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Definition and examples

Definition
A linear map (or linear transformation) between two K−e.v E and
F is a map that preserves linear combinations. More precisely,

Definition
f : E −→ F is a linear map if

1. f (u + v) = f (u) + f (v) for all u, v ∈ E , and

2. f (cv) = cf (v) for any c ∈ K and any v ∈ E .

Examples:

▶ f : R2 −→ R3 where f (x , y) = (x + 2y , 3x , y − x)

▶ f : R2 −→ R2 where f (x , y) = (−y , x) (rotation of π/2
centered at (0, 0))

▶ f : Rn −→ Rn f (v) = λ.v for some λ ∈ K (homothety).

▶ f : E −→ F , f (v) = 0 ∀v ∈ E is called zero map.

▶ f : E −→ E f (v) = v is called identity map Id .

▶ Example of maps that are not linear
4
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Definition and examples

Properties of linear maps

Let f : E −→ F be a map between K-e.v. Then:

▶ f linear ⇔ f (c1v1 + · · ·+ ckvk) = c1f (v1) + · · ·+ ck f (vk)
∀v1, . . . , vk ∈ E and c1, . . . , ck ∈ K.

▶ f linear ⇒ f (0) = 0.

A linear map f is determined by the image of a basis (any basis):

Proposition

Given a basis {u1, . . . , un} of E and any set of vectors
v1, . . . , vn ∈ F , there exists a unique linear map f : E −→ F such
that f (ui ) = vi ∀i .

5
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Definition and examples

Linear maps Kn −→ Km and matrices
▶ Basic example of linear map: If A ∈ Mm×n(K), the map

f : Kn −→ Km defined by

v =

x1
...
xn

 7→ f (v) = A

x1
...
xn

 .

▶ All linear maps f : Kn −→ Km are of this type: in standard
coordinates they are defined as degree 1 homogeneous
polynomials:

(x1, . . . , xn) 7→ (a1,1x1+. . .+a1,nxn, · · · , am,1x1+. . .+am,nxn)

and f corresponds to v 7→ Av where A = (ai ,j); the ith
column of A is f (ei ).

▶ The standard matrix M(f ) of a linear map f : Kn −→ Km is
the m × n matrix whose columns are the vectors f (ei ):

M(f ) = (f (e1) · · · f (en))
6



Definition and examples

Linear maps Kn −→ Km and matrices
▶ Basic example of linear map: If A ∈ Mm×n(K), the map

f : Kn −→ Km defined by

v =

x1
...
xn

 7→ f (v) = A

x1
...
xn

 .

▶ All linear maps f : Kn −→ Km are of this type: in standard
coordinates they are defined as degree 1 homogeneous
polynomials:

(x1, . . . , xn) 7→ (a1,1x1+. . .+a1,nxn, · · · , am,1x1+. . .+am,nxn)

and f corresponds to v 7→ Av where A = (ai ,j); the ith
column of A is f (ei ).

▶ The standard matrix M(f ) of a linear map f : Kn −→ Km is
the m × n matrix whose columns are the vectors f (ei ):

M(f ) = (f (e1) · · · f (en))
6



Definition and examples

Linear maps Kn −→ Km and matrices
▶ Basic example of linear map: If A ∈ Mm×n(K), the map

f : Kn −→ Km defined by

v =

x1
...
xn

 7→ f (v) = A

x1
...
xn

 .

▶ All linear maps f : Kn −→ Km are of this type: in standard
coordinates they are defined as degree 1 homogeneous
polynomials:

(x1, . . . , xn) 7→ (a1,1x1+. . .+a1,nxn, · · · , am,1x1+. . .+am,nxn)

and f corresponds to v 7→ Av where A = (ai ,j); the ith
column of A is f (ei ).

▶ The standard matrix M(f ) of a linear map f : Kn −→ Km is
the m × n matrix whose columns are the vectors f (ei ):

M(f ) = (f (e1) · · · f (en))
6



Nullspace and Image

Outline

Definition and examples

Nullspace and Image

Composition

Matrices of linear maps

Endomorphisms and invariant subspaces

Bibliography

7



Nullspace and Image

Definitions

Let f : E −→ F be a map between K-e.v.

▶ f is injective if different vectors always have different images
(f (u) = f (v) implies u = v).

▶ f is surjective if every vector v in F is the image of a certain
vector u ∈ E , v = f (u).

▶ The set of all images of vectors is called the image or range
of f ,

Im(f ) = {v ∈ F | v = f (u) for some u ∈ E} ⊆ F

▶ f is surjective if and only if Im(f ) = F .

▶ f is bijective if it is at the same time injective and surjective.
A bijective linear map is called an isomorphism.
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Nullspace and Image

Null space

Let f : E −→ F be a linear map.

Definition
The kernel (nucli) of f is the subspace

Nuc(f ) = {v ∈ E | f (v) = 0} = f −1({0}) ⊂ E .

Theorem
A linear map f is injective if and only if Nuc(f ) = {0}.
If f : Kn −→ Km is a linear map and A is its standard matrix, then

▶ Nuc(f ) = {v ∈ Kn | f (v) = 0} = {x ∈ Kn | Ax = 0}.
▶ dimNuc(f ) = n − rank(A).

▶ f is injective ⇔ rank(A) = n (=number of columns).

▶ f injective ⇒ n ≤ m.
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Nullspace and Image

Image and preimage of a subspace

Let f : E −→ F be a linear map.

Definition
The image of V ⊆ E is the set

f (V ) := {w ∈ F |w = f (u) for some u ∈ V }.

▶ If V is a subspace ⇒ f (V ) is also a subspace.

▶ If V = [u1, . . . , ud ] ⊂ E ⇒ f (V ) = [f (u1), . . . , f (ud)] ⊂ F .

▶ If u1, . . . , ud are linearly independent, f (u1), . . . , f (ud) do
NOT need to be l.i.

▶ Im(f ) = f (E ) = [f (u1), . . . , f (un)] if {u1, . . . , un} is a basis of
E .

▶ dim Im(f ) is called the rank of f .
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Nullspace and Image

Image for f : Kn −→ Km

Let f : Kn −→ Km be a linear map and let A be its standard
matrix. Then,

▶ Im(f ) = [columns of A].

▶ dim Im(f ) = rank(A).

▶ f is surjective if and only if rank(A) = m (= number of rows).

▶ f surjective ⇒ m ≤ n.
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Nullspace and Image

Let f : E −→ F be a linear map.

Definition
The preimage of W ⊆ F is f −1(W ) := {u ∈ E | f (u) ∈ W } ⊆ E .

Lemma

1. If u ∈ E and v ∈ F satisfy f (u) = v, then

f −1({v}) = {u + w |w ∈ Nuc(f )}.

2. If W is a subspace, so is f −1(W ).
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Composition

Composition of linear maps

Let f : E −→ F and g : F −→ G be linear maps, the composition
of g with f is the linear map g ◦ f : E −→ G defined as:

g ◦ f : E
f−→ F

g−→ G
v 7→ f (v) 7→ (g ◦ f )(v) := g(f (v))

.

If f : Kn −→ Km has standard matrix A and g : Km −→ Kp has
standard matrix B ⇒ the standard matrix of g ◦ f is

M(g ◦ f ) = BA.
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Composition

Inverse of linear maps

If f : E −→ F is a linear map, we say that g : F −→ E is the
inverse of f (denoted as g = f −1) if

g ◦ f = f ◦ g = Id .

Note: f is invertible ⇔ f is bijective.

Invertible linear maps are called isomorphisms. Two K-ev. are
isomorphic if there exists an isomorphism f : E −→ F ; in this case
we use the notation E ∼= F .
Properties:

▶ If f is iso. ⇒ f −1 is a linear map.

▶ If f : Kn −→ Kn is iso. and has standard matrix A ⇒
M(f −1) = A−1.

▶ If f has inverse map f −1, then the preimage f −1(W ) of a
subspace W coincides with its image by f −1.
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Composition

Theorem (The Rank theorem)

Let f : E −→ F be a linear map and assume that E has finite
dimension. Then, Nuc(f ) and Im(f ) have finite dimension and

dimNuc(f ) + dim Im(f ) = dimE
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Composition

Characterizations of inj./surj. maps

If f : E −→ F is a linear map between vector spaces of finite
dimension, then:

▶ f is injective ⇔ Nuc(f ) = {0} ⇔ dim Im(f ) = dimE .

▶ f is surjective ⇔ dim Im(f ) = dimF ⇔
dimNuc(f ) = dimE − dimF .

▶ f is bijective ⇔ dimE = dimF and Nuc(f ) = {0} ⇔
dimE = dimF and dim Im(f ) = dimF .

▶ If dimE = dimF , then f is bijective ⇔ injective ⇔ surjective.
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Composition

Isomorphism of e.v. of finite dimension

Proposition

If dim(E ) = n and B = {v1, . . . , vn} is a basis of E , then

E −→ Kn

v 7→ vB

is an isomorphism.

Theorem
If E and F are two K-e.v. of finite dimension, then

E ∼= F ⇔ dim(E ) = dim(F ).

In particular, any K-e.v. of dimension n is isomorphic to Kn.
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Matrices of linear maps

Consider now linear maps f : E −→ F between K-e.v. of finite
dimension, n = dimE , m = dimF . Let u = {u1, . . . , un} and
v = {v1, . . . , vm} be bases of E and F (resp.).

Definition
The matrix of f in bases u,v is the m× n matrix whose columns
are the coordinates of f (u1), . . . , f (un) in the basis v:

Mu,v(f ) =
(
f (u1)v · · · f (un)v

)
.

Properties:
▶ If E = Kn, F = Km and u, v are the standard bases ⇒ this

matrix is the standard matrix M(f ).
▶ If Mu,v(f ) = (ai ,j)i ,j ⇒ f (uj) =

∑
i ai ,jvi .

▶ Mu,v(f )(wu) = (f (w))v .
▶ Mu,v(g ◦ f ) = Mw,v(g)Mu,w(f ),

g ◦ f : E u
f−→ Fw

g−→ G v

Mu,w(f ) Mw,v(g)
.
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Matrices of linear maps

Change of basis as matrices of linear maps

If Au→e is the change-of-basis matrix from u to e, then this matrix
can be thought as the matrix of the Identity map in certain
basis:

Au→e = Mu,e(Id).

Note: The matrix of the identity map is the Identity matrix if we put the same

basis at both sides.

If Au→u’ is the change-of-basis matrix from u to u’, and Av→v’ is
the change-of-basis matrix from v to v’, then:

Mu’,v’(f ) = Av→v’Mu,v(f )A
−1
u→u’ ,

Mu,v(f ) = A−1
v→v’Mu’,v’(f )Au→u’ .
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Matrices of linear maps

The vector space of linear maps

The set of linear maps between K-e.v, E , F is denoted as L(E ,F ).
This is a K-e.v with the usual sum and product by scalars of maps:
if f , g ∈ L(E ,F ) and c ∈ K,

+ f + g is the map (f + g)(v) := f (v) + g(v), v ∈ E .

· c · f is the map (c · f )(v) := cf (v), v ∈ E .

Theorem
Let u = {u1, . . . , un} and v = {v1, . . . , vm} be bases of E and F ,
respectively. Then the map

φ : L(E ,F ) −→ Mm×n(K)
f 7→ Mu,v(f )

is an isomorphism.
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Endomorphisms and invariant subspaces

Endomorphisms

An endomorphism is a linear map from E to itself.
Notation

▶ End(E ) = {f : E −→ E | f linear map }.
▶ If f ∈ End(E ) and u = {u1, . . . , un} is a basis of E , we denote

by Mu(f ) the matrix Mu,u(f ).

▶ Using composition we can define f m for any m ∈ N :

f m = f ◦ m). . . ◦f .

▶ Mu(f
m) = Mu(f )

m, for any basis u
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Endomorphisms and invariant subspaces

Determinant of an endomorphism

Definition
The determinant of an endomorphism f ∈ End(E ) (E of finite
dimension) is the determinant of its matrix in any basis u,

det(f ) = det(Mu(f )).

This does not depend on the basis and

det(g ◦ f ) = det g det f .
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Endomorphisms and invariant subspaces

Trace

▶ The trace does not depend on the basis either: if u and v are
two basis of E (dimE < ∞), then

tr(Mu(f )) = tr(Mv(f )).

▶ This is known as the trace of the endomorphism and
denoted as tr(f ).
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Endomorphisms and invariant subspaces

Invariant subspaces

Let f ∈ End(E ) and F ⊆ E be a subspace.

Definition
F is f -invariant (or invariant by f ) if f (F ) ⊆ F .
In this case we define the restriction of f to F , as the
endomorphism f|F ∈ End(F ) defined by f|F (v) := f (v).

Proposition

Let u = {u1 . . . un} be a basis of E obtained by extension of a
basis B = {u1, . . . , ud} of a subspace F ⊂ E. Then F is
f -invariant if and only if

Mu(f ) =

(
A ∗
0 ∗

)
,

where A ∈ Md(K). In this case, A = MB(f|F ).
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