Àlgebra lineal i geometria 2. Aplicacions lineals

Grau en Enginyeria Física

2023-24
Universitat Politècnica de Catalunya
Departament de Matemàtiques

Marta Casanellas
Universitat Politècnica de Catalunya

UNIVERSITAT POLITĖCNICA
de catalunya
BARCELONATECH

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition
$f: E \longrightarrow F$ is a linear map if

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition
$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition

$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition

$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ where $f(x, y)=(x+2 y, 3 x, y-x)$

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition

$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ where $f(x, y)=(x+2 y, 3 x, y-x)$
- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ where $f(x, y)=(-y, x)$ (rotation of $\pi / 2$ centered at $(0,0))$

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition

$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ where $f(x, y)=(x+2 y, 3 x, y-x)$
- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ where $f(x, y)=(-y, x)$ (rotation of $\pi / 2$ centered at $(0,0))$
- $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} f(v)=\lambda . v$ for some $\lambda \in \mathbb{K}$ (homothety).

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition

$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ where $f(x, y)=(x+2 y, 3 x, y-x)$
- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ where $f(x, y)=(-y, x)$ (rotation of $\pi / 2$ centered at $(0,0))$
- $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} f(v)=\lambda . v$ for some $\lambda \in \mathbb{K}$ (homothety).
- $f: E \longrightarrow F, f(v)=\mathbf{0} \forall v \in E$ is called zero map.

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition

$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ where $f(x, y)=(x+2 y, 3 x, y-x)$
- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ where $f(x, y)=(-y, x)($ rotation of $\pi / 2$ centered at $(0,0))$
- $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} f(v)=\lambda . v$ for some $\lambda \in \mathbb{K}$ (homothety).
- $f: E \longrightarrow F, f(v)=\mathbf{0} \forall v \in E$ is called zero map.
- $f: E \longrightarrow E f(v)=v$ is called identity map Id.

Definition

A linear map (or linear transformation) between two $\mathbb{K}-e . v E$ and F is a map that preserves linear combinations. More precisely,

Definition

$f: E \longrightarrow F$ is a linear map if

1. $f(u+v)=f(u)+f(v)$ for all $u, v \in E$, and
2. $f(c v)=c f(v)$ for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ where $f(x, y)=(x+2 y, 3 x, y-x)$
- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ where $f(x, y)=(-y, x)($ rotation of $\pi / 2$ centered at $(0,0))$
- $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} f(v)=\lambda . v$ for some $\lambda \in \mathbb{K}$ (homothety).
- $f: E \longrightarrow F, f(v)=\mathbf{0} \forall v \in E$ is called zero map.
$\rightarrow f: E \longrightarrow E f(v)=v$ is called identity map Id.
- Example of maps that are not linear

Properties of linear maps

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v. Then:

- f linear $\Leftrightarrow f\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)=c_{1} f\left(v_{1}\right)+\cdots+c_{k} f\left(v_{k}\right)$
$\forall v_{1}, \ldots, v_{k} \in E$ and $c_{1}, \ldots, c_{k} \in \mathbb{K}$.

A linear map f is determined by the image of a basis (any basis)

Properties of linear maps

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v. Then:

- f linear $\Leftrightarrow f\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)=c_{1} f\left(v_{1}\right)+\cdots+c_{k} f\left(v_{k}\right)$
$\forall v_{1}, \ldots, v_{k} \in E$ and $c_{1}, \ldots, c_{k} \in \mathbb{K}$.
- f linear $\Rightarrow f(\mathbf{0})=\mathbf{0}$.

A linear map f is determined by the image of a basis (any basis):

Properties of linear maps

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v. Then:
-f linear $\Leftrightarrow f\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)=c_{1} f\left(v_{1}\right)+\cdots+c_{k} f\left(v_{k}\right)$
$\forall v_{1}, \ldots, v_{k} \in E$ and $c_{1}, \ldots, c_{k} \in \mathbb{K}$.

- f linear $\Rightarrow f(\mathbf{0})=\mathbf{0}$.

A linear map f is determined by the image of a basis (any basis):
Proposition
Given a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of E and any set of vectors $v_{1}, \ldots, v_{n} \in F$, there exists a unique linear map $f: E \longrightarrow F$ such that $f\left(u_{i}\right)=v_{i} \forall i$.

Linear maps $\mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ and matrices

- Basic example of linear map: If $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, the map $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ defined by

$$
v=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto f(v)=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

Linear maps $\mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ and matrices

- Basic example of linear map: If $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, the map $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ defined by

$$
v=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto f(v)=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

- All linear maps $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ are of this type: in standard coordinates they are defined as degree 1 homogeneous polynomials:

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(a_{1,1} x_{1}+\ldots+a_{1, n} x_{n}, \cdots, a_{m, 1} x_{1}+\ldots+a_{m, n} x_{n}\right)
$$

and f corresponds to $v \mapsto A v$ where $A=\left(a_{i, j}\right)$; the i th column of A is $f\left(e_{i}\right)$.

Linear maps $\mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ and matrices

- Basic example of linear map: If $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, the map $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ defined by

$$
v=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto f(v)=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

- All linear maps $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ are of this type: in standard coordinates they are defined as degree 1 homogeneous polynomials:

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(a_{1,1} x_{1}+\ldots+a_{1, n} x_{n}, \cdots, a_{m, 1} x_{1}+\ldots+a_{m, n} x_{n}\right)
$$

and f corresponds to $v \mapsto A v$ where $A=\left(a_{i, j}\right)$; the i th column of A is $f\left(e_{i}\right)$.

- The standard matrix $M(f)$ of a linear map $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ is the $m \times n$ matrix whose columns are the vectors $f\left(e_{i}\right)$:

$$
M(f)=\left(f\left(e_{1}\right) \cdots f\left(e_{n}\right)\right)
$$

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Definitions

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v.

- f is injective if different vectors always have different images $(f(u)=f(v)$ implies $u=v)$.

Definitions

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v.

- f is injective if different vectors always have different images $(f(u)=f(v)$ implies $u=v)$.
- f is surjective if every vector v in F is the image of a certain vector $u \in E, v=f(u)$.

Definitions

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v.

- f is injective if different vectors always have different images $(f(u)=f(v)$ implies $u=v)$.
- f is surjective if every vector v in F is the image of a certain vector $u \in E, v=f(u)$.
- The set of all images of vectors is called the image or range of f,

$$
\operatorname{Im}(f)=\{v \in F \mid v=f(u) \text { for some } u \in E\} \subseteq F
$$

Definitions

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v.

- f is injective if different vectors always have different images $(f(u)=f(v)$ implies $u=v)$.
- f is surjective if every vector v in F is the image of a certain vector $u \in E, v=f(u)$.
- The set of all images of vectors is called the image or range of f,

$$
\operatorname{Im}(f)=\{v \in F \mid v=f(u) \text { for some } u \in E\} \subseteq F
$$

- f is surjective if and only if $\operatorname{Im}(f)=F$.

Definitions

Let $f: E \longrightarrow F$ be a map between \mathbb{K}-e.v.

- f is injective if different vectors always have different images $(f(u)=f(v)$ implies $u=v)$.
- f is surjective if every vector v in F is the image of a certain vector $u \in E, v=f(u)$.
- The set of all images of vectors is called the image or range of f,

$$
\operatorname{Im}(f)=\{v \in F \mid v=f(u) \text { for some } u \in E\} \subseteq F
$$

- f is surjective if and only if $\operatorname{Im}(f)=F$.
- f is bijective if it is at the same time injective and surjective. A bijective linear map is called an isomorphism.

Null space

Let $f: E \longrightarrow F$ be a linear map.
Definition
The kernel (nucli) of f is the subspace

$$
\operatorname{Nuc}(f)=\{v \in E \mid f(v)=\mathbf{0}\}=f^{-1}(\{\mathbf{0}\}) \subset E .
$$

Null space

Let $f: E \longrightarrow F$ be a linear map.
Definition
The kernel (nucli) of f is the subspace

$$
\operatorname{Nuc}(f)=\{v \in E \mid f(v)=\mathbf{0}\}=f^{-1}(\{\mathbf{0}\}) \subset E
$$

Theorem
A linear map f is injective if and only if $\operatorname{Nuc}(f)=\{\mathbf{0}\}$.

Null space

Let $f: E \longrightarrow F$ be a linear map.
Definition
The kernel (nucli) of f is the subspace

$$
\operatorname{Nuc}(f)=\{v \in E \mid f(v)=\mathbf{0}\}=f^{-1}(\{\mathbf{0}\}) \subset E
$$

Theorem
A linear map f is injective if and only if $\operatorname{Nuc}(f)=\{\mathbf{0}\}$.
If $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ is a linear map and A is its standard matrix, then

- $\operatorname{Nuc}(f)=\left\{v \in \mathbb{K}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{K}^{n} \mid A x=0\right\}$.

Null space

Let $f: E \longrightarrow F$ be a linear map.
Definition
The kernel (nucli) of f is the subspace

$$
\operatorname{Nuc}(f)=\{v \in E \mid f(v)=\mathbf{0}\}=f^{-1}(\{\mathbf{0}\}) \subset E
$$

Theorem
A linear map f is injective if and only if $\operatorname{Nuc}(f)=\{\mathbf{0}\}$.
If $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ is a linear map and A is its standard matrix, then
$-\operatorname{Nuc}(f)=\left\{v \in \mathbb{K}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{K}^{n} \mid A x=0\right\}$.

- $\operatorname{dim} \operatorname{Nuc}(f)=n-\operatorname{rank}(A)$.

Null space

Let $f: E \longrightarrow F$ be a linear map.
Definition
The kernel (nucli) of f is the subspace

$$
\operatorname{Nuc}(f)=\{v \in E \mid f(v)=\mathbf{0}\}=f^{-1}(\{\mathbf{0}\}) \subset E
$$

Theorem
A linear map f is injective if and only if $\operatorname{Nuc}(f)=\{\mathbf{0}\}$.
If $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ is a linear map and A is its standard matrix, then

- $\operatorname{Nuc}(f)=\left\{v \in \mathbb{K}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{K}^{n} \mid A x=0\right\}$.
- $\operatorname{dim} \operatorname{Nuc}(f)=n-\operatorname{rank}(A)$.
- f is injective $\Leftrightarrow \operatorname{rank}(A)=n$ (=number of columns).

Null space

Let $f: E \longrightarrow F$ be a linear map.
Definition
The kernel (nucli) of f is the subspace

$$
\operatorname{Nuc}(f)=\{v \in E \mid f(v)=\mathbf{0}\}=f^{-1}(\{\mathbf{0}\}) \subset E
$$

Theorem
A linear map f is injective if and only if $\operatorname{Nuc}(f)=\{\mathbf{0}\}$.
If $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ is a linear map and A is its standard matrix, then
$-\operatorname{Nuc}(f)=\left\{v \in \mathbb{K}^{n} \mid f(v)=0\right\}=\left\{x \in \mathbb{K}^{n} \mid A x=0\right\}$.
$-\operatorname{dim} \operatorname{Nuc}(f)=n-\operatorname{rank}(A)$.

- f is injective $\Leftrightarrow \operatorname{rank}(A)=n$ (=number of columns).
- f injective $\Rightarrow n \leq m$.

Image and preimage of a subspace

Let $f: E \longrightarrow F$ be a linear map.
Definition
The image of $V \subseteq E$ is the set

$$
f(V):=\{w \in F \mid w=f(u) \text { for some } u \in V\} .
$$

Image and preimage of a subspace

Let $f: E \longrightarrow F$ be a linear map.
Definition
The image of $V \subseteq E$ is the set

$$
f(V):=\{w \in F \mid w=f(u) \text { for some } u \in V\} .
$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.

Image and preimage of a subspace

Let $f: E \longrightarrow F$ be a linear map.
Definition
The image of $V \subseteq E$ is the set

$$
f(V):=\{w \in F \mid w=f(u) \text { for some } u \in V\} .
$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V=\left[u_{1}, \ldots, u_{d}\right] \subset E \Rightarrow f(V)=\left[f\left(u_{1}\right), \ldots, f\left(u_{d}\right)\right] \subset F$.

Image and preimage of a subspace

Let $f: E \longrightarrow F$ be a linear map.
Definition
The image of $V \subseteq E$ is the set

$$
f(V):=\{w \in F \mid w=f(u) \text { for some } u \in V\} .
$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V=\left[u_{1}, \ldots, u_{d}\right] \subset E \Rightarrow f(V)=\left[f\left(u_{1}\right), \ldots, f\left(u_{d}\right)\right] \subset F$.
- If u_{1}, \ldots, u_{d} are linearly independent, $f\left(u_{1}\right), \ldots, f\left(u_{d}\right)$ do NOT need to be l.i.

Image and preimage of a subspace

Let $f: E \longrightarrow F$ be a linear map.
Definition
The image of $V \subseteq E$ is the set

$$
f(V):=\{w \in F \mid w=f(u) \text { for some } u \in V\} .
$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V=\left[u_{1}, \ldots, u_{d}\right] \subset E \Rightarrow f(V)=\left[f\left(u_{1}\right), \ldots, f\left(u_{d}\right)\right] \subset F$.
- If u_{1}, \ldots, u_{d} are linearly independent, $f\left(u_{1}\right), \ldots, f\left(u_{d}\right)$ do NOT need to be I.i.
- $\operatorname{Im}(f)=f(E)=\left[f\left(u_{1}\right), \ldots, f\left(u_{n}\right)\right]$ if $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of E.

Image and preimage of a subspace

Let $f: E \longrightarrow F$ be a linear map.
Definition
The image of $V \subseteq E$ is the set

$$
f(V):=\{w \in F \mid w=f(u) \text { for some } u \in V\} .
$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V=\left[u_{1}, \ldots, u_{d}\right] \subset E \Rightarrow f(V)=\left[f\left(u_{1}\right), \ldots, f\left(u_{d}\right)\right] \subset F$.
- If u_{1}, \ldots, u_{d} are linearly independent, $f\left(u_{1}\right), \ldots, f\left(u_{d}\right)$ do NOT need to be I.i.
- $\operatorname{Im}(f)=f(E)=\left[f\left(u_{1}\right), \ldots, f\left(u_{n}\right)\right]$ if $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of E.
- $\operatorname{dim} \operatorname{Im}(f)$ is called the rank of f.

Image for $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$

Let $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ be a linear map and let A be its standard matrix. Then,

- $\operatorname{Im}(f)=[$ columns of A$]$.

Image for $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$

Let $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ be a linear map and let A be its standard matrix. Then,

- $\operatorname{Im}(f)=[$ columns of A$]$.
- $\operatorname{dim} \operatorname{Im}(f)=\operatorname{rank}(A)$.

Image for $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$

Let $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ be a linear map and let A be its standard matrix. Then,

- $\operatorname{Im}(f)=[$ columns of A].
$-\operatorname{dim} \operatorname{Im}(f)=\operatorname{rank}(A)$.
- f is surjective if and only if $\operatorname{rank}(A)=m$ (= number of rows).

Image for $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$

Let $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ be a linear map and let A be its standard matrix. Then,

- $\operatorname{Im}(f)=[$ columns of A$]$.
$-\operatorname{dim} \operatorname{Im}(f)=\operatorname{rank}(A)$.
- f is surjective if and only if $\operatorname{rank}(A)=m$ (= number of rows).
- f surjective $\Rightarrow m \leq n$.

Let $f: E \longrightarrow F$ be a linear map.
Definition
The preimage of $W \subseteq F$ is $f^{-1}(W):=\{u \in E \mid f(u) \in W\} \subseteq E$.

Let $f: E \longrightarrow F$ be a linear map.
Definition
The preimage of $W \subseteq F$ is $f^{-1}(W):=\{u \in E \mid f(u) \in W\} \subseteq E$.
Lemma
. If $u \in E$ and $v \in F$ satisfy $f(u)=v$, then

Let $f: E \longrightarrow F$ be a linear map.
Definition
The preimage of $W \subseteq F$ is $f^{-1}(W):=\{u \in E \mid f(u) \in W\} \subseteq E$.
Lemma

1. If $u \in E$ and $v \in F$ satisfy $f(u)=v$, then

$$
f^{-1}(\{v\})=\{u+w \mid w \in \operatorname{Nuc}(f)\} .
$$

Let $f: E \longrightarrow F$ be a linear map.
Definition
The preimage of $W \subseteq F$ is $f^{-1}(W):=\{u \in E \mid f(u) \in W\} \subseteq E$.
Lemma

1. If $u \in E$ and $v \in F$ satisfy $f(u)=v$, then

$$
f^{-1}(\{v\})=\{u+w \mid w \in \operatorname{Nuc}(f)\} .
$$

2. If W is a subspace, so is $f^{-1}(W)$.

Outline

Definition and examples
 Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Composition of linear maps

Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be linear maps, the composition of g with f is the linear map $g \circ f: E \longrightarrow G$ defined as:

$$
\begin{array}{rlccl}
g \circ f: E & \xrightarrow{f} & F & \xrightarrow{g} & G \\
v & \mapsto & f(v) & \mapsto & (g \circ f)(v):=g(f(v))
\end{array}
$$

If $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{m}$ has standard matrix A and $g: \mathbb{K}^{m} \longrightarrow \mathbb{K}^{p}$ has standard matrix $B \Rightarrow$ the standard matrix of $g \circ f$ is

$$
M(g \circ f)=B A
$$

Inverse of linear maps

If $f: E \longrightarrow F$ is a linear map, we say that $g: F \longrightarrow E$ is the inverse of f (denoted as $g=f^{-1}$) if

$$
g \circ f=f \circ g=l d
$$

Note: f is invertible $\Leftrightarrow f$ is bijective. Invertible linear maps are called isomorphisms. Two \mathbb{K}-ev. are isomorphic if there exists an isomorphism $f: E \longrightarrow F$; in this case we use the notation $E \cong F$.
Properties:

- If f is iso. $\Rightarrow f^{-1}$ is a linear map.

Inverse of linear maps

If $f: E \longrightarrow F$ is a linear map, we say that $g: F \longrightarrow E$ is the inverse of f (denoted as $g=f^{-1}$) if

$$
g \circ f=f \circ g=l d
$$

Note: f is invertible $\Leftrightarrow f$ is bijective. Invertible linear maps are called isomorphisms. Two \mathbb{K}-ev. are isomorphic if there exists an isomorphism $f: E \longrightarrow F$; in this case we use the notation $E \cong F$.
Properties:

- If f is iso. $\Rightarrow f^{-1}$ is a linear map.
- If $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is iso. and has standard matrix $A \Rightarrow$ $M\left(f^{-1}\right)=A^{-1}$.

Inverse of linear maps

If $f: E \longrightarrow F$ is a linear map, we say that $g: F \longrightarrow E$ is the inverse of f (denoted as $g=f^{-1}$) if

$$
g \circ f=f \circ g=l d
$$

Note: f is invertible $\Leftrightarrow f$ is bijective. Invertible linear maps are called isomorphisms. Two \mathbb{K}-ev. are isomorphic if there exists an isomorphism $f: E \longrightarrow F$; in this case we use the notation $E \cong F$.
Properties:

- If f is iso. $\Rightarrow f^{-1}$ is a linear map.
- If $f: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is iso. and has standard matrix $A \Rightarrow$ $M\left(f^{-1}\right)=A^{-1}$.
- If f has inverse map f^{-1}, then the preimage $f^{-1}(W)$ of a subspace W coincides with its image by f^{-1}.

Theorem (The Rank theorem)
Let $f: E \longrightarrow F$ be a linear map and assume that E has finite dimension. Then, $\operatorname{Nuc}(f)$ and $\operatorname{Im}(f)$ have finite dimension and $\operatorname{dim} \operatorname{Nuc}(f)+\operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} E$

Characterizations of inj./surj. maps

If $f: E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- f is injective $\Leftrightarrow \operatorname{Nuc}(f)=\{\mathbf{0}\} \Leftrightarrow \operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} E$.

Characterizations of inj./surj. maps

If $f: E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- f is injective $\Leftrightarrow \operatorname{Nuc}(f)=\{\mathbf{0}\} \Leftrightarrow \operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} E$.
- f is surjective $\Leftrightarrow \operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} F \Leftrightarrow$ $\operatorname{dim} \operatorname{Nuc}(f)=\operatorname{dim} E-\operatorname{dim} F$.

Characterizations of inj./surj. maps

If $f: E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- f is injective $\Leftrightarrow \operatorname{Nuc}(f)=\{\mathbf{0}\} \Leftrightarrow \operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} E$.
- f is surjective $\Leftrightarrow \operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} F \Leftrightarrow$ $\operatorname{dim} \operatorname{Nuc}(f)=\operatorname{dim} E-\operatorname{dim} F$.
- f is bijective $\Leftrightarrow \operatorname{dim} E=\operatorname{dim} F$ and $\operatorname{Nuc}(f)=\{\mathbf{0}\} \Leftrightarrow$ $\operatorname{dim} E=\operatorname{dim} F$ and $\operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} F$.

Characterizations of inj./surj. maps

If $f: E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- f is injective $\Leftrightarrow \operatorname{Nuc}(f)=\{\mathbf{0}\} \Leftrightarrow \operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} E$.
- f is surjective $\Leftrightarrow \operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} F \Leftrightarrow$ $\operatorname{dim} \operatorname{Nuc}(f)=\operatorname{dim} E-\operatorname{dim} F$.
- f is bijective $\Leftrightarrow \operatorname{dim} E=\operatorname{dim} F$ and $\operatorname{Nuc}(f)=\{\mathbf{0}\} \Leftrightarrow$ $\operatorname{dim} E=\operatorname{dim} F$ and $\operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} F$.
- If $\operatorname{dim} E=\operatorname{dim} F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

Isomorphism of e.v. of finite dimension

Proposition
If $\operatorname{dim}(E)=n$ and $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of E, then

is an isomorphism.
Theorem
If E and F are two \mathbb{K}-e.v. of finite dimension, then
$E \cong F \Leftrightarrow \operatorname{dim}(E)=\operatorname{dim}(F)$.
In particular, any \mathbb{K}-e.v. of dimension n is isomorphic to \mathbb{K}^{n}.

Isomorphism of e.v. of finite dimension

Proposition
If $\operatorname{dim}(E)=n$ and $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of E, then

is an isomorphism.
Theorem
If E and F are two \mathbb{K}-e.v. of finite dimension, then

$$
E \cong F \Leftrightarrow \operatorname{dim}(E)=\operatorname{dim}(F)
$$

In particular, any \mathbb{K}-e.v. of dimension n is isomorphic to \mathbb{K}^{n}.

Outline

> Definition and examples

> Nullspace and Image

> Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Consider now linear maps $f: E \longrightarrow F$ between \mathbb{K}-e.v. of finite dimension, $n=\operatorname{dim} E, m=\operatorname{dim} F$. Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ be bases of E and F (resp.).
Definition
The matrix of f in bases \mathbf{u}, \mathbf{v} is the $m \times n$ matrix whose columns are the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis \mathbf{v} :

$$
M_{\mathbf{u}, \mathbf{v}}(f)=\left(f\left(u_{1}\right)_{\mathbf{v}} \cdots f\left(u_{n}\right)_{\mathbf{v}}\right)
$$

Properties:

Consider now linear maps $f: E \longrightarrow F$ between \mathbb{K}-e.v. of finite dimension, $n=\operatorname{dim} E, m=\operatorname{dim} F$. Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ be bases of E and F (resp.).

Definition

The matrix of f in bases \mathbf{u}, \mathbf{v} is the $m \times n$ matrix whose columns are the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis \mathbf{v} :

$$
M_{\mathbf{u}, \mathbf{v}}(f)=\left(f\left(u_{1}\right)_{\mathbf{v}} \cdots f\left(u_{n}\right)_{\mathbf{v}}\right)
$$

Properties:

- If $E=\mathbb{K}^{n}, F=\mathbb{K}^{m}$ and \mathbf{u}, \mathbf{v} are the standard bases \Rightarrow this matrix is the standard matrix $M(f)$.

Consider now linear maps $f: E \longrightarrow F$ between \mathbb{K}-e.v. of finite dimension, $n=\operatorname{dim} E, m=\operatorname{dim} F$. Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ be bases of E and F (resp.).

Definition

The matrix of f in bases \mathbf{u}, \mathbf{v} is the $m \times n$ matrix whose columns are the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis \mathbf{v} :

$$
M_{\mathbf{u}, \mathbf{v}}(f)=\left(f\left(u_{1}\right)_{\mathbf{v}} \cdots f\left(u_{n}\right)_{\mathbf{v}}\right)
$$

Properties:

- If $E=\mathbb{K}^{n}, F=\mathbb{K}^{m}$ and \mathbf{u}, \mathbf{v} are the standard bases \Rightarrow this matrix is the standard matrix $M(f)$.
- If $M_{\mathbf{u}, \mathbf{v}}(f)=\left(a_{i, j}\right)_{i, j} \Rightarrow f\left(u_{j}\right)=\sum_{i} a_{i, j} v_{i}$.

Consider now linear maps $f: E \longrightarrow F$ between \mathbb{K}-e.v. of finite dimension, $n=\operatorname{dim} E, m=\operatorname{dim} F$. Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ be bases of E and F (resp.).

Definition

The matrix of f in bases \mathbf{u}, \mathbf{v} is the $m \times n$ matrix whose columns are the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis \mathbf{v} :

$$
M_{\mathbf{u}, \mathbf{v}}(f)=\left(f\left(u_{1}\right)_{\mathbf{v}} \cdots f\left(u_{n}\right)_{\mathbf{v}}\right)
$$

Properties:

- If $E=\mathbb{K}^{n}, F=\mathbb{K}^{m}$ and \mathbf{u}, \mathbf{v} are the standard bases \Rightarrow this matrix is the standard matrix $M(f)$.
- If $M_{\mathbf{u}, \mathbf{v}}(f)=\left(a_{i, j}\right)_{i, j} \Rightarrow f\left(u_{j}\right)=\sum_{i} a_{i, j} v_{i}$.
- $M_{\mathbf{u}, \mathbf{v}}(f)\left(w_{\mathbf{u}}\right)=(f(w))_{\mathbf{v}}$.

Consider now linear maps $f: E \longrightarrow F$ between \mathbb{K}-e.v. of finite dimension, $n=\operatorname{dim} E, m=\operatorname{dim} F$. Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ be bases of E and F (resp.).

Definition

The matrix of f in bases \mathbf{u}, \mathbf{v} is the $m \times n$ matrix whose columns are the coordinates of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$ in the basis \mathbf{v} :

$$
M_{\mathbf{u}, \mathbf{v}}(f)=\left(f\left(u_{1}\right)_{\mathbf{v}} \cdots f\left(u_{n}\right)_{\mathbf{v}}\right)
$$

Properties:

- If $E=\mathbb{K}^{n}, F=\mathbb{K}^{m}$ and \mathbf{u}, \mathbf{v} are the standard bases \Rightarrow this matrix is the standard matrix $M(f)$.
- If $M_{\mathbf{u}, \mathbf{v}}(f)=\left(a_{i, j}\right)_{i, j} \Rightarrow f\left(u_{j}\right)=\sum_{i} a_{i, j} v_{i}$.
- $M_{\mathbf{u}, \mathbf{v}}(f)\left(w_{\mathbf{u}}\right)=(f(w))_{\mathbf{v}}$.
- $M_{\mathbf{u}, \mathbf{v}}(g \circ f)=M_{\mathbf{w}, \mathbf{v}}(g) M_{\mathbf{u}, \mathbf{w}}(f)$,

$$
g \circ f: E_{\mathbf{u}} \quad \xrightarrow[M_{\mathbf{u}, \mathbf{w}}(f)]{\stackrel{f}{\longrightarrow}} \quad F_{\mathbf{w}} \quad \xrightarrow{M_{\mathbf{w}, \mathbf{v}}(g)} \quad G_{\mathbf{v}} .
$$

Change of basis as matrices of linear maps

If $A_{\mathbf{u} \rightarrow \mathbf{e}}$ is the change-of-basis matrix from \mathbf{u} to \mathbf{e}, then this matrix can be thought as the matrix of the Identity map in certain basis:

$$
A_{\mathbf{u} \rightarrow \mathbf{e}}=M_{\mathbf{u}, \mathbf{e}}(I d) .
$$

Note: The matrix of the identity map is the Identity matrix if we put the same basis at both sides.
If $A_{\mathbf{u} \rightarrow \mathbf{u}^{\prime}}$ is the change-of-basis matrix from \mathbf{u} to \mathbf{u}^{\prime}, and $A_{\mathbf{v} \rightarrow \mathbf{v}^{\prime}}$ is the change-of-basis matrix from \mathbf{v} to \mathbf{v}^{\prime}, then:

$$
\begin{aligned}
& M_{\mathbf{u}^{\prime}, \mathbf{v}^{\prime}}(f)=A_{\mathbf{v} \rightarrow \mathbf{v}^{\prime}} M_{\mathbf{u}, \mathbf{v}}(f) A_{\mathbf{u} \rightarrow \mathbf{u}^{\prime}}^{-1}, \\
& M_{\mathbf{u}, \mathbf{v}}(f)=A_{\mathbf{v} \rightarrow \mathbf{v}^{\prime}}^{-1}, M_{\mathbf{u}^{\prime}, \mathbf{v}^{\prime}}(f) A_{\mathbf{u} \rightarrow \mathbf{u}^{\prime}} .
\end{aligned}
$$

The vector space of linear maps

The set of linear maps between \mathbb{K}-e.v, E, F is denoted as $L(E, F)$. This is a \mathbb{K}-e.v with the usual sum and product by scalars of maps: if $f, g \in L(E, F)$ and $c \in \mathbb{K}$,
$+f+g$ is the map $(f+g)(v):=f(v)+g(v), v \in E$.

[^0]
The vector space of linear maps

The set of linear maps between \mathbb{K}-e.v, E, F is denoted as $L(E, F)$. This is a \mathbb{K}-e.v with the usual sum and product by scalars of maps: if $f, g \in L(E, F)$ and $c \in \mathbb{K}$,
$+f+g$ is the map $(f+g)(v):=f(v)+g(v), v \in E$.

- $c \cdot f$ is the map $(c \cdot f)(v):=c f(v), v \in E$.

The vector space of linear maps

The set of linear maps between \mathbb{K}-e.v, E, F is denoted as $L(E, F)$. This is a \mathbb{K}-e.v with the usual sum and product by scalars of maps: if $f, g \in L(E, F)$ and $c \in \mathbb{K}$,
$+f+g$ is the map $(f+g)(v):=f(v)+g(v), v \in E$.

- $c \cdot f$ is the map $(c \cdot f)(v):=c f(v), v \in E$.

Theorem
Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ be bases of E and F, respectively. Then the map

$$
\begin{array}{clll}
\varphi: L(E, F) & \longrightarrow & \mathcal{M}_{m \times n}(\mathbb{K}) \\
f & \mapsto & M_{\mathbf{u}, \mathbf{v}}(f)
\end{array}
$$

is an isomorphism.

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Endomorphisms

An endomorphism is a linear map from E to itself. Notation

- End $(E)=\{f: E \longrightarrow E \mid f$ linear map $\}$.

Endomorphisms

An endomorphism is a linear map from E to itself.

Notation

- End $(E)=\{f: E \longrightarrow E \mid f$ linear map $\}$.
- If $f \in \operatorname{End}(E)$ and $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of E, we denote by $M_{\mathbf{u}}(f)$ the matrix $M_{\mathbf{u}, \mathbf{u}}(f)$.

Endomorphisms

An endomorphism is a linear map from E to itself.

Notation

- End $(E)=\{f: E \longrightarrow E \mid f$ linear map $\}$.
- If $f \in E n d(E)$ and $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of E, we denote by $M_{\mathbf{u}}(f)$ the matrix $M_{\mathbf{u}, \mathbf{u}}(f)$.
- Using composition we can define f^{m} for any $m \in \mathbb{N}$:

$$
\left.f^{m}=f \circ \underline{m}\right) \circ f
$$

Endomorphisms

An endomorphism is a linear map from E to itself.

Notation

- End $(E)=\{f: E \longrightarrow E \mid f$ linear map $\}$.
- If $f \in E n d(E)$ and $\mathbf{u}=\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of E, we denote by $M_{\mathbf{u}}(f)$ the matrix $M_{\mathbf{u}, \mathbf{u}}(f)$.
- Using composition we can define f^{m} for any $m \in \mathbb{N}$:

$$
\left.f^{m}=f \circ \underline{m}\right) \circ f
$$

- $M_{\mathbf{u}}\left(f^{m}\right)=M_{\mathbf{u}}(f)^{m}$, for any basis \mathbf{u}

Determinant of an endomorphism

Definition

The determinant of an endomorphism $f \in \operatorname{End}(E)$ (E of finite dimension) is the determinant of its matrix in any basis \mathbf{u},

$$
\operatorname{det}(f)=\operatorname{det}\left(M_{\mathbf{u}}(f)\right)
$$

This does not depend on the basis and

$$
\operatorname{det}(g \circ f)=\operatorname{det} g \operatorname{det} f
$$

Trace

- The trace does not depend on the basis either: if \mathbf{u} and \mathbf{v} are two basis of $E(\operatorname{dim} E<\infty)$, then

$$
\operatorname{tr}\left(M_{\mathbf{u}}(f)\right)=\operatorname{tr}\left(M_{\mathbf{v}}(f)\right)
$$

Trace

- The trace does not depend on the basis either: if \mathbf{u} and \mathbf{v} are two basis of $E(\operatorname{dim} E<\infty)$, then

$$
\operatorname{tr}\left(M_{\mathbf{u}}(f)\right)=\operatorname{tr}\left(M_{\mathbf{v}}(f)\right)
$$

- This is known as the trace of the endomorphism and denoted as $\operatorname{tr}(f)$.

Invariant subspaces

Let $f \in \operatorname{End}(E)$ and $F \subseteq E$ be a subspace.
Definition
F is f-invariant (or invariant by f) if $f(F) \subseteq F$.
In this case we define the restriction of f to F, as the endomorphism $f_{F} \in \operatorname{End}(F)$ defined by $f_{\mid F}(v):=f(v)$.

Proposition
Let $\mathbf{u}=\left\{u_{1} \ldots u_{n}\right\}$ be a basis of E obtained by extension of a

where $A \in \mathcal{M}_{d}(\mathbb{K})$. In this case, $A=M_{B}\left(f_{\mid F}\right)$.

Invariant subspaces

Let $f \in \operatorname{End}(E)$ and $F \subseteq E$ be a subspace.
Definition
F is f-invariant (or invariant by f) if $f(F) \subseteq F$.
In this case we define the restriction of f to F, as the endomorphism $f_{\mid F} \in \operatorname{End}(F)$ defined by $f_{\mid F}(v):=f(v)$.

Proposition
Let $\mathbf{u}=\left\{u_{1} \ldots u_{n}\right\}$ be a basis of E obtained by extension of a basis $B=\left\{u_{1}, \ldots, u_{d}\right\}$ of a subspace $F \subset E$. Then F is
f-invariant if and only if

$$
M_{\mathbf{u}}(f)=\left(\begin{array}{c|c}
A & * \\
\hline \mathbf{0} & *
\end{array}\right),
$$

where $A \in \mathcal{M}_{d}(\mathbb{K})$. In this case, $A=M_{B}\left(f_{\mid F}\right)$.

Outline

Definition and examplesNullspace and Image
Composition
Matrices of linear maps
Endomorphisms and invariant subspaces
Bibliography

Bibliography

Basic:

- D. Poole, Linear Algebra, A modern introduction (3rd edition), Brooks/Cole, 2011. Chapter 6.
Additional
- Hernández Rodríguez, E.; Vàzquez Gallo, M.J.; Zurro Moro, M.A. Álgebra lineal y geometría [en línia]

[^0]: is an isomorphism

