Àlgebra lineal i geometria 1. Espais vectorials

Grau en Enginyeria Física

2023-24
Universitat Politècnica de Catalunya
Departament de Matemàtiques

Marta Casanellas
Universitat Politècnica de Catalunya

UNIVERSITAT POLITĖCNICA
DE CATALUNYA
BARCELONATECH

Outline

\mathbb{R}^{n} and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Outline

```
\mp@subsup{\mathbb{R}}{}{n}}\mathrm{ and other vector spaces
Vector subspaces
Linear dependency, basis and dimension
Change of basis
Intersection and sum
```

Bibliography

The vector space \mathbb{R}^{n}

We consider the set of n-tuples of real numbers:

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}
$$

and we call its elements vectors.
column vector,

The vector space \mathbb{R}^{n}

We consider the set of n-tuples of real numbers:

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}
$$

and we call its elements vectors.
Notation: When we talk about $v \in \mathbb{R}^{n}$ we usually think of v as a column vector,

$$
v=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

\mathbb{R}^{2} : Physical interpretation

- View $(x, y) \in \mathbb{R}^{2}$ as a directed line segment between two points A and $B,(x, y)=$ " vector" $\overrightarrow{A B}$.
- $\overrightarrow{A B}$: the displacement needed to get from A to B : x units along the x-axis and y along the y-axis.
- Two vectors are equal if they represent the same displacement (\Leftrightarrow they have the same length, direction, and sense).
- We can always think (x, y) as a vector of initial point $(0,0)$ and end point (x, y).

Operations in \mathbb{R}^{2}

We can sum or substract vectors

and multiply a vector by a constant (scalar)

- Vectors in \mathbb{R}^{3} have a similar physical interpretation
- We can also sum two vectors and multiply a vector by a scalar. These operations can be done in coordinates: if $u=\left(x_{1}, x_{2}, x_{3}\right)$ and $v=\left(y_{1}, y_{2}, y_{3}\right)$, then

$$
\begin{gathered}
u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right), \\
c \cdot u=\left(c x_{1}, c x_{2}, c x_{3}\right) \text { for any } c \in \mathbb{R} .
\end{gathered}
$$

Operations in \mathbb{R}^{n}

In \mathbb{R}^{n} we define the following operations:

$$
\begin{aligned}
& \text { sum: if } u=\left(x_{1}, x_{2}, \ldots, x_{n}\right), v=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text {, then } \\
& \qquad u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \in \mathbb{R}^{n}
\end{aligned}
$$

Operations in \mathbb{R}^{n}

In \mathbb{R}^{n} we define the following operations:

$$
\begin{aligned}
& \text { sum: if } u=\left(x_{1}, x_{2}, \ldots, x_{n}\right), v=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text {, then } \\
& \qquad u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \in \mathbb{R}^{n} .
\end{aligned}
$$

scalar multiplication: if $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right), c \in \mathbb{R}$, then

$$
c \cdot u=\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right) \in \mathbb{R}^{n} .
$$

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity
6. $(c+d) \cdot u=c \cdot u+d \cdot u$. Distributivity

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity
6. $(c+d) \cdot u=c \cdot u+d \cdot u$. Distributivity
7. $c \cdot(d \cdot u)=(c d) \cdot u$.

Proposition

These operations in \mathbb{R}^{n} satisfy the following properties:

1. $u+v=v+u$. Commutativity
2. $(u+v)+w=u+(v+w)$. Associativity
3. \exists an element $\mathbf{0} \in \mathbb{R}^{n}$, called the zero vector, such that $u+\mathbf{0}=u$.
4. For each $u \in \mathbb{R}^{n}, \exists$ an element $-u \in \mathbb{R}^{n}$ such that $u+(-u)=\mathbf{0}$.
5. $c \cdot(u+v)=c \cdot u+c \cdot v$. Distributivity
6. $(c+d) \cdot u=c \cdot u+d \cdot u$. Distributivity
7. $c \cdot(d \cdot u)=(c d) \cdot u$.
8. $1 \cdot u=u$.

Vector space over \mathbb{K}

Let \mathbb{K} be $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ or any (commutative) field ("cos").

A vector space over \mathbb{K} (or \mathbb{K}-e.v.) is a set E with two operations + and \cdot

+ given $u, v \in E$, it assigns another element $u+v$ of E. given $u \in E$ and a scalar $c \in \mathbb{K}$, it assigns an element $c \cdot u \in E$ that satisfy the previous properties, i.e,
- + is commutative, associative, has a neutral element (denoted $\mathbf{0}$ or $\overrightarrow{0}$) and every $u \in E$ has an opposite with respect to + (denoted $-u$),
- . and + satisfy:
$c \cdot(u+v)=c \cdot u+c \cdot v,(c+d) \cdot u=c \cdot u+d \cdot u, c \cdot(d \cdot u)=(c d) \cdot u, 1 \cdot u=u$ for any $u, v \in E$ and $c, d \in \mathbb{K}$.

The elements of a \mathbb{K}-e.v. are called vectors.

Examples of vector spaces

- $\mathbb{K}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{K}\right\}$ is a \mathbb{K}-e.v. with the natural sum and product inherited by \mathbb{K}.

Examples of vector spaces

- $\mathbb{K}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{K}\right\}$ is a \mathbb{K}-e.v. with the natural sum and product inherited by \mathbb{K}.
- $\mathcal{M}_{m \times n}(\mathbb{R})=m \times n$ matrices with entries in \mathbb{R} and the natural operations of sum of matrices and multiplication by scalars is an \mathbb{R}-e.v.

Examples of vector spaces

- $\mathbb{K}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{K}\right\}$ is a \mathbb{K}-e.v. with the natural sum and product inherited by \mathbb{K}.
- $\mathcal{M}_{m \times n}(\mathbb{R})=m \times n$ matrices with entries in \mathbb{R} and the natural operations of sum of matrices and multiplication by scalars is an \mathbb{R}-e.v.
- The set of polynomials of degree $\leq d$, $\mathbb{R}_{d}[x]=\left\{p(x)=a_{0}+a_{1} x+\ldots+a_{d} x^{d} \mid a_{i} \in \mathbb{R}\right\}$, is an \mathbb{R}-e.v. with the usual sum of polynomials and multplication by a scalar.

Examples of vector spaces

- $\mathbb{K}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{K}\right\}$ is a \mathbb{K}-e.v. with the natural sum and product inherited by \mathbb{K}.
- $\mathcal{M}_{m \times n}(\mathbb{R})=m \times n$ matrices with entries in \mathbb{R} and the natural operations of sum of matrices and multiplication by scalars is an \mathbb{R}-e.v.
- The set of polynomials of degree $\leq d$, $\mathbb{R}_{d}[x]=\left\{p(x)=a_{0}+a_{1} x+\ldots+a_{d} x^{d} \mid a_{i} \in \mathbb{R}\right\}$, is an \mathbb{R}-e.v. with the usual sum of polynomials and multplication by a scalar.
- $\mathbb{R}[x]=$ \{polynomials in one variable x and coefficients in \mathbb{R} \} is an \mathbb{R}-e.v.

Examples of vector spaces

- $\mathbb{K}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{K}\right\}$ is a \mathbb{K}-e.v. with the natural sum and product inherited by \mathbb{K}.
- $\mathcal{M}_{m \times n}(\mathbb{R})=m \times n$ matrices with entries in \mathbb{R} and the natural operations of sum of matrices and multiplication by scalars is an \mathbb{R}-e.v.
- The set of polynomials of degree $\leq d$, $\mathbb{R}_{d}[x]=\left\{p(x)=a_{0}+a_{1} x+\ldots+a_{d} x^{d} \mid a_{i} \in \mathbb{R}\right\}$, is an \mathbb{R}-e.v. with the usual sum of polynomials and multplication by a scalar.
- $\mathbb{R}[x]=$ \{polynomials in one variable x and coefficients in $\mathbb{R}\}$ is an \mathbb{R}-e.v.
- The set $\mathcal{F}(\mathbb{R}, \mathbb{R})$ of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an \mathbb{R}-e.v. with the usual sum of functions $(f+g$ is the function $(f+g)(x)=f(x)+g(x))$ and product by a scalar $(c \cdot f$ is the function $(c \cdot f)(x)=c f(x))$.

Properties

If E is a \mathbb{K}-e.v., then, $\forall u \in E, c \in \mathbb{K}$,
(a) $0 \cdot u=\mathbf{0}=c \cdot \mathbf{0}$,

Properties

If E is a \mathbb{K}-e.v., then, $\forall u \in E, c \in \mathbb{K}$,
(a) $0 \cdot u=\mathbf{0}=c \cdot \mathbf{0}$,
(b) $(-1) \cdot u=-u$,

Note: Usually we omit the dot "

Properties

If E is a \mathbb{K}-e.v., then, $\forall u \in E, c \in \mathbb{K}$,
(a) $0 \cdot u=\mathbf{0}=c \cdot \mathbf{0}$,
(b) $(-1) \cdot u=-u$,
(c) $(-c) \cdot u=c \cdot(-u)=-(c \cdot u)$ (so we denote it by $-c u$),

Properties

If E is a \mathbb{K}-e.v., then, $\forall u \in E, c \in \mathbb{K}$,
(a) $0 \cdot u=\mathbf{0}=c \cdot \mathbf{0}$,
(b) $(-1) \cdot u=-u$,
(c) $(-c) \cdot u=c \cdot(-u)=-(c \cdot u)$ (so we denote it by $-c u$),
(d) $c \cdot u=\mathbf{0} \Leftrightarrow c=0$ or $u=0$

Note: Usually we omit the dot "."

Linear combinations

Definition
A vector u is a linear combination of vectors u_{1}, \ldots, u_{k} if there are scalars c_{1}, \ldots, c_{k} such that $u=c_{1} u_{1}+\ldots+c_{k} u_{k}$ (the scalars c_{i} are the coefficients of the linear combination).
collection of given vectors is equivalent to solving a linear system of equations: Proposition

A system $A x=b$ is consistent if and only if b is a linear

Linear combinations

Definition

A vector u is a linear combination of vectors u_{1}, \ldots, u_{k} if there are scalars c_{1}, \ldots, c_{k} such that $u=c_{1} u_{1}+\ldots+c_{k} u_{k}$ (the scalars c_{i} are the coefficients of the linear combination).
Finding out whether a vector in \mathbb{K}^{n} is a linear combination of a collection of given vectors is equivalent to solving a linear system of equations:

Proposition
A system $A x=b$ is consistent if and only if b is a linear

Linear combinations

Definition

A vector u is a linear combination of vectors u_{1}, \ldots, u_{k} if there are scalars c_{1}, \ldots, c_{k} such that $u=c_{1} u_{1}+\ldots+c_{k} u_{k}$ (the scalars c_{i} are the coefficients of the linear combination).
Finding out whether a vector in \mathbb{K}^{n} is a linear combination of a collection of given vectors is equivalent to solving a linear system of equations:

Proposition
A system $A x=b$ is consistent if and only if b is a linear combination of the columns of A.

Outline

\mathbb{R}^{n} and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Vector subspaces

Definition

Let E be a \mathbb{K}-e.v. Then a subset $V \neq \emptyset$ of E is a vector subspace if V is itself a vector space (with + and \cdot of E). This is equivalent to:

1. If u and v are in V, then $u+v$ is in V.
2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

Vector subspaces

Definition

Let E be a \mathbb{K}-e.v. Then a subset $V \neq \emptyset$ of E is a vector subspace if V is itself a vector space (with + and \cdot of E). This is equivalent to:

1. If u and v are in V, then $u+v$ is in V.
2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V=\mathbb{K}^{n}$ is a vector subspace of \mathbb{K}^{n}.

Vector subspaces

Definition

Let E be a \mathbb{K}-e.v. Then a subset $V \neq \emptyset$ of E is a vector subspace if V is itself a vector space (with + and \cdot of E). This is equivalent to:

1. If u and v are in V, then $u+v$ is in V.
2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V=\mathbb{K}^{n}$ is a vector subspace of \mathbb{K}^{n}.
- $V=\{\mathbf{0}\}$ is a vector subspace (of any E).

Vector subspaces

Definition

Let E be a \mathbb{K}-e.v. Then a subset $V \neq \emptyset$ of E is a vector subspace if V is itself a vector space (with + and \cdot of E). This is equivalent to:

1. If u and v are in V, then $u+v$ is in V.
2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V=\mathbb{K}^{n}$ is a vector subspace of \mathbb{K}^{n}.
- $V=\{\mathbf{0}\}$ is a vector subspace (of any E).
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0,3 z=0\right\}$ is a vector subspace of \mathbb{R}^{3}.

Vector subspaces

Definition

Let E be a \mathbb{K}-e.v. Then a subset $V \neq \emptyset$ of E is a vector subspace if V is itself a vector space (with + and \cdot of E). This is equivalent to:

1. If u and v are in V, then $u+v$ is in V.
2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V=\mathbb{K}^{n}$ is a vector subspace of \mathbb{K}^{n}.
- $V=\{\mathbf{0}\}$ is a vector subspace (of any E).
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0,3 z=0\right\}$ is a vector subspace of \mathbb{R}^{3}.
- $F=\left\{(a+2 b, 0, b) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}$ is a vector subspace of \mathbb{R}^{3}.

Remarks

- Every subspace contains the zero vector.
- Properties 1 and 2 can be combined: $V \neq \emptyset$ is a subspace \Leftrightarrow for any u_{1} in \mathbb{K}, the linear combination $c_{1} u_{1}+\ldots+c_{k} u_{k}$
is also in V.
That is vector subspaces are closed under linear combinations.

Remarks

- Every subspace contains the zero vector.
- Properties 1 and 2 can be combined:
$V \neq \emptyset$ is a subspace \Leftrightarrow for any u_{1}, \ldots, u_{k} in V and c_{1}, \ldots, c_{k} in \mathbb{K}, the linear combination

$$
c_{1} u_{1}+\ldots+c_{k} u_{k}
$$

is also in V.
That is, vector subspaces are closed under linear combinations.

Remarks

- Every subspace contains the zero vector.
- Properties 1 and 2 can be combined:
$V \neq \emptyset$ is a subspace \Leftrightarrow for any u_{1}, \ldots, u_{k} in V and c_{1}, \ldots, c_{k} in \mathbb{K}, the linear combination

$$
c_{1} u_{1}+\ldots+c_{k} u_{k}
$$

is also in V.
That is, vector subspaces are closed under linear combinations.

Proposition

Let $A x=0$ be a linear system, where $A \in \mathcal{M}_{m, n}(\mathbb{K})$. Then, the set of solutions $V=\left\{v \in \mathbb{K}^{n} \mid A v=0\right\}$ is a vector subspace of \mathbb{K}^{n}.

Let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in E.
Definition
The set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$,

$$
\left\{c_{1} v_{1}+\ldots+c_{k} v_{k} \mid c_{1}, \ldots, c_{n} \in \mathbb{K}\right\}
$$

is the called the span of $v_{1}, v_{2}, \ldots, v_{k}$ and is denoted as $\left[v_{1}, v_{2}, \ldots, v_{k}\right]$.

Proposition
$V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is a vector subspace and is the smallest
subspace containing $\left\{v_{1}\right.$

Let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in E.
Definition
The set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$,

$$
\left\{c_{1} v_{1}+\ldots+c_{k} v_{k} \mid c_{1}, \ldots, c_{n} \in \mathbb{K}\right\}
$$

is the called the span of $v_{1}, v_{2}, \ldots, v_{k}$ and is denoted as $\left[v_{1}, v_{2}, \ldots, v_{k}\right]$.

Proposition
$V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is a vector subspace and is the smallest subspace containing $\left\{v_{1}, \ldots, v_{k}\right\}$.

Let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in E.
Definition
The set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$,

$$
\left\{c_{1} v_{1}+\ldots+c_{k} v_{k} \mid c_{1}, \ldots, c_{n} \in \mathbb{K}\right\}
$$

is the called the span of $v_{1}, v_{2}, \ldots, v_{k}$ and is denoted as $\left[v_{1}, v_{2}, \ldots, v_{k}\right]$.

Proposition
$V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is a vector subspace and is the smallest subspace containing $\left\{v_{1}, \ldots, v_{k}\right\}$.
We say that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a system of generators of V, and also that V is spanned by $v_{1}, v_{2}, \ldots, v_{k}$.

Examples:

- $\mathbb{R}^{n}=[(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)]$.

Examples:

- $\mathbb{R}^{n}=[(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0,3 z=0\right\} \Rightarrow V=[(1,1,0)]$.

Examples:

- $\mathbb{R}^{n}=[(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0,3 z=0\right\} \Rightarrow V=[(1,1,0)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0\right\} \Rightarrow V=[(1,1,0),(0,0,1)]$.

Examples:

- $\mathbb{R}^{n}=[(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0,3 z=0\right\} \Rightarrow V=[(1,1,0)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0\right\} \Rightarrow V=[(1,1,0),(0,0,1)]$.
- $F=\left\{(a+2 b, 0, b) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}=[(1,0,0),(2,0,1)]$.

Examples:

- $\mathbb{R}^{n}=[(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0,3 z=0\right\} \Rightarrow V=[(1,1,0)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0\right\} \Rightarrow V=[(1,1,0),(0,0,1)]$.
- $F=\left\{(a+2 b, 0, b) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}=[(1,0,0),(2,0,1)]$.

A vector space E is finitely generated (f.g.) if it is the span of a finite collection of vectors.

Examples:

- $\mathbb{R}^{n}=[(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0,3 z=0\right\} \Rightarrow V=[(1,1,0)]$.
- $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0\right\} \Rightarrow V=[(1,1,0),(0,0,1)]$.
- $F=\left\{(a+2 b, 0, b) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}=[(1,0,0),(2,0,1)]$.

A vector space E is finitely generated (f.g.) if it is the span of a finite collection of vectors.

- \mathbb{K}^{n} is f.g.
$-\mathbb{R}[x]$ is not f.g.

Outline

[^0]Bibliography

Linear dependency

Definition
$v_{1}, v_{2}, \ldots, v_{k} \in E$ are linearly dependent (I.d.) if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$, at least one $\neq 0$, such that $c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$. Otherwise, we say that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent (I.i.).

Linear dependency

Definition
$v_{1}, v_{2}, \ldots, v_{k} \in E$ are linearly dependent (I.d.) if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$, at least one $\neq 0$, such that $c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$. Otherwise, we say that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent (l.i.).
$v_{1}, v_{2}, \ldots, v_{k}$ are I.i. \Leftrightarrow any linear combination
$c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$ implies $c_{1}=c_{2}=\ldots=c_{k}=0$.
Remarks:

1. Any set of vectors containing $\mathbf{0}$ is linearly dependent.

Linear dependency

Definition
$v_{1}, v_{2}, \ldots, v_{k} \in E$ are linearly dependent (I.d.) if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$, at least one $\neq 0$, such that $c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$. Otherwise, we say that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent (l.i.).
$v_{1}, v_{2}, \ldots, v_{k}$ are I.i. \Leftrightarrow any linear combination
$c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$ implies $c_{1}=c_{2}=\ldots=c_{k}=0$.
Remarks:

1. Any set of vectors containing $\mathbf{0}$ is linearly dependent.
2. Two vectors v_{1}, v_{2} are I.d. \Leftrightarrow one is multiple of the other.

Linear dependency

Definition

$v_{1}, v_{2}, \ldots, v_{k} \in E$ are linearly dependent (I.d.) if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$, at least one $\neq 0$, such that $c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$. Otherwise, we say that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent (I.i.).
$v_{1}, v_{2}, \ldots, v_{k}$ are I.i. \Leftrightarrow any linear combination
$c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$ implies $c_{1}=c_{2}=\ldots=c_{k}=0$.

Remarks:

1. Any set of vectors containing $\mathbf{0}$ is linearly dependent.
2. Two vectors v_{1}, v_{2} are I.d. \Leftrightarrow one is multiple of the other.
3. $v_{1}, v_{2}, \ldots, v_{k}$ in E are I.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.

Linear dependency

Definition

$v_{1}, v_{2}, \ldots, v_{k} \in E$ are linearly dependent (I.d.) if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$, at least one $\neq 0$, such that $c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$. Otherwise, we say that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent (l.i.).
$v_{1}, v_{2}, \ldots, v_{k}$ are I.i. \Leftrightarrow any linear combination
$c_{1} v_{1}+\ldots+c_{k} v_{k}=\mathbf{0}$ implies $c_{1}=c_{2}=\ldots=c_{k}=0$.

Remarks:

1. Any set of vectors containing $\mathbf{0}$ is linearly dependent.
2. Two vectors v_{1}, v_{2} are I.d. \Leftrightarrow one is multiple of the other.
3. $v_{1}, v_{2}, \ldots, v_{k}$ in E are I.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.
4. If v_{1}, \ldots, v_{k} are I.i. and $u \notin\left[v_{1}, \ldots, v_{k}\right] \Rightarrow v_{1}, \ldots, v_{k}, u$ are I.i.

Basis of a vector subspace

Definition

Let $V \subset E$ be a vector subspace. A collection of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of V if

1. $V=\left[v_{1}, \ldots, v_{k}\right]$ and
2. $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Basis of a vector subspace

Definition

Let $V \subset E$ be a vector subspace. A collection of vectors
$\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of V if

1. $V=\left[v_{1}, \ldots, v_{k}\right]$ and
2. $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Ex: $(1,1,0),(0,0,1)$ is a basis of $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y=0\right\}$.

Standard basis

There are some standard (or natural, canonical) bases of certain vector spaces:

- $\mathbb{K}^{n}:\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=(0, \ldots, \stackrel{i}{1}, \ldots, 0)$ for $i=1,2, \ldots, n$.

Standard basis

There are some standard (or natural, canonical) bases of certain vector spaces:

- $\mathbb{K}^{n}:\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=(0, \ldots, \stackrel{i}{1}, \ldots, 0)$ for $i=1,2, \ldots, n$.
- $\mathcal{M}_{m \times n}:\left\{E_{i, j}\right\}_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ where $E_{i, j} \in \mathcal{M}_{m \times n}$ has 1 at entry
(i, j) and 0 's elsewhere.

Standard basis

There are some standard (or natural, canonical) bases of certain vector spaces:

- $\mathbb{K}^{n}:\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=(0, \ldots, \stackrel{i}{1}, \ldots, 0)$ for $i=1,2, \ldots, n$.
- $\mathcal{M}_{m \times n}:\left\{E_{i, j}\right\}_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ where $E_{i, j} \in \mathcal{M}_{m \times n}$ has 1 at entry
(i, j) and 0 's elsewhere.
$-\mathbb{R}_{d}[x]:\left\{1, x, \ldots, x^{d}\right\}$

Coordinates

Theorem
Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of a \mathbb{K}-e.v. E. Then, for every vector $v \in E$, there is exactly one way to write v as a linear combination of the vectors in B, that is, there exist $c_{1}, \ldots, c_{n} \in \mathbb{K}$ such that $v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ and moreover, these c_{1}, \ldots, c_{n} are unique.

Coordinates

Theorem
Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of a \mathbb{K}-e.v. E. Then, for every vector $v \in E$, there is exactly one way to write v as a linear combination of the vectors in B, that is, there exist $c_{1}, \ldots, c_{n} \in \mathbb{K}$ such that $v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ and moreover, these c_{1}, \ldots, c_{n} are unique.

Definition

The $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of v with respect to B.

Coordinates

Theorem
Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of a \mathbb{K}-e.v. E. Then, for every vector $v \in E$, there is exactly one way to write v as a linear combination of the vectors in B, that is, there exist $c_{1}, \ldots, c_{n} \in \mathbb{K}$ such that $v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ and moreover, these c_{1}, \ldots, c_{n} are unique.

Definition

The $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of v with respect to B.

We will use the notation

$$
v_{B}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) .
$$

Coordinates: from E to \mathbb{K}^{n}

Taking coordinates of a vectors in a given basis preserves linear combinations:
If $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of E and u_{1}, \ldots, u_{k} are in E, then

$$
\left(x_{1} u_{1}+\ldots+x_{k} u_{k}\right)_{B}=x_{1}\left(u_{1}\right)_{B}+\ldots+x_{k}\left(u_{k}\right)_{B}
$$

Coordinates: from E to \mathbb{K}^{n}

Taking coordinates of a vectors in a given basis preserves linear combinations:
If $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of E and u_{1}, \ldots, u_{k} are in E, then

$$
\left(x_{1} u_{1}+\ldots+x_{k} u_{k}\right)_{B}=x_{1}\left(u_{1}\right)_{B}+\ldots+x_{k}\left(u_{k}\right)_{B}
$$

In particular,

- u_{1}, \ldots, u_{k} are I.i. $\Leftrightarrow\left(u_{1}\right)_{B}, \ldots,\left(u_{k}\right)_{B}$ are I.i. in \mathbb{K}^{n}.

Basis and dimension

Proposition

Every (f.g.) \mathbb{K}-e.v. $E \neq \overrightarrow{0}$ has a basis.

Basis and dimension

Proposition

Every (f.g.) \mathbb{K}-e.v. $E \neq \overrightarrow{0}$ has a basis.

Basis and dimension

Proposition

Every (f.g.) \mathbb{K}-e.v. $E \neq \overrightarrow{0}$ has a basis.
Theorem (Steinitz substitution lemma)
Let E be an f.g. \mathbb{K}-e.v. Let v_{1}, \ldots, v_{m} be generators of E and $u_{1}, \ldots, u_{n} \in E$ be l.i. Then, $n \leq m$ and one can substitute n vectors of $\left\{v_{1}, \ldots, v_{m}\right\}$ by u_{1}, \ldots, u_{n} such that the new collection of vectors is still a system of generators for E.

Corollary (The Basis Theorem)
Any two bases of a f.g. vector space have the same number of elements.

Basis and dimension

Proposition

Every (f.g.) \mathbb{K}-e.v. $E \neq \overrightarrow{0}$ has a basis.
Theorem (Steinitz substitution lemma)
Let E be an f.g. \mathbb{K}-e.v. Let v_{1}, \ldots, v_{m} be generators of E and $u_{1}, \ldots, u_{n} \in E$ be l.i. Then, $n \leq m$ and one can substitute n vectors of $\left\{v_{1}, \ldots, v_{m}\right\}$ by u_{1}, \ldots, u_{n} such that the new collection of vectors is still a system of generators for E.

Corollary (The Basis Theorem)
Any two bases of a f.g. vector space have the same number of elements.
Dimension of the vector space $\operatorname{dim}(E)=$ cardinal of any basis. By convention, $\operatorname{dim}(\{\overrightarrow{0}\})=0$.

Proposition

Let E be a vector space of dimension $n, n \geq 1$. Then:

> Any system of generators for E contains $\geq n$ vectors. Moreover, it contains a basis of E

> Any linearly independent set in $ᄃ$ contains $<n$ vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).

Proposition

Let E be a vector space of dimension $n, n \geq 1$. Then:

1. Any system of generators for E contains $\geq n$ vectors.

Moreover, it contains a basis of E.

Proposition

Let E be a vector space of dimension $n, n \geq 1$. Then:

1. Any system of generators for E contains $\geq n$ vectors.

Moreover, it contains a basis of E.
2. Any linearly independent set in E contains $\leq n$ vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).

Proposition

Let E be a vector space of dimension $n, n \geq 1$. Then:

1. Any system of generators for E contains $\geq n$ vectors.

Moreover, it contains a basis of E.
2. Any linearly independent set in E contains $\leq n$ vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
3. Any linearly independent set of n vectors in E is a basis for E.

Proposition

Let E be a vector space of dimension $n, n \geq 1$. Then:

1. Any system of generators for E contains $\geq n$ vectors. Moreover, it contains a basis of E.
2. Any linearly independent set in E contains $\leq n$ vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
3. Any linearly independent set of n vectors in E is a basis for E.
4. Any system of generators for E consisting of n vectors is a basis for E.

Hence,
$n=$ minimum number of elements in a system of generators of E
$=$ maximum number of l.i. vectors in E.

Theorem
Let $V_{1} \subset V_{2}$ be subspaces of E and $\operatorname{dim}(E)=n$. Then:

Theorem
Let $V_{1} \subset V_{2}$ be subspaces of E and $\operatorname{dim}(E)=n$. Then:

1. $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2} \leq n$.

Theorem
Let $V_{1} \subset V_{2}$ be subspaces of E and $\operatorname{dim}(E)=n$. Then:

1. $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2} \leq n$.
2. $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$ if and only if $V_{1}=V_{2}$.

Rank (revisited)

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{K}^{n}$, if $A=\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{M}_{n, k}(\mathbb{K})$, then
a) $v_{1}, v_{2}, \ldots, v_{k}$ are I.d. \Leftrightarrow the homogeneous system $A x=0$ has a nontrivial solution (indeterminate system).
b) $v_{1}, v_{2}, \ldots, v_{k}$ are I.i. $\Leftrightarrow \operatorname{rank}(A)=k$.
c) $v_{1}, v_{2}, \ldots, v_{k}$ are a system of generators of $\mathbb{K}^{n} \Leftrightarrow$ $\operatorname{rank}(A)=n$.
d) $v_{1}, v_{2}, \ldots, v_{k}$ is a basis of $\mathbb{K}^{n} \Leftrightarrow k=n$ and $\operatorname{rank}(A)=n$.

Rank (revisited)

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{K}^{n}$, if $A=\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{M}_{n, k}(\mathbb{K})$, then
a) $v_{1}, v_{2}, \ldots, v_{k}$ are I.d. \Leftrightarrow the homogeneous system $A x=0$ has a nontrivial solution (indeterminate system).
b) $v_{1}, v_{2}, \ldots, v_{k}$ are I.i. $\Leftrightarrow \operatorname{rank}(A)=k$.
c) $v_{1}, v_{2}, \ldots, v_{k}$ are a system of generators of $\mathbb{K}^{n} \Leftrightarrow$ $\operatorname{rank}(A)=n$.
d) $v_{1}, v_{2}, \ldots, v_{k}$ is a basis of $\mathbb{K}^{n} \Leftrightarrow k=n$ and $\operatorname{rank}(A)=n$.

Proposition
The rank of a matrix A equals:

Rank (revisited)

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{K}^{n}$, if $A=\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{M}_{n, k}(\mathbb{K})$, then
a) $v_{1}, v_{2}, \ldots, v_{k}$ are I.d. \Leftrightarrow the homogeneous system $A x=0$ has a nontrivial solution (indeterminate system).
b) $v_{1}, v_{2}, \ldots, v_{k}$ are I.i. $\Leftrightarrow \operatorname{rank}(A)=k$.
c) $v_{1}, v_{2}, \ldots, v_{k}$ are a system of generators of $\mathbb{K}^{n} \Leftrightarrow$ $\operatorname{rank}(A)=n$.
d) $v_{1}, v_{2}, \ldots, v_{k}$ is a basis of $\mathbb{K}^{n} \Leftrightarrow k=n$ and $\operatorname{rank}(A)=n$.

Proposition

The rank of a matrix A equals:

- dimension of the row span of A (max. number of l.i. rows) and

Rank (revisited)

Theorem
Given $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{K}^{n}$, if $A=\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{M}_{n, k}(\mathbb{K})$, then
a) $v_{1}, v_{2}, \ldots, v_{k}$ are I.d. \Leftrightarrow the homogeneous system $A x=0$ has a nontrivial solution (indeterminate system).
b) $v_{1}, v_{2}, \ldots, v_{k}$ are l.i. $\Leftrightarrow \operatorname{rank}(A)=k$.
c) $v_{1}, v_{2}, \ldots, v_{k}$ are a system of generators of $\mathbb{K}^{n} \Leftrightarrow$ $\operatorname{rank}(A)=n$.
d) $v_{1}, v_{2}, \ldots, v_{k}$ is a basis of $\mathbb{K}^{n} \Leftrightarrow k=n$ and $\operatorname{rank}(A)=n$.

Proposition

The rank of a matrix A equals:

- dimension of the row span of A (max. number of l.i. rows) and
- dimension of the column span of A (max. number of I.i. columns).

\mathbb{K}^{n} : Finding a basis from generators

If $V=\left[v_{1}, v_{2}, \ldots, v_{k}\right] \subset \mathbb{K}^{n}$, then a basis of V can be obtained by applying one the following methods:

1 Write the vectors v_{1}, \ldots, v_{k} as the rows of a matrix A, and reduce A to row echelon form \bar{A} (Gaussian elimination). The nonzero rows of \bar{A} are a basis of V.

\mathbb{K}^{n} : Finding a basis from generators

If $V=\left[v_{1}, v_{2}, \ldots, v_{k}\right] \subset \mathbb{K}^{n}$, then a basis of V can be obtained by applying one the following methods:

1 Write the vectors v_{1}, \ldots, v_{k} as the rows of a matrix A, and reduce A to row echelon form \bar{A} (Gaussian elimination). The nonzero rows of \bar{A} are a basis of V.

2 Write the vectors v_{1}, \ldots, v_{k} as the columns of a matrix B. Then, reduce B to row echelon form \bar{B} (Gaussian elimination). The columns of \bar{B} with pivots indicate which vectors v_{1}, \ldots, v_{k} to choose to obtain a basis of V.

Extending to a basis of \mathbb{K}^{n}

If u_{1}, \ldots, u_{k} are linearly independent vectors of \mathbb{K}^{n}, then they can be extended to a basis of \mathbb{K}^{n} :

- Write the vectors u_{1}, \ldots, u_{k} as the columns of a matrix B, and take $M=\left(B \mid I_{n}\right)$.

Extending to a basis of \mathbb{K}^{n}

If u_{1}, \ldots, u_{k} are linearly independent vectors of \mathbb{K}^{n}, then they can be extended to a basis of \mathbb{K}^{n} :

- Write the vectors u_{1}, \ldots, u_{k} as the columns of a matrix B, and take $M=\left(B \mid I_{n}\right)$.
- Then, reduce M to row echelon form $\bar{M}=\left(\bar{B} \mid \bar{I}_{n}\right)$ (Gaussian elimination).

Extending to a basis of \mathbb{K}^{n}

If u_{1}, \ldots, u_{k} are linearly independent vectors of \mathbb{K}^{n}, then they can be extended to a basis of \mathbb{K}^{n} :

- Write the vectors u_{1}, \ldots, u_{k} as the columns of a matrix B, and take $M=\left(B \mid I_{n}\right)$.
- Then, reduce M to row echelon form $\bar{M}=\left(\bar{B} \mid \bar{I}_{n}\right)$ (Gaussian elimination).
- Collect the columns of \bar{I}_{n} with a pivot and choose the corresponding vectors of the standard basis (columns of I_{n}) of \mathbb{K}^{n}.

Extending to a basis of \mathbb{K}^{n}

If u_{1}, \ldots, u_{k} are linearly independent vectors of \mathbb{K}^{n}, then they can be extended to a basis of \mathbb{K}^{n} :

- Write the vectors u_{1}, \ldots, u_{k} as the columns of a matrix B, and take $M=\left(B \mid I_{n}\right)$.
- Then, reduce M to row echelon form $\bar{M}=\left(\bar{B} \mid \bar{I}_{n}\right)$ (Gaussian elimination).
- Collect the columns of \bar{I}_{n} with a pivot and choose the corresponding vectors of the standard basis (columns of I_{n}) of \mathbb{K}^{n}.
- u_{1}, \ldots, u_{k} together with these last vectors form a basis of \mathbb{K}^{n}.

Extending to a basis of \mathbb{K}^{n}

If u_{1}, \ldots, u_{k} are linearly independent vectors of \mathbb{K}^{n}, then they can be extended to a basis of \mathbb{K}^{n} :

- Write the vectors u_{1}, \ldots, u_{k} as the columns of a matrix B, and take $M=\left(B \mid I_{n}\right)$.
- Then, reduce M to row echelon form $\bar{M}=\left(\bar{B} \mid \bar{I}_{n}\right)$ (Gaussian elimination).
- Collect the columns of \bar{I}_{n} with a pivot and choose the corresponding vectors of the standard basis (columns of I_{n}) of \mathbb{K}^{n}.
- u_{1}, \ldots, u_{k} together with these last vectors form a basis of \mathbb{K}^{n}.

The same can be done if u_{1}, \ldots, u_{k} are linearly independent vectors of a vector subspace V : instead of I_{n}, take a matrix formed by a basis v_{1}, \ldots, v_{d} of V and do the same process as above for $M=\left(u_{1}, \ldots, u_{k} \mid v_{1}, \ldots, v_{d}\right)$.

Subspaces of \mathbb{K}^{n} : Generators \leftrightarrow Equations

From "generators" to "equations":
If $V=\left[v_{1}, \ldots, v_{k}\right] \subset \mathbb{K}^{n}$:
Write $M=\left(v_{1}, \ldots, v_{k}\right)$, and form an augmented matrix $(M \mid x)$
with $x=$ column with entries $x_{1}, x_{2}, \ldots, x_{n}$.
Then $x \in\left[v_{1}, \ldots, v_{k}\right]$ if and only if $\operatorname{rank}(M \mid x)=\operatorname{rank}(M)$.
There are 2 options:

- Reduce M to echelon form ($\bar{M} \mid \bar{x}$) by Gaussian elimination \Rightarrow a linear system of equations for V is obtained by writing the equations that correspond to zero rows of \bar{M}.

Subspaces of \mathbb{K}^{n} : Generators \leftrightarrow Equations

From "generators" to "equations":
If $V=\left[v_{1}, \ldots, v_{k}\right] \subset \mathbb{K}^{n}$:
Write $M=\left(v_{1}, \ldots, v_{k}\right)$, and form an augmented matrix $(M \mid x)$
with $x=$ column with entries $x_{1}, x_{2}, \ldots, x_{n}$.
Then $x \in\left[v_{1}, \ldots, v_{k}\right]$ if and only if $\operatorname{rank}(M \mid x)=\operatorname{rank}(M)$.
There are 2 options:

- Reduce M to echelon form ($\bar{M} \mid \bar{x}$) by Gaussian elimination \Rightarrow a linear system of equations for V is obtained by writing the equations that correspond to zero rows of \bar{M}.
- If $\operatorname{rank}(M)=k$, the equations are formed by the vanishing of the $(k+1) \times(k+1)$ minors of $(M \mid x)$ that contain a chosen non-zero $k \times k$ minor of M.

Subspaces of \mathbb{K}^{n} : Generators \leftrightarrow Equations

From "equations" to "generators":

If $V=\left\{u \in \mathbb{K}^{n} \mid A u=0\right\}$ (solutions to a homogeneous system):

- It is enough to solve the system to obtain a system of generators of V.
- Moreover, if we give values 0's and 1's to the free variables, these generators form a basis and $\operatorname{dim}(V)=n-\operatorname{rank}(A)$.
We have proved:

Subspaces of \mathbb{K}^{n} : Generators \leftrightarrow Equations

From "equations" to "generators":
If $V=\left\{u \in \mathbb{K}^{n} \mid A u=0\right\}$ (solutions to a homogeneous system):

- It is enough to solve the system to obtain a system of generators of V.
- Moreover, if we give values 0's and 1's to the free variables, these generators form a basis and $\operatorname{dim}(V)=n-\operatorname{rank}(A)$.
We have proved:
Corollary
A subset V of \mathbb{K}^{n} is a subspace \Leftrightarrow it is the set of solutions to a homogeneous system.

Outline

```
\mp@subsup{\mathbb{R}}{}{n}}\mathrm{ and other vector spaces
Vector subspaces
Linear dependency, basis and dimension
```

Change of basis

Intersection and sum

Bibliography

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be bases of E. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors $\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}$ of B with respect to C. This is the change-of-basis matrix from B to C :

$$
A_{B \rightarrow C}=\left(\begin{array}{lll}
\left(u_{1}\right)_{C} & \ldots & \left(u_{n}\right)_{C}
\end{array}\right)
$$

Proposition

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be bases of E. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors $\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}$ of B with respect to C. This is the change-of-basis matrix from B to C :

$$
A_{B \rightarrow C}=\left(\begin{array}{lll}
\left(u_{1}\right)_{C} & \ldots & \left(u_{n}\right)_{C}
\end{array}\right)
$$

Proposition

1. $A_{B \rightarrow C} w_{B}=w_{C}$ for all $w \in E$.

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be bases of E. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors $\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}$ of B with respect to C. This is the change-of-basis matrix from B to C :

$$
A_{B \rightarrow C}=\left(\begin{array}{lll}
\left(u_{1}\right)_{C} & \ldots & \left(u_{n}\right)_{C}
\end{array}\right)
$$

Proposition

1. $A_{B \rightarrow C} w_{B}=w_{C}$ for all $w \in E$.
2. $A_{B \rightarrow C}$ is invertible, and $\left(A_{B \rightarrow C}\right)^{-1}=A_{C \rightarrow B}$.

Change of basis

Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be bases of E. Denote by $A_{B \rightarrow C}$ the $n \times n$ matrix whose columns are the coordinate vectors $\left(u_{1}\right)_{C}, \ldots,\left(u_{n}\right)_{C}$ of B with respect to C. This is the change-of-basis matrix from B to C :

$$
A_{B \rightarrow C}=\left(\begin{array}{lll}
\left(u_{1}\right)_{C} & \ldots & \left(u_{n}\right)_{C}
\end{array}\right)
$$

Proposition

1. $A_{B \rightarrow C} w_{B}=w_{C}$ for all $w \in E$.
2. $A_{B \rightarrow C}$ is invertible, and $\left(A_{B \rightarrow C}\right)^{-1}=A_{C \rightarrow B}$.
3. If D is another basis of E, then $A_{C \rightarrow D} A_{B \rightarrow C}=A_{B \rightarrow D}$.

Outline

> \mathbb{R}^{n} and other vector spaces

> Vector subspaces

> Linear dependency, basis and dimension

> Change of basis

Intersection and sum

Bibliography

Intersection \& sum of subspaces
Given V_{1}, V_{2} vector subspaces of E, define

1. Intersection of V_{1} and V_{2} is

$$
V_{1} \cap V_{2}=\left\{v \in E \mid v \in V_{1}, v \in V_{2}\right\} .
$$

Intersection \& sum of subspaces

Given V_{1}, V_{2} vector subspaces of E, define

1. Intersection of V_{1} and V_{2} is
$V_{1} \cap V_{2}=\left\{v \in E \mid v \in V_{1}, v \in V_{2}\right\}$.
2. Sum of V_{1} and V_{2} is
$V_{1}+V_{2}=\left\{v_{1}+v_{2} \in E \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$.
Computation: If $V_{1}=\left[u_{1}, \ldots, u_{r}\right]$ and $V_{2}=\left[v_{1}, \ldots, v_{s}\right]$, then $V_{1}+V_{2}=\left[u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{s}\right]$.

Theorem

1. $V_{1} \cap V_{2}$ and $V_{1}+V_{2}$ are vector subspaces of E.
2. Grassmann formula: if $\operatorname{dim}(E)<\infty$, then

$$
\operatorname{dim}\left(V_{1} \cap V_{2}\right)+\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)
$$

Ex:

$$
\begin{array}{ll}
V_{1}=[(1,0,1),(0,2,3)] & V_{1} \cap V_{2}=[(1,0,1)] \\
V_{2}=[(0,1,0),(1,1,1)] & V_{1}+V_{2}=\mathbb{R}^{3}
\end{array}
$$

Direct sum

Definition

E is the direct sum of subspaces F_{1} and F_{2} if any $w \in E$ can be written in a unique way as $w=v_{1}+v_{2}$ with $v_{1} \in F_{1}, v_{2} \in F_{2}$.
In this case we use the notation $E=F_{1} \oplus F_{2}$.

If $E=F_{1} \oplus F_{2}$, we say that F_{2} is a complementary subspace to
F_{1} (and vice-versa)

Direct sum

Definition

E is the direct sum of subspaces F_{1} and F_{2} if any $w \in E$ can be written in a unique way as $w=v_{1}+v_{2}$ with $v_{1} \in F_{1}, v_{2} \in F_{2}$.
In this case we use the notation $E=F_{1} \oplus F_{2}$.
Proposition
Let F_{1}, F_{2} be two subspaces of E. Then $E=F_{1} \oplus F_{2}$ if and only if the following two conditions hold:

$$
\begin{gathered}
E=F_{1}+F_{2}, \\
F_{1} \cap F_{2}=\{0\} .
\end{gathered}
$$

Direct sum

Definition

E is the direct sum of subspaces F_{1} and F_{2} if any $w \in E$ can be written in a unique way as $w=v_{1}+v_{2}$ with $v_{1} \in F_{1}, v_{2} \in F_{2}$. In this case we use the notation $E=F_{1} \oplus F_{2}$.

Proposition
Let F_{1}, F_{2} be two subspaces of E. Then $E=F_{1} \oplus F_{2}$ if and only if the following two conditions hold:

$$
\begin{gathered}
E=F_{1}+F_{2}, \\
F_{1} \cap F_{2}=\{0\} .
\end{gathered}
$$

If $E=F_{1} \oplus F_{2}$, we say that F_{2} is a complementary subspace to F_{1} (and vice-versa).

Outline

```
\mp@subsup{\mathbb{R}}{}{n}}\mathrm{ and other vector spaces
Vector subspaces
Linear dependency, basis and dimension
Change of basis
Intersection and sum
```

Bibliography

Bibliography

Basic:

- D. Poole, Linear Algebra, A modern introduction (3rd edition), Brooks/Cole, 2011. Chapter 6.
Additional
- Hernández Rodríguez, E.; Vàzquez Gallo, M.J.; Zurro Moro, M.A. Álgebra lineal y geometría [en línia]

[^0]: \mathbb{R}^{n} and other vector spaces

 Vector subspaces

 Linear dependency, basis and dimension

 ## Change of basis

 Intersection and sum

