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Rn and other vector spaces

The vector space Rn

We consider the set of n-tuples of real numbers:

Rn = {(x1, x2, . . . , xn) | xi ∈ R}

and we call its elements vectors.
Notation: When we talk about v ∈ Rn we usually think of v as a
column vector,

v =

x1
...
xn

 .
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Rn and other vector spaces

R2: Physical interpretation
▶ View (x , y) ∈ R2 as a directed line segment between two

points A and B, (x , y) = ”vector”
−→
AB.

▶
−→
AB : the displacement needed to get from A to B: x units
along the x-axis and y along the y -axis.

▶ Two vectors are equal if they represent the same displacement
(⇔ they have the same length, direction, and sense).

▶ We can always think (x , y) as a vector of initial point (0, 0)
and end point (x , y).
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Rn and other vector spaces

Operations in R2

We can sum or substract vectors

and multiply a vector by a constant (scalar)
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Rn and other vector spaces

R3

▶ Vectors in R3 have a similar physical interpretation

▶ We can also sum two vectors and multiply a vector by a
scalar. These operations can be done in coordinates: if
u = (x1, x2, x3) and v = (y1, y2, y3), then

u + v = (x1 + y1, x2 + y2, x3 + y3),

c · u = (cx1, cx2, cx3) for any c ∈ R.
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Rn and other vector spaces

Operations in Rn

In Rn we define the following operations:

sum: if u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn), then

u + v = (x1 + y1, x2 + y2, . . . , xn + yn) ∈ Rn.

scalar multiplication: if u = (x1, x2, . . . , xn), c ∈ R,
then

c · u = (c x1, c x2, . . . , c xn) ∈ Rn.

8



Rn and other vector spaces

Operations in Rn

In Rn we define the following operations:

sum: if u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn), then

u + v = (x1 + y1, x2 + y2, . . . , xn + yn) ∈ Rn.

scalar multiplication: if u = (x1, x2, . . . , xn), c ∈ R,
then

c · u = (c x1, c x2, . . . , c xn) ∈ Rn.

8



Rn and other vector spaces

Proposition

These operations in Rn satisfy the following properties:

1. u + v = v + u. Commutativity

2. (u + v) + w = u + (v + w). Associativity

3. ∃ an element 0 ∈ Rn, called the zero vector, such that
u + 0 = u.

4. For each u ∈ Rn, ∃ an element −u ∈ Rn such that
u + (−u) = 0.

5. c · (u + v) = c · u + c · v . Distributivity
6. (c + d) · u = c · u + d · u. Distributivity
7. c · (d · u) = (cd) · u.
8. 1 · u = u.
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Rn and other vector spaces

Vector space over K
Let K be Q, R, C or any (commutative) field (“cos”).

A vector space over K (or K-e.v.) is a set E with two operations
+ and ·,
+ given u, v ∈ E , it assigns another element u + v of E .

· given u ∈ E and a scalar c ∈ K, it assigns an element c ·u ∈ E

that satisfy the previous properties, i.e,

▶ + is commutative, associative, has a neutral element (denoted
0 or 0⃗) and every u ∈ E has an opposite with respect to +
(denoted −u),

▶ · and + satisfy:

c ·(u+v) = c ·u+c ·v , (c+d)·u = c ·u+d ·u, c ·(d ·u) = (cd)·u, 1·u = u

for any u, v ∈ E and c , d ∈ K.

The elements of a K-e.v. are called vectors.
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Rn and other vector spaces

Examples of vector spaces
▶ Kn = {(x1, . . . , xn) | xi ∈ K} is a K-e.v. with the natural sum

and product inherited by K.
▶ Mm×n(R)=m × n matrices with entries in R and the natural

operations of sum of matrices and multiplication by scalars is
an R-e.v.

▶ The set of polynomials of degree ≤ d ,
Rd [x ] = {p(x) = a0 + a1x + . . .+ adx

d | ai ∈ R}, is an R-e.v.
with the usual sum of polynomials and multplication by a
scalar.

▶ R[x ] =
{polynomials in one variable x and coefficients in R} is an
R-e.v.

▶ The set F(R,R) of functions f : R −→ R is an R-e.v. with
the usual sum of functions (f + g is the function
(f + g)(x) = f (x) + g(x)) and product by a scalar (c · f is
the function (c · f )(x) = cf (x)).
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Rn and other vector spaces

Properties

If E is a K-e.v., then, ∀u ∈ E , c ∈ K,

(a) 0 · u = 0 = c · 0,
(b) (−1) · u = −u,

(c) (−c) · u = c · (−u) = −(c · u) (so we denote it by −cu),

(d) c · u = 0 ⇔ c = 0 or u = 0

Note: Usually we omit the dot ”·”
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Rn and other vector spaces

Linear combinations

Definition
A vector u is a linear combination of vectors u1, . . . , uk if there
are scalars c1, . . . , ck such that u = c1 u1 + . . .+ ck uk (the scalars
ci are the coefficients of the linear combination).

Finding out whether a vector in Kn is a linear combination of a
collection of given vectors is equivalent to solving a linear system
of equations:

Proposition

A system Ax = b is consistent if and only if b is a linear
combination of the columns of A.
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Vector subspaces

Vector subspaces

Definition
Let E be a K-e.v. Then a subset V ̸= ∅ of E is a vector subspace
if V is itself a vector space (with + and · of E ). This is equivalent
to:

1. If u and v are in V , then u + v is in V .

2. If u is in V and c is a scalar, then c · u is in V .

Ex:

▶ V = Kn is a vector subspace of Kn.

▶ V = {0} is a vector subspace (of any E ).

▶ V = {(x , y , z) ∈ R3 | x − y = 0, 3z = 0} is a vector subspace
of R3.

▶ F = {(a+ 2b, 0, b) ∈ R3 | a, b ∈ R} is a vector subspace of
R3.
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Vector subspaces

Remarks

▶ Every subspace contains the zero vector.

▶ Properties 1 and 2 can be combined:
V ̸= ∅ is a subspace ⇔ for any u1, . . . , uk in V and c1, . . . , ck
in K, the linear combination

c1u1 + . . .+ ckuk

is also in V .
That is, vector subspaces are closed under linear combinations.

Proposition

Let Ax = 0 be a linear system, where A ∈ Mm,n(K). Then, the set
of solutions V = {v ∈ Kn | Av = 0} is a vector subspace of Kn.

16



Vector subspaces

Remarks

▶ Every subspace contains the zero vector.

▶ Properties 1 and 2 can be combined:
V ̸= ∅ is a subspace ⇔ for any u1, . . . , uk in V and c1, . . . , ck
in K, the linear combination

c1u1 + . . .+ ckuk

is also in V .
That is, vector subspaces are closed under linear combinations.

Proposition

Let Ax = 0 be a linear system, where A ∈ Mm,n(K). Then, the set
of solutions V = {v ∈ Kn | Av = 0} is a vector subspace of Kn.

16



Vector subspaces

Remarks

▶ Every subspace contains the zero vector.

▶ Properties 1 and 2 can be combined:
V ̸= ∅ is a subspace ⇔ for any u1, . . . , uk in V and c1, . . . , ck
in K, the linear combination

c1u1 + . . .+ ckuk

is also in V .
That is, vector subspaces are closed under linear combinations.

Proposition

Let Ax = 0 be a linear system, where A ∈ Mm,n(K). Then, the set
of solutions V = {v ∈ Kn | Av = 0} is a vector subspace of Kn.

16



Vector subspaces

Let v1, v2, . . . , vk be vectors in E .

Definition
The set of all linear combinations of v1, v2, . . . , vk ,

{c1v1 + . . .+ ckvk | c1, . . . , cn ∈ K}

is the called the span of v1, v2, . . . , vk and is denoted as
[v1, v2, . . . , vk ].

Proposition

V = [v1, v2, . . . , vk ] is a vector subspace and is the smallest
subspace containing {v1, . . . , vk}.
We say that {v1, v2, . . . , vk} is a system of generators of V , and
also that V is spanned by v1, v2, . . . , vk .
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Vector subspaces

Examples:

▶ Rn = [(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)].

▶ V = {(x , y , z) ∈ R3 | x − y = 0, 3z = 0} ⇒ V = [(1, 1, 0)].

▶ V = {(x , y , z) ∈ R3 | x − y = 0} ⇒ V = [(1, 1, 0), (0, 0, 1)].

▶ F = {(a+ 2b, 0, b) ∈ R3 | a, b ∈ R} = [(1, 0, 0), (2, 0, 1)].

A vector space E is finitely generated (f.g.) if it is the span of a
finite collection of vectors.

▶ Kn is f.g.

▶ R[x ] is not f.g.
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▶ F = {(a+ 2b, 0, b) ∈ R3 | a, b ∈ R} = [(1, 0, 0), (2, 0, 1)].

A vector space E is finitely generated (f.g.) if it is the span of a
finite collection of vectors.

▶ Kn is f.g.

▶ R[x ] is not f.g.
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Linear dependency, basis and dimension

Linear dependency

Definition
v1, v2, . . . , vk ∈ E are linearly dependent (l.d.) if there are scalars
c1, c2, . . . , ck , at least one ̸= 0, such that c1 v1 + . . .+ ck vk = 0.
Otherwise, we say that v1, v2, . . . , vk are linearly independent
(l.i.).

v1, v2, . . . , vk are l.i. ⇔ any linear combination
c1 v1 + . . .+ ck vk = 0 implies c1 = c2 = . . . = ck = 0.
Remarks:

1. Any set of vectors containing 0 is linearly dependent.

2. Two vectors v1, v2 are l.d. ⇔ one is multiple of the other.

3. v1, v2, . . . , vk in E are l.d. ⇔ at least one of the vectors can
be expressed as a linear combination of the others.

4. If v1, . . . , vk are l.i. and u /∈ [v1, . . . , vk ] ⇒ v1, . . . , vk , u are l.i.
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Linear dependency, basis and dimension

Basis of a vector subspace

Definition
Let V ⊂ E be a vector subspace. A collection of vectors
{v1, . . . , vk} is a basis of V if

1. V = [v1, . . . , vk ] and

2. {v1, . . . , vk} is linearly independent.

Ex: (1, 1, 0), (0, 0, 1) is a basis of V = {(x , y , z) ∈ R3 | x − y = 0}.
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Linear dependency, basis and dimension

Basis of a vector subspace

Definition
Let V ⊂ E be a vector subspace. A collection of vectors
{v1, . . . , vk} is a basis of V if

1. V = [v1, . . . , vk ] and

2. {v1, . . . , vk} is linearly independent.

Ex: (1, 1, 0), (0, 0, 1) is a basis of V = {(x , y , z) ∈ R3 | x − y = 0}.
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Linear dependency, basis and dimension

Standard basis

There are some standard (or natural, canonical) bases of certain
vector spaces:

▶ Kn: {e1, e2, . . . , en} where ei = (0, . . . ,
i)

1, . . . , 0) for
i = 1, 2, . . . , n.

▶ Mm×n: {Ei ,j} i = 1, . . . ,m
j = 1, . . . , n

where Ei ,j ∈ Mm×n has 1 at entry

(i , j) and 0’s elsewhere.

▶ Rd [x ]: {1, x , . . . , xd}
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Linear dependency, basis and dimension

Coordinates

Theorem
Let B = {v1, . . . , vn} be a basis of a K-e.v. E . Then, for every
vector v ∈ E , there is exactly one way to write v as a linear
combination of the vectors in B, that is, there exist c1, . . . , cn ∈ K
such that v = c1v1 + c2v2 + . . .+ cnvn and moreover, these
c1, . . . , cn are unique.

Definition
The c1, c2, . . . , cn are called the coordinates of v with respect
to B.

We will use the notation

vB =

 c1
...
cn

 .
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Linear dependency, basis and dimension

Coordinates: from E to Kn

Taking coordinates of a vectors in a given basis preserves linear
combinations:
If B = {v1, . . . , vn} is a basis of E and u1, . . . , uk are in E , then

(x1u1 + . . .+ xkuk)B = x1(u1)B + . . .+ xk(uk)B .

In particular,

▶ u1, . . . , uk are l.i. ⇔ (u1)B , . . . , (uk)B are l.i. in Kn.
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Linear dependency, basis and dimension

Basis and dimension

Proposition

Every (f.g.) K-e.v. E ̸= 0⃗ has a basis.

Theorem (Steinitz substitution lemma)

Let E be an f.g. K-e.v. Let v1, . . . , vm be generators of E and
u1, . . . , un ∈ E be l.i. Then, n ≤ m and one can substitute n
vectors of {v1, . . . , vm} by u1, . . . , un such that the new collection
of vectors is still a system of generators for E .

Corollary (The Basis Theorem)

Any two bases of a f.g. vector space have the same number of
elements.

Dimension of the vector space dim(E ) = cardinal of any basis. By
convention, dim({⃗0}) = 0.
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Linear dependency, basis and dimension

Proposition

Let E be a vector space of dimension n, n ≥ 1. Then:

1. Any system of generators for E contains ≥ n vectors.
Moreover, it contains a basis of E .

2. Any linearly independent set in E contains ≤ n vectors.
Moreover, it can be extended to a basis of E (by choosing
vectors of a given basis of E conveniently).

3. Any linearly independent set of n vectors in E is a basis for E .

4. Any system of generators for E consisting of n vectors is a
basis for E .

Hence,

n = minimum number of elements in a system of generators of E
= maximum number of l.i. vectors in E .
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Linear dependency, basis and dimension

Theorem
Let V1 ⊂ V2 be subspaces of E and dim(E ) = n. Then:

1. dimV1 ≤ dimV2 ≤ n.

2. dimV1 = dimV2 if and only if V1 = V2.
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Linear dependency, basis and dimension

Rank (revisited)

Theorem
Given v1, v2, . . . , vk ∈ Kn, if A = (v1, . . . , vk) ∈ Mn,k(K), then

a) v1, v2, . . . , vk are l.d. ⇔ the homogeneous system Ax = 0 has
a nontrivial solution (indeterminate system).

b) v1, v2, . . . , vk are l.i. ⇔ rank(A) = k.

c) v1, v2, . . . , vk are a system of generators of Kn ⇔
rank(A) = n.

d) v1, v2, . . . , vk is a basis of Kn ⇔ k = n and rank(A) = n.

Proposition

The rank of a matrix A equals:

▶ dimension of the row span of A (max. number of l.i. rows)
and

▶ dimension of the column span of A (max. number of l.i.
columns).
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Linear dependency, basis and dimension

Kn: Finding a basis from generators

If V = [v1, v2, . . . , vk ] ⊂ Kn, then a basis of V can be obtained by
applying one the following methods:

1 Write the vectors v1, . . . , vk as the rows of a matrix A, and
reduce A to row echelon form Ā (Gaussian elimination). The
nonzero rows of Ā are a basis of V .

2 Write the vectors v1, . . . , vk as the columns of a matrix B.
Then, reduce B to row echelon form B̄ (Gaussian
elimination). The columns of B̄ with pivots indicate which
vectors v1, . . . , vk to choose to obtain a basis of V .
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Linear dependency, basis and dimension

Extending to a basis of Kn

If u1, . . . , uk are linearly independent vectors of Kn, then they can
be extended to a basis of Kn:

▶ Write the vectors u1, . . . , uk as the columns of a matrix B,
and take M = (B | In).

▶ Then, reduce M to row echelon form M̄ = (B̄ | Īn) (Gaussian
elimination).

▶ Collect the columns of Īn with a pivot and choose the
corresponding vectors of the standard basis (columns of In) of
Kn.

▶ u1, . . . , uk together with these last vectors form a basis of Kn.

The same can be done if u1, . . . , uk are linearly independent
vectors of a vector subspace V :
instead of In, take a matrix formed by a basis v1, . . . , vd of V and
do the same process as above for M = (u1, . . . , uk |v1, . . . , vd) .
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be extended to a basis of Kn:

▶ Write the vectors u1, . . . , uk as the columns of a matrix B,
and take M = (B | In).

▶ Then, reduce M to row echelon form M̄ = (B̄ | Īn) (Gaussian
elimination).

▶ Collect the columns of Īn with a pivot and choose the
corresponding vectors of the standard basis (columns of In) of
Kn.

▶ u1, . . . , uk together with these last vectors form a basis of Kn.

The same can be done if u1, . . . , uk are linearly independent
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▶ Collect the columns of Īn with a pivot and choose the
corresponding vectors of the standard basis (columns of In) of
Kn.

▶ u1, . . . , uk together with these last vectors form a basis of Kn.

The same can be done if u1, . . . , uk are linearly independent
vectors of a vector subspace V :
instead of In, take a matrix formed by a basis v1, . . . , vd of V and
do the same process as above for M = (u1, . . . , uk |v1, . . . , vd) .

30



Linear dependency, basis and dimension

Extending to a basis of Kn

If u1, . . . , uk are linearly independent vectors of Kn, then they can
be extended to a basis of Kn:

▶ Write the vectors u1, . . . , uk as the columns of a matrix B,
and take M = (B | In).

▶ Then, reduce M to row echelon form M̄ = (B̄ | Īn) (Gaussian
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Linear dependency, basis and dimension

Subspaces of Kn: Generators ↔ Equations

From “generators” to “equations”:
If V = [v1, . . . , vk ] ⊂ Kn:
Write M = (v1, . . . , vk), and form an augmented matrix (M|x)
with x = column with entries x1, x2, . . . , xn.
Then x ∈ [v1, . . . , vk ] if and only if rank(M|x) = rank(M).
There are 2 options:

▶ Reduce M to echelon form (M̄|x̄) by Gaussian elimination ⇒
a linear system of equations for V is obtained by writing the
equations that correspond to zero rows of M̄.

▶ If rank(M) = k , the equations are formed by the vanishing of
the (k + 1)× (k + 1) minors of (M|x) that contain a chosen
non-zero k × k minor of M.
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Linear dependency, basis and dimension

Subspaces of Kn: Generators ↔ Equations

From “equations” to “generators”:
If V = {u ∈ Kn | Au = 0} (solutions to a homogeneous system):

▶ It is enough to solve the system to obtain a system of
generators of V .

▶ Moreover, if we give values 0’s and 1’s to the free variables,
these generators form a basis and dim(V ) = n − rank(A).

We have proved:

Corollary

A subset V of Kn is a subspace ⇔ it is the set of solutions to a
homogeneous system.
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Change of basis

Change of basis

Let B = {u1, . . . , un} and C = {v1, . . . , vn} be bases of E .
Denote by AB→C the n × n matrix whose columns are the
coordinate vectors (u1)C , . . . , (un)C of B with respect to C . This
is the change-of-basis matrix from B to C :

AB→C =

(u1)C . . . (un)C

 .

Proposition

1. AB→CwB = wC for all w ∈ E .

2. AB→C is invertible, and (AB→C )
−1 = AC→B .

3. If D is another basis of E , then AC→DAB→C = AB→D .
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Intersection and sum

Intersection & sum of subspaces
Given V1,V2 vector subspaces of E , define

1. Intersection of V1 and V2 is
V1 ∩ V2 = {v ∈ E | v ∈ V1, v ∈ V2}.

2. Sum of V1 and V2 is
V1 + V2 = {v1 + v2 ∈ E | v1 ∈ V1, v2 ∈ V2}.
Computation: If V1 = [u1, . . . , ur ] and V2 = [v1, . . . , vs ], then
V1 + V2 = [u1, . . . , ur , v1, . . . , vs ].
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Intersection and sum

Theorem

1. V1 ∩ V2 and V1 + V2 are vector subspaces of E .

2. Grassmann formula: if dim(E ) < ∞, then

dim(V1 ∩ V2) + dim(V1 + V2) = dim(V1) + dim(V2).

Ex:

V1 = [(1, 0, 1), (0, 2, 3)] V1 ∩ V2 = [(1, 0, 1)]

V2 = [(0, 1, 0), (1, 1, 1)] V1 + V2 = R3
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Direct sum

Definition
E is the direct sum of subspaces F1 and F2 if any w ∈ E can be
written in a unique way as w = v1 + v2 with v1 ∈ F1, v2 ∈ F2.
In this case we use the notation E = F1 ⊕ F2.

Proposition

Let F1,F2 be two subspaces of E . Then E = F1 ⊕ F2 if and only if
the following two conditions hold:

E = F1 + F2,

F1 ∩ F2 = {0}.

If E = F1 ⊕ F2, we say that F2 is a complementary subspace to
F1 (and vice-versa).
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