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Abstract. Phylogenetics is the discipline that studies the evolutionary
history of species. During the last years there has been an approach to
phylogenetics from the point of view of algebraic geometry. This per-
spective has been used to study the evolutionary models most used in
phylogenetics but also to develop new phylogenetic reconstruction tools.
Here we review the interplay between algebra and phylogenetics and we
explain the most recent results that use these methods for the purpose
of phylogenetic reconstruction.

1 Introduction

According to Darwin’s theory of natural selection, the evolution of species is
usually represented on a phylogenetic tree: its leaves represent living species, the
interior nodes represent their common ancestors, and edges represent evolution-
ary processes (see Fig. 1). Nowadays, the study of the evolutionary history of
a group of species is carried out from deoxyribonucleic acid (DNA) molecules
associated to the living species in the study. These DNA molecules may corre-
spond to certain genes or to other molecular entities and, due to the double helix
structure of DNA, they can be seen as words on the alphabet {A, C, G, T} with A
denoting adenine, C cytosine, G guanine, and T thymine. In this sense they are
called DNA sequences. The aim of phylogenetics is to reconstruct the ancestral
relationships among species (i.e. the phylogenetic tree) from a given set of DNA
sequences.

Phylogenetics is not only aimed at the knowledge of evolutionary history
per se: it has applications on many different topics nowadays. For example, as
pointed out in [3], phylogenetics is used in the design of biodiversity preservation
policies, in the prediction of molecular evolution of viruses, or in the detection of
tumor origins. It has recently been used in determining the origin of SARS-CoV-
2 and the phylogenetic tree of coronaviruses has been crucial in detecting the
relationship between this coronavirus in bats and humans, see [4]. Phylogenetics
has also an impact beyond biology: it is a crucial tool in the study of origin and
evolution of languages and written texts, for instance.
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Fig. 1. A phylogenetic tree on several species of birds. Rheas, Kiwi, Ostrich, Cassowary
and Emus, (extinct) Moas and Tinamous are paleognathus birds; they are known as
ratites and among them only Tinamous can fly. It is still controversial whether this
would be the correct phylogeney of these species, or alternatively, Tinamous should be
placed within the clade of other Ratites, see [1,2]. Figure courtesy of Marina Garrote-
López.

The main goal in phlyogenetic reconstruction is the following:

•? Problem: phylogenetic reconstruction

Provide consistent methods that, given a collection of DNA sequences, produce
the most plausible phylogenetic tree representing the evolution of the sequences.

Nowadays phylogenetics faces many different challenges. As there are more
and more data available, there is a need of using more complex models fitting
these data. On the contrary, phylogenetic reconstruction tools usually assume
oversimplified models to make computations feasible. Moreover, the number of
phylogenetic trees grows more than exponentially in the number of leaves (or
species under study), so it is not possible to explore exhaustively the space of
all phylogenetic trees. Thus, there is a need for new methods working for more
complex models.
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Here, the word “plausible” has a vague meaning on purpose, as it depends
on the measure one wants to use. In order to reconstruct the phylogenetic tree,
one usually models the evolution via a Markov process on the tree. This Markov
process governs the substitution of nucleotides along the tree and is the basis
of widely used methods such as maximum likelihood or Bayesian tools. At the
beginning of this century, the emergence of the new discipline algebraic statistics
(coined as in the book [5]) made possible the use of algebraic tools in statis-
tical inference. These tools have been used in computational biology since the
papers of L. Pachter and B. Sturmfels at Proceedings of the National Academy
of Sciences, [6] and [7], and appear in many different areas nowadays.

In phylogenetics, the use of algebraic tools was initiated by E. Allman and
J. Rhodes, and at present there is a solid community working in algebraic phy-
logenetics. The key observation is that Markov processes on trees are algebraic
statistical models (i.e. parametric models for which the distribution is expressed
as a polynomial in the parameters). From this, the study of algebraic varieties
they define appears naturally. This has lead to relevant consequences from alge-
braic geometry in phylogenetics (see [8,9]) but also problems from phylogenetics
have lead to important results in mathematics (see [10–13]) and other areas, see
[14]. Recently, a refinement has been introduced in order to use semi-algebraic
varieties instead of algebraic varieties, [15–17].

In this article we review the most important algebraic tools that are used
in phylogenetic reconstruction. In Sect. 2 we give the main definitions, describe
Markov processes on phylogenetic trees and how these lead to the natural study
of the corresponding algebraic varieties. In Sect. 3 we provide the main equa-
tions that define these algebraic varieties. In Sect. 4 we state the semi-algebraic
conditions that must be taken into account in phylogenetics. Finally, in Sect. 5
we explain how to use these tools in phylogenetic reconstruction. This is based
on previous joint work with J. Fernández-Sánchez and M. Garrote-López in [17]
and [16].

2 Markov Processes of Nucleotide Substitution

2.1 Phylogenetic Trees

We start with the basic definitions of phylogenetic trees, which can be found in
the book by Mike Steel [18, chapter 1] for example.

A tree 𝑇 is a connected acyclic graph with a collection of vertices 𝑉 (𝑇) and
edges 𝐸 (𝑇). The degree of a vertex 𝑣 ∈ 𝑉 (𝑇) is the number of edges that are
incident with 𝑣. The set of vertices of degree 1 are called leaves and those non-
leaf vertices are called interior vertices.

Definition 1. Let 𝑆 be a finite set (in our setting 𝑆 is usually a set of biological
entities such as living species). An (unrooted) phylogenetic tree on 𝑆 is a tree 𝑇
with leaf set 𝑆 whose interior vertices have degree at least three.
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In other words, a phylogenetic tree on 𝑆 is a tree with no nodes of degree
two together with a bijection between the set of leaves of 𝑇 and the set 𝑆. The
set 𝑆 represents current species while the interior nodes represent their common
ancestors, see Fig. 1 for an example. The set 𝑆 will be usually understood from
the context, so it will be often omitted.

Two phylogenetic trees 𝑇 and 𝑇 ′ on 𝑆 are isomorphic if there is a graph
isomorphism from 𝑇 to 𝑇 ′ that is the identity on the leaf set 𝑆. The topology of
a phylogenetic tree refers to the isomorphism class of 𝑇 as phylogenetic tree. See
Fig. 2 for three classes of isomorphism of phylogenetic trees on 𝑆 = {1, 2, 3, 4},
that will be represented as 𝑇12 |34, 𝑇13 |24, 𝑇14 |23.

Fig. 2. Three non-isomorphic trees on the set of leaves 1, 2, 3, 4. These trees are denoted
as 𝑇12 |34, 𝑇13 |24, and 𝑇14 |23 (from left to right) and, together with the star tree on four
leaves, they represent all possible tree topologies on 1, 2, 3, 4.

We can root a phylogenetic tree by specifying a vertex 𝑟 in 𝑉 (𝑇) and directing
all edges out of it. For reasons related to identifiability that will be clarified in
the next subsection, in our setting we do not allow trees with degree two nodes.

There is another type of information that can be added on a phylogenetic
tree: if there are weights assigned to the edges (or branch lengths), these usually
represent an evolutionary distance between both ends of the edge. In this paper
we do not take into account this kind of information.

2.2 Models of Nucleotide Substitution

In order to study the evolutionary relationships among DNA sequences, one
specifies a mathematical model of substitution of nucleotides along a phyloge-
netic tree. Let 𝑇 be an unrooted phylogenetic tree with leaves 𝑆 = {1, . . . , 𝑛} and
set an internal vertex 𝑟 to play the role of the root so that we can direct the edges
out of it (see for example, Fig. 3). The vertex 𝑟 had a DNA sequence associated
to it (a word on the alphabet A, C, G, T) and this sequence has randomly mutated
to the DNA sequences that we observe nowadays at the leaves of the tree. To
simplify things, it is common to assume that the nucleotides at different posi-
tions evolve independently of each other and following the same process (that is,
sites at the DNA sequence are independent and identically distributed). Thus
one only needs to model the evolution of a single nucleotide.

Assign a random variable X𝑖 at each node 𝑖 ∈ 𝑉 (𝑇) and assume that the
substitution of nucleotides along the tree follows a Markov process: the random
variable at each node is conditionally independent of its non-descendant random
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variables given the random variable at its immediate parent node. Another way
to describe this Markov process is via a parametric statistical model: let 𝜋 =
(𝜋A, 𝜋C, 𝜋G, 𝜋T) be the distribution of nucleotides at the root of a tree (𝜋X is
the probability of X at the DNA sequence at 𝑟) and let 𝑀𝑒 be the matrix of
conditional probabilities of substitution along edge 𝑒 : 𝑢 −→ 𝑣, that is,

A C G T

𝑀𝑒 =

A
C
G
T

����
�

𝑃(A|A, 𝑒) 𝑃(C|A, 𝑒) 𝑃(G|A, 𝑒) 𝑃(T|A, 𝑒)
𝑃(A|C, 𝑒) 𝑃(C|C, 𝑒) 𝑃(G|C, 𝑒) 𝑃(T|C, 𝑒)
𝑃(A|G, 𝑒) 𝑃(C|G, 𝑒) 𝑃(G|G, 𝑒) 𝑃(T|G, 𝑒)
𝑃(A|T, 𝑒) 𝑃(C|T, 𝑒) 𝑃(G|T, 𝑒) 𝑃(T|T, 𝑒)

����
�

.

Here 𝑃(X|Y, 𝑒) denotes the conditional probability that nucleotide Y at the
parent node 𝑢 of 𝑒 is substituted by nucleotide X at the child node 𝑣. Note
that this matrix has non-negative entries and sum of rows equal to one; this is
called a Markov matrix, transition matrix, or row stochastic matrix. With these
parameters, the Markov process on the tree is specified by

𝑃𝑟𝑜𝑏
(
{X𝑤 = X𝑤}𝑤∈𝑉 (𝑇)

)
= 𝜋X𝑟

∏

𝑒:𝑢→𝑣

𝑀𝑒
X𝑢 ,X𝑣 .

On a phylogenetic tree we do not have observations of the ancestral DNA
sequences, so the random variables at the interior nodes of the tree are hidden.
Thus, we obtain the probability 𝑝X1...X𝑛 of observing nucleotides X𝑖 at leaf 𝑖 by
marginalizing the previous expression over the interior nodes:

𝑝X1...X𝑛 =
∑

X𝑢 ∈ {A, C, G, T}
𝑢 ∈ 𝐼𝑛𝑡 (𝑇)

𝜋X𝑟

∏

𝑒:𝑢→𝑣

𝑀𝑒
X𝑢 ,X𝑣 , (1)

where 𝐼𝑛𝑡 (𝑇) denotes the set of interior nodes of 𝑇 .
For example, for the phylogenetic tree of Fig. 3, we have

𝑝ACCG =
∑

X𝑟

∑

X𝑢

𝜋X𝑟 𝑀1
X𝑟 ,A𝑀2

X𝑟 ,C𝑀5
X𝑟 ,X𝑢 𝑀3

X𝑢 ,C𝑀4
X𝑢 ,G.

The entries of 𝜋 and 𝑀𝑒 are parameters of this statistical model and, as we
have just seen, the joint distribution of nucleotides at the leaves of the tree can
be expressed as a polynomial function of these parameters. Therefore we have
an algebraic statistical model and the following polynomial map sends each set
of free parameters to the joint distribution 𝑝𝑇 = (𝑝X1...X𝑛 )X1 ,...,X𝑛 of nucleotides
at the leaves:

𝜑𝑇 : Free Parameters −→ R4𝑛

(
entries of 𝜋, (𝑀𝑒)𝑒∈𝐸 (𝑇)

)
↦→ 𝑝𝑇 = (𝑝AA...A, 𝑝AA...C, 𝑝AA...G, . . . , 𝑝TT...T).

(2)

Any distribution 𝑝 arising from a Markov process on the tree 𝑇 is in the
image of this map. Characterizing which distributions are in the image of this
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map is crucial for deciding whether a given distribution from real data is likely
to have arisen as a Markov process on 𝑇 or not. We come back to this problem in
the next subsection, but for the moment we want to mention other evolutionary
models.

The model presented above is commonly known as the general Markov (GM
briefly) model, or the Barry-Hartigan model [19]. Depending on the biological
data we are dealing with, simpler models can be considered. In what follows, we
describe these simpler models as instances of equivariant models (see [20]).

Let 𝐺 be a subgroup of the symmetric group 𝔖4 on the set {A, C, G, T}, i.e. 𝐺
is a group of permutations of these four elements. If in the parametric statistical
model presented above we impose

(1) the distribution 𝜋 is invariant by the action of 𝐺, that is, (𝜋A, 𝜋C, 𝜋G, 𝜋T) =
(𝜋𝑔A, 𝜋𝑔C, 𝜋𝑔G, 𝜋𝑔T) for any 𝑔 ∈ 𝐺, and

(2) each transition matrix 𝑀𝑒 is a 𝐺-equivariant map: 𝑀𝑒
X,Y = 𝑀𝑒

𝑔X,𝑔Y for any
𝑔 ∈ 𝐺,

then we have a 𝐺-equivariant model of nucleotide substitution. Well known
examples of 𝐺-equivariant models are (listed in decreasing order of complexity):

• The GM model above: it is a 𝐺-equivariant model if we take 𝐺 = {𝑖𝑑}. In
this model we have 12 free parameters per edge (for each transition matrix)
plus three free parameters for the distribution 𝜋 at the root. The GM model
evolving on the tree of Fig. 3 has 63 free parameters.

• Strand-symmetric model, see [21]: if 𝐺 = 〈(AT)(CG)〉, the corresponding equiv-
ariant model preserves the symmetry between both strands of DNA molecules.
In this case, as the distribution 𝜋 at the root must be 𝐺-invariant, it satisfies
𝜋A = 𝜋T and 𝜋C = 𝜋G.

• Kimura 3-parameter model, see [22]: when 𝐺 = 〈(AC)(GT), (AG)(CT)〉 the distri-
bution at the root must be uniform 𝜋 = ( 1

4 , 1
4 , 1

4 , 1
4 ) and the transition matri-

ces satisfy symmetries that reflect the chemical properties of both groups of
nucleotides, purines (adenine A and guanine G) and pyrimidines (cytosine C
and thymine T). For this model and its submodels below, the uniform distri-
bution 𝜋 is the stationary distribution of all transition matrices of the model.

• Kimura 2-parameters, abbreviated as K80 (see [23]): 𝐺 = 〈(ACGT), (AG)〉; this
is a submodel of K81 that considers all substitutions between purines and
pyrimidines to be equally probably at each edge.

1

2

3

4

1

2

3

4

5

12 34

Fig. 3. A Markov process on the tree 𝑇12 |34.
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• Jukes-Cantor model, abbreviated as JC69 (see [24]): this is the most simple
model and corresponds to 𝐺 = 𝔖4. In this case the distribution at the root is
uniform and the transition matrices at the edges are of the following type:

𝑀𝑒 =
����
�

𝑎𝑒 𝑏𝑒 𝑏𝑒 𝑏𝑒

𝑏𝑒 𝑎𝑒 𝑏𝑒 𝑏𝑒

𝑏𝑒 𝑏𝑒 𝑎𝑒 𝑏𝑒

𝑏𝑒 𝑏𝑒 𝑏𝑒 𝑎𝑒

����
�

,

where 𝑎𝑒 + 3𝑏𝑒 = 1. For this model there is only one free parameter per edge
(and there are no free parameters for the distribution at the root), thus this
model on the tree of Fig. 3 has only five free parameters.

One of the first issues that one has to take into account when proposing a
parametric model is identifiability, that is, whether all parameters of the model
can be identified from data that perfectly fits the model. In our setting this
translates to the following questions:

•? Questions on identifiability

Let 𝑝 be a distribution that has arisen as a Markov process on a phylogenetic
tree 𝑇 with parameters 𝜋 and 𝑀𝑒.

• Can the tree 𝑇 be identified solely from 𝑝?
• If the answer to the previous question is yes, can the parameters 𝜋 and 𝑀𝑒

be uniquely identified from 𝑝?

It is well known (see [18, §7.2.1]) that the answer to the first question is
affirmative if 𝑝 has arisen from non-singular parameters (that is, 𝜋 has no zero
entries and all matrices 𝑀𝑒 are invertible and different from permutation matri-
ces), which is a generic condition. Obviously, 𝑇 can be recovered only up to
isomorphism (so it is actually the tree topology that can be recovered from 𝑝);
however, the vertex chosen to root the tree is not identifiable.

Furthermore, under the same conditions that guarantee an affirmative answer
to the first question, there is an affirmative answer for the second: if we fix an
interior vertex 𝑟 to direct the tree, 𝜋 and all transition matrices 𝑀𝑒 can be
recovered from 𝑝 up to label swapping of states A, C, G, T at the interior nodes
(see [25] for the GM model and [11] for the other 𝐺-equivariant models).

Thus the Markov models presented above are well-posed, in the sense that
there is no overparametrization. Of course there are some sets of parameters
that induce distributions at the leaves that can arise on differen trees, but this
only occurs for particular parameters as we have seen (for example, in the tree
of Fig. 3 we can set 𝑀5 = 𝑖𝑑 and then the corresponding joint distribution at the
leaves can also be obtained as a Markov process on any of the other two trees of
Fig. 2).
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If we had allowed nodes of degree two, then the answer to the identifiability
questions would have been negative: if there is a node 𝑣 of degree two (as the
root in a binary rooted tree), one can only recover the product of the transition
matrices of both edges incident with 𝑣 (not the matrices separately).

There are more complex models that could be considered (for example allow-
ing different sites to evolve according to different processes or allowing insertions
and deletions of nucleotides and not only substitutions), but this is out of the
scope of this survey.

2.3 Algebraic Geometry in Phylogenetics

If Δ is the standard simplex in R4𝑛 , characterizing which distributions 𝑝 ∈ Δ
arise as a Markov process on a phylogenetic tree 𝑇 can be useful in recovering
the tree 𝑇 from a given distribution. This is the main idea that leads to the use
of algebraic geometry for phylogenetic reconstruction. The reader can have a
look at the chapter [18, §8.3] for a good introduction to “phylogenetic algebraic
geometry”.

The main observation that leads to the use of an algebraic geometry per-
spective is the following. The image of the map 𝜑𝑇 defined in (2) “almost” fills
an algebraic variety if we extend it to the complex field. An algebraic variety
is the set of points where a collection of polynomials vanishes. The image of a
polynomial map C𝑑 −→ C

4𝑛 does not need to be an algebraic variety but it is
always a constructible set (that is, in our case one needs to add to 𝐼𝑚𝜑𝑇 some
algebraic varieties of smaller dimension to obtain an algebraic variety). Let us
call 𝑉𝑇 the smallest algebraic variety containing the image of 𝜑𝑇 (i.e. the Zariski
closure of 𝐼𝑚𝜑𝑇). Then the polynomial equations that vanish on 𝐼𝑚𝜑𝑇 are pre-
cisely those vanishing on 𝑉𝑇 . Therefore, characterizing which distributions lie on
the set 𝐼𝑚𝜑𝑇 is equivalent to characterizing the intersection 𝑉𝑇 ∩ Δ.

Summing up, the equations that define 𝑉𝑇 almost determine the set 𝐼𝑚𝜑𝑇 .
Finding these equations is not an easy task. Actually, there are infinitely many
equations that vanish on 𝑉𝑇 because the collection of equations that vanish
on 𝑉𝑇 form an ideal 𝐼𝑇 in the ring of polynomials R[𝑝AA...A, 𝑝AA...C, . . . , 𝑝TT...T].
According to Hilbert’s basis theorem, this ideal is finitely generated. Biologists
Cavender, Felsenstein and Lake in [26] and [27] were the first to introduce the
idea of using polynomials that vanish on any distribution on a tree 𝑇 . They
called these polynomials in the ideal of 𝑉𝑇 phylogenetic invariants. After a lot
of efforts from algebraic geometers, collections of equations that define 𝑉𝑇 have
been found for trees on any number of leaves evolving under the evolutionary
models introduced in the previous section, see [20,21,28,29]. Those wanting to
play with these phylogenetic invariants can have a look at webpage

https://www.coloradocollege.edu/aapps/ldg/small-trees/small-trees 0.html
which contains lists of generators for small trees, see [30].

The positive answer to the Questions on identifiability of the previous section
ensure that any two of these varieties intersect properly (first question) and that
the fibers of 𝜑𝑇 are zero-dimensional (second question). Therefore, the dimension
of 𝑉𝑇 (as algebraic variety, or as a manifold at the non-singular points) is equal to

https://www.coloradocollege.edu/aapps/ldg/small-trees/small-trees_0.html
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the dimension of the parameter space. For the GM model, this dimension equals
𝑑 = 3+12|𝐸 (𝑇) |, so the codimension of 𝑉𝑇 is 4𝑛−3−12|𝐸 (𝑇) |, which is exponential
on 𝑛 (the number of edges of an 𝑛-leaved tree is bounded above by 2𝑛 − 3). The
number of polynomials in a minimal system of generators of the ideal of 𝑉𝑇 is too
large to be used in practice: we need at least as many elements as the codimension
to define a variety and we have just seen that this number is exponential on 𝑛.
Moreover, it might be difficult to give a phylogenetic interpretation to some of
these polynomials and to use them for phylogenetic reconstruction purposes. In
Sect. 5 we explain other ways to use these ideals for phylogenetic reconstruction.

In what follows we give examples of phylogenetic invariants. For all the mod-
els and all trees, the following is a trivial phylogenetic invariant:

ℎ : 𝑝AA...A + 𝑝AA...C + · · · + 𝑝TT...T − 1.

This polynomial vanishes on any point of 𝐼𝑚𝜑𝑇 (and hence on the whole 𝑉𝑇)
because probabilities must sum to one.

There are other phylogenetic invariants that depend only on the evolutionary
model chosen but not on the tree structure. These are called model invariants.
For example, for any tree on 𝑛-leaves evolving under the Jukes-Cantor model, the
polynomial 𝑝AA...A − 𝑝CC...C vanishes on any point 𝑝𝑇 ∈ 𝐼𝑚𝜑𝑇 (this can easily be
seen using the symmetries of the transition matrices in JC69 model, and we can
obtain other model invariants in the same way). Actually, if 𝑝 is a distribution
that has arisen from a 𝐺-equivariant model evolving on a tree 𝑇 , then

𝑝𝑔X1 ,...,𝑔X𝑛 = 𝑝X1 ,...,X𝑛

for any 𝑔 ∈ 𝐺 (i.e. 𝑝 is 𝐺-invariant). Hence, 𝑝𝑔X1 ,...,𝑔X𝑛 − 𝑝X1 ,...,X𝑛 are model
invariants for any 𝑔 ∈ 𝐺 and X1, . . . , X𝑛 ∈ {A, C, G, T}𝑛. These model invariants
have been used in model selection in [31]: they have been implemented in a
method that selects the 𝐺-equivariant model that best fits the data according
to a statistical criterion.

The phylogenetic invariants that might be of interest in phylogenetic recon-
struction are those that lie in 𝐼𝑇 but not in 𝐼𝑇′ for some other tree 𝑇 ′. These are
called topology invariants.

For example, for the JC69 or K80 model on the tree 𝑇12 |34, Lake [27] found
the following linear phylogenetic invariants:

𝐻1 : 𝑝𝑥𝑦𝑥𝑦 + 𝑝𝑥𝑦𝑧𝑤 − 𝑝𝑥𝑦𝑧𝑦 − 𝑝𝑥𝑦𝑥𝑤

𝐻2 : 𝑝𝑥𝑦𝑦𝑥 + 𝑝𝑥𝑦𝑤𝑧 − 𝑝𝑥𝑦𝑦𝑧 − 𝑝𝑥𝑦𝑤𝑥 (3)

for any 𝑥, 𝑦, 𝑧, 𝑤 in {A, C, G, T}. It is not difficult to see that 𝐻1 is not a phylogenetic
invariant for 𝑇13 |24 and 𝐻2 is not an invariant for 𝑇14 |23, so these polynomials
are actually topology invariants for 𝑇 = 𝑇12 |34. Lake used these two invariants
to propose a method of phylogenetic reconstruction for quartet trees, without
much success. It is not difficult to see why this method was not very successful:
the variety 𝑉𝑇 is not a linear variety so using only linear invariants may not give
the best results in phylogenetic reconstruction. In the next section we explain
how to obtain other topology invariants of larger degrees.
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3 Invariants from Flattenings

For the moment we consider trees on four leaves {1, 2, 3, 4}. There are three
possible (non-trivial) bipartitions of the set of leaves: 12|34, 13|24, 14|23. Let 𝑝 =
(𝑝AA...A, 𝑝AA...C, 𝑝AA...G, . . . , 𝑝TT...T) be a point in R44

. Then we define the flattening
of 𝑝 according to the bipartition 12|34 as the matrix

𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑡 𝑙𝑒𝑎𝑣𝑒𝑠 3 𝑎𝑛𝑑 4

𝑓 𝑙𝑎𝑡12 |34 (𝑝) =
𝑠𝑡𝑎𝑡𝑒𝑠

𝑙𝑒𝑎𝑣𝑒𝑠

1, 2

�������
�

𝑝AAAA 𝑝AAAC 𝑝AAAG . . . 𝑝AATT

𝑝ACAA 𝑝ACAC 𝑝ACAG . . . 𝑝ACTT

𝑝AGAA 𝑝AGAC 𝑝AGAG . . . 𝑝AGTT

...
...

...
...

...
𝑝TTAA 𝑝TTAC 𝑝TTAG . . . 𝑝TTTT

�������
�

.

Note that this is a 16 × 16 matrix with rows labelled by the states
AA, AC, . . . , TG, TT at leaves 1 and 2 and columns labelled by the states at leaves 3
and 4. We can define 𝑓 𝑙𝑎𝑡13 |24 (𝑝) and 𝑓 𝑙𝑎𝑡14 |23 (𝑝) analogously. Another way of
interpreting these matrices is by using tensors: 𝑝 belongs to R44

� R4⊗R4⊗R4⊗R4

and 𝑓 𝑙𝑎𝑡12 |34 (𝑝) is the image of 𝑝 via the isomorphism from (R4⊗R4) ⊗ (R4⊗R4)

to the set of linear maps 𝐿((R4 ⊗ R4)∗,R4 ⊗ R4).
Using expression (1) one can see that, if 𝑇 = 𝑇12 |34 and 𝑝 = 𝜑𝑇 (𝜋; 𝑀1, 𝑀2, 𝑀3,

𝑀4, 𝑀5) belongs to 𝐼𝑚𝜑𝑇 , then

𝑓 𝑙𝑎𝑡12 |34 (𝑝) = (𝑀1 ⊗ 𝑀2)𝑡 𝑓 𝑙𝑎𝑡12 |34 (𝑞) 𝑀3 ⊗ 𝑀4

where 𝑀 ⊗𝑁 denotes the Kronecker product of matrices and 𝑞 = 𝜑𝑇 (𝜋; 𝐼𝑑, 𝐼𝑑, 𝐼𝑑,
𝐼𝑑, 𝑀5). It can be easily seen that 𝑓 𝑙𝑎𝑡12 |34 (𝑞) is a 16× 16 matrix whose unique
non-zero entries are labelled by (XX, YY). Hence, 𝑓 𝑙𝑎𝑡12 |34 (𝑞) has rank ≤ 4 and
the same holds for 𝑓 𝑙𝑎𝑡12 |34 (𝑝). This is the basis for the following result:

Theorem 1. (Allman Rhodes, [32]) Let 𝑝 = 𝜑𝑇 (𝜋; 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5) be a
distribution arising from the GM model on 𝑇 = 12|34. Then rank( 𝑓 𝑙𝑎𝑡12 |34 𝑝) ≤ 4.

Moreover, rank( 𝑓 𝑙𝑎𝑡13 |24 𝑝) and rank( 𝑓 𝑙𝑎𝑡14 |23 𝑝) are equal to 16 if 𝑀 𝑖 are
invertible and 𝜋 is strictly positive.

In other words, the 5 × 5 minors of 𝑓 𝑙𝑎𝑡12 |34 (𝑝) are topology invariants for
𝑇 = 𝑇12 |34. This result can be extended to larger trees by considering bipartitions
𝐴|𝐵 of the set of leaves and flattening according to these bipartitions: the result
would still refer to rank four matrices, as four is the number of states of the
random variables we are considering at the nodes of the tree. Invariants from
flattenings characterize whether a bipartition 𝐴|𝐵 is present in the structure
of the tree 𝑇 giving rise to the distribution 𝑝: if 𝑇 has an interior edge that
partitions the set of leaves in 𝐴|𝐵, then rank( 𝑓 𝑙𝑎𝑡𝐴 |𝐵 (𝑝)) is less than or equal
to four.

An analogous version of this result has been proven for G-equivariant models
in [33] by using techniques from representation theory. As a consequence, one
can see that Lake’s invariants in (3) appear from these rank conditions under
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the JC69 model. Moreover, in the quoted paper it is proven that these rank
conditions are enough to define a variety 𝑉𝑇0 inside the union of varieties ∪𝑇 ∈T𝑉𝑇

(where T is the set of trees on the set of leaves {1, . . . , 𝑛}):

Theorem 2. (Casanellas, Fernández-Sánchez 2011) Consider any 𝐺-equivariant
model. For each tree topology 𝑇 ∈ T , there exists a dense open subset 𝑈𝑇 ⊆ 𝑉 (𝑇)
such that if a point 𝑝 belongs to

⋃
𝑇 ∈T

𝑈𝑇 , then 𝑝 belongs to 𝑉𝑇0 if and only if the

rank of all 𝑓 𝑙𝑎𝑡𝐴 |𝐵 (𝑝) is less than or equal to four for all bipartitions induced from
interior edges of 𝑇0.

Roughly speaking, if one assumes that 𝑝 has arisen as a Markov process on
some phylogenetic tree (with generic parameters), considering invariants from
flattenings is enough to detect the tree topology. As assuming that 𝑝 has arisen
on some phylogenetic tree with generic parameters (i.e. 𝑝 ∈

⋃
𝑇 ∈T

𝑈𝑇 ) is what

all common phylogenetic reconstruction methods do, this theorem says that
considering rank conditions from flattenings is sufficient for tree topology recon-
struction via algebraic geometry.

•> Recall

Assuming that data comes from a phylogenetic tree, it is enough to consider
rank conditions from flattenings to recover the tree (see Theorem 2).

In Sect. 5 below, we shall see an alternative way to use these rank conditions
in practice.

4 Semi-algebraic Constraints

As the reader may have realized, when passing from the Markov process on a
tree 𝑇 to the map 𝜑𝑇 in (2), we are eluding the fact that the parameters are
probabilities. Let us call 𝜑+

𝑇 the restriction of 𝜑𝑇 to stochastic parameters (non-
negative parameters that sum to one) and let 𝑉+

𝑇 = 𝐼𝑚𝜑+
𝑇 . The map 𝜑+

𝑇 defines
a semi-algebraic variety, that is, it can be described by polynomial equations
and polynomial inequalities. In [34] we examined whether it is relevant to take
this into account and we concluded that there are biologically realistic situations
where considering the whole algebraic variety (and not only this part 𝑉+

𝑇 ) can
be misleading. These situations are actually the typical scenarios where most
phylogenetic reconstruction methods fail.

In [15], Allman, Rhodes and Taylor have characterized those distributions
that lie in 𝑉+

𝑇 . To this end, given a tensor 𝑝 ∈ R4 ⊗ R4 ⊗ R4 ⊗ R4 they consider
some transformations 𝑝 of 𝑝 obtained by multiplying trivial flattenings of 𝑝
(considering bipartitions of one leaf against the others) by matrices coming from
the marginalization of 𝑝 over two indices. If 𝑝 = 𝜑𝑇 (𝜋; 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5) is
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in 𝐼𝑚𝜑𝑇 , 𝑇 = 𝑇12 |34, these transformations produce a point 𝑝 also in 𝐼𝑚𝜑𝑇 but
with different transition matrices: 𝑝 = 𝜑𝑇 (𝜋; 𝑀, 𝑀, 𝑁, 𝑁, 𝑀5) where 𝑀 = 𝑀1 or
𝑀2 and 𝑁 = 𝑀3 or 𝑀4. We state here their result in the case of trees with four
leaves.

Theorem 3. (Allman, Rhodes and Taylor, 2014) A point 𝑝 ∈ R44
arises from a

Markov process on the phylogenetic tree 𝑇12 |34 with stochastic parameters if and
only if:

(i) 𝑓 𝑙𝑎𝑡12 |34 (𝑝) has rank ≤ 4,
(ii) the marginalizations 𝑝+... and 𝑝...+ arise from stochastic parameters, and
(iii) 𝑓 𝑙𝑎𝑡13 |24 (𝑝) is positive semi-definite, where 𝑝 is any of the transforma-

tions mentioned above.

In the next section we will explain how to use this result in phylogenetic
reconstruction.

5 Phylogenetic Reconstruction

We come back to the problem of phylogenetic reconstruction. Our input data
are DNA sequences of length 𝑁 given in the form of an alignment. An align-
ment of 𝑛 DNA sequences is an 𝑛 × 𝑁 array whose rows correspond to the
DNA sequences and whose columns represent nucleotides that have evolved from
the same nucleotide at the common ancestor of the sequences. For example, in
Fig. 4 we have an alignment of four DNA sequences; the first nucleotide in each
sequence corresponds to a certain nucleotide at the common ancestor of these
sequences (probably an A as well).

Fig. 4. An alignment of four DNA sequences

As we assumed that all positions in a DNA sequence evolve independently
and in the same way, an alignment can be thought of as N independent samples
from a multinomial distribution 𝑝 = (𝑝AA...A, 𝑝AA...C, . . . , 𝑝TT...T). This distribution
can be estimated from the relative frequencies 𝑓 = ( 𝑓AA...A, . . . , 𝑓TT...T) of each
column X1, . . . X𝑛 in the alignment, and 𝑓 ∼ 𝑝 when 𝑁 tends to infinity. If these
sequences had evolved according to a Markov process on a tree 𝑇 (for certain
parameters), then 𝑝 would belong to 𝐼𝑚𝜑+

𝑇 and 𝑓 would be close to 𝑉+
𝑇 .

The aim is to use the results in the previous sections that characterized dis-
tributions in 𝑉𝑇 and 𝑉+

𝑇 to design methods that reconstruct 𝑇 from the vector
of relative frequencies 𝑓 . A phylogenetic reconstruction method is called statis-
tically consistent if it outputs 𝑇 with probability one when the alignment has
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been generated by 𝑝 ∈ 𝐼𝑚𝜑+
𝑇 and we let the length of the alignment tend to

infinite. This is the least we should require to a phylogenetic reconstruction
method. Designing a reconstruction method that is statistically consistent is not
so difficult, the difficult part is to make it reach convergence fast enough because
sequences at our disposal are often not very long.

One of the most common phylogenetic reconstruction methods is maximum
likelihood estimation. Given an alignment 𝐷 and an evolutionary model, the
method seeks to obtain the tree topology 𝑇0 and the substitution parameters
𝜃 = (𝜋; {𝑀𝑒}𝑒) which maximize 𝑃𝑟𝑜𝑏(𝐷 |𝑇, 𝜃) among all possible phylogenetic
trees 𝑇 and substitution parameters 𝜃. To this end, first the maximum likeli-
hood estimate of the substitution parameters is obtained separately for each
tree topology 𝑇 (using some of the available optimization methods) and then
one chooses the tree topology and the parameter estimates which maximize the
likelihood among all tree topologies.

This method has a clear drawback: the number of (isomorphism classes of)
trivalent phylogenetic trees on 𝑛 leaves is (2𝑛 − 5)!!, which grows exponentially
in 𝑛, so that it becomes unfeasible to do an exhaustive search through all tree
topologies for more than 20 leaves (even with nowadays computational capacity).
The vast majority of phylogenetic reconstruction software use some branch and
bound algorithm and only cover a small part of the tree space. On the other
hand, numerical optimization methods do not guarantee a global maximum in
general and, moreover, it is known that there are multiple local maximum for
biologically relevant parameters.

By far, the most used phylogenetic reconstruction method is Neighbor-
Joining [35]. This a distance-based method, that is, all the information from an
alignment on a set of species {1, . . . , 𝑛} is condensed into a dissimilarity function
𝑑 : {1, . . . , 𝑛} × {1, . . . , 𝑛} −→ R≥0 (symmetric and with zero diagonal entries).
This dissimilarity function is intended to approximate the evolutionary distance
between pairs of species or, in other words, it should account for the amount of
elapsed substitutions between both species. Obviously, not all substitutions that
have occurred during evolution can be observed in the contemporary species
sequences (for instance, there may be an A mutating to T and finally coming
back to A in the nowadays species) and the dissimilarity function has to take
this into account. For example, the Jukes-Cantor distance between two DNA
sequences defined as − 3

4 ln(1− 4
3 𝑠), where 𝑠 is the fraction of nucleotides that dif-

fer in both sequences. It approximates the amount of substitutions (observed and
unobserved) between the species if these have evolved under the Jukes-Cantor
model.

Given a dissimilarity function 𝑑, the first step in the Neighbor-Joining
algorithm chooses two species 𝑥 and 𝑦 minimizing function 𝐷𝑥,𝑦 = 𝑑 (𝑥, 𝑦) −

1
𝑛−2

∑
𝑧 (𝑑 (𝑥, 𝑧) + 𝑑 (𝑦, 𝑧)), seeking to minimize their distance but maximize the

average distance to the other species. These two species are joined on a cherry
(that is, two leaves joined by two edges and an interior node) and the interior
node is treated as a new species substituting the former 𝑥 and 𝑦. In this way
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the number of species is decreased at each step and the function 𝐷 is redefined
accordingly.

This algorithm produces the correct phylogenetic tree if the input dissim-
ilarities can be realized as sums of lengths on the path between leaves on a
phylogentic tree. However, when dealing with biological sequences, their esti-
mated distances do not correspond to the branch lengths of any particular tree,
and the tree constructed by Neighbor-joining algorithm may not have a realistic
biological interpretation. In spite of this, it is one of the most widely used method
and, as there is no need to search through the whole space of phylogenetic trees,
it is used to produce phylogenetic trees for large number of species.

In the next section we explain of to use an algebraic geometry approach to
produce alternative methods of phylogenetic reconstruction.

5.1 Reconstruction of Quartets

We start by reviewing algebraic reconstruction methods for quartet trees and in
the next subsection we explain how to get to larger trees.

One of the most simple ways to use rank conditions (Theorem 1) in phylo-
genetic reconstruction is via the singular value decomposition of the flatten-
ing matrix [36]. A singular value decomposition of an 𝑚 × 𝑛 matrix 𝑀 is a
decomposition 𝑀 = 𝑈𝐷𝑉 𝑡 where 𝑈,𝑉 are orthogonal matrices and 𝐷 is an
𝑚 × 𝑛 matrix with off-diagonal entries equal to zero and ordered diagonal entries
𝐷1,1 = 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝐷𝑟 ,𝑟 = 𝜎𝑟 > 0, 𝐷𝑖,𝑖 = 0 for 𝑖 > 𝑟 = 𝑟𝑎𝑛𝑘𝑀. The elements
𝜎1, . . . , 𝜎𝑟 are called singular values and are uniquely determined by 𝑀. The
Eckart-Young theorem [37] states that the distance (in Frobenius norm) from a
matrix 𝑀 to the set of matrices of rank ≤ 𝑘 is given by

𝛿𝑘 (𝑀) =
√

𝜎2
𝑘+1 + · · · + 𝜎2

𝑟 .

According to Theorem 1, if 𝑇 = 12|34 and 𝑝 ∈ 𝐼𝑚𝜑𝑇 has been generated from
generic parameters, we have 𝛿4 ( 𝑓 𝑙𝑎𝑡12 |34 (𝑝)) = 0 and 𝛿4 ( 𝑓 𝑙𝑎𝑡13 |24 (𝑝)) > 0,
𝛿4 ( 𝑓 𝑙𝑎𝑡14 |23 (𝑝)) > 0. This idea was explored in [38] to propose a method of
phylogenetic reconstruction: given the vector 𝑓 of relative frequencies obtained
from an alignment of DNA sequences, compute the triplet of scores

𝑠12 |34( 𝑓 ) = 𝛿4 ( 𝑓 𝑙𝑎𝑡12 |34 ( 𝑓 )) , 𝑠13 |24( 𝑓 ) = 𝛿4 ( 𝑓 𝑙𝑎𝑡13 |24 ( 𝑓 )),

𝑠14 |23 ( 𝑓 ) = 𝛿4 ( 𝑓 𝑙𝑎𝑡14 |23 ( 𝑓 ))

and output the tree 𝑇𝐴 |𝐵 if 𝑠𝐴 |𝐵 ( 𝑓 ) is the smallest.
In [39] this method was further exploited and a modification was proposed

to make it more efficient and more robust. Despite of this improvement, meth-
ods based solely on rank conditions seem to need large alignments to outperform
other reconstruction methods. That is, the method presented is statistically con-
sistent but it converges slowly to the correct tree.

As argued in [34], methods based only on algebraic conditions may have
problems in reconstructing the correct tree from small samples because they do
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not take into account that parameters generating the alignment must be positive.
However, incorporating semi-algebraic conditions does not seem an easy task.
Out of the three conditions stated in Theorem 3, we are mostly interested in the
(i) and (iii), as the second one is not directly related to the tree structure. The
first is the rank conditions we discussed above. In order to incorporate the third
condition we borrow the following result from linear algebra:

Theorem 4. (Higham [40]) Let 𝑀 be an 𝑛×𝑛 matrix. Consider its closest sym-
metric matrix 𝑆 = 𝑀+𝑀𝑡

2 and the polar decomposition of 𝑆, 𝑆 = 𝑈𝐻, where 𝑈 is
orthogonal and 𝐻 is a positive semidefinite matrix. Then 𝑝𝑠𝑑 (𝑀) = 𝑆+𝐻

2 is the
closest positive semidefinite matrix to 𝑀 (in Frobenius norm).

This theorem may allow us to compute how far is 𝑓 𝑙𝑎𝑡13 |24 (𝑝) from the set
of positive semidefinite matrices. However, the goal is to combine conditions (i)
and (iii) in Theorem 3 into a single score. To this aim, we proved in [41] that
the rank of 𝑝𝑠𝑑 (𝑀) is always smaller than or equal to the rank of 𝑀. With all
this in mind, in [16] we came out with the following method: given the vector
of relative frequencies 𝑓 of an alignment, compute all transformations of the
vector mentioned in Theorem 3 (see [16] for details) and for each transformation
𝑓 compute

𝑠12 |34( 𝑓 ) :=
min

{
𝛿4

(
𝑝𝑠𝑑

(
𝑓 𝑙𝑎𝑡13 |24

(
𝑓
)))

, 𝛿4

(
𝑝𝑠𝑑

(
𝑓 𝑙𝑎𝑡14 |23

(
𝑓
)))}

𝛿4

(
𝑝𝑠𝑑

(
𝑓 𝑙𝑎𝑡12 |34

(
𝑓
))) . (4)

Then we define the score 𝑠12 |34 ( 𝑓 ) of the alignment as the average of these
scores and define 𝑠13 |24 ( 𝑓 ), 𝑠13 |24( 𝑓 ) accordingly. Note that for a distribution
𝑝 ∈ 𝐼𝑚𝜑+

𝑇 with 𝑇 = 𝑇12 |34, we have 𝑠12 |34 (𝑝) = ∞. Indeed, according to Theorem
3(iii), 𝑓 𝑙𝑎𝑡13 |24 (𝑝) is positive semidefinite, so

𝑟𝑎𝑛𝑘
(
𝑝𝑠𝑑

(
𝑓 𝑙𝑎𝑡13 |24 (𝑝)

) )
= 𝑟𝑎𝑛𝑘

(
𝑓 𝑙𝑎𝑡13 |24 (𝑝)

)
.

As any transformation 𝑝 of 𝑝 belongs to 𝑉𝑇 , this rank is greater than 4 (for
generic parameters). This proves that the numerator is different than zero. On
the other hand, as mentioned above, the rank of 𝑝𝑠𝑑

(
𝑓 𝑙𝑎𝑡12 |34 (𝑝)

)
is bounded

above by the rank of 𝑓 𝑙𝑎𝑡12 |34 (𝑝), which is smaller than or equal to four (because
𝑝 ∈ 𝑉𝑇). Therefore, the denominator of 4 is zero and 𝑠12 |34(𝑝) = ∞.

With the same arguments we can prove that the other two scores 𝑠13 |24(𝑝)
and 𝑠14 |23(𝑝) are zero. Thus, we can consider a method that outputs the tree
𝑇𝐴 |𝐵 for which 𝑠𝐴 |𝐵 ( 𝑓 ) is largest. This is called the SAQ (for Semi-Algebraic
Quartet) method in [16]. The previous argument proves that SAQ is a statis-
tically consistent method. Moreover, it is much more efficient than previous
algebraic methods and outperforms maximum-likelihood and neighbor-joining
for alignments of length at least 500 generated under the GM model (whereas
a method that only considers rank conditions needs at least 10000 sites to beat
other methods).
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5.2 From Quartets to Larger Trees

So far we have just seen algebraic methods that reconstruct only trees with four
leaves (quartets). We are interested now in reconstructing phylogenetic trees with
𝑛 leaves. Some methods, like Neighbor-Joining introduced above, build directly
a tree with 𝑛 leaves from an alignment of DNA sequences. But other methods
built an 𝑛-leaved tree out of smaller pieces, namely quartet trees. These are
called quartet-based methods.

We briefly describe one of these methods, Weight Optimization (WO for
short), see [42]. WO needs as input a triplet of weights for each four species.
That is, starting with an alignment of 𝑛 DNA sequences, we need to consider all
4-tuples 𝑖, 𝑗 , 𝑘, 𝑙 of the sequences and use a reconstruction method to weight the
three possible quartet trees: 𝑤𝑖 𝑗𝑘𝑙 = (𝑤𝑖 𝑗 |𝑘𝑙 , 𝑤𝑖𝑘 | 𝑗𝑙 , 𝑤𝑖𝑙 | 𝑗𝑘), each weight expressing
the reliability of the corresponding quartet tree. For example, we can use SAQ
to produce input weights for WO by defining:

𝑤𝑖 𝑗𝑘𝑙 =

(
𝑠𝑇𝑖 𝑗 |𝑘𝑙 ( 𝑓 )

𝑠( 𝑓 )
,

𝑠𝑇𝑖𝑘 | 𝑗𝑙 ( 𝑓 )

𝑠( 𝑓 )
,

𝑠𝑇𝑖𝑙 | 𝑗𝑘 ( 𝑓 )

𝑠( 𝑓 )

)

where 𝑠( 𝑓 ) = 𝑠𝑇𝑖 𝑗 |𝑘𝑙 ( 𝑓 ) + 𝑠𝑇𝑖𝑘 | 𝑗𝑙 ( 𝑓 ) + 𝑠𝑇𝑖𝑙 | 𝑗𝑘 ( 𝑓 ). In this way, weights are normalized
between 0 and 1.

Then WO randomly chooses a starting 4-tuple 𝑖, 𝑗 , 𝑘, 𝑙 and dynamically
defines the species addition order seeking to maximize the total sum of weights
at each step: the added species at each step is selected and placed at the edge
that gives the largest possible increase of weight. WO is known to reconstruct
the correct tree if the quartets are correctly weighted. We can use SAQ to weight
quartet trees but we could also use a method based only on rank conditions or on
maximum likelihood strategies. As WO is highly dependant on the initial quar-
tet, usually the method is run for several trials, say 100, so that 100 𝑛-leaved
trees are produced. These trees might not coincide and might be incompatible
but a consensus tree can be built out of them (following a chosen criterion, such
as the majority rule consensus tree, see [43]).

We ran WO with SAQ on the DNA sequences from Ratites used in [2] for
100 trials. The majority rule consensus tree obtained is the tree depicted in
Fig. 1 (see [17]). Therefore, our methods support the hypothesis that Tinamous
evolved separately from the rest of Ratites (see the discussion at the legend of
the figure).

6 Discussion

In this report we have presented probabilistic models of nucleotide substitution
that allow approaching phylogenetic reconstruction from an algebraic point of
view. We have introduced some of the main techniques that are used in the
development of algebraic and semi-algebraic tools in phylogenetics and we have
seen how these tools can be used in the reconstruction of the tree topology of a
set of DNA sequences.
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Still, there are problems for which algebraic phylogenetics has not been fully
developed yet. For instance, it would be interesting to provide tree reconstruction
methods for 𝐺-equivariant models, not only for the general Markov model. This
would be specially interesting in the case of protein data, as the general Markov
model of amino acid substitution seems too general to treat these data: it will
involve 380 parameters per edge whereas current models used by biologists only
involve one. Developing algebraic tools for models in between these two would
certainly be of interest.

Also, we have assumed that sites in the sequences were identically distributed.
Considering mixtures of distributions is a way of relaxing these assumptions.
Mixtures of distributions are just convex combinations of distributions, and
therefore also allow an algebraic approach. Further studying mixtures for dif-
ferent evolutionary models can lead to more flexibility in the models where alge-
braic tools can be applied. We need to mention that the tools presented here
work for gene trees, and one has to combine them with a coalescent model in
order to infer species trees.

On the other hand, we have mentioned how to reconstruct trees from quartets
inferred by algebraic tools. It would be desirable to extend algebraic techniques
to develop methods of reconstruction of large trees directly, not passing through
quartets.
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