Àlgebra lineal i geometria 2. Aplicacions lineals

> Grau en Enginyeria Física 2023-24

Universitat Politècnica de Catalunya Departament de Matemàtiques

Marta Casanellas Universitat Politècnica de Catalunya

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

- $f: E \longrightarrow F$ is a **linear map** if
 - 1. f(u+v) = f(u) + f(v) for all $u, v \in E$, and
 - 2. f(cv) = cf(v) for any $c \in \mathbb{K}$ and any $v \in E$.

- $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ where f(x, y) = (x + 2y, 3x, y x)
- $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$ for some $\lambda \in \mathbb{K}$ (homothety).
- ▶ $f: E \longrightarrow F$, f(v) = 0 $\forall v \in E$ is called *zero* map.
- $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.
- Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2. f(cv) = cf(v) for any $c \in \mathbb{K}$ and any $v \in E$

▶
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

- $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$ for some $\lambda \in \mathbb{K}$ (homothety).
- ▶ $f: E \longrightarrow F$, f(v) = 0 $\forall v \in E$ is called *zero* map.
- $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.
- Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2.
$$f(cv) = cf(v)$$
 for any $c \in \mathbb{K}$ and any $v \in E$.

•
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

- *f* : ℝ² → ℝ² where *f*(*x*, *y*) = (−*y*, *x*) (*rotation* of π/2 centered at (0,0))
- $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$ for some $\lambda \in \mathbb{K}$ (homothety).
- ▶ $f: E \longrightarrow F$, f(v) = 0 $\forall v \in E$ is called *zero* map.
- $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.
- Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2.
$$f(cv) = cf(v)$$
 for any $c \in \mathbb{K}$ and any $v \in E$.

•
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

- *f* : ℝ² → ℝ² where *f*(*x*, *y*) = (−*y*, *x*) (*rotation* of π/2 centered at (0,0))
- $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$ for some $\lambda \in \mathbb{K}$ (homothety).
- ▶ $f: E \longrightarrow F$, f(v) = 0 $\forall v \in E$ is called *zero* map.
- $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.
- Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2.
$$f(cv) = cf(v)$$
 for any $c \in \mathbb{K}$ and any $v \in E$.

•
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

- *f* : ℝ² → ℝ² where *f*(*x*, *y*) = (−*y*, *x*) (*rotation* of π/2 centered at (0,0))
- $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$ for some $\lambda \in \mathbb{K}$ (homothety).
- ▶ $f: E \longrightarrow F$, f(v) = 0 $\forall v \in E$ is called *zero* map.
- $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.
- Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2.
$$f(cv) = cf(v)$$
 for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

•
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

- *f* : ℝ² → ℝ² where *f*(*x*, *y*) = (−*y*, *x*) (*rotation* of π/2 centered at (0,0))
- $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$ for some $\lambda \in \mathbb{K}$ (homothety).

▶ $f: E \longrightarrow F$, f(v) = 0 $\forall v \in E$ is called *zero* map.

- $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.
- Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2.
$$f(cv) = cf(v)$$
 for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

•
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

f : ℝ² → ℝ² where *f*(*x*, *y*) = (−*y*, *x*) (*rotation* of π/2 centered at (0,0))

• $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$ for some $\lambda \in \mathbb{K}$ (homothety).

• $f: E \longrightarrow F$, $f(v) = \mathbf{0} \forall v \in E$ is called *zero* map.

• $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.

Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2.
$$f(cv) = cf(v)$$
 for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

•
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

f : ℝ² → ℝ² where f(x, y) = (−y, x) (rotation of π/2 centered at (0,0))

•
$$f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$$
 for some $\lambda \in \mathbb{K}$ (homothety).

• $f: E \longrightarrow F$, $f(v) = \mathbf{0} \forall v \in E$ is called *zero* map.

• $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.

Example of maps that are not linear

A **linear map** (or linear transformation) between two \mathbb{K} -e.v E and F is a map that preserves linear combinations. More precisely,

Definition

 $f: E \longrightarrow F$ is a **linear map** if

1.
$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in E$, and

2.
$$f(cv) = cf(v)$$
 for any $c \in \mathbb{K}$ and any $v \in E$.

Examples:

•
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 where $f(x, y) = (x + 2y, 3x, y - x)$

f : ℝ² → ℝ² where f(x, y) = (−y, x) (rotation of π/2 centered at (0,0))

•
$$f : \mathbb{R}^n \longrightarrow \mathbb{R}^n f(v) = \lambda v$$
 for some $\lambda \in \mathbb{K}$ (homothety).

▶
$$f: E \longrightarrow F$$
, $f(v) = \mathbf{0} \forall v \in E$ is called *zero* map.

- $f: E \longrightarrow E f(v) = v$ is called *identity* map *Id*.
- Example of maps that are not linear

Properties of linear maps

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v. Then:

▶ $f \text{ linear} \Leftrightarrow f(c_1v_1 + \cdots + c_kv_k) = c_1f(v_1) + \cdots + c_kf(v_k)$ $\forall v_1, \ldots, v_k \in E \text{ and } c_1, \ldots, c_k \in \mathbb{K}.$

• f linear \Rightarrow $f(\mathbf{0}) = \mathbf{0}$.

A linear map f is determined by the image of a basis (any basis):

Proposition

Given a basis $\{u_1, \ldots, u_n\}$ of E and any set of vectors $v_1, \ldots, v_n \in F$, there exists a unique linear map $f : E \longrightarrow F$ such that $f(u_i) = v_i \ \forall i$.

Properties of linear maps

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v. Then:

▶
$$f$$
 linear \Leftrightarrow $f(c_1v_1 + \cdots + c_kv_k) = c_1f(v_1) + \cdots + c_kf(v_k)$
 $\forall v_1, \ldots, v_k \in E$ and $c_1, \ldots, c_k \in \mathbb{K}$.

•
$$f$$
 linear $\Rightarrow f(\mathbf{0}) = \mathbf{0}$.

A linear map f is determined by the image of a basis (any basis):

Proposition

Given a basis $\{u_1, \ldots, u_n\}$ of E and any set of vectors $v_1, \ldots, v_n \in F$, there exists a unique linear map $f : E \longrightarrow F$ such that $f(u_i) = v_i \ \forall i$.

Properties of linear maps

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v. Then:

▶
$$f \text{ linear} \Leftrightarrow f(c_1v_1 + \cdots + c_kv_k) = c_1f(v_1) + \cdots + c_kf(v_k)$$

 $\forall v_1, \ldots, v_k \in E \text{ and } c_1, \ldots, c_k \in \mathbb{K}.$

•
$$f$$
 linear $\Rightarrow f(\mathbf{0}) = \mathbf{0}$.

A linear map f is determined by the image of a basis (any basis):

Proposition

Given a basis $\{u_1, \ldots, u_n\}$ of E and any set of vectors $v_1, \ldots, v_n \in F$, there exists a unique linear map $f : E \longrightarrow F$ such that $f(u_i) = v_i \ \forall i$.

Linear maps $\mathbb{K}^n \longrightarrow \mathbb{K}^m$ and matrices

Basic example of linear map: If A ∈ M_{m×n}(K), the map f : Kⁿ → K^m defined by

$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto f(v) = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

► All linear maps f : Kⁿ → K^m are of this type: in standard coordinates they are defined as degree 1 homogeneous polynomials:

 $(x_1,\ldots,x_n)\mapsto(a_{1,1}x_1+\ldots+a_{1,n}x_n,\cdots,a_{m,1}x_1+\ldots+a_{m,n}x_n)$

and f corresponds to $v \mapsto Av$ where $A = (a_{i,j})$; the *i*th column of A is $f(e_i)$.

► The standard matrix M(f) of a linear map f : Kⁿ → K^m is the m × n matrix whose columns are the vectors f(e_i):

$$M(f) = (f(e_1)\cdots f(e_n))$$

Linear maps $\mathbb{K}^n \longrightarrow \mathbb{K}^m$ and matrices

Basic example of linear map: If A ∈ M_{m×n}(K), the map f : Kⁿ → K^m defined by

$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto f(v) = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

► All linear maps f : Kⁿ → K^m are of this type: in standard coordinates they are defined as degree 1 homogeneous polynomials:

$$(x_1,\ldots,x_n)\mapsto (a_{1,1}x_1+\ldots+a_{1,n}x_n,\cdots,a_{m,1}x_1+\ldots+a_{m,n}x_n)$$

and f corresponds to $v \mapsto Av$ where $A = (a_{i,j})$; the *i*th column of A is $f(e_i)$.

► The standard matrix M(f) of a linear map f : Kⁿ → K^m is the m × n matrix whose columns are the vectors f(e_i):

 $M(f) = (f(e_1)\cdots f(e_n))$

Linear maps $\mathbb{K}^n \longrightarrow \mathbb{K}^m$ and matrices

Basic example of linear map: If A ∈ M_{m×n}(K), the map f : Kⁿ → K^m defined by

$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto f(v) = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

► All linear maps f : Kⁿ → K^m are of this type: in standard coordinates they are defined as degree 1 homogeneous polynomials:

$$(x_1,\ldots,x_n)\mapsto(a_{1,1}x_1+\ldots+a_{1,n}x_n,\cdots,a_{m,1}x_1+\ldots+a_{m,n}x_n)$$

and f corresponds to $v \mapsto Av$ where $A = (a_{i,j})$; the *i*th column of A is $f(e_i)$.

► The standard matrix M(f) of a linear map f : Kⁿ → K^m is the m × n matrix whose columns are the vectors f(e_i):

$$M(f) = (f(e_1)\cdots f(e_n))$$

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v.

- ► f is injective if different vectors always have different images (f(u) = f(v) implies u = v).
- F is surjective if every vector v in F is the image of a certain vector u ∈ E, v = f(u).

The set of all images of vectors is called the image or range of f,

- f is surjective if and only if Im(f) = F.
- f is bijective if it is at the same time injective and surjective. A bijective linear map is called an isomorphism.

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v.

- ► f is injective if different vectors always have different images (f(u) = f(v) implies u = v).
- F is surjective if every vector v in F is the image of a certain vector u ∈ E, v = f(u).

The set of all images of vectors is called the image or range of f,

- f is surjective if and only if Im(f) = F.
- f is bijective if it is at the same time injective and surjective. A bijective linear map is called an isomorphism.

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v.

- ► f is injective if different vectors always have different images (f(u) = f(v) implies u = v).
- F is surjective if every vector v in F is the image of a certain vector u ∈ E, v = f(u).
- The set of all images of vectors is called the image or range of f,

- f is surjective if and only if Im(f) = F.
- f is bijective if it is at the same time injective and surjective.
 A bijective linear map is called an isomorphism.

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v.

- ► f is injective if different vectors always have different images (f(u) = f(v) implies u = v).
- F is surjective if every vector v in F is the image of a certain vector u ∈ E, v = f(u).
- The set of all images of vectors is called the image or range of f,

- f is surjective if and only if Im(f) = F.
- f is bijective if it is at the same time injective and surjective.
 A bijective linear map is called an isomorphism.

Let $f : E \longrightarrow F$ be a map between \mathbb{K} -e.v.

- ► f is injective if different vectors always have different images (f(u) = f(v) implies u = v).
- F is surjective if every vector v in F is the image of a certain vector u ∈ E, v = f(u).
- The set of all images of vectors is called the image or range of f,

- f is surjective if and only if Im(f) = F.
- f is bijective if it is at the same time injective and surjective.
 A bijective linear map is called an isomorphism.

Let $f: E \longrightarrow F$ be a linear map.

Definition The kernel (*nucli*) of f is the subspace

$$Nuc(f) = \{v \in E \mid f(v) = \mathbf{0}\} = f^{-1}(\{\mathbf{0}\}) \subset E.$$

Theorem

A linear map f is injective if and only if $Nuc(f) = \{0\}$.

If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is a linear map and A is its standard matrix, then

▶ Nuc(f) = {
$$v \in \mathbb{K}^n | f(v) = 0$$
} = { $x \in \mathbb{K}^n | Ax = 0$ }.

• dim Nuc $(f) = n - \operatorname{rank}(A)$.

• f is injective \Leftrightarrow rank(A) = n (=number of columns).

• f injective
$$\Rightarrow n \le m$$
.

Let $f: E \longrightarrow F$ be a linear map.

Definition The **kernel** (*nucli*) of f is the subspace

$$Nuc(f) = \{v \in E \mid f(v) = \mathbf{0}\} = f^{-1}(\{\mathbf{0}\}) \subset E.$$

Theorem

A linear map f is injective if and only if $Nuc(f) = \{\mathbf{0}\}$.

If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is a linear map and A is its standard matrix, then

▶
$$\operatorname{Nuc}(f) = \{v \in \mathbb{K}^n \mid f(v) = 0\} = \{x \in \mathbb{K}^n \mid Ax = 0\}.$$

• dim Nuc(f) = $n - \operatorname{rank}(A)$.

• f is injective \Leftrightarrow rank(A) = n (=number of columns).

• f injective
$$\Rightarrow n \le m$$
.

Let $f: E \longrightarrow F$ be a linear map.

Definition The kernel (*nucli*) of f is the subspace

$$Nuc(f) = \{v \in E \mid f(v) = \mathbf{0}\} = f^{-1}(\{\mathbf{0}\}) \subset E$$

Theorem

A linear map f is injective if and only if $Nuc(f) = \{\mathbf{0}\}$.

If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is a linear map and A is its standard matrix, then

▶ Nuc(f) = {
$$v \in \mathbb{K}^n | f(v) = 0$$
} = { $x \in \mathbb{K}^n | Ax = 0$ }.

• dim Nuc(f) = n - rank(A).

▶ *f* is injective \Leftrightarrow rank(*A*) = *n* (=number of columns).

• f injective $\Rightarrow n \leq m$.

Let $f: E \longrightarrow F$ be a linear map.

Definition The kernel (*nucli*) of f is the subspace

$$Nuc(f) = \{v \in E \mid f(v) = \mathbf{0}\} = f^{-1}(\{\mathbf{0}\}) \subset E$$

Theorem

A linear map f is injective if and only if $Nuc(f) = \{\mathbf{0}\}$.

If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is a linear map and A is its standard matrix, then

▶ Nuc(f) = {
$$v \in \mathbb{K}^n | f(v) = 0$$
} = { $x \in \mathbb{K}^n | Ax = 0$ }.

• dim Nuc(f) = $n - \operatorname{rank}(A)$.

▶ *f* is injective \Leftrightarrow rank(*A*) = *n* (=number of columns).

• f injective
$$\Rightarrow n \leq m$$
.

Let $f: E \longrightarrow F$ be a linear map.

Definition The kernel (*nucli*) of f is the subspace

$$Nuc(f) = \{v \in E \mid f(v) = \mathbf{0}\} = f^{-1}(\{\mathbf{0}\}) \subset E$$

Theorem

A linear map f is injective if and only if $Nuc(f) = \{\mathbf{0}\}$.

If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is a linear map and A is its standard matrix, then

▶ Nuc(f) = {
$$v \in \mathbb{K}^n | f(v) = 0$$
} = { $x \in \mathbb{K}^n | Ax = 0$ }.

• dim Nuc(f) = $n - \operatorname{rank}(A)$.

• *f* is injective \Leftrightarrow rank(*A*) = *n* (=number of columns).

• *f* injective $\Rightarrow n \le m$.

Let $f: E \longrightarrow F$ be a linear map.

Definition The kernel (*nucli*) of f is the subspace

$$Nuc(f) = \{v \in E \mid f(v) = \mathbf{0}\} = f^{-1}(\{\mathbf{0}\}) \subset E$$

Theorem

A linear map f is injective if and only if $Nuc(f) = \{0\}$.

If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is a linear map and A is its standard matrix, then

▶ Nuc(f) = {
$$v \in \mathbb{K}^n | f(v) = 0$$
} = { $x \in \mathbb{K}^n | Ax = 0$ }.

- dim Nuc(f) = $n \operatorname{rank}(A)$.
- f is injective \Leftrightarrow rank(A) = n (=number of columns).

•
$$f$$
 injective $\Rightarrow n \le m$.

Let $f : E \longrightarrow F$ be a linear map.

Definition The **image of** $V \subseteq E$ is the set

$$f(V) := \{ w \in F | w = f(u) \text{ for some } u \in V \}.$$

• If V is a subspace $\Rightarrow f(V)$ is also a subspace.

- If $V = [u_1, \ldots, u_d] \subset E \Rightarrow f(V) = [f(u_1), \ldots, f(u_d)] \subset F$.
- If u₁,..., u_d are linearly independent, f(u₁),..., f(u_d) do NOT need to be l.i.
- $\blacktriangleright \operatorname{Im}(f) = f(E) = [f(u_1), \dots, f(u_n)] \text{ if } \{u_1, \dots, u_n\} \text{ is a basis of } E.$

• dim Im(f) is called the **rank** of f.

Let $f: E \longrightarrow F$ be a linear map.

Definition The **image of** $V \subseteq E$ is the set

$$f(V) := \{ w \in F | w = f(u) \text{ for some } u \in V \}.$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V = [u_1, \ldots, u_d] \subset E \Rightarrow f(V) = [f(u_1), \ldots, f(u_d)] \subset F$.
- If u₁,..., u_d are linearly independent, f(u₁),..., f(u_d) do NOT need to be l.i.
- $\blacktriangleright \operatorname{Im}(f) = f(E) = [f(u_1), \dots, f(u_n)] \text{ if } \{u_1, \dots, u_n\} \text{ is a basis of } E.$
- dim Im(f) is called the **rank** of f.

Let $f: E \longrightarrow F$ be a linear map.

Definition The **image of** $V \subseteq E$ is the set

$$f(V) := \{ w \in F | w = f(u) \text{ for some } u \in V \}.$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V = [u_1, \ldots, u_d] \subset E \Rightarrow f(V) = [f(u_1), \ldots, f(u_d)] \subset F$.
- If u₁,..., u_d are linearly independent, f(u₁),..., f(u_d) do
 NOT need to be l.i.
- $\blacktriangleright \operatorname{Im}(f) = f(E) = [f(u_1), \dots, f(u_n)] \text{ if } \{u_1, \dots, u_n\} \text{ is a basis of } E.$

• dim Im(f) is called the **rank** of f.

Let $f : E \longrightarrow F$ be a linear map.

Definition

The **image of** $V \subseteq E$ is the set

$$f(V) := \{ w \in F | w = f(u) \text{ for some } u \in V \}.$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V = [u_1, \ldots, u_d] \subset E \Rightarrow f(V) = [f(u_1), \ldots, f(u_d)] \subset F$.
- If u₁,..., u_d are linearly independent, f(u₁),..., f(u_d) do NOT need to be l.i.
- $\operatorname{Im}(f) = f(E) = [f(u_1), \dots, f(u_n)]$ if $\{u_1, \dots, u_n\}$ is a basis of *E*.
- dim lm(f) is called the **rank** of f.

Let $f: E \longrightarrow F$ be a linear map.

Definition

The **image of** $V \subseteq E$ is the set

$$f(V) := \{ w \in F | w = f(u) \text{ for some } u \in V \}.$$

• If V is a subspace $\Rightarrow f(V)$ is also a subspace.

• If
$$V = [u_1, \ldots, u_d] \subset E \Rightarrow f(V) = [f(u_1), \ldots, f(u_d)] \subset F$$
.

- If u₁,..., u_d are linearly independent, f(u₁),..., f(u_d) do NOT need to be l.i.
- $Im(f) = f(E) = [f(u_1), \dots, f(u_n)]$ if $\{u_1, \dots, u_n\}$ is a basis of *E*.

• dim lm(f) is called the **rank** of f.

Let $f: E \longrightarrow F$ be a linear map.

Definition

The **image of** $V \subseteq E$ is the set

$$f(V) := \{ w \in F | w = f(u) \text{ for some } u \in V \}.$$

• If V is a subspace $\Rightarrow f(V)$ is also a subspace.

• If
$$V = [u_1, \ldots, u_d] \subset E \Rightarrow f(V) = [f(u_1), \ldots, f(u_d)] \subset F$$
.

- If u₁,..., u_d are linearly independent, f(u₁),..., f(u_d) do NOT need to be l.i.
- $\operatorname{Im}(f) = f(E) = [f(u_1), \dots, f(u_n)]$ if $\{u_1, \dots, u_n\}$ is a basis of *E*.
- dim Im(f) is called the rank of f.
Let $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ be a linear map and let A be its standard matrix. Then,

- $\blacktriangleright \ \mathsf{Im}(f) = [\text{columns of A}].$
- $\blacktriangleright \dim \operatorname{Im}(f) = \operatorname{rank}(A).$
- f is surjective if and only if rank(A) = m (= number of rows).
- ▶ f surjective \Rightarrow m ≤ n.

Let $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ be a linear map and let A be its standard matrix. Then,

- $\blacktriangleright Im(f) = [columns of A].$
- dim Im(f) = rank(A).
- f is surjective if and only if rank(A) = m (= number of rows).
- f surjective \Rightarrow $m \leq n$.

Let $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ be a linear map and let A be its standard matrix. Then,

- $\blacktriangleright Im(f) = [columns of A].$
- dim Im(f) = rank(A).
- f is surjective if and only if rank(A) = m (= number of rows).

▶ *f* surjective \Rightarrow *m* \leq *n*.

Let $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ be a linear map and let A be its standard matrix. Then,

- $\blacktriangleright Im(f) = [columns of A].$
- dim Im(f) = rank(A).
- f is surjective if and only if rank(A) = m (= number of rows).
- f surjective $\Rightarrow m \le n$.

Definition The **preimage** of $W \subseteq F$ is $f^{-1}(W) := \{u \in E \mid f(u) \in W\} \subseteq E$.

Lemma

1. If $u \in E$ and $v \in F$ satisfy f(u) = v, then

 $f^{-1}(\{v\}) = \{u + w \mid w \in \mathsf{Nuc}(f)\}.$

If W is a subspace, so is f⁻¹(W)...

Definition The **preimage** of $W \subseteq F$ is $f^{-1}(W) := \{u \in E \mid f(u) \in W\} \subseteq E$.

Lemma

1. If $u \in E$ and $v \in F$ satisfy f(u) = v, then

 $f^{-1}(\{v\}) = \{u + w \mid w \in Nuc(f)\}.$

2. If W is a subspace, so is $f^{-1}(W)$.

Definition

The preimage of $W \subseteq F$ is $f^{-1}(W) := \{u \in E \mid f(u) \in W\} \subseteq E$.

Lemma

1. If $u \in E$ and $v \in F$ satisfy f(u) = v, then

$$f^{-1}(\{v\}) = \{u + w \mid w \in \mathsf{Nuc}(f)\}.$$

2. If W is a subspace, so is $f^{-1}(W)$.

Definition

The preimage of $W \subseteq F$ is $f^{-1}(W) := \{u \in E \mid f(u) \in W\} \subseteq E$.

Lemma

1. If $u \in E$ and $v \in F$ satisfy f(u) = v, then

$$f^{-1}(\{v\}) = \{u + w \mid w \in \mathsf{Nuc}(f)\}.$$

2. If W is a subspace, so is $f^{-1}(W)$.

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Composition of linear maps

Let $f : E \longrightarrow F$ and $g : F \longrightarrow G$ be linear maps, the **composition** of g with f is the linear map $g \circ f : E \longrightarrow G$ defined as:

$$g \circ f : E \xrightarrow{f} F \xrightarrow{g} G$$

 $v \mapsto f(v) \mapsto (g \circ f)(v) := g(f(v))$

If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ has standard matrix A and $g : \mathbb{K}^m \longrightarrow \mathbb{K}^p$ has standard matrix $B \Rightarrow$ the standard matrix of $g \circ f$ is

$$M(g \circ f) = BA$$

.

Inverse of linear maps

If $f : E \longrightarrow F$ is a linear map, we say that $g : F \longrightarrow E$ is the **inverse** of f (denoted as $g = f^{-1}$) if

$$g \circ f = f \circ g = Id.$$

Note: f is invertible \Leftrightarrow f is bijective.

Invertible linear maps are called **isomorphisms**. Two \mathbb{K} -ev. are **isomorphic** if there exists an isomorphism $f : E \longrightarrow F$; in this case we use the notation $E \cong F$. Properties:

• If f is iso. $\Rightarrow f^{-1}$ is a linear map.

▶ If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is iso. and has standard matrix $A \Rightarrow M(f^{-1}) = A^{-1}$.

► If f has inverse map f⁻¹, then the preimage f⁻¹(W) of a subspace W coincides with its image by f⁻¹.

Inverse of linear maps

If $f : E \longrightarrow F$ is a linear map, we say that $g : F \longrightarrow E$ is the **inverse** of f (denoted as $g = f^{-1}$) if

$$g \circ f = f \circ g = Id.$$

Note: f is invertible \Leftrightarrow f is bijective.

Invertible linear maps are called **isomorphisms**. Two \mathbb{K} -ev. are **isomorphic** if there exists an isomorphism $f : E \longrightarrow F$; in this case we use the notation $E \cong F$.

Properties:

- If f is iso. $\Rightarrow f^{-1}$ is a linear map.
- ▶ If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is iso. and has standard matrix $A \Rightarrow M(f^{-1}) = A^{-1}$.
- If f has inverse map f⁻¹, then the preimage f⁻¹(W) of a subspace W coincides with its image by f⁻¹.

Inverse of linear maps

If $f : E \longrightarrow F$ is a linear map, we say that $g : F \longrightarrow E$ is the **inverse** of f (denoted as $g = f^{-1}$) if

$$g \circ f = f \circ g = Id.$$

Note: f is invertible \Leftrightarrow f is bijective.

Invertible linear maps are called **isomorphisms**. Two \mathbb{K} -ev. are **isomorphic** if there exists an isomorphism $f : E \longrightarrow F$; in this case we use the notation $E \cong F$.

Properties:

- If f is iso. $\Rightarrow f^{-1}$ is a linear map.
- ▶ If $f : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is iso. and has standard matrix $A \Rightarrow M(f^{-1}) = A^{-1}$.
- If f has inverse map f⁻¹, then the preimage f⁻¹(W) of a subspace W coincides with its image by f⁻¹.

Theorem (The Rank theorem)

Let $f : E \longrightarrow F$ be a linear map and assume that E has finite dimension. Then, Nuc(f) and Im(f) have finite dimension and

 $\dim \operatorname{Nuc}(f) + \dim \operatorname{Im}(f) = \dim E$

If $f: E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- *f* is injective \Leftrightarrow Nuc(*f*) = {**0**} \Leftrightarrow dim Im(*f*) = dim *E*.
- ► f is surjective \Leftrightarrow dim Im(f) = dim F \Leftrightarrow dim Nuc(f) = dim E dim F.
- ▶ f is bijective $\Leftrightarrow \dim E = \dim F$ and $\operatorname{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim E = \dim F$ and $\dim \operatorname{Im}(f) = \dim F$.
- ▶ If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

If $f : E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- *f* is injective \Leftrightarrow Nuc(*f*) = {**0**} \Leftrightarrow dim Im(*f*) = dim *E*.
- ► f is surjective \Leftrightarrow dim Im(f) = dim F \Leftrightarrow dim Nuc(f) = dim E dim F.
- ▶ f is bijective $\Leftrightarrow \dim E = \dim F$ and $\operatorname{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim E = \dim F$ and $\dim \operatorname{Im}(f) = \dim F$.
- ▶ If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

If $f : E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- *f* is injective \Leftrightarrow Nuc(*f*) = {**0**} \Leftrightarrow dim Im(*f*) = dim *E*.
- ► f is surjective $\Leftrightarrow \dim \operatorname{Im}(f) = \dim F \Leftrightarrow \dim \operatorname{Nuc}(f) = \dim E \dim F.$
- ▶ *f* is bijective $\Leftrightarrow \dim E = \dim F$ and $\operatorname{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim E = \dim F$ and $\dim \operatorname{Im}(f) = \dim F$.

If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

If $f : E \longrightarrow F$ is a linear map between vector spaces of finite dimension, then:

- *f* is injective \Leftrightarrow Nuc(*f*) = {**0**} \Leftrightarrow dim Im(*f*) = dim *E*.
- ► f is surjective $\Leftrightarrow \dim \operatorname{Im}(f) = \dim F \Leftrightarrow \dim \operatorname{Nuc}(f) = \dim E \dim F.$
- ▶ *f* is bijective $\Leftrightarrow \dim E = \dim F$ and $\operatorname{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim E = \dim F$ and $\dim \operatorname{Im}(f) = \dim F$.
- If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

Isomorphism of e.v. of finite dimension

Proposition If dim(E) = n and B = { $v_1, ..., v_n$ } is a basis of E, then $E \longrightarrow \mathbb{K}^n$ $v \mapsto v_B$

is an isomorphism.

I heorem If E and F are two \mathbb{K} -e.v. of finite dimension, then

 $E \cong F \Leftrightarrow \dim(E) = \dim(F).$

In particular, any \mathbb{K} -e.v. of dimension n is isomorphic to \mathbb{K}^n .

Isomorphism of e.v. of finite dimension

Proposition If dim(E) = n and B = { $v_1, ..., v_n$ } is a basis of E, then $E \longrightarrow \mathbb{K}^n$ $v \mapsto v_B$

is an isomorphism.

Theorem

If E and F are two \mathbb{K} -e.v. of finite dimension, then

 $E \cong F \Leftrightarrow \dim(E) = \dim(F).$

In particular, any \mathbb{K} -e.v. of dimension n is isomorphic to \mathbb{K}^n .

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Definition

The matrix of f in bases u, v is the $m \times n$ matrix whose columns are the coordinates of $f(u_1), \ldots, f(u_n)$ in the basis v:

$$M_{\mathbf{u},\mathbf{v}}(f) = \Big(f(u_1)_{\mathbf{v}}\cdots f(u_n)_{\mathbf{v}}\Big).$$

Properties:

If E = Kⁿ, F = K^m and u, v are the standard bases ⇒ this matrix is the standard matrix M(f).
If M_{u,v}(f) = (a_{i,j})_{i,j} ⇒ f(u_j) = ∑_i a_{i,j}v_i.
M_{u,v}(f)(w_u) = (f(w))_v.
M_{u,v}(g ∘ f) = M_{w,v}(g)M_{u,w}(f), g ∘ f : E_u f → F_w G_v.

Definition

The matrix of f in bases u, v is the $m \times n$ matrix whose columns are the coordinates of $f(u_1), \ldots, f(u_n)$ in the basis v:

$$M_{\mathbf{u},\mathbf{v}}(f) = \Big(f(u_1)_{\mathbf{v}}\cdots f(u_n)_{\mathbf{v}}\Big).$$

Properties:

- If E = ℝⁿ, F = ℝ^m and u, v are the standard bases ⇒ this matrix is the standard matrix M(f).
- $\blacktriangleright \text{ If } M_{\mathbf{u},\mathbf{v}}(f) = (a_{i,j})_{i,j} \Rightarrow f(u_j) = \sum_i a_{i,j} v_i.$
- $\blacktriangleright M_{\mathbf{u},\mathbf{v}}(f)(w_{\mathbf{u}}) = (f(w))_{\mathbf{v}}.$
- $\blacktriangleright M_{\mathbf{u},\mathbf{v}}(g \circ f) = M_{\mathbf{w},\mathbf{v}}(g)M_{\mathbf{u},\mathbf{w}}(f),$

$$g \circ f : E_{\mathbf{u}} \xrightarrow{f} F_{\mathbf{w}} \xrightarrow{g} G$$
$$M_{\mathbf{u},\mathbf{w}}(f) \xrightarrow{M_{\mathbf{w},\mathbf{v}}(g)} M_{\mathbf{w},\mathbf{v}}(g)$$

Definition

The matrix of f in bases u, v is the $m \times n$ matrix whose columns are the coordinates of $f(u_1), \ldots, f(u_n)$ in the basis v:

$$M_{\mathbf{u},\mathbf{v}}(f) = \Big(f(u_1)_{\mathbf{v}}\cdots f(u_n)_{\mathbf{v}}\Big).$$

Properties:

- If E = ℝⁿ, F = ℝ^m and u, v are the standard bases ⇒ this matrix is the standard matrix M(f).
- ► If $M_{\mathbf{u},\mathbf{v}}(f) = (a_{i,j})_{i,j} \Rightarrow f(u_j) = \sum_i a_{i,j} v_i$. ► $M_{\mathbf{u},\mathbf{v}}(f)(w_{\mathbf{u}}) = (f(w))_{i,j}$.

 $\blacktriangleright M_{\mathbf{u},\mathbf{v}}(g \circ f) = M_{\mathbf{w},\mathbf{v}}(g)M_{\mathbf{u},\mathbf{w}}(f),$

$$g \circ f : E_{\mathbf{u}} \xrightarrow{f} F_{\mathbf{w}} \xrightarrow{g} G_{\mathbf{v}}$$

 $M_{\mathbf{u},\mathbf{w}}(f) \qquad M_{\mathbf{w},\mathbf{v}}(g)$

Definition

The matrix of f in bases u, v is the $m \times n$ matrix whose columns are the coordinates of $f(u_1), \ldots, f(u_n)$ in the basis v:

$$M_{\mathbf{u},\mathbf{v}}(f) = \Big(f(u_1)_{\mathbf{v}}\cdots f(u_n)_{\mathbf{v}}\Big).$$

Properties:

If E = ℝⁿ, F = ℝ^m and u, v are the standard bases ⇒ this matrix is the standard matrix M(f).

• If
$$M_{\mathbf{u},\mathbf{v}}(f) = (a_{i,j})_{i,j} \Rightarrow f(u_j) = \sum_i a_{i,j} v_i$$
.
• $M_{\mathbf{u},\mathbf{v}}(f)(w_{\mathbf{u}}) = (f(w))_{\mathbf{v}}$.

 $\blacktriangleright M_{\mathbf{u},\mathbf{v}}(g \circ f) = M_{\mathbf{w},\mathbf{v}}(g)M_{\mathbf{u},\mathbf{w}}(f),$

$$g \circ f : E_{\mathbf{u}} \xrightarrow{f} F_{\mathbf{w}} \xrightarrow{g} G_{\mathbf{v}}$$

 $M_{\mathbf{u},\mathbf{w}}(f) \qquad M_{\mathbf{w},\mathbf{v}}(g)$

Definition

The matrix of f in bases u, v is the $m \times n$ matrix whose columns are the coordinates of $f(u_1), \ldots, f(u_n)$ in the basis v:

$$M_{\mathbf{u},\mathbf{v}}(f) = \Big(f(u_1)_{\mathbf{v}}\cdots f(u_n)_{\mathbf{v}}\Big).$$

Properties:

If E = Kⁿ, F = K^m and u, v are the standard bases ⇒ this matrix is the standard matrix M(f).
If M_{u,v}(f) = (a_{i,j})_{i,j} ⇒ f(u_j) = ∑_i a_{i,j}v_i.
M_{u,v}(f)(w_u) = (f(w))_v.
M_{u,v}(g ∘ f) = M_{w,v}(g)M_{u,w}(f), g ∘ f : E_u f → F_w G → G_v.

Change of basis as matrices of linear maps

If $A_{\mathbf{u}\to\mathbf{e}}$ is the change-of-basis matrix from \mathbf{u} to \mathbf{e} , then this matrix can be thought as the matrix of the Identity map in certain basis:

$$A_{\mathbf{u}\to\mathbf{e}}=M_{\mathbf{u},\mathbf{e}}(Id).$$

Note: The matrix of the identity map is the Identity matrix if we put the same basis at both sides.

If $A_{\mathbf{u}\to\mathbf{u}'}$ is the change-of-basis matrix from \mathbf{u} to $\mathbf{u'}$, and $A_{\mathbf{v}\to\mathbf{v}'}$ is the change-of-basis matrix from \mathbf{v} to $\mathbf{v'}$, then:

$$M_{\mathbf{u}',\mathbf{v}'}(f) = A_{\mathbf{v}\to\mathbf{v}'} M_{\mathbf{u},\mathbf{v}}(f) A_{\mathbf{u}\to\mathbf{u}'}^{-1},$$

$$M_{\mathbf{u},\mathbf{v}}(f) = A_{\mathbf{v}\to\mathbf{v}'}^{-1} M_{\mathbf{u}',\mathbf{v}'}(f) A_{\mathbf{u}\to\mathbf{u}'}$$

The vector space of linear maps

The set of linear maps between \mathbb{K} -e.v, E, F is denoted as L(E, F). This is a \mathbb{K} -e.v with the usual sum and product by scalars of maps: if $f, g \in L(E, F)$ and $c \in \mathbb{K}$,

- + f + g is the map (f + g)(v) := f(v) + g(v), $v \in E$.
 - $\cdot c \cdot f$ is the map $(c \cdot f)(v) := cf(v), v \in E$

Theorem

Let $\mathbf{u} = \{u_1, \dots, u_n\}$ and $\mathbf{v} = \{v_1, \dots, v_m\}$ be bases of E and F, respectively. Then the map

$$\begin{array}{ccc} \varphi: L(E,F) & \longrightarrow & \mathcal{M}_{m \times n}(\mathbb{K}) \\ f & \mapsto & M_{\mathbf{u},\mathbf{v}}(f) \end{array}$$

is an isomorphism.

The vector space of linear maps

The set of linear maps between \mathbb{K} -e.v, E, F is denoted as L(E, F). This is a \mathbb{K} -e.v with the usual sum and product by scalars of maps: if $f, g \in L(E, F)$ and $c \in \mathbb{K}$,

- + f + g is the map (f + g)(v) := f(v) + g(v), $v \in E$.
 - $\cdot c \cdot f$ is the map $(c \cdot f)(v) := cf(v), v \in E$.

Theorem

Let $\mathbf{u} = \{u_1, \dots, u_n\}$ and $\mathbf{v} = \{v_1, \dots, v_m\}$ be bases of E and F, respectively. Then the map

$$\begin{array}{ccc} \varphi: L(E,F) & \longrightarrow & \mathcal{M}_{m \times n}(\mathbb{K}) \\ f & \mapsto & M_{\mathbf{u},\mathbf{v}}(f) \end{array}$$

is an isomorphism.

The vector space of linear maps

The set of linear maps between \mathbb{K} -e.v, E, F is denoted as L(E, F). This is a \mathbb{K} -e.v with the usual sum and product by scalars of maps: if $f, g \in L(E, F)$ and $c \in \mathbb{K}$,

- + f + g is the map (f + g)(v) := f(v) + g(v), $v \in E$.
 - $\cdot c \cdot f$ is the map $(c \cdot f)(v) := cf(v), v \in E$.

Theorem

Let $\mathbf{u} = \{u_1, \dots, u_n\}$ and $\mathbf{v} = \{v_1, \dots, v_m\}$ be bases of E and F, respectively. Then the map

$$\begin{array}{rcl} \varphi: L(E,F) & \longrightarrow & \mathcal{M}_{m \times n}(\mathbb{K}) \\ f & \mapsto & M_{\mathbf{u},\mathbf{v}}(f) \end{array}$$

is an isomorphism.

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

An **endomorphism** is a linear map from *E* to itself. **Notation**

• $End(E) = \{f : E \longrightarrow E \mid f \text{ linear map } \}.$

If f ∈ End(E) and u = {u₁,..., u_n} is a basis of E, we denote by M_u(f) the matrix M_{u,u}(f).

• Using composition we can define f^m for any $m \in \mathbb{N}$:

$$f^m = f \circ \stackrel{m}{\dots} \circ f$$
.

•
$$M_{\mathbf{u}}(f^m) = M_{\mathbf{u}}(f)^m$$
, for any basis \mathbf{u}

An **endomorphism** is a linear map from *E* to itself. **Notation**

•
$$End(E) = \{f : E \longrightarrow E \mid f \text{ linear map } \}.$$

If f ∈ End(E) and u = {u₁,..., u_n} is a basis of E, we denote by M_u(f) the matrix M_{u,u}(f).

• Using composition we can define f^m for any $m \in \mathbb{N}$:

$$f^m = f \circ \stackrel{m}{\dots} \circ f$$
.

•
$$M_{\mathbf{u}}(f^m) = M_{\mathbf{u}}(f)^m$$
, for any basis \mathbf{u}

An **endomorphism** is a linear map from E to itself. **Notation**

•
$$End(E) = \{f : E \longrightarrow E \mid f \text{ linear map } \}.$$

- If f ∈ End(E) and u = {u₁,..., u_n} is a basis of E, we denote by M_u(f) the matrix M_{u,u}(f).
- Using composition we can define f^m for any $m \in \mathbb{N}$:

$$f^m = f \circ \overset{m}{\ldots} \circ f$$

•
$$M_{\mathbf{u}}(f^m) = M_{\mathbf{u}}(f)^m$$
, for any basis \mathbf{u}

An **endomorphism** is a linear map from E to itself. **Notation**

•
$$End(E) = \{f : E \longrightarrow E \mid f \text{ linear map } \}.$$

- If f ∈ End(E) and u = {u₁,..., u_n} is a basis of E, we denote by M_u(f) the matrix M_{u,u}(f).
- Using composition we can define f^m for any $m \in \mathbb{N}$:

$$f^m = f \circ \overset{m}{\ldots} \circ f$$
.

•
$$M_{\mathbf{u}}(f^m) = M_{\mathbf{u}}(f)^m$$
, for any basis \mathbf{u}

Determinant of an endomorphism

Definition

The **determinant** of an endomorphism $f \in End(E)$ (*E* of finite dimension) is the determinant of its matrix in *any* basis **u**,

$$\det(f) = \det(M_{\mathbf{u}}(f)).$$

This does not depend on the basis and

 $\det(g \circ f) = \det g \det f.$
Trace

The trace does not depend on the basis either: if u and v are two basis of E (dim E < ∞), then</p>

 $\mathrm{tr}(M_{\mathbf{u}}(f))=\mathrm{tr}(M_{\mathbf{v}}(f)).$

This is known as the trace of the endomorphism and denoted as tr(f).

Trace

The trace does not depend on the basis either: if u and v are two basis of E (dim E < ∞), then</p>

$$\operatorname{tr}(M_{\mathbf{u}}(f)) = \operatorname{tr}(M_{\mathbf{v}}(f)).$$

This is known as the trace of the endomorphism and denoted as tr(f).

Invariant subspaces

Let $f \in End(E)$ and $F \subseteq E$ be a subspace.

Definition

F is *f*-invariant (or invariant by *f*) if $f(F) \subseteq F$. In this case we define the **restriction** of *f* to *F*, as the endomorphism $f_{|F} \in End(F)$ defined by $f_{|F}(v) := f(v)$.

Proposition

Let $\mathbf{u} = \{u_1 \dots u_n\}$ be a basis of E obtained by extension of a basis $B = \{u_1, \dots, u_d\}$ of a subspace $F \subset E$. Then F is f-invariant if and only if

$$M_{\mathbf{u}}(f) = \left(\begin{array}{c|c} A & * \\ \hline \mathbf{0} & * \end{array}\right),$$

where $A \in \mathcal{M}_d(\mathbb{K})$. In this case, $A = M_B(f_{|F})$

Invariant subspaces

Let $f \in End(E)$ and $F \subseteq E$ be a subspace.

Definition

F is *f*-invariant (or invariant by *f*) if $f(F) \subseteq F$. In this case we define the **restriction** of *f* to *F*, as the endomorphism $f_{|F} \in End(F)$ defined by $f_{|F}(v) := f(v)$.

Proposition

Let $\mathbf{u} = \{u_1 \dots u_n\}$ be a basis of E obtained by extension of a basis $B = \{u_1, \dots, u_d\}$ of a subspace $F \subset E$. Then F is f-invariant if and only if

$$M_{\mathbf{u}}(f) = \left(\begin{array}{c|c} A & \ast \\ \hline \mathbf{0} & \ast \end{array} \right),$$

where $A \in \mathcal{M}_d(\mathbb{K})$. In this case, $A = M_B(f_{|F})$.

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

Bibliography

Basic:

D. Poole, Linear Algebra, A modern introduction (3rd edition), Brooks/Cole, 2011. Chapter 6.

Additional

 Hernández Rodríguez, E.; Vàzquez Gallo, M.J.; Zurro Moro, M.A. Álgebra lineal y geometría [en línia]