Àlgebra lineal i geometria 1. Espais vectorials

Grau en Enginyeria Física 2023-24

Universitat Politècnica de Catalunya Departament de Matemàtiques

Marta Casanellas Universitat Politècnica de Catalunya

Outline

 \mathbb{R}^n and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Outline

\mathbb{R}^n and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

The vector space \mathbb{R}^n

We consider the set of *n*-tuples of real numbers:

$$\mathbb{R}^n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in \mathbb{R}\}$$

and we call its elements vectors.

Notation: When we talk about $v \in \mathbb{R}^n$ we usually think of v as a column vector,

$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

The vector space \mathbb{R}^n

We consider the set of *n*-tuples of real numbers:

$$\mathbb{R}^n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in \mathbb{R}\}$$

and we call its elements vectors.

Notation: When we talk about $v \in \mathbb{R}^n$ we usually think of v as a column vector,

$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

\mathbb{R}^2 : Physical interpretation

- View (x, y) ∈ ℝ² as a directed line segment between two points A and B, (x, y) = "vector" AB.
- ► AB : the displacement needed to get from A to B: x units along the x-axis and y along the y-axis.
- Two vectors are equal if they represent the same displacement (\$\i0007 they have the same length, direction, and sense).
- We can always think (x, y) as a vector of initial point (0,0) and end point (x, y).

Operations in \mathbb{R}^2

We can sum or substract vectors

and multiply a vector by a constant (scalar)

- ▶ Vectors in \mathbb{R}^3 have a similar physical interpretation
- We can also sum two vectors and multiply a vector by a scalar. These operations can be done in coordinates: if u = (x₁, x₂, x₃) and v = (y₁, y₂, y₃), then u + v = (x₁ + y₁, x₂ + y₂, x₃ + y₃), c ⋅ u = (cx₁, cx₂, cx₃) for any c ∈ ℝ.

Operations in \mathbb{R}^n

In \mathbb{R}^n we define the following operations:

sum: if $u = (x_1, x_2, ..., x_n), v = (y_1, y_2, ..., y_n)$, then $u + v = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in \mathbb{R}^n$. scalar multiplication: if $u = (x_1, x_2, ..., x_n), c \in \mathbb{R}$, then

$$c \cdot u = (c x_1, c x_2, \dots, c x_n) \in \mathbb{R}^n.$$

Operations in \mathbb{R}^n

In \mathbb{R}^n we define the following operations:

sum: if $u = (x_1, x_2, ..., x_n), v = (y_1, y_2, ..., y_n)$, then $u + v = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in \mathbb{R}^n$. scalar multiplication: if $u = (x_1, x_2, ..., x_n), c \in \mathbb{R}$, then

$$c \cdot u = (c x_1, c x_2, \ldots, c x_n) \in \mathbb{R}^n.$$

These operations in \mathbb{R}^n satisfy the following properties:

- 1. u + v = v + u. Commutativity
- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity
- 7. $c \cdot (d \cdot u) = (cd) \cdot u$.

These operations in \mathbb{R}^n satisfy the following properties:

- 1. u + v = v + u. Commutativity
- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity
- 7. $c \cdot (d \cdot u) = (cd) \cdot u$.

These operations in \mathbb{R}^n satisfy the following properties:

1.
$$u + v = v + u$$
. Commutativity

- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity
- 7. $c \cdot (d \cdot u) = (cd) \cdot u$.

These operations in \mathbb{R}^n satisfy the following properties:

1.
$$u + v = v + u$$
. Commutativity

- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity
- 7. $c \cdot (d \cdot u) = (cd) \cdot u$.

These operations in \mathbb{R}^n satisfy the following properties:

1.
$$u + v = v + u$$
. Commutativity

- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.

5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity 6. $(c + d) \cdot u = c \cdot u + d \cdot u$. Distributivity 7. $c \cdot (d \cdot u) = (cd) \cdot u$. 8. $1 \cdot u = u$.

These operations in \mathbb{R}^n satisfy the following properties:

1.
$$u + v = v + u$$
. Commutativity

- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity 7. $c \cdot (d \cdot u) = (cd) \cdot u$. 8. $1 \cdot u = u$

These operations in \mathbb{R}^n satisfy the following properties:

1.
$$u + v = v + u$$
. Commutativity

- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity
- 7. $c \cdot (d \cdot u) = (cd) \cdot u$.

These operations in \mathbb{R}^n satisfy the following properties:

1.
$$u + v = v + u$$
. Commutativity

- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity
- 7. $c \cdot (d \cdot u) = (cd) \cdot u$.

These operations in \mathbb{R}^n satisfy the following properties:

1.
$$u + v = v + u$$
. Commutativity

- 2. (u + v) + w = u + (v + w). Associativity
- 3. \exists an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $u + \mathbf{0} = u$.
- 4. For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- 5. $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- 6. $(c+d) \cdot u = c \cdot u + d \cdot u$. Distributivity 7. $c \cdot (d \cdot u) = (cd) \cdot u$.
- 8. $1 \cdot u = u$.

Vector space over \mathbb{K}

Let \mathbb{K} be \mathbb{Q} , \mathbb{R} , \mathbb{C} or any (commutative) field ("cos").

A vector space over \mathbb{K} (or \mathbb{K} -e.v.) is a set *E* with two operations + and \cdot ,

+ given $u, v \in E$, it assigns another element u + v of E.

given $u \in E$ and a scalar $c \in \mathbb{K}$, it assigns an element $c \cdot u \in E$ that satisfy the previous properties, i.e,

▶ + is commutative, associative, has a neutral element (denoted **0** or $\vec{0}$) and every $u \in E$ has an opposite with respect to + (denoted -u),

 \blacktriangleright · and + satisfy:

$$c \cdot (u+v) = c \cdot u + c \cdot v, \ (c+d) \cdot u = c \cdot u + d \cdot u, \ c \cdot (d \cdot u) = (cd) \cdot u, \ 1 \cdot u = u$$

for any $u, v \in E$ and $c, d \in \mathbb{K}$.

The elements of a \mathbb{K} -e.v. are called **vectors**.

- ▶ $\mathbb{K}^n = \{(x_1, \ldots, x_n) | x_i \in \mathbb{K}\}$ is a \mathbb{K} -e.v. with the natural sum and product inherited by \mathbb{K} .
- M_{m×n}(ℝ)=m×n matrices with entries in ℝ and the natural operations of sum of matrices and multiplication by scalars is an ℝ-e.v.
- The set of polynomials of degree ≤ d, ℝ_d[x] = {p(x) = a₀ + a₁x + ... + a_dx^d | a_i ∈ ℝ}, is an ℝ-e.v. with the usual sum of polynomials and multplication by a scalar.

$\blacktriangleright \mathbb{R}[x] =$

{polynomials in one variable x and coefficients in \mathbb{R} } is an \mathbb{R} -e.v.

The set F(ℝ, ℝ) of functions f : ℝ → ℝ is an ℝ-e.v. with the usual sum of functions (f + g is the function (f + g)(x) = f(x) + g(x)) and product by a scalar (c ⋅ f is the function (c ⋅ f)(x) = cf(x)).

- ▶ $\mathbb{K}^n = \{(x_1, \ldots, x_n) | x_i \in \mathbb{K}\}$ is a \mathbb{K} -e.v. with the natural sum and product inherited by \mathbb{K} .
- M_{m×n}(ℝ)=m×n matrices with entries in ℝ and the natural operations of sum of matrices and multiplication by scalars is an ℝ-e.v.
- ▶ The set of polynomials of degree $\leq d$, $\mathbb{R}_d[x] = \{p(x) = a_0 + a_1x + ... + a_dx^d \mid a_i \in \mathbb{R}\}$, is an \mathbb{R} -e.v. with the usual sum of polynomials and multplication by a scalar.
- $\blacktriangleright \mathbb{R}[x] =$

{polynomials in one variable x and coefficients in \mathbb{R} } is an \mathbb{R} -e.v.

The set F(ℝ, ℝ) of functions f : ℝ → ℝ is an ℝ-e.v. with the usual sum of functions (f + g is the function (f + g)(x) = f(x) + g(x)) and product by a scalar (c ⋅ f is the function (c ⋅ f)(x) = cf(x)).

- ▶ $\mathbb{K}^n = \{(x_1, \ldots, x_n) | x_i \in \mathbb{K}\}$ is a \mathbb{K} -e.v. with the natural sum and product inherited by \mathbb{K} .
- M_{m×n}(ℝ)=m×n matrices with entries in ℝ and the natural operations of sum of matrices and multiplication by scalars is an ℝ-e.v.
- The set of polynomials of degree ≤ d, ℝ_d[x] = {p(x) = a₀ + a₁x + ... + a_dx^d | a_i ∈ ℝ}, is an ℝ-e.v. with the usual sum of polynomials and multplication by a scalar.
- $\blacktriangleright \mathbb{R}[x] =$

{polynomials in one variable x and coefficients in \mathbb{R} } is an \mathbb{R} -e.v.

The set F(ℝ, ℝ) of functions f : ℝ → ℝ is an ℝ-e.v. with the usual sum of functions (f + g is the function (f + g)(x) = f(x) + g(x)) and product by a scalar (c ⋅ f is the function (c ⋅ f)(x) = cf(x)).

- ▶ $\mathbb{K}^n = \{(x_1, \ldots, x_n) | x_i \in \mathbb{K}\}$ is a \mathbb{K} -e.v. with the natural sum and product inherited by \mathbb{K} .
- M_{m×n}(ℝ)=m×n matrices with entries in ℝ and the natural operations of sum of matrices and multiplication by scalars is an ℝ-e.v.
- The set of polynomials of degree ≤ d, ℝ_d[x] = {p(x) = a₀ + a₁x + ... + a_dx^d | a_i ∈ ℝ}, is an ℝ-e.v. with the usual sum of polynomials and multplication by a scalar.
- $\blacktriangleright \mathbb{R}[x] =$

{polynomials in one variable x and coefficients in $\mathbb{R}\}$ is an $\mathbb{R}\text{-e.v.}$

The set *F*(ℝ, ℝ) of functions *f* : ℝ → ℝ is an ℝ-e.v. with the usual sum of functions (*f* + *g* is the function (*f* + *g*)(*x*) = *f*(*x*) + *g*(*x*)) and product by a scalar (*c* · *f* is the function (*c* · *f*)(*x*) = *cf*(*x*)).

- ▶ $\mathbb{K}^n = \{(x_1, \ldots, x_n) | x_i \in \mathbb{K}\}$ is a \mathbb{K} -e.v. with the natural sum and product inherited by \mathbb{K} .
- M_{m×n}(ℝ)=m×n matrices with entries in ℝ and the natural operations of sum of matrices and multiplication by scalars is an ℝ-e.v.
- The set of polynomials of degree ≤ d, ℝ_d[x] = {p(x) = a₀ + a₁x + ... + a_dx^d | a_i ∈ ℝ}, is an ℝ-e.v. with the usual sum of polynomials and multplication by a scalar.
- ▶ R[x] = {polynomials in one variable x and coefficients in R} is an R-e.v.
- The set *F*(ℝ, ℝ) of functions *f* : ℝ → ℝ is an ℝ-e.v. with the usual sum of functions (*f* + *g* is the function (*f* + *g*)(*x*) = *f*(*x*) + *g*(*x*)) and product by a scalar (*c* · *f* is the function (*c* · *f*)(*x*) = *cf*(*x*)).

If E is a K-e.v., then,
$$\forall u \in E, c \in K$$
,
(a) $0 \cdot u = \mathbf{0} = c \cdot \mathbf{0}$,
(b) $(-1) \cdot u = -u$,
(c) $(-c) \cdot u = c \cdot (-u) = -(c \cdot u)$ (so we denote it by $-cu$),
(d) $c \cdot u = \mathbf{0} \Leftrightarrow c = 0$ or $u = 0$

If E is a K-e.v., then,
$$\forall u \in E, c \in K$$
,
(a) $0 \cdot u = \mathbf{0} = c \cdot \mathbf{0}$,
(b) $(-1) \cdot u = -u$,
(c) $(-c) \cdot u = c \cdot (-u) = -(c \cdot u)$ (so we denote it by $-cu$),
(d) $c \cdot u = \mathbf{0} \Leftrightarrow c = 0$ or $u = 0$

If E is a K-e.v., then,
$$\forall u \in E, c \in K$$
,
(a) $0 \cdot u = \mathbf{0} = c \cdot \mathbf{0}$,
(b) $(-1) \cdot u = -u$,
(c) $(-c) \cdot u = c \cdot (-u) = -(c \cdot u)$ (so we denote it by $-cu$),
(d) $c \cdot u = \mathbf{0} \Leftrightarrow c = 0$ or $u = 0$

If E is a K-e.v., then,
$$\forall u \in E, c \in K$$
,
(a) $0 \cdot u = \mathbf{0} = c \cdot \mathbf{0}$,
(b) $(-1) \cdot u = -u$,
(c) $(-c) \cdot u = c \cdot (-u) = -(c \cdot u)$ (so we denote it by $-cu$),
(d) $c \cdot u = \mathbf{0} \Leftrightarrow c = 0$ or $u = 0$

Linear combinations

Definition

A vector u is a **linear combination** of vectors u_1, \ldots, u_k if there are scalars c_1, \ldots, c_k such that $u = c_1 u_1 + \ldots + c_k u_k$ (the scalars c_i are the **coefficients** of the linear combination).

Finding out whether a vector in \mathbb{K}^n is a linear combination of a collection of given vectors is equivalent to solving a linear system of equations:

Proposition

A system Ax = b is consistent if and only if b is a linear combination of the columns of A.

Linear combinations

Definition

A vector u is a **linear combination** of vectors u_1, \ldots, u_k if there are scalars c_1, \ldots, c_k such that $u = c_1 u_1 + \ldots + c_k u_k$ (the scalars c_i are the **coefficients** of the linear combination).

Finding out whether a vector in \mathbb{K}^n is a linear combination of a collection of given vectors is equivalent to solving a linear system of equations:

Proposition

A system Ax = b is consistent if and only if b is a linear combination of the columns of A.

Linear combinations

Definition

A vector u is a **linear combination** of vectors u_1, \ldots, u_k if there are scalars c_1, \ldots, c_k such that $u = c_1 u_1 + \ldots + c_k u_k$ (the scalars c_i are the **coefficients** of the linear combination).

Finding out whether a vector in \mathbb{K}^n is a linear combination of a collection of given vectors is equivalent to solving a linear system of equations:

Proposition

A system Ax = b is consistent if and only if b is a linear combination of the columns of A.

Outline

\mathbb{R}^n and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Vector subspaces

Definition

Let *E* be a \mathbb{K} -e.v. Then a subset $V \neq \emptyset$ of *E* is a vector subspace if *V* is itself a vector space (with + and \cdot of *E*). This is equivalent to:

- 1. If u and v are in V, then u + v is in V.
- 2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V = \mathbb{K}^n$ is a vector subspace of \mathbb{K}^n .
- $V = \{\mathbf{0}\}$ is a vector subspace (of any E).
- V = {(x, y, z) ∈ ℝ³ | x − y = 0, 3z = 0} is a vector subspace of ℝ³.
- ► $F = \{(a + 2b, 0, b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^3 .

Vector subspaces

Definition

Let *E* be a \mathbb{K} -e.v. Then a subset $V \neq \emptyset$ of *E* is a vector subspace if *V* is itself a vector space (with + and \cdot of *E*). This is equivalent to:

- 1. If u and v are in V, then u + v is in V.
- 2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V = \mathbb{K}^n$ is a vector subspace of \mathbb{K}^n .
- $V = \{\mathbf{0}\}$ is a vector subspace (of any E).
- ▶ $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0, 3z = 0\}$ is a vector subspace of \mathbb{R}^3 .
- ► $F = \{(a + 2b, 0, b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^3 .

Vector subspaces

Definition

Let *E* be a \mathbb{K} -e.v. Then a subset $V \neq \emptyset$ of *E* is a vector subspace if *V* is itself a vector space (with + and \cdot of *E*). This is equivalent to:

- 1. If u and v are in V, then u + v is in V.
- 2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V = \mathbb{K}^n$ is a vector subspace of \mathbb{K}^n .
- $V = \{\mathbf{0}\}$ is a vector subspace (of any E).
- ▶ $V = \{(x, y, z) \in \mathbb{R}^3 | x y = 0, 3z = 0\}$ is a vector subspace of \mathbb{R}^3 .
- ► $F = \{(a + 2b, 0, b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^3 .
Vector subspaces

Definition

Let *E* be a \mathbb{K} -e.v. Then a subset $V \neq \emptyset$ of *E* is a vector subspace if *V* is itself a vector space (with + and \cdot of *E*). This is equivalent to:

- 1. If u and v are in V, then u + v is in V.
- 2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

•
$$V = \mathbb{K}^n$$
 is a vector subspace of \mathbb{K}^n .

- $V = \{\mathbf{0}\}$ is a vector subspace (of any E).
- ▶ $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0, 3z = 0\}$ is a vector subspace of \mathbb{R}^3 .
- ▶ $F = \{(a + 2b, 0, b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^3 .

Vector subspaces

Definition

Let *E* be a \mathbb{K} -e.v. Then a subset $V \neq \emptyset$ of *E* is a vector subspace if *V* is itself a vector space (with + and \cdot of *E*). This is equivalent to:

- 1. If u and v are in V, then u + v is in V.
- 2. If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

•
$$V = \mathbb{K}^n$$
 is a vector subspace of \mathbb{K}^n .

- $V = \{\mathbf{0}\}$ is a vector subspace (of any E).
- ▶ $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0, 3z = 0\}$ is a vector subspace of \mathbb{R}^3 .
- ▶ $F = \{(a+2b,0,b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^3 .

Remarks

Every subspace contains the zero vector.

Properties 1 and 2 can be combined:
V ≠ Ø is a subspace ⇔ for any u₁,..., u_k in V and c₁,..., c_k in K, the linear combination

 $c_1u_1+\ldots+c_ku_k$

is also in V

That is, vector subspaces are closed under linear combinations.

Proposition

Let Ax = 0 be a linear system, where $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Then, the set of solutions $V = \{v \in \mathbb{K}^n \mid Av = 0\}$ is a vector subspace of \mathbb{K}^n .

Remarks

- Every subspace contains the zero vector.
- Properties 1 and 2 can be combined:
 V ≠ Ø is a subspace ⇔ for any u₁,..., u_k in V and c₁,..., c_k in K, the linear combination

$$c_1u_1+\ldots+c_ku_k$$

is also in V.

That is, vector subspaces are closed under linear combinations.

Proposition

Let Ax = 0 be a linear system, where $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Then, the set of solutions $V = \{v \in \mathbb{K}^n \mid Av = 0\}$ is a vector subspace of \mathbb{K}^n .

Remarks

- Every subspace contains the zero vector.
- Properties 1 and 2 can be combined:
 V ≠ Ø is a subspace ⇔ for any u₁,..., u_k in V and c₁,..., c_k in K, the linear combination

$$c_1u_1+\ldots+c_ku_k$$

is also in V.

That is, vector subspaces are closed under linear combinations.

Proposition

Let Ax = 0 be a linear system, where $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Then, the set of solutions $V = \{v \in \mathbb{K}^n \mid Av = 0\}$ is a vector subspace of \mathbb{K}^n .

Let v_1, v_2, \ldots, v_k be vectors in E.

Definition

The set of all linear combinations of v_1, v_2, \ldots, v_k ,

$$\{c_1v_1+\ldots+c_kv_k\mid c_1,\ldots,c_n\in\mathbb{K}\}$$

is the called the **span of** v_1, v_2, \ldots, v_k and is denoted as $[v_1, v_2, \ldots, v_k]$.

Proposition

 $V = [v_1, v_2, ..., v_k]$ is a vector subspace and is the smallest subspace containing $\{v_1, ..., v_k\}$.

We say that $\{v_1, v_2, \ldots, v_k\}$ is a system of generators of V, and also that V is spanned by v_1, v_2, \ldots, v_k .

Let v_1, v_2, \ldots, v_k be vectors in E.

Definition

The set of all linear combinations of v_1, v_2, \ldots, v_k ,

$$\{c_1v_1+\ldots+c_kv_k\mid c_1,\ldots,c_n\in\mathbb{K}\}$$

is the called the **span of** v_1, v_2, \ldots, v_k and is denoted as $[v_1, v_2, \ldots, v_k]$.

Proposition

 $V = [v_1, v_2, ..., v_k]$ is a vector subspace and is the smallest subspace containing $\{v_1, ..., v_k\}$.

We say that $\{v_1, v_2, ..., v_k\}$ is a **system of generators of** V, and also that V is **spanned by** $v_1, v_2, ..., v_k$.

Let v_1, v_2, \ldots, v_k be vectors in E.

Definition

The set of all linear combinations of v_1, v_2, \ldots, v_k ,

$$\{c_1v_1+\ldots+c_kv_k\mid c_1,\ldots,c_n\in\mathbb{K}\}$$

is the called the **span of** v_1, v_2, \ldots, v_k and is denoted as $[v_1, v_2, \ldots, v_k]$.

Proposition

 $V = [v_1, v_2, ..., v_k]$ is a vector subspace and is the smallest subspace containing $\{v_1, ..., v_k\}$.

We say that $\{v_1, v_2, \ldots, v_k\}$ is a system of generators of V, and also that V is spanned by v_1, v_2, \ldots, v_k .

• $\mathbb{R}^n = [(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)].$

- ► $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0, 3z = 0\} \Rightarrow V = [(1, 1, 0)].$
- ► $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0\} \Rightarrow V = [(1, 1, 0), (0, 0, 1)].$
- ▶ $F = \{(a+2b,0,b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\} = [(1,0,0), (2,0,1)].$

A vector space *E* is **finitely generated (f.g.)** if it is the span of a finite collection of vectors.

▶ K″ is f.g.

▶ R[x] is not f.g.

▶
$$\mathbb{R}^n = [(1, 0, ..., 0), ..., (0, ..., 0, 1)].$$

▶ $V = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 0, 3z = 0\} \Rightarrow V = [(1, 1, 0)].$
▶ $V = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 0\} \Rightarrow V = [(1, 1, 0), (0, 0, 1)].$
▶ $F = \{(a + 2b, 0, b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\} = [(1, 0, 0), (2, 0, 1)].$
A vector space *E* is **finitely generated (f.g.)** if it is the span of *x* inite collection of vectors.

▶ IK″ is f.g.

▶ **R**[x] is not f.g.

▶ K″ is f.g.

▶ **R**[x] is not f.g.

A vector space *E* is **finitely generated (f.g.)** if it is the span of a finite collection of vectors.

- \blacktriangleright \mathbb{K}^n is f.g.
- $\blacktriangleright \mathbb{R}[x] \text{ is not f.g.}$

A vector space E is **finitely generated** (f.g.) if it is the span of a finite collection of vectors.

▶ ℝⁿ is f.g.
 ▶ ℝ[x] is not f.g.

A vector space E is **finitely generated** (f.g.) if it is the span of a finite collection of vectors.

- \blacktriangleright \mathbb{K}^n is f.g.
- $\triangleright \mathbb{R}[x]$ is not f.g.

Outline

 \mathbb{R}^n and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Definition

 $v_1, v_2, \ldots, v_k \in E$ are **linearly dependent (l.d.)** if there are scalars c_1, c_2, \ldots, c_k , at least one $\neq 0$, such that $c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$. Otherwise, we say that v_1, v_2, \ldots, v_k are **linearly independent** (l.i.).

- 1. Any set of vectors containing **0** is linearly dependent.
- 2. Two vectors v_1, v_2 are l.d. \Leftrightarrow one is multiple of the other.
- 3. v_1, v_2, \ldots, v_k in *E* are l.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.
- 4. If v_1, \ldots, v_k are l.i. and $u \notin [v_1, \ldots, v_k] \Rightarrow v_1, \ldots, v_k, u$ are l.i.

Definition

 $v_1, v_2, \ldots, v_k \in E$ are **linearly dependent (l.d.)** if there are scalars c_1, c_2, \ldots, c_k , at least one $\neq 0$, such that $c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$. Otherwise, we say that v_1, v_2, \ldots, v_k are **linearly independent** (l.i.).

- 1. Any set of vectors containing **0** is linearly dependent.
- 2. Two vectors v_1, v_2 are l.d. \Leftrightarrow one is multiple of the other.
- 3. v_1, v_2, \ldots, v_k in *E* are l.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.
- 4. If v_1, \ldots, v_k are l.i. and $u \notin [v_1, \ldots, v_k] \Rightarrow v_1, \ldots, v_k, u$ are l.i.

Definition

 $v_1, v_2, \ldots, v_k \in E$ are **linearly dependent (l.d.)** if there are scalars c_1, c_2, \ldots, c_k , at least one $\neq 0$, such that $c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$. Otherwise, we say that v_1, v_2, \ldots, v_k are **linearly independent** (l.i.).

- 1. Any set of vectors containing **0** is linearly dependent.
- 2. Two vectors v_1, v_2 are l.d. \Leftrightarrow one is multiple of the other.
- 3. v_1, v_2, \ldots, v_k in *E* are l.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.
- 4. If v_1, \ldots, v_k are l.i. and $u \notin [v_1, \ldots, v_k] \Rightarrow v_1, \ldots, v_k, u$ are l.i.

Definition

 $v_1, v_2, \ldots, v_k \in E$ are **linearly dependent (l.d.)** if there are scalars c_1, c_2, \ldots, c_k , at least one $\neq 0$, such that $c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$. Otherwise, we say that v_1, v_2, \ldots, v_k are **linearly independent** (l.i.).

 v_1, v_2, \ldots, v_k are l.i. \Leftrightarrow any linear combination $c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$ implies $c_1 = c_2 = \ldots = c_k = \mathbf{0}$. **Remarks**:

- 1. Any set of vectors containing **0** is linearly dependent.
- 2. Two vectors v_1, v_2 are l.d. \Leftrightarrow one is multiple of the other.
- 3. v_1, v_2, \ldots, v_k in *E* are l.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.

4. If v_1, \ldots, v_k are l.i. and $u \notin [v_1, \ldots, v_k] \Rightarrow v_1, \ldots, v_k, u$ are l.i.

Definition

 $v_1, v_2, \ldots, v_k \in E$ are **linearly dependent (l.d.)** if there are scalars c_1, c_2, \ldots, c_k , at least one $\neq 0$, such that $c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$. Otherwise, we say that v_1, v_2, \ldots, v_k are **linearly independent** (l.i.).

- 1. Any set of vectors containing **0** is linearly dependent.
- 2. Two vectors v_1, v_2 are l.d. \Leftrightarrow one is multiple of the other.
- 3. v_1, v_2, \ldots, v_k in *E* are l.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.
- 4. If v_1, \ldots, v_k are l.i. and $u \notin [v_1, \ldots, v_k] \Rightarrow v_1, \ldots, v_k, u$ are l.i.

Basis of a vector subspace

Definition

Let $V \subset E$ be a vector subspace. A collection of vectors $\{v_1, \ldots, v_k\}$ is a **basis of** V if

- 1. $V = [v_1, \ldots, v_k]$ and
- 2. $\{v_1, \ldots, v_k\}$ is linearly independent.

Ex: (1,1,0), (0,0,1) is a basis of $V = \{(x,y,z) \in \mathbb{R}^3 \mid x-y=0\}.$

Basis of a vector subspace

Definition

Let $V \subset E$ be a vector subspace. A collection of vectors $\{v_1, \ldots, v_k\}$ is a **basis of** V if

- 1. $V = [v_1, \ldots, v_k]$ and
- 2. $\{v_1, \ldots, v_k\}$ is linearly independent.

Ex: (1,1,0), (0,0,1) is a basis of $V = \{(x,y,z) \in \mathbb{R}^3 \mid x-y=0\}.$

Standard basis

There are some **standard** (or *natural, canonical*) bases of certain vector spaces:

$$\mathbb{K}^{n}: \{e_{1}, e_{2}, \dots, e_{n}\}$$
 where $e_{i} = (0, \dots, 1, \dots, 0)$ for $i = 1, 2, \dots, n$.

 $\mathcal{M}_{m \times n}: \{E_{i,j}\}_{\substack{i=1,\dots,m \ j=1,\dots,n}}$ where $E_{i,j} \in \mathcal{M}_{m \times n}$ has 1 at entry (i,j) and 0's elsewhere.

 $\mathbb{R}_{d}[x]: \{1, x, \dots, x^{d}\}$

Standard basis

There are some **standard** (or *natural, canonical*) bases of certain vector spaces:

$$\mathbb{K}^{n}: \{e_{1}, e_{2}, \dots, e_{n}\}$$
 where $e_{i} = (0, \dots, 1, \dots, 0)$ for $i = 1, 2, \dots, n$.

 $\mathcal{M}_{m \times n}: \{E_{i,j}\}_{\substack{i = 1, \dots, m \ j = 1, \dots, n}}$ where $E_{i,j} \in \mathcal{M}_{m \times n}$ has 1 at entry (i, j) and 0's elsewhere.

 $\mathbb{R}_{d}[x]: \{1, x, \dots, x^{d}\}$

Standard basis

There are some **standard** (or *natural, canonical*) bases of certain vector spaces:

$$\mathbb{K}^{n}: \{e_{1}, e_{2}, \dots, e_{n}\}$$
 where $e_{i} = (0, \dots, 1, \dots, 0)$ for $i = 1, 2, \dots, n$.

 $\mathcal{M}_{m \times n}: \{E_{i,j}\}_{\substack{i = 1, \dots, m \ j = 1, \dots, n}}$ where $E_{i,j} \in \mathcal{M}_{m \times n}$ has 1 at entry (i, j) and 0's elsewhere.

 $\mathbb{R}_{d}[x]: \{1, x, \dots, x^{d}\}$

Coordinates

Theorem

Let $B = \{v_1, \ldots, v_n\}$ be a basis of a K-e.v. E. Then, for every vector $v \in E$, there is exactly one way to write v as a linear combination of the vectors in B, that is, there exist $c_1, \ldots, c_n \in \mathbb{K}$ such that $v = c_1v_1 + c_2v_2 + \ldots + c_nv_n$ and moreover, these c_1, \ldots, c_n are unique.

Definition

The c_1, c_2, \ldots, c_n are called the **coordinates of** v with respect to B.

We will use the notation

$$v_B = \left(\begin{array}{c} c_1\\ \vdots\\ c_n \end{array}\right).$$

Coordinates

Theorem

Let $B = \{v_1, \ldots, v_n\}$ be a basis of a K-e.v. E. Then, for every vector $v \in E$, there is exactly one way to write v as a linear combination of the vectors in B, that is, there exist $c_1, \ldots, c_n \in \mathbb{K}$ such that $v = c_1v_1 + c_2v_2 + \ldots + c_nv_n$ and moreover, these c_1, \ldots, c_n are unique.

Definition

The c_1, c_2, \ldots, c_n are called the **coordinates of** v with respect to B.

We will use the notation

$$v_B = \left(\begin{array}{c} c_1\\ \vdots\\ c_n \end{array}\right).$$

Coordinates

Theorem

Let $B = \{v_1, \ldots, v_n\}$ be a basis of a K-e.v. E. Then, for every vector $v \in E$, there is exactly one way to write v as a linear combination of the vectors in B, that is, there exist $c_1, \ldots, c_n \in \mathbb{K}$ such that $v = c_1v_1 + c_2v_2 + \ldots + c_nv_n$ and moreover, these c_1, \ldots, c_n are unique.

Definition

The c_1, c_2, \ldots, c_n are called the **coordinates of** v with respect to B.

We will use the notation

$$v_B = \left(\begin{array}{c} c_1\\ \vdots\\ c_n \end{array}\right).$$

Coordinates: from *E* to \mathbb{K}^n

Taking coordinates of a vectors in a given basis preserves linear combinations:

If $B = \{v_1, \ldots, v_n\}$ is a basis of E and u_1, \ldots, u_k are in E, then

$$(x_1u_1 + \ldots + x_ku_k)_B = x_1(u_1)_B + \ldots + x_k(u_k)_B$$

In particular,

• u_1, \ldots, u_k are l.i. $\Leftrightarrow (u_1)_B, \ldots, (u_k)_B$ are l.i. in \mathbb{K}^n .

Coordinates: from *E* to \mathbb{K}^n

Taking coordinates of a vectors in a given basis preserves linear combinations:

If $B = \{v_1, \ldots, v_n\}$ is a basis of E and u_1, \ldots, u_k are in E, then

$$(x_1u_1 + \ldots + x_ku_k)_B = x_1(u_1)_B + \ldots + x_k(u_k)_B$$

In particular,

•
$$u_1,\ldots,u_k$$
 are l.i. $\Leftrightarrow (u_1)_B,\ldots,(u_k)_B$ are l.i. in \mathbb{K}^n .

Proposition Every (f.g.) \mathbb{K} -e.v. $E \neq \vec{0}$ has a basis.

Theorem (Steinitz substitution lemma)

Let *E* be an f.g. *K*-e.v. Let v_1, \ldots, v_m be generators of *E* and $u_1, \ldots, u_n \in E$ be l.i. Then, $n \leq m$ and one can substitute *n* vectors of $\{v_1, \ldots, v_m\}$ by u_1, \ldots, u_n such that the new collection of vectors is still a system of generators for *E*.

Corollary (The Basis Theorem)

Any two bases of a f.g. vector space have the same number of elements.

Dimension of the vector space $\dim(E) = cardinal of any basis. By convention, <math>\dim(\{\vec{0}\}) = 0$.

Proposition Every (f.g.) \mathbb{K} -e.v. $E \neq \vec{0}$ has a basis.

Theorem (Steinitz substitution lemma)

Let *E* be an f.g. \mathbb{K} -e.v. Let v_1, \ldots, v_m be generators of *E* and $u_1, \ldots, u_n \in E$ be l.i. Then, $n \leq m$ and one can substitute *n* vectors of $\{v_1, \ldots, v_m\}$ by u_1, \ldots, u_n such that the new collection of vectors is still a system of generators for *E*.

Corollary (The Basis Theorem)

Any two bases of a f.g. vector space have the same number of elements.

Dimension of the vector space dim(E) = cardinal of any basis. By convention, dim $(\{\vec{0}\})$ = 0.

Proposition

Every (f.g.) \mathbb{K} -e.v. $E \neq \vec{0}$ has a basis.

Theorem (Steinitz substitution lemma)

Let E be an f.g. \mathbb{K} -e.v. Let v_1, \ldots, v_m be generators of E and $u_1, \ldots, u_n \in E$ be l.i. Then, $n \leq m$ and one can substitute n vectors of $\{v_1, \ldots, v_m\}$ by u_1, \ldots, u_n such that the new collection of vectors is still a system of generators for E.

Corollary (The Basis Theorem)

Any two bases of a f.g. vector space have the same number of elements.

Dimension of the vector space dim(E) = cardinal of any basis. By convention, dim $(\{\vec{0}\}) = 0$.

Proposition

Every (f.g.) \mathbb{K} -e.v. $E \neq \vec{0}$ has a basis.

Theorem (Steinitz substitution lemma)

Let E be an f.g. \mathbb{K} -e.v. Let v_1, \ldots, v_m be generators of E and $u_1, \ldots, u_n \in E$ be l.i. Then, $n \leq m$ and one can substitute n vectors of $\{v_1, \ldots, v_m\}$ by u_1, \ldots, u_n such that the new collection of vectors is still a system of generators for E.

Corollary (The Basis Theorem)

Any two bases of a f.g. vector space have the same number of elements.

Dimension of the vector space dim(E) = cardinal of any basis. By convention, dim($\{\vec{0}\}$) = 0.

Proposition

Let E be a vector space of dimension n, $n \ge 1$. Then:

- Any system of generators for E contains ≥ n vectors. Moreover, it contains a basis of E.
- 2. Any linearly independent set in E contains \leq n vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
- 3. Any linearly independent set of n vectors in E is a basis for E.
- 4. Any system of generators for E consisting of n vectors is a basis for E.

Hence,

n = minimum number of elements in a system of generators of E = maximum number of l.i. vectors in E.

Proposition

Let *E* be a vector space of dimension n, $n \ge 1$. Then:

- 1. Any system of generators for E contains $\ge n$ vectors. Moreover, it contains a basis of E.
- Any linearly independent set in E contains ≤ n vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
- 3. Any linearly independent set of n vectors in E is a basis for E.
- 4. Any system of generators for E consisting of n vectors is a basis for E.

Hence,

n = minimum number of elements in a system of generators of E = maximum number of l.i. vectors in E.
Proposition

Let *E* be a vector space of dimension n, $n \ge 1$. Then:

- 1. Any system of generators for E contains $\ge n$ vectors. Moreover, it contains a basis of E.
- 2. Any linearly independent set in E contains \leq n vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
- 3. Any linearly independent set of n vectors in E is a basis for E.
- 4. Any system of generators for E consisting of n vectors is a basis for E.

Hence,

n = minimum number of elements in a system of generators of E = maximum number of l.i. vectors in E.

Proposition

Let *E* be a vector space of dimension n, $n \ge 1$. Then:

- 1. Any system of generators for E contains $\geq n$ vectors. Moreover, it contains a basis of E.
- 2. Any linearly independent set in E contains \leq n vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
- 3. Any linearly independent set of n vectors in E is a basis for E.
- 4. Any system of generators for E consisting of n vectors is a basis for E.

Hence,

n = minimum number of elements in a system of generators of E = maximum number of l.i. vectors in E.

Proposition

Let *E* be a vector space of dimension n, $n \ge 1$. Then:

- 1. Any system of generators for E contains $\geq n$ vectors. Moreover, it contains a basis of E.
- 2. Any linearly independent set in E contains \leq n vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
- 3. Any linearly independent set of n vectors in E is a basis for E.
- 4. Any system of generators for E consisting of n vectors is a basis for E.

Hence,

n = minimum number of elements in a system of generators of E = maximum number of l.i. vectors in E.

Theorem Let $V_1 \subset V_2$ be subspaces of E and dim(E) = n. Then:

- 1. $\dim V_1 \leq \dim V_2 \leq n$.
- 2. dim $V_1 = dimV_2$ if and only if $V_1 = V_2$.

Theorem

Let $V_1 \subset V_2$ be subspaces of E and dim(E) = n. Then:

1. $dimV_1 \leq dimV_2 \leq n$.

2. dim $V_1 = dimV_2$ if and only if $V_1 = V_2$.

Theorem

Let $V_1 \subset V_2$ be subspaces of E and dim(E) = n. Then:

- 1. $dimV_1 \leq dimV_2 \leq n$.
- 2. $dimV_1 = dimV_2$ if and only if $V_1 = V_2$.

Theorem

Given $v_1, v_2, \ldots, v_k \in \mathbb{K}^n$, if $A = (v_1, \ldots, v_k) \in \mathcal{M}_{n,k}(\mathbb{K})$, then

a) $v_1, v_2, ..., v_k$ are l.d. \Leftrightarrow the homogeneous system Ax = 0 has a nontrivial solution (indeterminate system).

b)
$$v_1, v_2, \ldots, v_k$$
 are *l.i.* \Leftrightarrow rank(A) = k.

c) v_1, v_2, \ldots, v_k are a system of generators of $\mathbb{K}^n \Leftrightarrow rank(A) = n$.

d) v_1, v_2, \ldots, v_k is a basis of $\mathbb{K}^n \Leftrightarrow k = n$ and rank(A) = n.

Theorem

Given $v_1, v_2, \ldots, v_k \in \mathbb{K}^n$, if $A = (v_1, \ldots, v_k) \in \mathcal{M}_{n,k}(\mathbb{K})$, then

a) $v_1, v_2, ..., v_k$ are l.d. \Leftrightarrow the homogeneous system Ax = 0 has a nontrivial solution (indeterminate system).

b)
$$v_1, v_2, \ldots, v_k$$
 are *l.i.* \Leftrightarrow rank(A) = k.

c) v_1, v_2, \ldots, v_k are a system of generators of $\mathbb{K}^n \Leftrightarrow rank(A) = n$.

d) v_1, v_2, \ldots, v_k is a basis of $\mathbb{K}^n \Leftrightarrow k = n$ and rank(A) = n. Proposition

- dimension of the row span of A (max. number of l.i. rows) and
- dimension of the column span of A (max. number of l.i. columns).

Theorem

Given $v_1, v_2, \ldots, v_k \in \mathbb{K}^n$, if $A = (v_1, \ldots, v_k) \in \mathcal{M}_{n,k}(\mathbb{K})$, then

a) $v_1, v_2, ..., v_k$ are l.d. \Leftrightarrow the homogeneous system Ax = 0 has a nontrivial solution (indeterminate system).

b)
$$v_1, v_2, \ldots, v_k$$
 are l.i. \Leftrightarrow rank(A) = k.

c) v_1, v_2, \ldots, v_k are a system of generators of $\mathbb{K}^n \Leftrightarrow rank(A) = n$.

d) v_1, v_2, \ldots, v_k is a basis of $\mathbb{K}^n \Leftrightarrow k = n$ and rank(A) = n. Proposition

- dimension of the row span of A (max. number of l.i. rows) and
- dimension of the column span of A (max. number of l.i. columns).

Theorem

Given $v_1, v_2, \ldots, v_k \in \mathbb{K}^n$, if $A = (v_1, \ldots, v_k) \in \mathcal{M}_{n,k}(\mathbb{K})$, then

a) $v_1, v_2, ..., v_k$ are l.d. \Leftrightarrow the homogeneous system Ax = 0 has a nontrivial solution (indeterminate system).

b)
$$v_1, v_2, \ldots, v_k$$
 are *l.i.* \Leftrightarrow rank(A) = k.

c) v_1, v_2, \ldots, v_k are a system of generators of $\mathbb{K}^n \Leftrightarrow rank(A) = n$.

d) v_1, v_2, \ldots, v_k is a basis of $\mathbb{K}^n \Leftrightarrow k = n$ and rank(A) = n. Proposition

- dimension of the row span of A (max. number of l.i. rows) and
- dimension of the column span of A (max. number of l.i. columns).

\mathbb{K}^n : Finding a basis from generators

If $V = [v_1, v_2, ..., v_k] \subset \mathbb{K}^n$, then a basis of V can be obtained by applying one the following methods:

- 1 Write the vectors v_1, \ldots, v_k as the rows of a matrix A, and reduce A to row echelon form \overline{A} (Gaussian elimination). The nonzero rows of \overline{A} are a basis of V.
- 2 Write the vectors v_1, \ldots, v_k as the columns of a matrix B. Then, reduce B to row echelon form \overline{B} (Gaussian elimination). The columns of \overline{B} with pivots indicate which vectors v_1, \ldots, v_k to choose to obtain a basis of V.

\mathbb{K}^n : Finding a basis from generators

If $V = [v_1, v_2, ..., v_k] \subset \mathbb{K}^n$, then a basis of V can be obtained by applying one the following methods:

- 1 Write the vectors v_1, \ldots, v_k as the rows of a matrix A, and reduce A to row echelon form \overline{A} (Gaussian elimination). The nonzero rows of \overline{A} are a basis of V.
- 2 Write the vectors v_1, \ldots, v_k as the columns of a matrix B. Then, reduce B to row echelon form \overline{B} (Gaussian elimination). The columns of \overline{B} with pivots indicate which vectors v_1, \ldots, v_k to choose to obtain a basis of V.

If u_1, \ldots, u_k are linearly independent vectors of \mathbb{K}^n , then they can be extended to a basis of \mathbb{K}^n :

- Write the vectors u₁,..., u_k as the columns of a matrix B, and take M = (B | I_n).
- ▶ Then, reduce M to row echelon form $\overline{M} = (\overline{B} | \overline{I}_n)$ (Gaussian elimination).
- Collect the columns of *I_n* with a pivot and choose the corresponding vectors of the standard basis (columns of *I_n*) of *Kⁿ*.

▶ u_1, \ldots, u_k together with these last vectors form a basis of \mathbb{K}^n . The same can be done if u_1, \ldots, u_k are linearly independent vectors of a vector subspace V: instead of I_n , take a matrix formed by a basis v_1, \ldots, v_d of V and do the same process as above for $M = (u_1, \ldots, u_k | v_1, \ldots, v_d)$.

If u_1, \ldots, u_k are linearly independent vectors of \mathbb{K}^n , then they can be extended to a basis of \mathbb{K}^n :

- Write the vectors u₁,..., u_k as the columns of a matrix B, and take M = (B | I_n).
- Then, reduce M to row echelon form $\overline{M} = (\overline{B} | \overline{I_n})$ (Gaussian elimination).
- Collect the columns of *I_n* with a pivot and choose the corresponding vectors of the standard basis (columns of *I_n*) of *Kⁿ*.

▶ u_1, \ldots, u_k together with these last vectors form a basis of \mathbb{K}^n . The same can be done if u_1, \ldots, u_k are linearly independent vectors of a vector subspace V: instead of I_n , take a matrix formed by a basis v_1, \ldots, v_d of V and do the same process as above for $M = (u_1, \ldots, u_k | v_1, \ldots, v_d)$.

If u_1, \ldots, u_k are linearly independent vectors of \mathbb{K}^n , then they can be extended to a basis of \mathbb{K}^n :

- Write the vectors u₁,..., u_k as the columns of a matrix B, and take M = (B | I_n).
- ▶ Then, reduce M to row echelon form $\overline{M} = (\overline{B} | \overline{I_n})$ (Gaussian elimination).
- Collect the columns of *l_n* with a pivot and choose the corresponding vectors of the standard basis (columns of *l_n*) of *Kⁿ*.

▶ u_1, \ldots, u_k together with these last vectors form a basis of \mathbb{K}^n . The same can be done if u_1, \ldots, u_k are linearly independent vectors of a vector subspace V: instead of I_n , take a matrix formed by a basis v_1, \ldots, v_d of V and do the same process as above for $M = (u_1, \ldots, u_k | v_1, \ldots, v_d)$.

If u_1, \ldots, u_k are linearly independent vectors of \mathbb{K}^n , then they can be extended to a basis of \mathbb{K}^n :

- Write the vectors u₁,..., u_k as the columns of a matrix B, and take M = (B | I_n).
- ▶ Then, reduce M to row echelon form $\overline{M} = (\overline{B} | \overline{I_n})$ (Gaussian elimination).
- Collect the columns of *l_n* with a pivot and choose the corresponding vectors of the standard basis (columns of *l_n*) of *Kⁿ*.

• u_1, \ldots, u_k together with these last vectors form a basis of \mathbb{K}^n .

The same can be done if u_1, \ldots, u_k are linearly independent vectors of a vector subspace V:

instead of I_n , take a matrix formed by a basis v_1, \ldots, v_d of V and do the same process as above for $M = (u_1, \ldots, u_k | v_1, \ldots, v_d)$.

If u_1, \ldots, u_k are linearly independent vectors of \mathbb{K}^n , then they can be extended to a basis of \mathbb{K}^n :

- Write the vectors u₁,..., u_k as the columns of a matrix B, and take M = (B | I_n).
- ▶ Then, reduce M to row echelon form $\overline{M} = (\overline{B} | \overline{I_n})$ (Gaussian elimination).
- Collect the columns of *l_n* with a pivot and choose the corresponding vectors of the standard basis (columns of *l_n*) of *Kⁿ*.

• u_1, \ldots, u_k together with these last vectors form a basis of \mathbb{K}^n . The same can be done if u_1, \ldots, u_k are linearly independent vectors of a vector subspace V:

instead of I_n , take a matrix formed by a basis v_1, \ldots, v_d of V and do the same process as above for $M = (u_1, \ldots, u_k | v_1, \ldots, v_d)$.

From "generators" to "equations": If $V = [v_1, ..., v_k] \subset \mathbb{K}^n$: Write $M = (v_1, ..., v_k)$, and form an augmented matrix (M|x)with x = column with entries $x_1, x_2, ..., x_n$. Then $x \in [v_1, ..., v_k]$ if and only if rank(M|x) = rank(M). There are 2 options:

▶ Reduce M to echelon form $(\overline{M}|\overline{x})$ by Gaussian elimination \Rightarrow a linear system of equations for V is obtained by writing the equations that correspond to zero rows of \overline{M} .

If rank(M) = k, the equations are formed by the vanishing of the (k + 1) × (k + 1) minors of (M|x) that contain a chosen non-zero k × k minor of M.

From "generators" to "equations": If $V = [v_1, ..., v_k] \subset \mathbb{K}^n$: Write $M = (v_1, ..., v_k)$, and form an augmented matrix (M|x)with x = column with entries $x_1, x_2, ..., x_n$. Then $x \in [v_1, ..., v_k]$ if and only if rank(M|x) = rank(M). There are 2 options:

- ▶ Reduce M to echelon form $(\overline{M}|\overline{x})$ by Gaussian elimination \Rightarrow a linear system of equations for V is obtained by writing the equations that correspond to zero rows of \overline{M} .
- If rank(M) = k, the equations are formed by the vanishing of the (k + 1) × (k + 1) minors of (M|x) that contain a chosen non-zero k × k minor of M.

From "equations" to "generators":

If $V = \{u \in \mathbb{K}^n \mid Au = 0\}$ (solutions to a homogeneous system):

- It is enough to solve the system to obtain a system of generators of V.
- Moreover, if we give values 0's and 1's to the free variables, these generators form a basis and dim(V) = n rank(A).

We have proved:

Corollary

A subset V of \mathbb{K}^n is a subspace \Leftrightarrow it is the set of solutions to a homogeneous system.

From "equations" to "generators":

If $V = \{u \in \mathbb{K}^n \mid Au = 0\}$ (solutions to a homogeneous system):

- It is enough to solve the system to obtain a system of generators of V.
- Moreover, if we give values 0's and 1's to the free variables, these generators form a basis and dim(V) = n rank(A).

We have proved:

Corollary

A subset V of \mathbb{K}^n is a subspace \Leftrightarrow it is the set of solutions to a homogeneous system.

Outline

 \mathbb{R}^n and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Let $B = \{u_1, \ldots, u_n\}$ and $C = \{v_1, \ldots, v_n\}$ be bases of E. Denote by $A_{B\to C}$ the $n \times n$ matrix whose columns are the coordinate vectors $(u_1)_C, \ldots, (u_n)_C$ of B with respect to C. This is the **change-of-basis matrix from** B **to** C:

$$A_{B\to C} = \left((u_1)_C \ldots (u_n)_C \right).$$

- 1. $A_{B\to C}w_B = w_C$ for all $w \in E$.
- 2. $A_{B \to C}$ is invertible, and $(A_{B \to C})^{-1} = A_{C \to B}$.
- 3. If D is another basis of E, then $A_{C \to D}A_{B \to C} = A_{B \to D}$.

Let $B = \{u_1, \ldots, u_n\}$ and $C = \{v_1, \ldots, v_n\}$ be bases of E. Denote by $A_{B \to C}$ the $n \times n$ matrix whose columns are the coordinate vectors $(u_1)_C, \ldots, (u_n)_C$ of B with respect to C. This is the **change-of-basis matrix from** B **to** C:

$$A_{B\to C} = \left((u_1)_C \quad \dots \quad (u_n)_C \right).$$

- 1. $A_{B\to C}w_B = w_C$ for all $w \in E$.
- 2. $A_{B \to C}$ is invertible, and $(A_{B \to C})^{-1} = A_{C \to B}$.
- 3. If D is another basis of E, then $A_{C \to D}A_{B \to C} = A_{B \to D}$.

Let $B = \{u_1, \ldots, u_n\}$ and $C = \{v_1, \ldots, v_n\}$ be bases of E. Denote by $A_{B\to C}$ the $n \times n$ matrix whose columns are the coordinate vectors $(u_1)_C, \ldots, (u_n)_C$ of B with respect to C. This is the **change-of-basis matrix from** B **to** C:

$$A_{B\to C} = \left((u_1)_C \quad \dots \quad (u_n)_C \right).$$

- 1. $A_{B\to C}w_B = w_C$ for all $w \in E$.
- 2. $A_{B \to C}$ is invertible, and $(A_{B \to C})^{-1} = A_{C \to B}$.
- 3. If D is another basis of E, then $A_{C \to D}A_{B \to C} = A_{B \to D}$.

Let $B = \{u_1, \ldots, u_n\}$ and $C = \{v_1, \ldots, v_n\}$ be bases of E. Denote by $A_{B\to C}$ the $n \times n$ matrix whose columns are the coordinate vectors $(u_1)_C, \ldots, (u_n)_C$ of B with respect to C. This is the **change-of-basis matrix from** B **to** C:

$$A_{B\to C} = \left((u_1)_C \ldots (u_n)_C \right).$$

- 1. $A_{B\to C}w_B = w_C$ for all $w \in E$.
- 2. $A_{B \to C}$ is invertible, and $(A_{B \to C})^{-1} = A_{C \to B}$.
- 3. If D is another basis of E, then $A_{C \to D}A_{B \to C} = A_{B \to D}$.

Outline

 \mathbb{R}^n and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Intersection & sum of subspaces

Given V_1, V_2 vector subspaces of E, define

- 1. Intersection of V_1 and V_2 is $V_1 \cap V_2 = \{v \in E \mid v \in V_1, v \in V_2\}.$
- 2. Sum of V_1 and V_2 is

 $V_1 + V_2 = \{v_1 + v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}.$ Computation: If $V_1 = [u_1, \dots, u_r]$ and $V_2 = [v_1, \dots, v_r]$

 $V_1 + V_2 = [u_1, \ldots, u_r, v_1, \ldots, v_s].$

Intersection & sum of subspaces

Given V_1, V_2 vector subspaces of E, define

- 1. Intersection of V_1 and V_2 is $V_1 \cap V_2 = \{ v \in E \mid v \in V_1, v \in V_2 \}.$
- 2. Sum of V_1 and V_2 is

$$\begin{split} &V_1 + V_2 = \{v_1 + v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}.\\ &\textit{Computation: If } V_1 = [u_1, \dots, u_r] \text{ and } V_2 = [v_1, \dots, v_s], \text{ then } \\ &V_1 + V_2 = [u_1, \dots, u_r, v_1, \dots, v_s]. \end{split}$$

Theorem

- 1. $V_1 \cap V_2$ and $V_1 + V_2$ are vector subspaces of E.
- 2. Grassmann formula: if $dim(E) < \infty$, then

 $dim(V_1 \cap V_2) + dim(V_1 + V_2) = dim(V_1) + dim(V_2).$

Ex:

Direct sum

Definition

E is the **direct sum** of subspaces F_1 and F_2 if any $w \in E$ can be written in a **unique way** as $w = v_1 + v_2$ with $v_1 \in F_1$, $v_2 \in F_2$. In this case we use the notation $E = F_1 \oplus F_2$.

Proposition

Let F_1, F_2 be two subspaces of E. Then $E = F_1 \oplus F_2$ if and only if the following two conditions hold:

$$E = F_1 + F_2,$$

If $E = F_1 \oplus F_2$, we say that F_2 is a **complementary subspace** to F_1 (and vice-versa).

Direct sum

Definition

E is the **direct sum** of subspaces F_1 and F_2 if any $w \in E$ can be written in a **unique way** as $w = v_1 + v_2$ with $v_1 \in F_1$, $v_2 \in F_2$. In this case we use the notation $E = F_1 \oplus F_2$.

Proposition

Let F_1, F_2 be two subspaces of E. Then $E = F_1 \oplus F_2$ if and only if the following two conditions hold:

$$E = F_1 + F_2,$$

 $F_1 \cap F_2 = \{0\}.$

If $E = F_1 \oplus F_2$, we say that F_2 is a **complementary subspace** to F_1 (and vice-versa).

Direct sum

Definition

E is the **direct sum** of subspaces F_1 and F_2 if any $w \in E$ can be written in a **unique way** as $w = v_1 + v_2$ with $v_1 \in F_1$, $v_2 \in F_2$. In this case we use the notation $E = F_1 \oplus F_2$.

Proposition

Let F_1, F_2 be two subspaces of E. Then $E = F_1 \oplus F_2$ if and only if the following two conditions hold:

$$E = F_1 + F_2,$$

 $F_1 \cap F_2 = \{0\}.$

If $E = F_1 \oplus F_2$, we say that F_2 is a **complementary subspace** to F_1 (and vice-versa).

Outline

 \mathbb{R}^n and other vector spaces

Vector subspaces

Linear dependency, basis and dimension

Change of basis

Intersection and sum

Bibliography

Bibliography

Basic:

D. Poole, Linear Algebra, A modern introduction (3rd edition), Brooks/Cole, 2011. Chapter 6.

Additional

 Hernández Rodríguez, E.; Vàzquez Gallo, M.J.; Zurro Moro, M.A. Álgebra lineal y geometría [en línia]