —cu),
(d)

12



LR" and other vector spaces

Linear combinations

Definition
A vector u is a linear combination of vectors uq, ..., ux if there
are scalars ci, ..., ¢k such that u = ¢y ug + ... + ¢k uk (the scalars

¢; are the coefficients of the linear combination).
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Linear combinations

Definition
A vector u is a linear combination of vectors uq, ..., ux if there
are scalars ci, ..., ¢k such that u = ¢y ug + ... + ¢k uk (the scalars

¢; are the coefficients of the linear combination).

Finding out whether a vector in K” is a linear combination of a
collection of given vectors is equivalent to solving a linear system
of equations:
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L]R" and other vector spaces

Linear combinations

Definition
A vector u is a linear combination of vectors uq, ..., ux if there
are scalars ci, ..., ¢k such that u = ¢y ug + ... + ¢k uk (the scalars

¢; are the coefficients of the linear combination).

Finding out whether a vector in K” is a linear combination of a
collection of given vectors is equivalent to solving a linear system
of equations:

Proposition
A system Ax = b is consistent if and only if b is a linear
combination of the columns of A.

13
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Outline

Vector subspaces
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LVector subspaces
; ;

Vector subspaces

Definition

Let E be a K-e.v. Then a subset V # () of E is a vector subspace
if V is itself a vector space (with + and - of E). This is equivalent
to:

1. fuand varein V, then u+visin V.

2. If uisin V and c is a scalar, then c-uisin V.

Ex:

15
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;

Vector subspaces

Definition
Let E be a K-e.v. Then a subset V # () of E is a vector subspace

if V is itself a vector space (with + and - of E). This is equivalent
to:

1. fuand varein V, then u+visin V.

2. If uisin V and c is a scalar, then c-uisin V.

Ex:
» V = K" is a vector subspace of K.
» V = {0} is a vector subspace (of any E).

» V ={(x,y,z) €R3| x —y =0,3z =0} is a vector subspace
of R3.
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Vector subspaces

Definition

Let E be a K-e.v. Then a subset V # () of E is a vector subspace
if V is itself a vector space (with + and - of E). This is equivalent
to:

1. fuand varein V, then u+visin V.
2. If uisin V and c is a scalar, then c-uisin V.
Ex:

» V = K" is a vector subspace of K.

» V = {0} is a vector subspace (of any E).

» V ={(x,y,z) €R3| x —y =0,3z =0} is a vector subspace
of R3.

> F3= {(a+2b,0,b) € R3| a,b € R} is a vector subspace of
R>.

15



L Vector subspaces

Remarks

» Every subspace contains the zero vector.
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LVector subspaces

Remarks

» Every subspace contains the zero vector.

» Properties 1 and 2 can be combined:
V #£ () is a subspace < for any uy,...,uxin V and c1,..., ¢k
in K, the linear combination

Ccluy + ...+ Crug

is also in V.
That is, vector subspaces are closed under linear combinations.
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LVector subspaces
; ;

Remarks

» Every subspace contains the zero vector.

» Properties 1 and 2 can be combined:
V #£ () is a subspace < for any uy,...,uxin V and c1,..., ¢k
in K, the linear combination

Ccluy + ...+ Crug

is also in V.
That is, vector subspaces are closed under linear combinations.

Proposition
Let Ax =0 be a linear system, where A € M, o(K). Then, the set
of solutions V = {v € K" | Av = 0} is a vector subspace of K".

16



L Vector subspaces
; ;

Let vi, vo,..., Vi be vectors in E.
Definition
The set of all linear combinations of vy, vo, ..., v,

{C1V1+...+Ckvk|Cl,...,CnEK}

is the called the span of vi,v», ..., v, and is denoted as
[vi,va, ..., vk

17
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Let vi, vo,..., Vi be vectors in E.
Definition
The set of all linear combinations of vy, vo, ..., v,

{C1V1+...+Ckvk|Cl,...,CnEK}

is the called the span of vi,v», ..., v, and is denoted as
[vi,va, ..., vk

Proposition

V =[vi,v,..., v| is a vector subspace and is the smallest

subspace containing {vi, ..., vk}.
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LVector subspaces

Let vi, vo,..., Vi be vectors in E.
Definition
The set of all linear combinations of vy, vo, ..., v,

{61V1+...+Ckvk|Cl,...,CnEK}

is the called the span of vi,v», ..., v, and is denoted as
[vi,va, ..., vk

Proposition

V =[vi,v,..., v| is a vector subspace and is the smallest
subspace containing {vi, ..., vk}.

We say that {vi, v, ..

., Vk} is a system of generators of V, and

also that V is spanned by vi, v, ..., v.

17



L Vector subspaces

Examples:

> R" =[(1,0,...,0),...

,(0,...,0,1)].
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Examples:
> R”=(1,0,...,0),...,(0,...,0,1)].
> V={(x,y,2) ER}|x—y=0,3z2=0} = V =[(1,1,0)].
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finite collection of vectors.
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LVector subspaces
;

Examples:

» R" =[(1,0,...,0),...,(0,...,0,1)].

> V={(x,y,2) ER}|x—y=0,32=0} = V =[(1,1,0)].
> V={(x,y,2) R | x—y=0}=V=](1,1,0),(0,0,1)].
> F={(a+2b,0,b) €R3|a,becR}=][(1,0,0),(2,0,1)].

A vector space E is finitely generated (f.g.) if it is the span of a
finite collection of vectors.

> K" is f.g.
> R[x] is not f.g.

18
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Linear dependency, basis and dimension
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LLinear dependency, basis and dimension
;

Linear dependency

Definition

vi, Vo, ..., vk € E are linearly dependent (l.d.) if there are scalars
€1,C2,...,Ck, at least one # 0, such that c; vy + ...+ cx vk = 0.
Otherwise, we say that vi, v, ..., v, are linearly independent

(1i.).
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vi, Vo, ..., vk € E are linearly dependent (l.d.) if there are scalars
€1,C2,...,Ck, at least one # 0, such that c; vy + ...+ cx vk = 0.
Otherwise, we say that vi, vo, ..., v, are linearly independent
(1.i.).

Vi, Vo, ..., Vg are Li. < any linear combination
avit...+tcvik=0impliesci = =...=c¢,=0.

Remarks:

1. Any set of vectors containing 0 is linearly dependent.
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be expressed as a linear combination of the others.
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Linear dependency

Definition

vi, Vo, ..., vk € E are linearly dependent (l.d.) if there are scalars
€1,C2,...,Ck, at least one # 0, such that c; vy + ...+ cx vk = 0.
Otherwise, we say that vi, vo, ..., vk are linearly independent
(1.i.).

Vi, Vo, ..., Vg are Li. < any linear combination
avit...+tcvik=0impliesci = =...=c¢,=0.

Remarks:

1. Any set of vectors containing 0 is linearly dependent.
2. Two vectors v, v» are l.d. < one is multiple of the other.

3. vi,Vo,..., vk in E are l.d. &< at least one of the vectors can
be expressed as a linear combination of the others.

4. 1fvi,...,vgareli. and u ¢ [va,...,vk] = v1,..., vk, u are |.i.

20



LLinear dependency, basis and dimension
; ;

Basis of a vector subspace

Definition
Let V C E be a vector subspace. A collection of vectors
{vi,..., v} is a basis of V if

1. V:[vl,...,vk] and

2. {vi,..., v} is linearly independent.

21



LLinear dependency, basis and dimension

Basis of a vector subspace

Definition
Let V C E be a vector subspace. A collection of vectors
{vi,..., v} is a basis of V if

1. V= [vl,...,vk] and

2. {vi,..., v} is linearly independent.

Ex: (1,1,0),(0,0,1) is a basis of V = {(x,y,z) € R3 | x—y = 0}.

21



LLinealr dependency, basis and dimension
; ;

Standard basis

There are some standard (or natural, canonical) bases of certain
vector spaces:
)
» K" {e1,es...,en} where e =(0,...,1,...,0) for
i=1,2,...,n.

29
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Standard basis

There are some standard (or natural, canonical) bases of certain
vector spaces:

i)
» K" {e1,es...,en} where e =(0,...,1,...,0) for
i=1,2,....n
» Mpmxnt {Eij} i=1,....m where Ejj € Mpy, has 1 at entry
j=1,..., n

(7,j) and Q's elsewhere.
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LLinear dependency, basis and dimension
; ;

Standard basis

There are some standard (or natural, canonical) bases of certain
vector spaces:

i)
» K" {e1,es...,en} where e =(0,...,1,...,0) for
i=1,2,....n
» Mpmxnt {Eij} i=1,....m where Ejj € Mpy, has 1 at entry
j=1,..., n

(7,j) and Q's elsewhere.
> Ry[x]: {1,x,...,x9}

29



LLinear dependency, basis and dimension
;

Coordinates

Theorem

Let B={v1,...,vp} be a basis of a K-e.v. E. Then, for every
vector v € E, there is exactly one way to write v as a linear
combination of the vectors in B, that is, there exist c1,...,cp € K
such that v =c1vy + o + ... + ¢V, and moreover, these
ci,...,Cp are unique.

27
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The c1, ¢, ..., cy are called the coordinates of v with respect
to B.
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Coordinates

Theorem
Let B={v1,...,vp} be a basis of a K-e.v. E. Then, for every
vector v € E, there is exactly one way to write v as a linear

combination of the vectors in B, that is, there exist c1,...,cp € K
such that v =c1vy + o + ... + ¢V, and moreover, these
ci,...,Cp are unique.

Definition

The c1, ¢, ..., cy are called the coordinates of v with respect
to B.

We will use the notation

C1
v =

Cn

27



LLinear dependency, basis and dimension
; ;

Coordinates: from E to K”

Taking coordinates of a vectors in a given basis preserves linear
combinations:
If B={v1,...,vs} is a basis of E and uy,...,ux are in E, then

(x1u1 + ...+ xkuk)B = Xl(Ul)B + ...+ Xk(uk)B.

24



LLinear dependency, basis and dimension
;

Coordinates: from E to K”

Taking coordinates of a vectors in a given basis preserves linear
combinations:
If B={v1,...,vs} is a basis of E and uy,...,ux are in E, then

(x1u1 + ...+ xkuk)B = Xl(Ul)B + ...+ Xk(uk)B.
In particular,

> up,...,uxare li. & (u1)g, ..., (uk)p are Li. in K.

24



LLinear dependency, basis and dimension

Basis and dimension

Proposition
Every (fg.) K-e.v. E # 0 has a basis.
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Basis and dimension

Proposition
Every (fg.) K-e.v. E # 0 has a basis.

Theorem (Steinitz substitution lemma)

Let E be an f.g. K-e.v. Let vq,..., v be generators of E and
Ui,...,un, € E be l.i. Then, n < m and one can substitute n
vectors of {vi,...,Vm} by u1,...,u, such that the new collection

of vectors is still a system of generators for E.

Corollary (The Basis Theorem)

Any two bases of a f.g. vector space have the same number of
elements.

25
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Basis and dimension

Proposition
Every (fg.) K-e.v. E # 0 has a basis.

Theorem (Steinitz substitution lemma)

Let E be an f.g. K-e.v. Let vq,..., v be generators of E and
Ui,...,un, € E be l.i. Then, n < m and one can substitute n
vectors of {vi,...,Vm} by u1,...,u, such that the new collection

of vectors is still a system of generators for E.

Corollary (The Basis Theorem)

Any two bases of a f.g. vector space have the same number of
elements.

Dimension of the vector space dim(E) = cardinal of any basis. By
convention, dim({0}) = 0.
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LLinear dependency, basis and dimension

Proposition
Let E be a vector space of dimension n, n > 1. Then:
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Moreover, it can be extended to a basis of E (by choosing
vectors of a given basis of E conveniently).
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Let E be a vector space of dimension n, n > 1. Then:

1. Any system of generators for E contains > n vectors.
Moreover, it contains a basis of E.

2. Any linearly independent set in E contains < n vectors.
Moreover, it can be extended to a basis of E (by choosing
vectors of a given basis of E conveniently).

3. Any linearly independent set of n vectors in E is a basis for E.
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LLinear dependency, basis and dimension
; ;

Proposition
Let E be a vector space of dimension n, n > 1. Then:

1. Any system of generators for E contains > n vectors.
Moreover, it contains a basis of E.

2. Any linearly independent set in E contains < n vectors.
Moreover, it can be extended to a basis of E (by choosing
vectors of a given basis of E conveniently).

3. Any linearly independent set of n vectors in E is a basis for E.

4. Any system of generators for E consisting of n vectors is a
basis for E.

Hence,

n = minimum number of elements in a system of generators of E
= maximum number of l.i. vectors in E.
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Theorem
Let Vi C V, be subspaces of E and dim(E) = n. Then:
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Theorem
Let Vi C V, be subspaces of E and dim(E) = n. Then:

1. dimVy < dimV, < n.
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; ;

Theorem
Let Vi C V, be subspaces of E and dim(E) = n. Then:

1. dimVy < dimV, < n.
2. dimVy = dimV5 if and only if Vi = V.
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LLinear dependency, basis and dimension
; ;

Rank (revisited)

Theorem
Given vi,vo,...,vk € K", if A= (v1,...,v%) € M, (K), then
a) vi,va,...,vx are l.d. < the homogeneous system Ax = 0 has

a nontrivial solution (indeterminate system).

b) vi,va,..., vk are Li. & rank(A) = k.
c) vi,Vva,..., Vg are a system of generators of K" <
rank(A) = n.

d) vi,vo,..., vk is a basis of K" < k = n and rank(A) = n.
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The rank of a matrix A equals:
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Theorem
Given vi,vo,...,vk € K", if A= (v1,...,v) € M, (K), then
a) vi,va,...,vx are l.d. < the homogeneous system Ax = 0 has

a nontrivial solution (indeterminate system).

b) vi,va,..., vk are Li. & rank(A) = k.
c) vi,Vva,..., Vg are a system of generators of K" <
rank(A) = n.
d) vi,vo,..., vk is a basis of K" < k = n and rank(A) = n.
Proposition

The rank of a matrix A equals:

» dimension of the row span of A (max. number of l.i. rows)
and
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Rank (revisited)

Theorem
Given vi,vo,...,vk € K", if A= (v1,...,v) € M, (K), then

a)

Vi, Vo,..., Vg are l.d. < the homogeneous system Ax = 0 has
a nontrivial solution (indeterminate system).

b) vi,va,..., vk are Li. & rank(A) = k.
c) vi,Vva,..., Vg are a system of generators of K" <
rank(A) = n.
d) vi,vo,..., vk is a basis of K" < k = n and rank(A) = n.
Proposition
The rank of a matrix A equals:
» dimension of the row span of A (max. number of l.i. rows)
and
» dimension of the column span of A (max. number of L.i.

columns).
28



LLinear dependency, basis and dimension
; ;

K”": Finding a basis from generators

If V =[vi,v,...,v] C K" then a basis of V' can be obtained by
applying one the following methods:

1 Write the vectors vi, ..., vk as the rows of a matrix A, and
reduce A to row echelon form A (Gaussian elimination). The
nonzero rows of A are a basis of V.
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K”": Finding a basis from generators

If V =[vi,v,...,v] C K" then a basis of V' can be obtained by
applying one the following methods:

1 Write the vectors vi, ..., vk as the rows of a matrix A, and
reduce A to row echelon form A (Gaussian elimination). The
nonzero rows of A are a basis of V.

2 Write the vectors vy, ..., vk as the columns of a matrix B.
Then, reduce B to row echelon form B (Gaussian
elimination). The columns of B with pivots indicate which
vectors vi, ..., vk to choose to obtain a basis of V.
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LLinear dependency, basis and dimension
; ;

Extending to a basis of K”

If uq,...,u, are linearly independent vectors of K”, then they can
be extended to a basis of K":

» Write the vectors us, ..., ux as the columns of a matrix B,
and take M = (B | I).
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Extending to a basis of K”

If uq,...,u, are linearly independent vectors of K”, then they can
be extended to a basis of K":

» Write the vectors us, ..., ux as the columns of a matrix B,
and take M = (B | I).

» Then, reduce M to row echelon form M = (B | I,,) (Gaussian
elimination).

» Collect the columns of I, with a pivot and choose the

corresponding vectors of the standard basis (columns of /,) of
K".
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Extending to a basis of K”

If uq,...,u, are linearly independent vectors of K”, then they can
be extended to a basis of K":

» Write the vectors us, ..., ux as the columns of a matrix B,
and take M = (B | I).

» Then, reduce M to row echelon form M = (B | I,,) (Gaussian
elimination).

» Collect the columns of I, with a pivot and choose the
corresponding vectors of the standard basis (columns of /,) of
K".

» u,..., U, together with these last vectors form a basis of K".
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Extending to a basis of K”

If uq,...,u, are linearly independent vectors of K”, then they can
be extended to a basis of K":

>

>

| 2
The

Write the vectors u1, ..., ug as the columns of a matrix B,
and take M = (B | I).

Then, reduce M to row echelon form M = (B | I,) (Gaussian
elimination).

Collect the columns of I, with a pivot and choose the
corresponding vectors of the standard basis (columns of /,) of
K"

uy, ..., U, together with these last vectors form a basis of K".

same can be done if uy, ..., ux are linearly independent

vectors of a vector subspace V:
instead of /,,, take a matrix formed by a basis v1,..., vy of V and
do the same process as above for M = (uy, ..., ux|vi, ..., vq).
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LLinear dependency, basis and dimension

Subspaces of K”: Generators <+ Equations

From “generators” to “equations”:

If V=1[w,...,v C K"

Write M = (v1, ..., vk), and form an augmented matrix (M|x)

with x = column with entries x1, x2, ..., X5.

Then x € [v1, ..., v] if and only if rank(M|x) = rank(M).

There are 2 options:

» Reduce M to echelon form (M|X) by Gaussian elimination =-

a linear system of equations for V is obtained by writing the
equations that correspond to zero rows of M.
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LLinear dependency, basis and dimension

Subspaces of K”: Generators <+ Equations

From “generators” to “equations”:

If V=1[w,...,v C K"

Write M = (v1, ..., vk), and form an augmented matrix (M|x)

with x = column with entries x1, x2, ..., X5.

Then x € [v1, ..., v] if and only if rank(M|x) = rank(M).

There are 2 options:

» Reduce M to echelon form (M|X) by Gaussian elimination =-

a linear system of equations for V is obtained by writing the
equations that correspond to zero rows of M.

» If rank(M) = k, the equations are formed by the vanishing of
the (k + 1) x (k 4+ 1) minors of (M|x) that contain a chosen
non-zero k X k minor of M.

21



LLinear dependency, basis and dimension
;

Subspaces of K”: Generators <+ Equations

From “equations” to “generators”:
If V={ueK"|Au =0} (solutions to a homogeneous system):

» It is enough to solve the system to obtain a system of
generators of V.

» Moreover, if we give values O's and 1's to the free variables,
these generators form a basis and dim(V') = n — rank(A).

We have proved:
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Subspaces of K”: Generators <+ Equations

From “equations” to “generators”:
If V={ueK"|Au =0} (solutions to a homogeneous system):

» It is enough to solve the system to obtain a system of
generators of V.

» Moreover, if we give values O's and 1's to the free variables,
these generators form a basis and dim(V') = n — rank(A).

We have proved:

Corollary

A subset V of K" is a subspace < it is the set of solutions to a
homogeneous system.
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Outline

Change of basis

213



LChange of basis
: :

Change of basis

Let B={u1,...,up} and C = {vy,...,v,} be bases of E.
Denote by Ag_.¢ the n X n matrix whose columns are the
coordinate vectors (u1)c, .- ., (up)c of B with respect to C. This
is the change-of-basis matrix from B to C:

Agc=|(u)c -+ (un)c

Proposition
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is the change-of-basis matrix from B to C:

Agc=|(u)c -+ (un)c

Proposition
1. Agscwg = w¢ for allw € E.
2. Ag_,c is invertible, and (Ag_c)™ ' = Ac_B.
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LChamge of basis
: :

Change of basis

Let B={u1,...,up} and C = {vy,...,v,} be bases of E.
Denote by Ag_.¢ the n X n matrix whose columns are the
coordinate vectors (u1)c, .- ., (up)c of B with respect to C. This
is the change-of-basis matrix from B to C:

Agc=|(u)c -+ (un)c

Proposition
1. Ag_,cwg = wc forall w € E.
2. Ag_,c is invertible, and (Ag_c)™ ' = Ac_B.
3. If D is another basis of E, then Ac_,pAs_c = As_D.
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Outline

Intersection and sum
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L Intersection and sum
; ;

Intersection & sum of subspaces
Given Vi, V5 vector subspaces of E, define

1. Intersection of V; and V is
V10V2:{V€E| veV,ve Vz}.
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L Intersection and sum
;

Intersection & sum of subspaces
Given Vi, V5 vector subspaces of E, define
1. Intersection of V7 and V5 is
V1ﬂV2={V€E| veV,ve Vz}.
2. Sum of V; and VW, is
V1+V2:{V1+V2€E| vi € Vi,wm € Vz}.
Computation: If Vi = [u1,...,u/] and Vo = [vq,..., vs], then
Vi+ W = [ul,...,ur,vl,...,vs].

1%
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L Intersection and sum
; ;

Theorem
1. VinNV, and Vi + Vs are vector subspaces of E.

2. Grassmann formula: if dim(E) < oo, then

dim( Vin V2) + dim( Vi + V2) = dim( V1) + dim( V2).

Ex:
Vi = [(1707 1)a (07273)] VinVa = [(1a0a 1)]
Vo =[(0,1,0),(1,1,1)]] Wi+ W =R3

1%
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L Intersection and sum
; ;

Direct sum

Definition

E is the direct sum of subspaces F; and F; if any w € E can be
written in a unique way as w = v; + v» with vy € F1, v € F,.
In this case we use the notation E = F1 & F».
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Direct sum

Definition

E is the direct sum of subspaces F; and F; if any w € E can be
written in a unique way as w = v; + v» with vy € F1, v € F,.
In this case we use the notation E = F1 & F».

Proposition
Let F1, F> be two subspaces of E. Then E = F1 ® F» if and only if
the following two conditions hold:

E:F1+F27

FNF = {0}
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L Intersection and sum
; ;

Direct sum

Definition

E is the direct sum of subspaces F; and F; if any w € E can be
written in a unique way as w = v; + v» with vy € F1, v € F,.
In this case we use the notation E = F1 & F».

Proposition
Let F1, F> be two subspaces of E. Then E = F1 ® F» if and only if
the following two conditions hold:

E:F1+F27
FlﬂFQZ{O}.

If E=F; @ Fp, we say that F; is a complementary subspace to
F1 (and vice-versa).
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