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Definition
A linear map (or linear transformation) between two K—e.v E and
F is a map that preserves linear combinations. More precisely,
Definition
f: E— Fis a linear map if
1. flu+v)="f(u)+f(v)forall u,v e E, and
2. f(ev) = cf(v) for any c € K and any v € E.

Examples:
> f:R? — R3 where f(x,y) = (x +2y,3x,y — x)
> f:R2 — R2 where f(x,y) = (—y, x) (rotation of 7/2
centered at (0,0))
> f:R" — R" f(v) = A.v for some A € K (homothety).
» f:E— F, f(v) =0Vv € E is called zero map.
» f:E— E f(v) = v is called identity map Id.
» Example of maps that are not linear
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Properties of linear maps

Let f : E — F be a map between K-e.v. Then:

» f linear & f(c1v1 + ----l—ckvk) = C1f(V1)+--- -I-Ckf(vk)
Vvi,...,vk € Eand c1,...,ck € K.

» f linear = f(0) = 0.

A linear map f is determined by the image of a basis (any basis):

Proposition
Given a basis {u1,...,u,} of E and any set of vectors
Vi,...,Vn € F, there exists a unique linear map f : E — F such

that f(u;) = v; Vi.
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Linear maps K" — K™ and matrices
» Basic example of linear map: If A € M ,»n(K), the map
f: K" — K™ defined by
X1 X1
v=| 1 | —f(v)=A
Xn Xn
» All linear maps f : K" — K™ are of this type: in standard
coordinates they are defined as degree 1 homogeneous
polynomials:
(Xl, c. ,Xn) — (81’1X1—|—. ..FainXn, -+, amixi+.. .+am7,,x,,)

and f corresponds to v — Av where A = (a;;); the ith
column of A is f(e;).

» The standard matrix M(f) of a linear map f : K" — K™ is
the m x n matrix whose columns are the vectors f(¢;):

M(f) = (f(e1)---f(en))
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Definitions

Let f : E — F be a map between K-e.v.
> f is injective if different vectors always have different images
(f(u) = f(v) implies u = v).
> f is surjective if every vector v in F is the image of a certain
vector u € E, v = f(u).

» The set of all images of vectors is called the image or range
of f,

Im(f)={veF| v="f(u) forsomeu € E} CF

» f is surjective if and only if Im(f) = F.

> f is bijective if it is at the same time injective and surjective.
A bijective linear map is called an isomorphism.



LNullspace and Image
;

Null space

Let f : E — F be a linear map.

Definition
The kernel (nucli) of f is the subspace

Nuc(f) ={ve E| f(v)=0} = f1({0}) C E.



LNullspau:e and Image

Null space

Let f : E — F be a linear map.

Definition
The kernel (nucli) of f is the subspace

Nuc(f) ={ve E| f(v)=0} = f1({0}) C E.

Theorem
A linear map f is injective if and only if Nuc(f) = {0}.



L Nullspace and Image

Null space

Let f : E — F be a linear map.

Definition
The kernel (nucli) of f is the subspace

Nuc(f) ={ve E| f(v)=0} = f1({0}) C E.

Theorem

A linear map f is injective if and only if Nuc(f) = {0}.

If f: K" — K™ is a linear map and A is its standard matrix, then
» Nuc(f) ={veK"| f(v) =0} ={x e K"| Ax =0}.



L Nullspace and Image

Null space

Let f : E — F be a linear map.

Definition
The kernel (nucli) of f is the subspace

Nuc(f) ={ve E| f(v)=0} = f1({0}) C E.

Theorem

A linear map f is injective if and only if Nuc(f) = {0}.

If f: K" — K™ is a linear map and A is its standard matrix, then
» Nuc(f)={veK"| f(v) =0} ={x € K"| Ax =0}.
» dim Nuc(f) = n — rank(A).



L Nullspace and Image
;

Null space

Let f : E — F be a linear map.

Definition
The kernel (nucli) of f is the subspace

Nuc(f) ={ve E| f(v)=0} = f1({0}) C E.

Theorem

A linear map f is injective if and only if Nuc(f) = {0}.

If f: K" — K™ is a linear map and A is its standard matrix, then
» Nuc(f)={veK"| f(v) =0} ={x € K"| Ax =0}.
» dim Nuc(f) = n — rank(A).

> f is injective < rank(A) = n (=number of columns).



L Nullspace and Image
;

Null space

Let f : E — F be a linear map.

Definition
The kernel (nucli) of f is the subspace

Nuc(f) ={ve E| f(v)=0} = f1({0}) C E.

Theorem
A linear map f is injective if and only if Nuc(f) = {0}.
If f: K" — K™ is a linear map and A is its standard matrix, then
» Nuc(f)={veK"| f(v) =0} ={x € K"| Ax =0}.
» dim Nuc(f) = n — rank(A).
> f is injective < rank(A) = n (=number of columns).
» f injective = n < m.
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Let f: E — F be a linear map.

Definition
The image of V C E is the set

f(V):={w e Flw = f(u) for some u € V}.

» If V is a subspace = (V) is also a subspace.
> UV =[ur,...,ug) C E = F(V) = [f(wn),...,F(ug)] C F.

» If ug,...,uy are linearly independent, f(uy),...,f(uy) do
NOT need to be I.i.

» Im(f) = f(E) = [f(u1),...,f(un)] if {v1,...,un} is a basis of
E.
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L Nullspace and Image
; ;

Image and preimage of a subspace

Let f: E — F be a linear map.

Definition
The image of V C E is the set

f(V):={w e Flw = f(u) for some u € V}.

» If V is a subspace = (V) is also a subspace.
IfV =[u,...,u4] C E = F(V)=[f(ur),...,F(ug)] C F.

» If ug,...,uy are linearly independent, f(uy),...,f(uy) do
NOT need to be I.i.

» Im(f) = f(E) = [f(u1),...,f(un)] if {v1,...,un} is a basis of
E.

» dimIm(f) is called the rank of f.

v
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Let f : K" — K™ be a linear map and let A be its standard
matrix. Then,

» Im(f) = [columns of A].
» dimIm(f) = rank(A).

» f is surjective if and only if rank(A) = m (= number of rows).
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L Nullspace and Image
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Image for f : K" — K™

Let f : K" — K™ be a linear map and let A be its standard
matrix. Then,

» Im(f) = [columns of A].
» dimIm(f) = rank(A).
» f is surjective if and only if rank(A) = m (= number of rows).

» f surjective = m < n.

11
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Let f : E — F be a linear map.

Definition
The preimage of W C Fis f1(W) :={u€ E|f(u) € W} CE.

Lemma
1. Ifu € E and v € F satisfy f(u) = v, then

FH{v}) = {u+w|w € Nuc(f)}.

12
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Let f : E — F be a linear map.

Definition
The preimage of W C Fis f1(W) :={u€ E|f(u) € W} CE.

Lemma
1. Ifu € E and v € F satisfy f(u) = v, then

FH{v}) = {u+w|w € Nuc(f)}.

2. If W is a subspace, so is f~1(W).

12
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L Composition

Composition of linear maps

Let f: E— F and g: F — G be linear maps, the composition
of g with f is the linear map go f : E — G defined as:

gof:E—f> F 5 G
v = —

f(v) (g o F)(v) == g(f(v))
If f:K"” — K™ has standard matrix A and g : K™ — KP has
standard matrix B = the standard matrix of g o f is

M(g o f) = BA.

14
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Inverse of linear maps

If f: E— F is a linear map, we say that g : F — E is the
inverse of f (denoted as g = 1) if

gof=fog=1Id.

Note: f is invertible < f is bijective.

Invertible linear maps are called isomorphisms. Two K-ev. are
isomorphic if there exists an isomorphism f : E —> F; in this case
we use the notation E = F.

Properties:

» If fisiso. = f~!is a linear map.
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inverse of f (denoted as g = 1) if

gof=fog=1Id.

Note: f is invertible < f is bijective.

Invertible linear maps are called isomorphisms. Two K-ev. are
isomorphic if there exists an isomorphism f : E —> F; in this case
we use the notation E = F.

Properties:

» If fisiso. = f~!is a linear map.

» If f: K" — K" is iso. and has standard matrix A =
M(f‘l) = A1
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L Composition

Inverse of linear maps

If f: E— F is a linear map, we say that g : F — E is the
inverse of f (denoted as g = 1) if

gof=fog=1Id.

Note: f is invertible < f is bijective.

Invertible linear maps are called isomorphisms. Two K-ev. are
isomorphic if there exists an isomorphism f : E —> F; in this case
we use the notation E = F.

Properties:

» If fisiso. = f~!is a linear map.

> If f: K" — K" is iso. and has standard matrix A =
M(f1) = AL,

> If f has inverse map !, then the preimage f~(W) of a
subspace W coincides with its image by f1.

15
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Theorem (The Rank theorem)

Let f : E — F be a linear map and assume that E has finite
dimension. Then, Nuc(f) and Im(f) have finite dimension and

dim Nuc(f) + dim Im(f) = dim E

16
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Characterizations of inj./surj. maps

If f: E— F is a linear map between vector spaces of finite
dimension, then:

» f is injective < Nuc(f) = {0} < dimIm(f) =dimE.
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Characterizations of inj./surj. maps

If f: E— F is a linear map between vector spaces of finite
dimension, then:

» f is injective < Nuc(f) = {0} < dimIm(f) =dimE.
» f is surjective < dimIm(f) =dimF <
dim Nuc(f) = dim E — dim F.
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Characterizations of inj./surj. maps

If f: E— F is a linear map between vector spaces of finite
dimension, then:
» f is injective < Nuc(f) = {0} < dimIm(f) =dimE.
» f is surjective < dimIm(f) =dimF <
dim Nuc(f) = dim E —dim F.
> f is bijective < dim E = dim F and Nuc(f) = {0} <
dim E = dim F and dim Im(f) = dim F.

17



L Composition

Characterizations of inj./surj. maps

If f: E— F is a linear map between vector spaces of finite
dimension, then:
» f is injective < Nuc(f) = {0} < dimIm(f) =dimE.
» f is surjective < dimIm(f) =dimF <
dim Nuc(f) = dim E —dim F.
> f is bijective < dim E = dim F and Nuc(f) = {0} <
dim E = dim F and dim Im(f) = dim F.

> If dim E = dim F, then f is bijective < injective < surjective.

17



L Composition

Isomorphism of e.v. of finite dimension

Proposition
Ifdim(E) = n and B ={vi,...,v,} is a basis of E, then

E — K"
vV = VB

is an isomorphism.

18



L Composition
: :

Isomorphism of e.v. of finite dimension

Proposition
Ifdim(E) = n and B ={vi,...,v,} is a basis of E, then

E — K~
vV = VB

is an isomorphism.

Theorem
If E and F are two K-e.v. of finite dimension, then

E =~ F < dim(E) = dim(F).

In particular, any K-e.v. of dimension n is isomorphic to K".

18
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LMatrices of linear maps
; ;

Consider now linear maps f : E — F between K-e.v. of finite
dimension, n =dimE, m=dimF. Let u = {u1,...,up} and
v=1{vi,...,Vn} be bases of E and F (resp.).

Definition
The matrix of f in bases u,v is the m x n matrix whose columns
are the coordinates of f(u1),...,f(uy) in the basis v:

Muy(f) = (f(ul)v f(un)v>.

Properties:
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Consider now linear maps f : E — F between K-e.v. of finite
dimension, n =dimE, m=dimF. Let u = {u1,...,up} and
v=1{vi,...,Vn} be bases of E and F (resp.).

Definition
The matrix of f in bases u,v is the m x n matrix whose columns
are the coordinates of f(u1),...,f(uy) in the basis v:

Muy(F) = (f(ul)v f(un)v>.

Properties:
» If E=K", F =K™ and u, v are the standard bases = this
matrix is the standard matrix M(f).

> If Muu(f) = (aij)ij = f(u;) = > aijvi.
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LMatrices of linear maps
; ;

Consider now linear maps f : E — F between K-e.v. of finite
dimension, n =dimE, m=dimF. Let u = {u1,...,up} and
v=1{vi,...,Vn} be bases of E and F (resp.).

Definition
The matrix of f in bases u,v is the m x n matrix whose columns
are the coordinates of f(u1),...,f(uy) in the basis v:

Muy(F) = (f(ul)v f(un)v>.

Properties:
» If E=K", F =K™ and u, v are the standard bases = this
matrix is the standard matrix M(f).

> If Muy(f) = (aij)ij = f(u;) =2 ;aivi.
> Mu,v(f)(Wu) = (f(W))v :

20



LMatrices of linear maps
; ;

Consider now linear maps f : E — F between K-e.v. of finite
dimension, n =dimE, m=dimF. Let u = {u1,...,up} and
v=1{vi,...,Vn} be bases of E and F (resp.).

Definition

The matrix of f in bases u,v is the m x n matrix whose columns
are the coordinates of f(u1),...,f(uy) in the basis v:

Muy(F) = (f(ul)v f(un)v>.

Properties:
» If E=K", F =K™ and u, v are the standard bases = this
matrix is the standard matrix M(f).
> If Muy(F) = (aij)ij = f(uy) = 325 aivi-
Mu(f) (W) = (f(w)), -
> Mu,v(g of)= Mw,v(g)Mu,w(f),

gof:Ey L) Fw LN G\,.

Mu,w(f) Mw,v g)

v

20



LMatrices of linear maps

Change of basis as matrices of linear maps

If Ay—e is the change-of-basis matrix from u to e, then this matrix
can be thought as the matrix of the Identity map in certain
basis:

Ause = u,e(ld)-
Note: The matrix of the identity map is the Identity matrix if we put the same
basis at both sides.
If Au_sw is the change-of-basis matrix from u to u’, and A,_, is
the change-of-basis matrix from v to v’, then:
-1
Mu',v'(f) = Av—)v’ Mu,v(f) A

u—u’’

My (f) = AL

v—v’

Mu’,v’(f) Au—>u' .

21
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The vector space of linear maps

The set of linear maps between K-e.v, E, F is denoted as L(E, F).

This is a K-e.v with the usual sum and product by scalars of maps:
if f,g € L(E,F) and c € K,

+ f+ g is the map (f + g)(v) := f(v) + g(v), v e E.

29



LMatrices of linear maps

The vector space of linear maps

The set of linear maps between K-e.v, E, F is denoted as L(E, F).
This is a K-e.v with the usual sum and product by scalars of maps:

if f,g € L(E,F) and c € K,
+ f+ g isthe map (f + g)(v) :=f(v) +g(v), v € E.
- c-fisthe map (c- f)(v):=cf(v), v € E.

29



LMatrices of linear maps
; ;

The vector space of linear maps

The set of linear maps between K-e.v, E, F is denoted as L(E, F).

This is a K-e.v with the usual sum and product by scalars of maps:
if f,g € L(E,F) and c € K,

+ f+ g isthe map (f + g)(v) :=f(v) +g(v), v € E.
- c-fisthe map (c- f)(v):=cf(v), v € E.

Theorem
Letu={ui,...,up} andv ={vi,..., vy} be bases of E and F,
respectively. Then the map

o:L(E,F) — Mpmnxn(K)
f — Mun(f)

is an isomorphism.
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LEndomorphisms and invariant subspaces
; ;

Endomorphisms

An endomorphism is a linear map from E to itself.
Notation

» End(E)={f:E — E | f linear map }.
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;

Endomorphisms

An endomorphism is a linear map from E to itself.
Notation

» End(E)={f:E — E | f linear map }.
» If f € End(E) and u = {u1,...,un} is a basis of E, we denote
by My(f) the matrix My u(f).

» Using composition we can define " for any m € N :
fM = fo M) of.

> My(f™) = My(f)™, for any basis u

24



LEndomorphisms and invariant subspaces
;

Determinant of an endomorphism

Definition
The determinant of an endomorphism f € End(E) (E of finite
dimension) is the determinant of its matrix in any basis u,

det(f) = det(My(f)).

This does not depend on the basis and

det(gof) =detgdetf.
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LEndomorphisms and invariant subspaces
; ;

Trace

» The trace does not depend on the basis either: if u and v are
two basis of E (dim E < c0), then

tr(My(f)) = tr(My(1)).
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LEndomorphisms and invariant subspaces
; ;

Trace

» The trace does not depend on the basis either: if u and v are
two basis of E (dim E < c0), then

tr(Mu(f)) = tr(Mv(f))'

» This is known as the trace of the endomorphism and
denoted as tr(f).
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LEndomorphisms and invariant subspaces
; ;

Invariant subspaces

Let f € End(E) and F C E be a subspace.

Definition

F is f-invariant (or invariant by f) if f(F) C F.

In this case we define the restriction of f to F, as the
endomorphism fi € End(F) defined by fiz(v) := f(v).
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LEndomorphisms and invariant subspaces
; ;

Invariant subspaces

Let f € End(E) and F C E be a subspace.

Definition

F is f-invariant (or invariant by f) if f(F) C F.

In this case we define the restriction of f to F, as the
endomorphism fi € End(F) defined by fg(v) := f(v).

Proposition

Let u={uy...u,} be a basis of E obtained by extension of a
basis B = {u1,...,uq} of a subspace F C E. Then F is
f-invariant if and only if

m(r) = (1),

where A € My(K). In this case, A= Mg(fir).
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