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Abstract. In recent years, algebraic tools have been proven useful in phylogenetic reconstruc-
tion and model selection through the study of phylogenetic invariants. However, up to now, the
models studied from an algebraic viewpoint are either too general or too restrictive (as group-based
models with a uniform stationary distribution) to be used in practice. In this paper we provide a
new framework to study time-reversible models, which are the most widely used by biologists. In our
approach we consider algebraic time-reversible models on phylogenetic trees (as defined by Allman
and Rhodes) and introduce a new inner product to make all transition matrices of the process diago-
nalizable through the same orthogonal eigenbasis. This framework generalizes the Fourier transform
widely used to work with group-based models and recovers some of the well-known results. As il-
lustration, we combine our technique with algebraic geometry tools to provide relevant phylogenetic
invariants for trees evolving under the Tamura--Nei model of nucleotide substitution.

Key words. nucleotide substitution model, time-reversible substitution model, phylogenetic
variety, phylogenetic invariant
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1. Introduction. Phylogenetics aims at recovering the evolutionary history of a
given set of biological species from certain molecular information. This evolutionary
process is represented on a phylogenetic tree or network whose leaves correspond to
living species and whose interior nodes represent their common ancestors. One of
the most common ways of approaching phylogenetic reconstruction is by modeling
the substitution of molecular units (usually nucleotides or amino acids) via a Markov
process on a phylogenetic tree.

During the last twenty years, algebraic methods have been developed with the
aim of helping biologists address phylogenetic reconstruction. The key is that Markov
processes on phylogenetic trees parametrize algebraic varieties, and tools from alge-
braic geometry turn out to be relevant, as suggested by Felsenstein, Cavender, and
Lake in the late eighties; see [9], [25]. They introduced the use of phylogenetic invari-
ants, which are polynomial constraints satisfied by any distribution that arises as a
hidden Markov process on a phylogenetic tree. These tools avoid parameter inference,
which might be a tedious task, and incorporate the geometry of the algebraic varieties
to detect the tree that best fits the given data, in a certain measure. Methods based
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1846 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

on algebraic tools such as SVDquartets [11] or Erik+2 [16] have been implemented
successfully in the phylogenetic software PAUP* [35]. These methods consider the
most general Markov model of nucleotide substitution (GM, for short). Other models
that have been studied by algebraists are G-equivariant models (see [12], [6], [4]),
which are friendly models from a mathematical approach but only used by biologists
in very special cases.

Markov processes on phylogenetic trees mostly used by biologists have the prop-
erty of being stationary. The GM model on a phylogenetic tree is not a stationary
process and, among G-equivariant models, those that are stationary are too simple as
their stationary distribution is uniform. Another property that is commonly assumed
by biologists is time-reversibility. Roughly speaking, a stationary Markov process is
time-reversible if, at equilibrium, the rate at which transitions from state i to state j
occur is the same as the rate at which transitions from j to i occur. Thus, there is a
need to provide algebraic methods for time-reversible processes on phylogenetic trees
for any stationary distribution. This can be especially relevant in the case of amino
acid substitution models, where the GM model is too large to be of biological utility.

The time-reversibility property has been studied from an algebraic point of view
in [2]. Allman and Rhodes tailor time-reversibility from an algebraic approach and
define the class of algebraic time-reversible (ATR) models. This class contains all time-
reversible models that biologists use in their everyday work such as GTR [38], TN93
[37], or HKY85 [18]. In an ATRmodel on a tree, all transition matrices must commute.
This is a natural requirement since it is satisfied by all time-homogeneous continuous-
time processes, which are the most widely used in phylogenetic reconstruction.

We build upon this definition of ATR models and develop a new framework that
simplifies the study of these models. This can be thought of as a generalization of
the well-studied Hadamard or Fourier transform for group-based models exploited in
a large list of publications: [14], [36], [19], and [32], among others. First of all, if
data has reached equilibrium, the stationary distribution \pi can be inferred from the
data and we can consider it as input data (this approach was already considered by
the first author and M. Steel in the study of the Equal-Input model [7]). Then, for a
fixed stationary distribution \pi of an ATR model on a phylogenetic tree, we introduce
a new inner product \langle , \rangle \pi and prove that all transition matrices diagonalize under
an orthogonal eigenbasis with respect to \langle , \rangle \pi . By fixing this orthogonal eigenbasis,
we are able to do a change of coordinates that simplifies the parametrization of our
model. For example, we are able to recover the celebrated result of Evans and Speed
[14]. With these new coordinates we can provide phylogenetic invariants for these
Markov processes on trees and describe the corresponding algebraic varieties. We
illustrate these tools with a deep study of the TN93 model and give phylogenetic
invariants that can be used for topology reconstruction or model selection. We focus
this study on quartets (i.e., trees with four leaves) because they can be used as a
building block in phylogenetic reconstruction by means of quartet-based methods; see
[29], for instance.

The structure of the paper is as follows. In section 2 we introduce the preliminaries
on Markov processes on phylogenetic trees. In section 3 we develop the framework that
allows us to disentangle ATR models on trees: we introduce the inner product \langle , \rangle \pi ,
prove that ATR models on trees deal with transition matrices that simultaneously
diagonalize in a basis that is orthogonal for this inner product, and define algebraic
varieties associated to these models. In section 4 we explore the change of coordinates
to this eigenbasis and prove the main technique that permits the study of these models
on phylogenetic trees from the study on smaller trees (Theorem 4.6). In section 5
we delve into the study of the TN93 model: we give phylogenetic invariants for trees

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ALGEBRAIC TIME-REVERSIBLE MODELS 1847

evolving under this model with any number of leaves and, for quartet trees, we specify
a collection of phylogenetic invariants that (locally) cut out the algebraic variety
associated to this model. In other words, we give a collection of constraints that suffice
to describe distributions evolving under a quartet tree under the TN93 model; see
Theorem 5.14. All computations are available in the institutional CORA repository
https://dataverse.csuc.cat/dataset.xhtml?persistentId=doi:10.34810/data1128

2. Preliminaries. In this section we give a brief introduction to Markov pro-
cesses on phylogenetic trees and set up some notation needed throughout the paper.
These concepts can be found in [30, Chapters 1 and 8].

Let L= \{ l1, . . . , ln\} be a finite set of cardinality n (in our setting these elements
represent biological entities, such as homologous genes of different species). A phylo-
genetic tree T on L is a tree (connected acyclic graph) with leaf set L (that is, the
leaf nodes of the graph are in bijection with L). We use E(T ),N(T ), Int(T ) to denote
the set of edges, nodes, and interior nodes of T , respectively. We say that T is a
rooted phylogenetic tree if we specify an interior node r of T and direct all edges away
from it. If e = u\rightarrow v is an edge on a rooted tree, we say that u is the parent node
of e (denoted by p(e)), and v is the child node of e (denoted by c(e)). The set of all
phylogenetic trees on L will be denoted by \scrT n.

Molecular sequences can be thought of as ordered sequences of a finite set of
characters or states. We call \Sigma this finite set of \kappa states and assume that different
positions on the sequence are independent and identically distributed, so that we only
model the evolution on one site. For example, we use \Sigma = \{ A,G,C,T\} if we consider
nucleotide sequences or \kappa = 20 if we consider amino acid sequences. We denote the
elements of \Sigma by \{ 1, . . . , \kappa \} for convenience.

We recall how to describe a Markov process on a phylogenetic tree T to model the
evolution of molecular sequences along T . At each node v of a rooted phylogenetic
tree T we assign a random variable Xv taking values in \Sigma . We introduce a Markov
process on T by defining a parametric statistical model which assumes that each
random variable is conditionally independent of its nondescendants given its parent
variable [40, section 3]. The parameters of these models are the distribution \pi r at the
root node r and a Markov or transition matrix Me for each edge e = u\rightarrow v \in E(T ).
The entry i, j of the Markov matrix Me stands for the conditional probability of
observing state j \in \Sigma at Xv given the observation of state i\in \Sigma at Xu.

By definition, the entries of a Markov matrix are conditional probabilities. How-
ever, in this work we extend this term to allow for negative entries. That is, by a \kappa \times \kappa 
Markov matrix we mean a real square matrix whose rows sum to one. We denote by
\scrM 1

\BbbR the set of \kappa \times \kappa Markov matrices (\kappa will be understood from the context and 1
denotes that the sum of rows is equal to one) and \scrM 1

\BbbC is defined analogously.
A character \bfiti on N(T ) is an assignment of states at the nodes of T , that is,

\bfiti = (iv)v\in N(T ), iv \in \Sigma . If all Markov matrices Me are nonnegative, the probability of
observing a character \bfiti at the nodes of T is

pT\bfiti = \pi rir

\prod 
e\in E(T )

Me
ip(e),ic(e)

,(2.1)

and this expression can be extended to matrices in \scrM 1
\BbbR or in \scrM 1

\BbbC .
If A is a subset of the set of nodes and \bfitj A = (jv)v\in A, jv \in \Sigma , is a collection of

states at the nodes of A, we say that a character \bfiti = (iv) on N(T ) extends \bfitj A if iv = jv
for all v \in A. The set of all characters on N(T ) that extend \bfitj A is denoted by ext(\bfitj A).
One defines

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1848 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

pT\bfitj A
=

\sum 
\bfiti \in ext(\bfitj A)

pT\bfiti (2.2)

as the marginalization over N(T ) \setminus A. When A=L(T ), we denote pT\bfiti A by pTi1...in and
in this case expression (2.2) can be rewritten as

pTi1...in =
\sum 

v\in Int(T )

iv\in \Sigma 

\pi rir

\prod 
e\in E(T )

Me
ip(e),ic(e)

.

If F is a field (either \BbbR or \BbbC ), we call W the F -vector space of dimension \kappa and
call e1, . . . , e\kappa its standard basis. This induces a standard basis in the tensor product
\otimes lW , l \geq 1: ei1 \otimes \cdot \cdot \cdot \otimes eil , ij \in \Sigma . We often identify a tensor in \otimes lW with the
column vector formed by its coordinates in the standard basis. In this way, a joint
distribution (p1...1, . . . , p\kappa ...\kappa ) can be identified with a n-way tensor in \otimes nW.

If we call \scrP the set of free parameters of the Markov process, the (hidden) Markov
process on T is the map

\scrP \phi T - \rightarrow 
\bigotimes n

W
\pi r, (Me)e\in E(T ) \mapsto \rightarrow pT =

\sum 
i1,...,in

pTi1...ine
i1 \otimes \cdot \cdot \cdot \otimes ein ,

(2.3)

which assigns the joint distribution at the leaves of the tree to each set of Markov
matrices and each \pi r. If no further restrictions on the Markov matrices or on the
distribution at the root are assumed, then this is called a general Markov process on T .
We omit the superscript T in pT when it is understood from the context, and even if
we could distinguish whether F =\BbbR or F =\BbbC , we talk about the same map \phi T .

One of the main constructions for studying the general Markov model from an
algebraic viewpoint is the flattening of a tensor. We recall the definition below.

Definition 2.1. Let A| B be a bipartition of the set of leaves L. Assume that
leaves are ordered so that A = \{ 1, . . . ,m\} , B = \{ m + 1, . . . , n\} . If p \in \otimes nW , the
flattening of p according to the bipartition A| B is the \kappa | A| \times \kappa | B| matrix FlatA| B(p)
whose (i1 . . . im, im+1 . . . in) entry is pi1...in . For any other order of the set of leaves,
FlatA| B(p) is defined analogously.

The following theorem is one of the main tools in algebraic phylogenetics.

Theorem 2.2 (see [3]). Let T \in \scrT n and let p \in Im(\phi T ). Then, if A| B is a
bipartition induced by removing an edge of T , rank

\bigl( 
FlatA| B(p)

\bigr) 
is bounded above by

\kappa . On the contrary, if A| B cannot be induced by removing any edge of T , the rank
of FlatA| B(p) is larger than \kappa if the parameters that gave rise to p were sufficiently
general.

3. Time-reversible evolutionary models. Let \Delta \kappa  - 1 be the standard simplex
in \BbbR \kappa , fix a distribution \pi \in \Delta \kappa  - 1 with nonzero entries, and call D\pi the diagonal
matrix diag(\pi ). Any positive Markov matrix has a unique stationary distribution
(a left-eigenvector of eigenvalue 1), and we say that a \kappa \times \kappa Markov matrix M is
\pi -stationary if \pi tM = \pi t.

A Markov matrixM is \pi -time-reversible ifD\pi M =M tD\pi , that is, \pi iMi,j = \pi jMj,i

for any i, j. Note that if M is \pi -time-reversible, then M is \pi -stationary. In terms of
probabilities, the time-reversibility condition means that the probability of observing
state i at the parent node and j at the child node of the process governed by M is
the same as observing i at the child node and j at the parent node. We introduce an
inner product that gives another way of expressing time-reversibility.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ALGEBRAIC TIME-REVERSIBLE MODELS 1849

Definition 3.1. The \pi -inner product of u, v \in W is

\langle u, v\rangle \pi :=
\sum 
i

1

\pi i
uivi = utD - 1

\pi v,

where ui and vi, for i= 1, . . . , \kappa , are the coordinates of u, v in the standard basis.

ThenM is \pi -time-reversible if and only ifM t is a self-adjoint matrix with respect
to this inner product (that is, \langle M tu, v\rangle \pi = \langle u,M tv\rangle \pi for any u, v). In particular,
thanks to the Spectral Theorem, all eigenvalues of M are real and there exists a basis
of eigenvectors of M t which is orthogonal with respect to \langle , \rangle \pi . An orthogonal basis
with respect to \langle , \rangle \pi will be called a \pi -orthogonal basis.

Remark 3.2. Be aware that in [26, section 12] a similar inner product \langle , \rangle \prime is
defined but using D\pi instead of D - 1

\pi . We have that M t is self-adjoint with respect
to \langle , \rangle \pi if and only if M is self-adjoint with respect to \langle , \rangle \prime . We defined the inner
product this way because we are interested in eigenvectors of M t instead of M (as
Markov matrices act to the right of row vectors).

A Markov process on a phylogenetic tree is \pi -time-reversible if all its transition
matrices are \pi -time-reversible and \pi is the distribution at the root. In [2], all transition
matrices of the process are assumed to commute with each other to say that the
process is algebraic time-reversible (ATR). This extra assumption is equivalent to
saying that all matrices simultaneously diagonalize (if they are diagonalizable), and it
is an implicit assumption when one considers continuous time-reversible models that
are homogeneous over time (that is, for any edge e, Me = exp(teQ) for a certain rate
matrix Q). As these are the most widely used processes in phylogenetic software, in
this paper we consider ATR processes on trees.

If we have an ATR process with stationary distribution \pi , then there exists a
\pi -orthogonal basis

B = \{ u1, . . . , u\kappa \} ,

which diagonalizes all transpose matrices (Me)t, e \in E(T ). As \pi is a left-eigenvector
with eigenvalue 1 for each \pi -time-reversible Markov matrixMe, we can assume u1 = \pi .
In particular, \langle u1, u1\rangle \pi = 1 and \langle u1, ei\rangle \pi = 1 for any i= 1, . . . , \kappa .

Definition 3.3. Let \pi \in \Delta \kappa  - 1 be a fixed distribution with nonzero entries, and
let B = \{ u1 = \pi ,u2, . . . , u\kappa \} be a \pi -orthogonal basis in \BbbR \kappa . A phylogenetic tree T
evolves under a B-time-reversible model if all Markov matrices Me, e\in E(T ), on the
Markov process on T have B as a left eigenbasis and \pi r = \pi .

The following lemma guarantees that a B-time-reversible model on a phylogenetic
tree is an ATR process. Before proving it, we introduce some notation. Throughout
this paper we denote by 1 the vector

\sum \kappa 
j=1 e

j and let A be the change of basis

matrix from B to the standard basis e1, . . . , e\kappa , that is, A =
\bigl( 
u1 . . . u\kappa 

\bigr) 
. As B is

\pi -orthogonal we have

AtD - 1
\pi A= S,(3.1)

where S is the diagonal matrix diag(\langle u1, u1\rangle \pi , . . . , \langle u\kappa , u\kappa \rangle \pi ).
Lemma 3.4. Let \pi \in \Delta \kappa  - 1 be a distribution with positive entries, B = \{ u1 =

\pi , . . . , u\kappa \} a \pi -orthogonal basis in \BbbR \kappa , and M a \kappa \times \kappa matrix for which B is a left
eigenbasis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1850 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

Then D\pi M =M tD\pi and M has constant row sum; moreover, the first eigenvalue
\lambda 1 is equal to one if and only if M is a \pi -time-reversible Markov matrix (and in this
case \pi is a stationary distribution for M).

Proof. If B is a left eigenbasis for M , we have M = A - t\Lambda At for some diagonal
matrix \Lambda . Thus, D\pi M =D\pi A

 - t\Lambda At, which equals AS - 1\Lambda At by (3.1). As S - 1 and
\Lambda commute, applying (3.1) again we have D\pi M =A\Lambda A - 1D\pi , which is M tD\pi , as we
wanted to prove.

Note that as \langle u1, ui\rangle \pi = 0 for any i \not = 1, ui has sum of coordinates equal to 0.
Thus, the first column of A adds to 1 and the other columns add to 0. In particular,
if \Lambda = diag(\lambda 1, . . . , \lambda \kappa ), we have

M1=A - t\Lambda At1=A - t\Lambda e1 = \lambda 1A
 - te1 = \lambda 1D

 - 1
\pi Ae1 = \lambda 1D

 - 1
\pi u1 = \lambda 11.

Thus, M has constant row sum. Requiring sum of rows equal 1 on a square matrix
is equivalent to saying that 1 is an eigenvector of eigenvalue 1, so the last claim also
follows easily.

Example 3.5 (Tamura--Nei model, TN93). Tamura and Nei presented in [37] a
continuous-time model based on the observed changes in human mitochondrial DNA.
They proposed an arbitrary stationary distribution \pi and observed that probabili-
ties of transitions (changes within purines or within pyrimidines) and transversions
(changes between purines and pyrimidines) depend on the frequencies of the obtained
nucleotide and on a single parameter for transversions and two for transitions. This
is a time-reversible model whose transition matrices have the form

M =

\left(    
\ast \ttone \pi 2c \pi 3b \pi 4b
\pi 1c \ast 2 \pi 3b \pi 4b
\pi 1b \pi 2b \ast 3 \pi 4d
\pi 1b \pi 2b \pi 3d \ast 4

\right)    ,(3.2)

where \ast i is chosen so that each row sums to 1. Here we identified \Sigma with the set of
nucleotides \{ A,G,C,T\} , in this order. The matrixM t has the following \pi -orthogonal
basis B of eigenvectors:

B =

\left\{       u1 =
\left(    
\pi 1
\pi 2
\pi 3
\pi 4

\right)    , u2 =

\left(    
\pi 1\pi 34
\pi 2\pi 34
 - \pi 3\pi 12
 - \pi 4\pi 12

\right)    , u3 =
1

\pi 34

\left(  0
0\pi 3\pi 4
 - \pi 3\pi 4

\right)  , u4 =
1

\pi 12

\left(    
\pi 1\pi 2
 - \pi 1\pi 2

0
0

\right)    
\right\}       ,

where \pi 12 = \pi 1+\pi 2 and \pi 34 = \pi 3+\pi 4. If the columns of A are the vectors of B, then

M t =A

\left(    
\lambda 1 0 0 0
0 \lambda 3 0 0
0 0 \lambda 2 0
0 0 0 \lambda 4

\right)    A - 1,(3.3)

where \lambda 1 = 1, \lambda 2 = \lambda 1  - b, \lambda 3 = \lambda 1  - \pi 12b  - \pi 34d, \lambda 4 = \lambda 1  - \pi 34b  - \pi 12c are the
eigenvalues of M . The entries of M can be written in terms of the eigenvalues using
that

b= \lambda 1  - \lambda 2, c=
\pi 12\lambda 1 + \pi 34\lambda 2  - \lambda 4

\pi 12
, d=

\pi 34\lambda 1 + \pi 12\lambda 2  - \lambda 3
\pi 34

,

\ast 1 =
\pi 1
\pi 12

\biggl( 
\pi 12\lambda 1 + \pi 34\lambda 2 +

\pi 2
\pi 1
\lambda 4

\biggr) 
, \ast 2 =

\pi 2
\pi 12

\biggl( 
\pi 12\lambda 1 + \pi 34\lambda 2 +

\pi 1
\pi 2
\lambda 4

\biggr) 
,

\ast 3 =
\pi 3
\pi 34

\biggl( 
\pi 34\lambda 1 + \pi 12\lambda 2 +

\pi 4
\pi 2
\lambda 2

\biggr) 
, \ast 4 =

\pi 4
\pi 34

\biggl( 
\pi 34\lambda 1 + \pi 12\lambda 2 +

\pi 3
\pi 4
\lambda 3

\biggr) 
.
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ALGEBRAIC TIME-REVERSIBLE MODELS 1851

A matrix M satisfying (3.3) is an algebraic TN93 matrix (and we do not neces-
sarily assume \lambda 1 = 1). If we impose c= d, then we have an HKY85 matrix [18], and if
we impose b= c= d, we obtain the Equal-Input model (EI) [15], [7]. If we adopt the
extra assumption that the stationary distribution is uniform, \pi = (1/4,1/4,1/4,1/4),
we recover the RY3.3c model of [39]. Hence, TN93 is a B-time-reversible model and
so are its submodels HKY85, EI, and RY3.3c.

Note that

\langle u1, u1\rangle \pi = 1, \langle u2, u2\rangle \pi = \pi 12\pi 34, \langle u3, u3\rangle \pi =
\pi 3\pi 4
\pi 34

, \langle u4, u4\rangle \pi =
\pi 1\pi 2
\pi 12

.

The following table gives the \pi -inner product among the vectors in the standard basis
and the basis B:

\langle \cdot , \cdot \rangle \pi u1 u2 u3 u4

e1 1 \pi 34 0 \pi 2/\pi 12
e2 1 \pi 34 0  - \pi 1/\pi 12
e3 1  - \pi 12 \pi 4/\pi 34 0
e4 1  - \pi 12  - \pi 3/\pi 34 0

.(3.4)

For any B-time-reversible model, as the standard basis is also a \pi -orthogonal basis,
we have that \langle ui, ej\rangle \pi is the jth coordinate of ui (in the standard basis) divided by
\pi j (because \langle ej , ej\rangle \pi = 1/\pi j).

Remark 3.6. Note that there are B-time-reversible models that are not multiplica-
tively closed. This important property has been argued to be needed for consistency
of phylogenetic inference; see [34]. For instance, regarding the models in the previous
example, while TN93 is multiplicatively closed, its submodel HKY85 is not (the prod-
uct of two HKY85 matrices with the same stationary distribution \pi is not necessarily
an HKY85 matrix).

Example 3.7. The well-known Kimura models with 2 or 3 parameters [23], [24]
and the Jukes--Cantor model [21] are also instances of ATR models. All these models
have uniform stationary distribution \pi and are B-time-reversible models with

B =

\left\{       u1 =
1

4

\left(    
1
1
1
1

\right)    , u2 =
1

4

\left(    
1
1
 - 1
 - 1

\right)    , u3 =
1

4

\left(    
1
 - 1
1
 - 1

\right)    , u4 =
1

4

\left(    
1
 - 1
 - 1
1

\right)    
\right\}       .(3.5)

Working with coordinates in this basis simplifies the parametrization map, as
already noted by [14]. For these models this technique is also known as a discrete
Fourier transform or Hadamard transform; see [19], for instance.

3.1. Phylogenetic algebraic varieties. As above, let \pi be a fixed positive
stationary distribution and let B = \{ u1 = \pi , . . . , u\kappa \} be a \pi -orthogonal eigenbasis. We
call A the matrix of change of basis from B to the standard basis e1, . . . , e\kappa .

Remark 3.8 (rerooting). If we have a B-time-reversible model on a phylogenetic
tree T , one can chose any node of T to play the role of the root and use the same
transition matrices to describe the Markov process on T . Indeed, let us prove that we
can change the root from node r to an adjacent node s without changing transition
matrices. Let e0 be the edge from r to s. Expression (2.1) can be written as

p\bfiti = \pi irM
e0
ir,is

\prod 
e\in E(T ),e\not =e0

Me
ip(e),ic(e)

.
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1852 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

As Me0 is \pi -time-reversible, \pi irM
e0
ir,is

= \pi isM
e0
is,ir

, so expression (2.1) is still valid if
we root the tree at s.

From now on we do not specify the placement of a root (we conveniently place
a root at any node if necessary). However, the distribution \pi at the root node r
in expression (2.1) is necessary: we cannot incorporate this distribution into one of
the transition matrices on the edges adjacent to r (as is usually done in the general
Markov model or for G-equivariant models) because by doing so we would get a new
matrix not belonging to the ATR model.

As we are considering a B-time-reversible model, we have \pi r = \pi and the entries
of \pi r are not free parameters anymore in the expression (2.3). Thus, by extending to
the complex numbers field, the map \phi T is defined on the parameter set

\scrP \BbbC = \{ (Me)e\in E(T ) | Me \in \scrM 1
\BbbC , (M

e)t =ADeA - 1\} ,
where each De is a diagonal matrix whose first entry is 1, and the map \phi T is

\scrP \BbbC \phi T - \rightarrow 
\bigotimes n

W
(Me)e\in E(T ) \mapsto \rightarrow 

\sum 
i1,...,in

pTi1...ine
i1 \otimes \cdot \cdot \cdot \otimes ein ,

where W = \langle e1, . . . , e\kappa \rangle \BbbC is a \BbbC -vector space.

Definition 3.9. The phylogenetic variety of a tree T evolving under a B-time-
reversible model is the Zariski closure \scrV T of Im\phi T in the tensor space \otimes nW . We
denote by \scrI T \subset \BbbC [p1...1, . . . , p\kappa ...\kappa ] the ideal of this algebraic variety. Its elements are
called phylogenetic invariants.

The main goal of this work is to give phylogenetic invariants for ATR models.
As ATR models are submodels of the general Markov model, phylogenetic invariants
for the general Markov model are also in \scrI T . Thus, Theorem 2.2 holds and the
(\kappa + 1)\times (\kappa + 1) minors of those flattening matrices are phylogenetic invariants.

Remark 3.10 (degree two nodes). Assume that T has a degree two node s and let
Me1 and Me2 be transition matrices at the edges incident to it. Then the image by
\phi T of these parameters coincides with the one obtained by deleting node s, joining e1
and e2 in a new edge e0, and considering the matrixMe0 =Me1Me2 at e0. Therefore,
adding or removing degree two nodes in a tree will not affect the map \phi T (when we
add a degree two node on an edge and split it into two edges, we can trivially put the
identity matrix at one of these edges).

The map \phi T parametrizes a dense subset of \scrV T . According to the result of [10]
and its generalization in [1], if T has no nodes of degree two, the fibers of \phi T are
finite. Therefore the dimension of \scrV T coincides with the dimension of the space of
parameters, which is (\kappa  - 1)| E(T )| in this case.

A special point in Im\phi T is the image of identity transition matrices. This is
called the no-evolution point in [6] and is denoted by p0 = \phi T (\{ Id\} e\in E(T )). This point
has a special relevance: in biological applications, transition matrices should not be
far from identity (because it is difficult to obtain reliable data evolving on a tree
with transition matrices far from the identity), so the points in \scrV T of most interest
(biologically speaking) are those close to p0.

In terms of probabilities it is easy to see that the image of \phi T lies in the hyperplane

H =

\Biggl\{ 
p\in \otimes nW | 

\sum 
\bfiti 

p\bfiti = 1

\Biggr\} 
,(3.6)

so we also have \scrV T \subset H. Thus,
\sum 

\bfiti p\bfiti  - 1 is a (trivial) phylogenetic invariant.
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ALGEBRAIC TIME-REVERSIBLE MODELS 1853

We make the previous map homogeneous by extending it to square matrices that
diagonalize through A, without imposing \lambda 1 = 1. Let C\scrV T be the cone over \scrV T ; then
C\scrV T is the Zariski closure of the following homogeneous map:

\~\scrP \BbbC \psi T - \rightarrow 
\bigotimes n

W
(Me)e\in E(T ) \mapsto \rightarrow 

\sum 
i1,...,in

pTi1...ine
i1 \otimes \cdot \cdot \cdot \otimes ein ,

where \~\scrP \BbbC = \{ (Me)e\in E(T ) | (Me)t = ADeA - 1\} and pTi1,...,in is defined by the same
expression as (2.2). Actually, \scrV T = C\scrV T \cap H (see also [3], [5]). Indeed, if the
row sum of a matrix Me is \lambda e1 (see Lemma 3.4), then Me is the product of \lambda e1
by a Markov matrix \~Me whose rows sum to one. Hence in (2.1) we have pTi =
(
\prod 
e\in E(T ) \lambda 

e
1)\pi ir

\prod 
e\in E(T )

\~Me
ip(e),c(e)

, and if s :=
\prod 
e\in E(T ) \lambda 

e
1, we have \psi T (\{ Me\} ) =

s\phi T (\{ \~Me\} ). We extend the definition of a B-time-reversible model on a phylogenetic
tree (Definition 3.3) in order to allow all matrices Me to be in \~\scrP \BbbC .

We could do a change of coordinates in the parameter space \~\scrP \BbbC : instead of dealing
with the entries of Me we could deal directly with its eigenvalues \lambda e1, . . . , \lambda 

e
\kappa . Thus,

we could also express pTi1,...,in in terms of the eigenvalues of Me's. This change in the
parameter space and the analogous change of coordinates in the target space will be
studied in the next section.

4. New coordinates for phylogenetic varieties of ATR models. From
now on, the \pi -inner product will be simply denoted by \langle , \rangle . This inner product was
introduced on W = \BbbR n but can be extended naturally to any tensor power \otimes nW =
W \otimes \cdot \cdot \cdot \otimes W as

\langle w1 \otimes \cdot \cdot \cdot \otimes wn, v1 \otimes \cdot \cdot \cdot \otimes vn\rangle = \langle w1, v1\rangle \langle w2, v2\rangle . . . \langle wn, vn\rangle .

Actually, it can also be extended to the complex number field by taking the
conjugate of the second component in the inner product. However, we do not introduce
this notation because in all inner products we will use, the second component will be
a vector with real coordinates. Thus, we can think of \langle w,v\rangle with the definition we
have already introduced and take w in \otimes n\BbbC \kappa and v \in \otimes n\BbbR \kappa .

Let B = \{ u1 = \pi , . . . , u\kappa \} be a \pi -orthogonal eigenbasis. Then the basis

Bn = \{ ui1 \otimes ui2 \otimes \cdot \cdot \cdot \otimes uin | ij \in \Sigma \} 

is a \pi -orthogonal basis of \otimes nW. To simplify notation we call

u\bfiti = ui1 \otimes \cdot \cdot \cdot \otimes uin and e\bfiti = ei1 \otimes \cdot \cdot \cdot \otimes ein

if \bfiti = (i1, . . . , in) \in \Sigma n. Let A be the \kappa \times \kappa matrix of change of basis from B to the
standard basis as in the previous section.

If p \in \otimes nW and pi1...in are its coordinates in the standard basis, then its coordi-
nates in the basis Bn shall be denoted by \=p and are obtained as \=p= (A - 1\otimes \cdot \cdot \cdot \otimes A - 1)p,
where \otimes denotes the Kronecker product of matrices. That is, for \bfiti = (i1, . . . , in), the
\bfiti -coordinate of the tensor p in the basis Bn, \=pi1...in , is the i1 . . . in entry of the vector
\=p. Since Bn is a \pi -orthogonal basis, this coordinate \=pi1...in can also be computed as

\=pi1...in =
\langle p,u\bfiti \rangle 
\langle u\bfiti , u\bfiti \rangle 

.(4.1)
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1854 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

Reparametrization. Let T be a tree evolving under a B-time-reversible model.
If we change coordinates on the parameter space \~\scrP \BbbC so that (transposes of) transition
matrices are diagonalized (and hence written in the basis B) and use coordinates \=p in
the target space of \psi T , we have a much simpler parametrization of C\scrV T :\prod 

e\in E(T )\BbbC 
\kappa \varphi T - \rightarrow 

\bigotimes n
W

(\Lambda e)e\in E(T ) \mapsto \rightarrow 
\sum 

i1,...,in

\=pTi1...inu
i1 \otimes \cdot \cdot \cdot \otimes uin ,

where \Lambda e = diag(\lambda e1, . . . , \lambda 
e
\kappa ) is the diagonal matrix formed by the eigenvalues of Me,

e\in E(T ). We denote the Zariski closure of the image of \varphi T by CVT .

Definition 4.1. We denote by IT the ideal of CVT in \BbbC [\=p1...1, . . . , \=p\kappa ...\kappa ]. A
polynomial that belongs to all IT for T \in \scrT n is called a model invariant (as it holds
for any tree evolving under the B-time-reversible model). A polynomial that belongs
to some IT for T \in \scrT n but that does not belong to IT \prime for some T \prime \in \scrT n is called a
topology invariant; see [30, Chapter 8].

From the computational point of view, if we want to work with any \pi , we can
work with polynomials with coefficients in the field of fractions \BbbC (\pi 1, . . . , \pi \kappa ). Our
computations in \ttM \tta \ttc \tta \ttu \ttl \tta \tty \tttwo [17] follow this approach.

Using these new coordinates \=p in the basis Bn, the following result relating
marginalization and new coordinates will be useful.

Lemma 4.2 (marginalization). For any p \in \otimes nW define the marginalization
p+ \in \oplus n - 1W of p over the last component as

p+i1...in - 1
=
\sum 
j\in \Sigma 

pi1...in - 1j .(4.2)

Then, for a \pi -orthogonal basis Bn as above, we have

\=pi1...in - 11 = p+i1...in - 1
.(4.3)

Furthermore, if Tn is an n-leaf tree and Tn - 1 is the tree obtained from Tn by deleting
the pendant edge leading to leaf n, then for any p \in Im(\phi Tn) we have that p+ \in 
Im(\phi Tn - 1

).

Proof. Note that the (i, j)-entry of A - 1 is the ith coordinate of ej in the basis B,

which is \langle ej ,ui\rangle 
\langle ui,ui\rangle . As \langle u1, u1\rangle = 1 and \langle ei, u1\rangle = 1 for any i = 1, . . . , \kappa , the first row of

A - 1 is 1t. Thus, if p\in \otimes nW , the slice of \=p with last component indexed by 1 is

(A - 1\otimes n - 1. . . \otimes A - 1 \otimes 1t)p,

which is equal to (A - 1\otimes n - 1. . . \otimes A - 1)p+. Thus, \=pi1...in - 11 = p+i1...in - 1
. The last claim

is well known and follows directly from [40, Proposition 5.52].

Markov action. The following action of GL\kappa (\BbbC )n on tensors in \otimes nW ,

(N1, . . . ,Nn) \cdot p= (N1 \otimes . . .\otimes Nn)p,

is called theMarkov action. We can restrict this action to diagonal matrices so that we
have an action of an n\kappa -dimensional torus \BbbT = (\BbbC \ast )\kappa \times n\cdot \cdot \cdot \times (\BbbC \ast )\kappa . The torus \BbbT acts on
tensors with coordinates \=p as follows: if (D1, . . . ,Dn) is in \BbbT and Di =diag(di1, . . . , d

i
\kappa ),

then (D1, . . . ,Dn) \cdot \=p has coordinates d1i1 . . . d
n
in
\=pi1...in .
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ALGEBRAIC TIME-REVERSIBLE MODELS 1855

If \=p=\varphi T ((\Lambda 
e)e\in E(T )), then (D1, . . . ,Dn) \cdot \=p=\varphi T ((\~\Lambda 

e)e\in E(T )), where \~\Lambda ei =Di\Lambda ei

if ei is the pendant edge to leaf li, and \~\Lambda e = \Lambda e otherwise. Hence we have that the
Zariski closure of \BbbT \cdot CVT is again CVT , that is, CVT is invariant by the action of \BbbT .

Remark 4.3. Let \=p=\varphi T (\{ \Lambda e\} e). If \=q \in Im\varphi T has the same parameters as \=p except
the matrices \Lambda ei on the pendant edges are replaced by identity matrices, then

\=p= (\Lambda e1 , . . . ,\Lambda en) \cdot \=q, i.e., \=pi1...in = \lambda e1i1 . . . \lambda 
en
in
\=qi1...in .(4.4)

Throughout the paper \=q will denote the image by \varphi T of a set of parameters with
identity matrices at the pendant edges.

4.1. Star trees evolving under ATR models. In the following lemma we
prove that if T is a star tree, then CVT is a toric variety.

Lemma 4.4. Let T be the star tree with n leaves and let it evolve under a B-
time-reversible model. Then CVT is a toric variety (not necessarily normal), \varphi T is
a monomial parametrization, and IT \subset \BbbC [\=pi1...in | ij \in \Sigma ] is generated by binomials.
Moreover the no-evolution point p0 is a nonsingular point of C\scrV T and \scrV T .

Proof. By Remark 4.3, we know that CVT is the closure of the orbit of p0 =
\varphi T (\{ Id\} ) under the action of \BbbT . This implies that CVT (and hence C\scrV T ) is a toric
variety and p0 is a nonsingular point of C\scrV T and \scrV T . Again from Remark 4.3 we
have that the parametrization \varphi T is monomial on the eigenvalues of \Lambda i, given that
the coordinates of p0 in the basis Bn are expressions in terms of \pi only. From this,
we obtain that the ideal IT can be generated by binomials (see [13]).

For G-equivariant models it was already known that no-evolution points are non-
singular points of star trees [6, Corollary 3.9]. The proof of [6, Theorem 5.4] shows
that p0 is a nonsingular point on any tree evolving under a G-equivariant model.

4.2. Gluing trees. We recall here a procedure to glue trees and substitution
parameters that was introduced in [3].

Gluing trees. Let T1 and T2 be two phylogenetic trees with leaf sets \{ l1, . . . ,
lm, s1\} and \{ s2, lm+1, . . . , ln\} , respectively. We call T \prime the tree with leaf set \{ l1, . . . , ln\} 
obtained by identifying s1 and s2 in a node s. We then call T = T1\ast T2 the tree obtained
by deleting this node s and replacing the two edges e1, e2 incident to it by a single
edge e0; see Figure 1. We call \alpha = \{ l1, . . . , lm\} and \beta = \{ lm+1, . . . , ln\} , so that T has
leaf set L= \alpha \cup \beta .

Gluing parameters. If T1 and T2 evolve under the B-time-reversible model
with matrices (Me)e\in E(T1)\cup E(T2), then we define transition matrices at the edges of
T = T1 \ast T2 as follows: if e \not = e0, then e \in E(Ti) for some i = 1,2 and we assign to e
the transition matrix as in Ti; if e= e0, we let Me =Me1Me2 .

According to Remark 3.10, we can indistinguishably use the tree T = T1\ast T2 with
the set of parameters just described, or the tree T \prime with the degree two node s and
parameters (Me)e\in E(T1)\cup E(T2).

∗
s1 ∼ s2

e1

s1

l2

l1

e2

=

s2

l3

l4

l5

e1 e2

s

l2

l1

e0︷ ︸︸ ︷ l4

l5l3

Fig. 1. Gluing of a tripod and a quartet. The result is a tree with 5 leaves. In this case
m= 2, n= 5, \alpha = \{ l1, l2\} , and \beta = \{ l3, l4, l5\} .
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1856 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

The following lemma is obvious if we think about distributions, but for the sake
of completeness we prove it in section SM1 of the supplementary material for any set
of parameters.

Lemma 4.5. Let T be obtained by gluing two trees T1 and T2 as above, let pTi \in 
Im\psi Ti , i= 1,2, and let pT be the tensor obtained by gluing parameters on T1 and T2.
Let \bfiti = (\bfiti \alpha , \bfiti \beta ) be a collection of states at the leaves of T . Then for any state k \in \Sigma 
at node s= s1 \sim s2 we have

pT\bfiti \alpha ,k,\bfiti \beta =
1

\pi k
pT1

\bfiti \alpha ,k
pT2

k,\bfiti \beta 
.

The following theorem expresses a tensor evolving on T = T1 \ast T2 under a B-time-
reversible model in terms of tensors evolving on Ti. Here Flat(\=p) is as in Definition 2.1
exchanging coordinates in the standard basis by coordinates in Bn.

Theorem 4.6. Let T1 and T2 be two trees evolving under a B-time-reversible
model, and let T = T1 \ast T2 be the tree obtained by gluing T1 and T2 as above. Let
pTi \in Im\psi Ti , i = 1,2, and let pT be the tensor obtained by gluing parameters on T1
and T2. Then, in coordinates in the basis Bn, we have

\=pi1...in =
\sum 
j\in \Sigma 

\langle uj , uj\rangle \=pT1
i1...imj

\=pT2
jim+1...in

(4.5)

for any i1, . . . , in \in \Sigma . If B is a \pi -orthonormal eigenbasis, then the expression becomes

\=pi1...in =
\sum 
j\in \Sigma 

\=pT1
i1...imj

\=pT2
jim+1...in

(4.6)

and we have Flat1...m| m+1...n(\=p) = Flat1...m| s1(\=p
T1)Flats2| m+1...n(\=p

T2).

As an immediate consequence of the last statement we recover Theorem 2.2 for
ATR models. We proceed to prove the theorem.

Proof. Let \bfiti = (i1, . . . , in) = (\bfiti \alpha , \bfiti \beta ) be a collection of states at the leaves of T .
We start by expressing \langle p,u\bfiti \rangle in terms of scalar products of the corresponding tensors
on the subtrees T1 and T2. We have

\langle p,u\bfiti \rangle =

\Biggl\langle \sum 
\bfitj =(\bfitj \alpha ,\bfitj \beta )

p\bfitj e
\bfitj , u\bfiti 

\Biggr\rangle 
=

\sum 
\bfitj \alpha ,\bfitj \beta 

p\bfitj \alpha ,\bfitj \beta 
\langle e\bfitj \alpha , u\bfiti \alpha \rangle \langle e\bfitj \beta , u\bfiti \beta \rangle .

By (2.2), p\bfitj \alpha ,\bfitj \beta 
=
\sum 
js\in \Sigma p\bfitj \alpha ,js,\bfitj \beta 

, where s= s1 \sim s2, and by Lemma 4.5 we get

p\bfitj \alpha ,\bfitj \beta 
=

\sum 
js\in \Sigma 

pT1

\bfitj \alpha ,js

\pi js
pT2

js,\bfitj \beta 
=

\sum 
jr,js\in \Sigma 

pT1

\bfitj \alpha ,js

\pi js
\delta jr,jsp

T2

jr,\bfitj \beta 
,

where \delta i,j is the Kronecker delta. Hence,

\langle p,u\bfiti \rangle =
\sum 
\bfitj \alpha ,js

pT1

\bfitj \alpha ,js

\pi js
\langle e\bfitj \alpha , u\bfiti \alpha \rangle 

\left(  \sum 
jr

\delta js,jr
\sum 
\bfitj \beta 

pT2

jr,\bfitj \beta 
\langle e\bfitj \beta , u\bfiti \beta \rangle 

\right)  .

Now we observe that

\delta i,j =
1

\pi i
\pi i(e

i)tej = \langle \pi iei, ej\rangle =

\Biggl\langle 
\pi ie

i,
\sum 
k\in \Sigma 

\langle ej , uk\rangle 
\langle uk, uk\rangle 

uk

\Biggr\rangle 
=

\sum 
k\in \Sigma 

\pi i \langle ei, uk\rangle \langle uk, ej\rangle 
\langle uk, uk\rangle 

.
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ALGEBRAIC TIME-REVERSIBLE MODELS 1857

Therefore, using this expression we obtain

\langle p,u\bfiti \rangle =
\sum 
\bfitj \alpha ,js

pT1

\bfitj \alpha ,js

\pi js
\langle e\bfitj \alpha , u\bfiti \alpha \rangle 

\left(  \sum 
jr

\sum 
k\in \Sigma 

\pi js \langle ejs , uk\rangle \langle uk, ejr \rangle 
\langle uk, uk\rangle 

\sum 
\bfitj \beta 

pT2

jr,\bfitj \beta 
\langle e\bfitj \beta , u\bfiti \beta \rangle 

\right)  
=

\sum 
\bfitj \alpha ,js

pT1

\bfitj \alpha ,js

\pi js
\langle e\bfitj \alpha , u\bfiti \alpha \rangle 

\left(  \sum 
k\in \Sigma 

\pi js \langle ejs , uk\rangle 
\langle uk, uk\rangle 

\sum 
jr,\bfitj \beta 

pT2

jr,\bfitj \beta 
\langle uk, ejr \rangle \langle e\bfitj \beta , u\bfiti \beta \rangle 

\right)  .

The last sum in the previous expression is \langle pT2 , uk \otimes u\bfiti \beta \rangle so we get

\langle p,u\bfiti \rangle =
\sum 
k\in \Sigma 

1

\langle uk, uk\rangle 
\sum 
\bfitj \alpha ,js

pT1

\bfitj \alpha ,js
\langle e\bfitj \alpha , u\bfiti \alpha \rangle \langle ejs , uk\rangle \langle pT2 , uk \otimes u\bfiti \beta \rangle .

The proof finishes by observing that \langle pT1 , u\bfiti \alpha \otimes uk\rangle =
\sum 

\bfitj \alpha ,js
pT1

\bfitj \alpha ,js
\langle e\bfitj \alpha , u\bfiti \alpha \rangle \langle ejs , uk\rangle 

and dividing \langle p,u\bfiti \rangle by \langle u\bfiti , u\bfiti \rangle :

\=p\bfiti =
\langle p,u\bfiti \rangle 
\langle u\bfiti ,u\bfiti \rangle =

\sum 
k\langle uk, uk\rangle 

\langle pT1 ,u\bfiti \alpha \otimes uk\rangle 
\langle u\bfiti \alpha ,u\bfiti \alpha \rangle \langle uk,uk\rangle 

\langle pT2 ,uk\otimes u\bfiti \beta \rangle 
\langle uk,uk\rangle \langle u\bfiti \beta ,u\bfiti \beta \rangle 

=
\sum 
k\in \Sigma \langle uk, uk\rangle \=p

T1

\bfiti \alpha k
\=pT2

k\bfiti \beta 
.

The last claim in the statement of the theorem is straightforward.

The above theorem is also valid when one of the two subtrees, say T2, is a tree with
two leaves and a single edge. In this case this operation is equivalent to multiplying
\=pT1 by a diagonal matrix and so it is equivalent to the Markov action on one leaf.

Remark 4.7. In general, the gluing procedure is not equivalent to a toric fiber
product as described in [33]. Indeed, as we will see in section 5.3 for the TN93
model, the parametrization for quartets obtained by gluing two tripods (which have
a monomial parametrization) is not monomial, and hence the corresponding ideal is
not the toric fiber product of both toric ideals. However, for the toric models Kimura
3-parameter and its submodels studied in [32], the gluing procedure is equivalent to
a toric fiber product if we use Fourier coordinates.

Thus, with Theorem 4.6 we recover a well-known result of Evans and Speed [14].

Corollary 4.8 (see [14, 32]). On a tree evolving under the Kimura 3-parameter
model or one of its submodels (Kimura 2-parameter and Jukes--Cantor), the Fourier
coordinates of a tensor p\in Im\psi T have a monomial expression in terms of the eigenval-
ues of the transition matrices. Moreover, the ideal of the corresponding phylogenetic
variety VT is generated by binomials.

Proof. For the Kimura 3-parameter model and its submodels, \pi is the uniform
distribution. The Fourier basis in (3.5) is a \pi -orthonormal basis that diagonalizes
all transition matrices in these models. If we biject the set \Sigma = \{ 1,2,3,4\} with the
additive group G = \BbbZ 2 \times \BbbZ 2 by identifying 1 = (0,0),2 = (0,1),3 = (1,0),4 = (1,1),
and denote by \boxplus the sum in G, then it is easy to see that for a tripod tree we have
(see also [32])

\=pi1i2i3 =

\biggl\{ 
\lambda 1i1\lambda 

2
i2
\lambda 3i3 if i1 \boxplus i2 \boxplus i3 = 0;

0 otherwise.

Then the corollary follows easily by Theorem 4.6 and induction. Indeed, if T is an
n-leaf tree, we consider a cherry on it and view T as T = T1 \ast T2, where T2 is a tripod
tree. The induction hypothesis is that for any m< n, \=pi1...im = 0 if i1 \boxplus \cdot \cdot \cdot \boxplus im \not = 0
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1858 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

and \=pi1...im has a monomial expression in the eigenvalues if i1 \boxplus \cdot \cdot \cdot \boxplus im = 0. By
Theorem 4.6 we have

\=pi1...in =
\sum 
j\in \Sigma 

\=pT1
i1...in - 2j

\=pT2
jin - 1in

so that, by the induction hypothesis, the only (possibly) nonzero summand is for
j = in - 1 \boxplus in, which implies i1 \boxplus \cdot \cdot \cdot \boxplus in = 0 and gives a monomial expression.

Theorem 4.6 gives an inductive procedure to build the parametrization map of
a phylogenetic tree evolving under a B-time-reversible model. Although this gluing
procedure mimics the one described in [3] and [12], it is not obvious that this leads to
the expression of the ideal of these phylogenetic varieties in terms of subtrees as was
done in these two papers. We pose the following question.

Question 4.9. Can the ideal of the phylogenetic variety evolving on a B-time-
reversible model be described in terms of the ideals of flattenings at its interior nodes
and edges as in [3], [12]?

We do not deal with this general question in this paper, but for the TN93 model on
quartets we construct from tripods and edge flattenings a local complete intersection
that describes the variety on an open set (see section 5).

5. Invariants for trees evolving under the TN93 model. In this section we
showcase how the framework developed previously can be used to find phylogenetic
invariants for the Tamura--Nei model TN93 introduced in Example 3.5. The stationary
distribution \pi is fixed (and we will assume it to be generic when convenient) and the
\pi -orthogonal basis B is specified in Example 3.5. We start by computing phylogenetic
invariants for trees with three leaves, then we use the marginalization and tree gluing
to find phylogenetic invariants for quartets and n-leaf trees.

5.1. Invariants for tripods. Let T be a star tree with three leaves l1, l2, l3 and
three edges e1, e2, e3 (we call it the tripod). The joint probability tensor for the point
of no-evolution p0 =\psi T (Id, Id, Id) has the following coordinates in the standard basis:

p0i1i2i3 =
\sum 
ir\in \Sigma 

\pi irIdir,i1Idir,i2Idir,i3 =

\biggl\{ 
\pi ir if i1 = i2 = i3 = ir;
0 otherwise.

(5.1)

Lemma 5.1. Consider the evolutionary model TN93 on the tripod T . The coor-
dinates \=p0 in the basis Bn for the no-evolution point p0 are

\=p0111 = 1, \=p0222 =
\pi 34  - \pi 12
\pi 2
12\pi 

2
34

, \=p0333 =
\pi 2
4  - \pi 2

3

\pi 2
3\pi 

2
4

, \=p0444 =
\pi 2
2  - \pi 2

1

\pi 2
1\pi 

2
2

,

\=p0122 = \=p0212 = \=p0221 =
1

\pi 12\pi 34
, \=p0133 = \=p0313 = \=p0331 =

\pi 34
\pi 3\pi 4

,

\=p0144 = \=p0414 = \=p0441 =
\pi 12
\pi 1\pi 2

, \=p0233 = \=p0323 = \=p0332 =
 - 1

\pi 3\pi 4
,

\=p0244 = \=p0424 = \=p0442 =
1

\pi 1\pi 2
, and \=p0i1i2i3 = 0 otherwise.

Remark 5.2. For a distribution \pi such that \pi 12 \not = \pi 34, \pi 1 \not = \pi 2, and \pi 3 \not = \pi 4, there
are exactly 45 entries of \=p0i1i2i3 that vanish: when \{ i1, i2, i3\} contains either a unique 3
or a unique 4 or when ij = 2 for some j and ik = 1 for k \not = j. These are the genericity
conditions we will consider for the distribution \pi from now on.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

2/
24

 to
 1

41
.5

.2
6.

35
 b

y 
A

ng
el

ic
a 

T
or

re
s 

(a
to

rr
es

@
cr

m
.c

at
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ALGEBRAIC TIME-REVERSIBLE MODELS 1859

Proof of Lemma 5.1. From (4.1) and (5.1) we have the expression

\=p0i1i2i3 =
1

\langle ui, ui\rangle 
\sum 
j\in \Sigma 

\pi j\langle ej , ui1\rangle \langle ej , ui2\rangle \langle ej , ui3\rangle ,

which is invariant after reordering i1, i2, i3. First we prove that \=p0i1i2i3 = 0 for the
cases mentioned in the previous remark.

Case I: \{ i1, i2, i3\} contains only one 3. Without loss of generality assume that
i1 = 3 and i2, i3 \not = 3. From (3.4) we have

\=p03i2i3 =
1

\langle ui, ui\rangle 
\sum 
j\in \Sigma 

\pi j\langle ej , u3\rangle \langle ej , ui2\rangle \langle ej , ui3\rangle 

=
1

\langle ui, ui\rangle 
\bigl( 
\pi 3\langle e3, u3\rangle \langle e3, ui2\rangle \langle e3, ui3\rangle + \pi 4\langle e4, u3\rangle \langle e4, ui2\rangle \langle e4, ui3\rangle 

\bigr) 
=

1

\langle ui, ui\rangle 

\biggl( 
\pi 3\pi 4
\pi 34

\langle e3, ui2\rangle \langle e3, ui3\rangle  - \pi 3\pi 4
\pi 34

\langle e4, ui2\rangle \langle e4, ui3\rangle 
\biggr) 
= 0,

where the last equality holds because the last two rows of (3.4) for ui \not = u3 are equal.
Case II: \{ i1, i2, i3\} contains only one 4. The proof is analogous to the previous

case by noting that the first two rows of (3.4) are equal for ui \not = u4.
Case III: ij = 2 for some j and ik = 1 for k \not = j: Assume, without loss of generality,

that i1 = i2 = 1 and i3 = 2. We have

\=p0112 =
1

\langle ui, ui\rangle 
\sum 
j\in \Sigma 

\pi j\langle ej , u1\rangle \langle ej , u1\rangle \langle ej , u2\rangle =
1

\langle ui, ui\rangle 
(\pi 12\pi 34  - \pi 12\pi 34) = 0.

The remaining 64 - 45 = 19 coordinates \=p0i1i2i3 are nonzero for generic \pi and can
be easily computed in a similar fashion.

By (4.4), for any point p\in Im\varphi T the coordinates \=pi1i2i3 with i1, i2, and i3 satisfy-
ing any of the cases of Remark 5.2 vanish. Thus, CVT is contained in a linear space
\scrL 3 \subset \otimes 3W of dimension 19 defined by the 45 linear equations, and VT is contained in
the linear space \scrL 3 \cap H of dimension 18, where H is the space defined in (3.6).

We now provide a set of generators for IT and a set of polynomials defining a
complete intersection that cuts out CVT \subset \scrL 3 in an open set.

Proposition 5.3. Let T be a tripod that evolves under the TN93 model. For
generic \pi , IT is a binomial ideal minimally generated by 45 linear monomials, 9
quadratic binomials, 29 cubic binomials, and 3 quintic binomials. If we consider
CVT \subset \scrL 3, then the variety XT defined by the 9 polynomials

\=p222\=p441  - 
\pi 34  - \pi 12
\pi 34

\=p221\=p442, \=p222\=p414  - 
\pi 34  - \pi 12
\pi 34

\=p212\=p424,

\=p222\=p144  - 
\pi 34  - \pi 12
\pi 34

\=p122\=p244, \=p332\=p441 +
\pi 12
\pi 34

\=p331\=p442,

\=p323\=p414 +
\pi 12
\pi 34

\=p313\=p424, \=p233\=p144 +
\pi 12
\pi 34

\=p133\=p244,

\=p144\=p414\=p441  - 
\pi 1\pi 2\pi 12
(\pi 1  - \pi 2)2

\=p111\=p
2
444, \=p133\=p313\=p331  - 

\pi 3\pi 4\pi 34
(\pi 3  - \pi 4)2

\=p111\=p
2
333,

\=p332\=p323\=p233  - 
\pi 3\pi 4\pi 

2
12

(\pi 3  - \pi 4)2(\pi 12  - \pi 34)
\=p222\=p

2
333

is a complete intersection that cuts out CVT in the open set \=piii \not = 0 for i= 1,2,3,4.
Furthermore, CVT is an irreducible component of XT .
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1860 MARTA CASANELLAS, ROSER HOMS, AND ANG\'ELICA TORRES

Proof. From Lemma 4.4 it follows that \varphi T is a monomial map and IT is generated
by binomials. Lemma 5.1 and (4.4) guarantee that the 45 linear polynomials \=pi1i2i3
are in IT for the indices \{ i1, i2, i3\} satisfying the conditions of Remark 5.2. \ttM \tta \ttc \tta \ttu \ttl \tta \tty \tttwo 
computations provide the remaining generators and guarantee that they are a minimal
set of generators. The comprehensive list is included in section SM2.

To study CVT , we use tools from toric geometry. We refer the reader to [31,
Chapter 4] for an introduction to toric ideals. Consider a rescaling \~p of \=p such that
it is a monic monomial parametrization. The vanishing ideal of VT is the toric ideal
generated by the columns of the matrix C in (5.2),

C =

\left(                    

1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1
1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

\right)                    

.(5.2)

The columns of the matrix D in (5.3) are generators of ker(C), and hence the 9
polynomials defined in the statement are the generators of the lattice basis ideal J of
C when considering the aforementioned parametrization \~p.

D=

\left(                                  

0 0 0 0 0 0  - 1  - 1 0
1 1 1 0 0 0 0 0  - 1
0 0 0 0 0 0 0  - 2  - 2
0 0 0 0 0 0  - 2 0 0
0 0  - 1 0 0 0 0 0 0
0  - 1 0 0 0 0 0 0 0
 - 1 0 0 0 0 0 0 0 0
0 0 0 0 0  - 1 0 1 0
0 0 0 0  - 1 0 0 1 0
0 0 0  - 1 0 0 0 1 0
0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0  - 1 0 0  - 1 0 0 0
0  - 1 0 0  - 1 0 0 0 0
 - 1 0 0  - 1 0 0 0 0 0

\right)                                  

.(5.3)

Theorem 2.1 in [8] (see also Theorem 2.7 in [27]) guarantees that this lattice basis
ideal is a complete intersection if every mixed submatrix of D has at least as many
columns as rows. Recall that a matrix is mixed if in every column there is at least
one positive and one negative entry. From the structure of D it is intuitive to see
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ALGEBRAIC TIME-REVERSIBLE MODELS 1861

that every mixed submatrix is either a square matrix or has more rows than columns;
however, we provide a code that verifies that every submatrix of D with fewer rows
than columns is not mixed. The code is included in the CORA repository. By [13,
Corollary 2.5] IT = J : (

\prod 
ijk \~pijk)

\infty , where J : (
\prod 
ijk \~pijk)

\infty denotes the saturation of
J by the ideal generated by the product of all variables, and by [20, Corollary 2.1],
IT is a minimal prime of J , hence CVT is an irreducible component of XT .

Remark 5.4. For a nongeneric distribution \pi , there might be more invariants
arising from the vanishing of \=p0iii, with i \in \{ 2,3,4\} . For instance, when \pi 12 = \pi 34,
\pi 1 = \pi 2, and \pi 3 = \pi 4, then IT is minimally generated by 9 quadrics, 24 cubics, 3
quintics, and the additional linear invariants \=p222 = \=p333 = \=p444 = 0.

5.2. Invariants for \bfitn -leaf trees arising from tripods. In this section we
focus on phylogenetic invariants of trees with n leaves evolving under TN93 that can
be obtained from invariants of the tripod either by gluing or by marginalization. Let
T be a tree with n leaves, n > 3, and consider a tensor p= \varphi T (\{ \Lambda e\} e\in E(T )). We can
always obtain p by gluing a tensor pT1 on a tripod T1 to a tensor pT2 on an (n - 1)-leaf
tree T2. Indeed, let l1 and l2 be two leaves in T forming a cherry and consider the
interior edge e0 adjacent to the cherry; then we split this edge into two edges e1 and
e2 as in Figure 1 and call T1 the tripod tree formed by the cherry and e1 and T2 the
tree T \setminus T1. Theorem 4.6 ensures that p = pT1 \ast pT2 , where pT1 = \varphi T1

(\{ \Lambda e\} e\in E(T1))
and pT2 = \varphi T2

(\{ \Lambda e\} e\in E(T2)), with \Lambda e1 = \Lambda e0 , \Lambda e2 = Id, where e0, e1, e2 are the edges
involved in the gluing as denoted in Figure 1, and the remaining matrices \Lambda e for
e\in E(Ti) coincide with \Lambda e for the corresponding e\in E(T ).

Proposition 5.5. The linear equations of the form \=pi1...in = 0 hold for any
phylogenetic n-leaf tree T evolving under a TN93 model when

(i) exactly one ik is equal to 3 or 4, or
(ii) exactly one ik is equal to 2 and the rest are equal to 1.

Proof. Case n = 3 is proven by Lemma 5.1. If T is a tree with n leaves and
n > 3, we use as induction hypothesis that the equations hold for trees with fewer
than n leaves. Since n > 3, T has a cherry that does not contain the distinguished
element. Let T1 be the tripod formed from this cherry and consider the decomposition
T = T1 \ast T2, where T2 is an (n - 1)-leaf tree. Since there will be a single distinguished
element in T2, we can assume without loss of generality that it is leaf ln and that the
cherry considered in T1 has leaves l1 and l2 (reordering indices if necessary).

In case (i), consider l \in \{ 3,4\} and ik \not = l for 1 \leq k \leq n  - 1. By the induction
hypothesis, \=pT2

ji3...in - 1l
= 0 for j \not = l and \=pT1

i1i2l
= 0. Therefore,

\=pi1...in - 1l =
\sum 
j\in \Sigma 

\langle uj , uj\rangle \=pT1
i1i2j

\=pT2

ji3...in - 1l
= \langle ul, ul\rangle \=pT1

i1i2l
\=pT2

li3...in - 1l
= 0.

In case (ii) note that \=pTi
1...1j = 0 for any j \not = 1 by the induction hypothesis and case

(i). Hence, we get \=p1...12 =
\sum 
j\in \Sigma \langle uj , uj\rangle \=p

T1
11j \=p

T2
j1...12 = 0.

We pose the following question.

Question 5.6. Do the equations in Proposition 5.5 determine a system of gen-
erators for the set of linear model invariants for n-leaf trees?

In the case of quartets, this is proven in Proposition 5.11. This problem is related
to the space of phylogenetic mixtures and model selection (see [5]), and we expect to
address it for n-leaf trees in a forthcoming paper.
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By decomposing a tree into a tripod and the remaining subtree as in the proof of
Proposition 5.5, we can obtain other linear invariants for n\geq 4 based on certain leaf
configurations of the tree.

Lemma 5.7. Let T be a tree evolving under a TN93 model. If nodes lj and lk
form a cherry, coordinates \=pi1...in , where \{ ij , ik\} = \{ 3,4\} , vanish for any p\in Im\varphi T .

Proof. Without loss of generality we can assume that l1 and l2 form a cherry as
above (such that i1 = 3 and i2 = 4), and we can view T as gluing a tripod tree T1 and
an (n - 1)-leaf tree T2. Then

\=p34i3...in =
\sum 
j\in \Sigma 

\langle uj , uj\rangle \=pT1
34j \=p

T1
ji3...in

,

which is zero by Remark 5.2.

When both 3 and 4 appear exactly once, \=pi1...in - 234 is a model invariant, as proved
in Proposition 5.5. As we will see in Proposition 5.11, if both 3 and 4 appear twice,
\=pi1...i4 yield topology invariants for quartets. A natural question that remains to be
addressed for larger trees is the following.

Question 5.8. Are equations \=pi1...in = 0 topology invariants for n-leaf trees if
both 3 and 4 appear at least twice?

Next we go beyond linear invariants. Any phylogenetic invariant of the tripod
can easily be extended to a model invariant for trees with n leaves.

Lemma 5.9. Let f(\{ \=pijk\} ) be a phylogenetic invariant of the tripod. Then, for
trees with n\geq 3 leaves evolving under TN93, f(\{ \=pijk1...1\} ) is a model invariant.

Proof. Let f \in \BbbC [\=pijk | i, j, k \in \Sigma ] be a phylogenetic invariant for the tripod and
let \~f \in \BbbC [\=pijk1...1 | i, j, k \in \Sigma ] be the extension of f via \=pijk \mapsto \rightarrow \=pijk1...1. The fact that
\~f is a model invariant for n-leaf trees follows directly from Lemma 4.2. Indeed, let p
be a tensor in Im\psi T for any tree T . By marginalizing p \in \otimes nW over the last n - 3
components, we have a tensor p+ \in Im\psi T3

on the tripod T3. In coordinates in the
basis Bn we obtain \~f(\{ \=pijk1...1\} ) = f(\{ p+ijk\} ) and it vanishes because f is a model
invariant for tripods.

Example 5.10. The tripod invariants in Proposition 5.3 can be extended to model
invariants for quartets as follows:

\=p2221\=p4411  - 
\pi 34  - \pi 12
\pi 34

\=p2211\=p4421, \=p2221\=p4141  - 
\pi 34  - \pi 12
\pi 34

\=p2121\=p4241,

\=p2221\=p1441  - 
\pi 34  - \pi 12
\pi 34

\=p1221\=p2441, \=p3321\=p4411 +
\pi 12
\pi 34

\=p3311\=p4421,

\=p3231\=p4141 +
\pi 12
\pi 34

\=p3131\=p4241, \=p2331\=p1441 +
\pi 12
\pi 34

\=p1331\=p2441,

\=p1441\=p4141\=p441  - 
\pi 1\pi 2\pi 12
(\pi 1  - \pi 2)2

\=p1111\=p
2
4441, \=p1331\=p3131\=p331  - 

\pi 3\pi 4\pi 34
(\pi 3  - \pi 4)2

\=p1111\=p
2
3331,

\=p3321\=p3231\=p2331  - 
\pi 3\pi 4\pi 

2
12

(\pi 3  - \pi 4)2(\pi 12  - \pi 34)
\=p2221\=p

2
3331.

5.3. Invariants for quartets. We now turn our attention to quartets. We call
lilj | lklm the trivalent tree with four leaves li, lj , lk, lm whose interior edge separates
leaves li, lj from lk, lm (that is, li, lj and lk, lm are cherries in this tree). We will
focus on the tree l1l2| l3l4, but all the results in this section are analogous for the two
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other tree topologies, l1l3| l2l4 and l1l4| l2l3. By \varphi T (\Lambda 1, . . . ,\Lambda 4,\Lambda ) we mean that \Lambda i is
assigned to the edge incident to leaf li for i= 1, . . . ,4, and \Lambda is assigned to the interior
edge.

Proposition 5.11. The following 172 linear equations hold for any quartet T
evolving under the evolutionary model \scrM = TN93:

(i) \=pi1i2i3i4 = 0 if exactly one ik is equal to 3 or 4 for k \in \{ 1,2,3,4\} ,
(ii) \=p1112 = \=p1121 = \=p1211 = \=p2111 = 0,

and these equations generate all linear model invariants. Moreover, if T = l1l2| l3l4,
then \=p3434, \=p3443, \=p4334, and \=p4343 are linear topology invariants of T .

Proof. As a particular case of Proposition 5.5 we obtain the list of model invariants
in (i) and (ii). On the other hand, from Lemma 5.7 we get that \=p3434, \=p3443, \=p4334,
and \=p4343 vanish when p evolves on T = l1l2| l3l4. It can be easily checked that
\=p3434, \=p3443, \=p4334, and \=p4343 are generically nonzero for either tree l1l3| l2l4 or l1l4| l2l3,
and hence they are topology invariants for T . For example, if T = l1l3| l2l4, let
q=\varphi T (Id, Id, Id, Id,\Lambda ) for a diagonal matrix \Lambda ; then

\=q3434 = \=q4343 =
\pi 12\pi 34
\pi 1\pi 2\pi 3\pi 4

(\lambda 1  - \lambda 2)(5.4)

(see Lemma SM2.1 in subsection SM2.2), which is nonzero if \lambda 1 \not = \lambda 2.
Let \scrL 4 be the linear space defined by the 172 equations in (i) and (ii). As these are

linearly independent equations (they involve different coordinates), \scrL 4 has dimension
256 - 172 = 84. In what follows we prove that there is a subset of points in CVl1l2| l3l4\cup 
CVl1l3| l2l4 \cup CVl1l4| l2l3 that spans \scrL 4.

For each j \in \Sigma = \{ 1,2,3,4\} , set Dj = diag(ej). Consider the 84 4-tuples not
appearing as a subindex in the equations of \scrL 4 and let i= (i1, . . . , i4) be any of these
4-tuples.

If i is different from (3,4,3,4), (4,3,4,3), (3,4,4,3), (4,3,3,4), take T = l1l2| l3l4
and a diagonal matrix \Lambda , and define the point

p i =\varphi T (Di1 ,Di2 ,Di3 ,Di4 ,\Lambda ).

By (4.4), the unique possibly nonzero coordinate of p i in the basis B4 is i1 . . . i4. Using
the expressions given in subsection SM2.2, we see that this coordinate is nonzero if \Lambda 
has nonzero generic elements in the diagonal. Therefore, we have exactly 80 linearly
independent points in this set.

If i= (3,4,3,4) or (4,3,4,3), consider T = l1l3| l2l4 and the point p i =\varphi T (Di1 ,Di2 ,
Di3 ,Di4 ,\Lambda ), where \Lambda = diag(\lambda 1, \lambda 2, \lambda 3, \lambda 4) has \lambda 2 \not = \lambda 1. Note that these are two
linearly independent points whose B4 coordinates are all zero except those indexed
by 3434, 4343, respectively, which coincide with expression (5.4).

If i= (3,4,4,3) or (4,3,3,4), an analogous argument applies by considering points
p i in the variety of T = l1l4| l2l3.

The 80 linearly independent points above together with the four points p (3,4,3,4),
p (4,3,4,3), p (3,4,4,3), and p (4,3,3,4) form a set of 84 linearly independent points in
\scrL 4 because all have a single nonzero coordinate and all of them are in different
positions.

Remark 5.12. From the previous result we get that the 84-dimensional space \scrL 4

defined as the set of tensors where the 172 equations in (i) and (ii) vanish coincides
with the linear span of CVl1l2| l3l4 \cup CVl1l3| l2l4 \cup CVl1l4| l2l3 . If we add equations \=p3434 =
0, \=p3443 = 0, \=p4334 = 0, and \=p4343 = 0. then the zero set \scrL l1l2| l3l4 of dimension 80 is the
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linear span of CVl1l2| l3l4 . The table below displays which equations hold for each of
the three possible quartet topologies, thus providing their topology invariants.

\=p3344 = 0 \=p4433 = 0 \=p3434 = 0 \=p4343 = 0 \=p3443 = 0 \=p4334 = 0

l1l2| l3l4 No No Y es Y es Y es Y es
l1l3| l2l4 Y es Y es No No Y es Y es
l1l4| l2l3 Y es Y es Y es Y es No No

Lemma 5.13. Let T = l1l2| l3l4 be a quartet and consider the flattening matrix
Flatl1l2| l3l4(\=p). Then, for any i, j \in \Sigma , column (i, j) is a linear combination of columns
(1,1), (1,2), (1,3), and (1,4). Moreover, for generic \pi , there is an open set \scrU \subseteq CVT
containing the no-evolution point p0 such that, for any p\in \scrU , rank

\bigl( 
Flatl1l2| l3l4(\=p)

\bigr) 
= 4

and
(i) the submatrix formed by columns (1, j), (j,1), (2, j), (j,2) has rank 1 for j \in 

\{ 3,4\} ,
(ii) the submatrix formed by columns (1,2), (2,1) has rank 1,
(iii) the submatrix formed by columns (1,1), (1,2), (2,2) has rank 2,
(iv) the submatrix formed by columns (1,1), (1,2), (1, j), (j, j) has rank 3 for j \in 

\{ 3,4\} .
The submatrices described in the statement are displayed in Tables SM2 to SM5

in section SM3. Note that the generic rank 4 claimed here was already known by a
more detailed proof of Theorem 2.2 given in [28].

Proof. Given \=p=\varphi T (\Lambda 
1, . . . ,\Lambda 4,\Lambda ), consider \=q=\varphi T (Id, . . . , Id,\Lambda ) so that

\=pi1i2i3i4 = \lambda 1i1\lambda 
2
i2\lambda 

3
i3\lambda 

4
i4 \=qi1i2i3i4

for any ij \in \Sigma . In standard coordinates \=q is q=\psi T (Id, . . . , Id,A
 - t\Lambda At), which can be

written as the gluing qT1 \ast qT2 , where qT1 evolves on the tripod T1 with the identity
matrix at leaves 1, 2 and matrix A - t\Lambda At at the third leaf, and qT2 is the no-evolution
point on the tripod T2. Note that qT1 coincides with the marginalization q+ of q over
leaf l3. By Lemma 4.2, we have \=qT1

i1i2k
= q+i1i2k = \=qi1i21k. Therefore using Theorem 4.6

we have

\=qi1i2ij =
\sum 
k\in \Sigma 

\langle uk, uk\rangle \=qT1

i1i2k
\=qT2

kij =
\sum 
k\in \Sigma 

\langle uk, uk\rangle \=qT2

kij \=qi1i21k

for any i1, i2, i, j \in \Sigma . In particular, column (i, j) of Flatl1l2| l3l4(\=q) is a linear combina-
tion of columns (1, k) for k \in \Sigma . In Table SM1 we display Flatl1l2| l3l4(\=q) to visualize
the submatrices in the statement.

Now we have

\=pi1i2ij = \lambda 1i1\lambda 
2
i2\lambda 

3
i\lambda 

4
j \=qi1i2ij =

\sum 
k\in \Sigma 

\langle uk, uk\rangle \lambda 3i\lambda 4j \=q
T2

kij\lambda 
1
i1\lambda 

2
i2 \=qi1i21k(5.5)

=
\sum 
k\in \Sigma 

\langle uk, uk\rangle \lambda 3i\lambda 4j \=q
T2

kij(\lambda 
3
1\lambda 

4
k)

 - 1\=pi1i21k,

where the last equality holds if \lambda 31 \not = 0 and \Lambda 4 is invertible. Thus, on an open set of VT
(and hence on the whole variety), column (i, j) of Flatl1l2| l3l4(\=p) is a linear combination
of columns (1,1), (1,2), (1,3), and (1,4). Moreover, the rank of Flatl1l2| l3l4(\=p) is
exactly 4 in an open set containing the no-evolution point, since the 4-minor formed
by rows and columns (1, k) does not vanish at p0.
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The nonvanishing coordinates of the no-evolution point qT2 in Lemma 5.1 deter-
mine how many nonvanishing summands there are in (5.5), and hence yield the rank
of submatrices (i)--(iv).

For the TN93 process on the quartet T = l1l2| l3l4 we have 5 transition matrices
with 3 free parameters each, hence dimVT = 15 and dimCVT = 16 (see subsection 3.1).
By Remark 5.12, CVT lies in the linear space \scrL l1l2| l3l4 of dimension 80. Next we
provide codim(CVT ) = 64 elements in the ideal of CVT that define the variety locally
at the no-evolution point.

Inspired by the results in [6, Theorem 5.4] that provide local equations for equi-
variant models, we consider invariants arising from

(a) extending the tripod equations in Proposition 5.3 by adding 1 in the first
and third positions, respectively (which are phylogenetic invariants for T by
Lemma 5.9), and

(b) rank constraints on Flatl1l2| l3l4(\=p) as in Lemma 5.13; more precisely, for each
of the submatrices of rank r, r = 1,2,3, in Lemma 5.13, consider a nonvan-
ishing r-minor (namely, one containing only rows and columns of type (1, j)
for j \in \Sigma ), and consider all (r+1)-minors containing it (check Tables SM2 to
SM5 in section SM3 for the precise description of these minors).

This gives the 64 phylogenetic invariants listed in the statement below.

Theorem 5.14. Consider the tree T = l1l2 | l3l4 and let it evolve under the TN93
model. Then there exist 64 equations that cut out the variety CVT on an open set
containing the no-evolution point p0, arising from

\bullet the extension of the 6 quadrics and 3 cubics in Proposition 5.3 with 1 in the
first leaf,

\bullet the extension of the 6 quadrics and 3 cubics in Proposition 5.3 with 1 in the
third leaf,

\bullet 2-minors of columns (1, j), (j,1), (2, j), (4, j) of Flatl1l2| l3l4(\=p) for each j \in 
\{ 3,4\} (12 quadrics),

\bullet 2-minors of columns (1,2), (2,1) of Flatl1l2| l3l4(\=p) (4 quadrics),
\bullet 3-minors of columns (1,1), (1,2), (2,2) of Flatl1l2| l3l4(\=p) (4 cubics),
\bullet 4-minors of columns (1,1), (1,2), (1, j), (j, j) of Flatl1l2| l3l4(\=p) for each j \in 

\{ 3,4\} (7 quartics).

Proof. \ttM \tta \ttc \tta \ttu \ttl \tta \tty \tttwo computations show that the Jacobian of these polynomials at
p0 is indeed 64. Thus, on a Zariski open subset containing p0, these polynomials
define a complete intersection of dimension 16 that coincides with CVT .

6. Discussion. We have introduced a new approach to working with algebraic
time-reversible models that have a given stationary distribution \pi . We assume that
this \pi can be inferred from data, that is, the given data has reached the equilibrium
distribution. We also assumed that this stationary distribution was the same as the
one that initiated the process (as it is usual to assume on a time-reversible process).
This is an important assumption for our methods to work: if the distribution at the
root \pi r was supposed to be different from \pi , the statements of our main results would
not hold. It would be interesting to explore a new model that would allow \pi r to be
parameters as well.

We have illustrated our methods with an insight into the TN93 model. Far from
providing an extensive work on this model, we have mainly worked on tripods and
quartet trees. We are aware that the tools presented here can allow the extension of
this work to trees on any number of leaves, and we aim to develop such work in a
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forthcoming project. Another project is exploring the tools we have developed with a
view towards model selection by using linear model invariants of different ATR models
and studying the space of phylogenetic mixtures (in the sense of [22] and [5]).

Acknowledgment. We would like to thank Jes\'us Fern\'andez-S\'anchez for useful
discussions on this topic that led to improvements in the paper.
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