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Abstract In this article we investigate numerically the spectrum of some representative
examples of discrete one-dimensional Schrödinger operators with quasi-periodic poten-
tial in terms of a perturbative constant b and the spectral parameter a. Our examples
include the well-known Almost Mathieu model, other trigonometric potentials with a single
quasi-periodic frequency and generalisations with two and three frequencies. We computed
numerically the rotation number and the Lyapunov exponent to detect open and collapsed
gaps, resonance tongues and the measure of the spectrum. We found that the case with one
frequency was significantly different from the case of several frequencies because the latter
has all gaps collapsed for a sufficiently large value of the perturbative constant and thus the
spectrum is a single spectral band with positive Lyapunov exponent. In contrast, in the cases
with one frequency considered, gaps are always dense in the spectrum, although some gaps
may collapse either for a single value of the perturbative constant or for a range of values. In
all cases we found that there is a curve in the (a, b)-plane which separates the regions where
the Lyapunov exponent is zero in the spectrum and where it is positive. Along this curve,
which is b = 2 in the Almost Mathieu case, the measure of the spectrum is zero.
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1 Introduction

In this article we will explore numerically the structure of the spectrum of some paradigms
of Schrödinger operators with quasi-periodic potentials with one or more irrational frequen-
cies. More precisely, we will consider the following type of discrete Schrödinger operators
on l2(Z),

(
HbV,φx

)
n = xn+1 + xn−1 + bV (ωn + φ)xn, n ∈ Z, (1.1)

where V : (T)d = (R/2πZ)d → R is a potential, d ≥ 1, b ∈ R is a coupling parameter,
φ ∈ T

d is a phase and ω = (ω1, . . . , ωd) ∈ R
d is an irrational frequency vector in the sense

that

〈k, ω〉 = k1ω1 + · · · + kdωd �∈ 2πZ for all k = (k1, . . . , kd) ∈ Z
d \ {0},

that is, if γ = ω/2π ∈ R
d is rationally independent. In all cases we shall assume, without

loss of generality, that the potential V has zero average.
These operators have been focus of intensive research over the last decades and much is

known about the structure of the spectrum of these operators, being Cantor spectrum (i.e. gaps
in the spectrum are dense) the object of much of this research. Note that due to the rational
independence of the frequency vector ω, the spectrum of these operators is independent of
φ. Many of the recent advances are based on the study of the dynamics of the eigenvalue
equation associated to (1.1), namely

xn+1 + xn−1 + bV (ωn + φ)xn = axn, n ∈ Z, (1.2)

where a is a real parameter, usually called the energy.
In the case of a real analytic potential V (in the examples we study, we will further restrict

to simple trigonometric polynomials) and fixed Diophantine frequencies (see [28,20,14,2]
for genericity results in spaces of functions of lower regularity), there are two situations where
such Cantor spectrum has been proved and studied (at least generically). The first one is for
“small” values of |b|, where genericity of Cantor spectrum follows from the genericity of
gap opening [34,18,9,37], a property also shared by periodic continuous systems (i.e., ODE
of Hill–Schrödinger type) [33,11]. Note that, as in this last case, it is possible to produce real
analytic potentials where all but a finite number of spectral gaps are closed and, therefore,
they do not have Cantor spectrum [15].

Besides, the well-known Almost Mathieu case, where V (θ) = cos θ , displays Cantor
spectrum for all b �= 0 [12,35,3]. The type of gap opening of this model is significantly
different from the previous above, since it appears also for “large” values of b, where the
spectral behaviour is very different from their periodic ODE analogues: the Lyapunov expo-
nent is positive in the spectrum and there is Anderson localization (see the review in [27]).
We recall that in the periodic case the spectrum is the union of finitely many interval bands (or
countably many in the periodic ODE case). The second type of Cantor spectrum can also be
extended to real analytic and non-constant potentials V with a single Diophantine frequency
(d = 1) and for all values of |b| larger than a certain constant [42,23,25].

Although the first paradigm of Cantor spectrum holds for multifrequency quasi-periodic
and real analytic potentials with small b, the structure of gaps for large b is much less clear for
these multifrequency models. For two-frequency “non-degenerate” potentials and |b| large
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enough, work by Chulaevsky and Sinaı̆ [13] indicates that the spectrum might consist of a
single spectral band with no gaps at all. This motivates the following goals of our present
numerical study:

(1) To detect the different dynamics in terms of the Lyapunov exponent and the rotation
number.

(2) To confirm this picture in some selected models of quasi-periodic Schrödinger operators
with one or more frequencies.

(3) To describe the transition from Cantor spectrum, for small values of b, to a single spectral
band, for large values of b in terms of gap closing in the d ≥ 2 case.

(4) To compute the measure of the spectrum in the different cases.
(5) To stress on the differences of the behaviour compared to the case of one frequency.

2 Methods

2.1 Dynamical Formulation: Skew-Products, Cocycles and Reducibility

As mentioned in the Introduction, many of the recent results and techniques for quasi-periodic
discrete Schrödinger operators are based on the fruitful interaction between the spectral prop-
erties of (1.1) and the dynamical properties of the eigenvalue Eq. 1.2. It is convenient to write
(1.2) as a first order system

(
xn+1

xn

)
=

(
a − bV (θn) −1

1 0

) (
xn

xn−1

)
, θn+1 = θn + ω, (2.1)

being θn ∈ T
d new angular variables. Such first-order systems are usually called

quasi-periodic skew-products. The dynamical evolution of the vector vn = (xn+1, xn)T and
the angles θn can be seen as the iteration of a quasi-periodic cocycle on R

2 × T
d , which is

the map

(v, θ) ∈ R
2 × T

d �→ (
Aa,b, ω

)
(v, θ) = (

Aa,b(θ)v, θ + ω
) ∈ R

2 × T
d , (2.2)

where

Aa,b(θ) =
(

a − bV (θ) −1
1 0

)
.

When the frequency vector ω is rational, the discrete skew-product is periodic and, by
composition, it can be reduced to a new one with constant matrix (but it depends on the initial
phase θ0). In the ODE case this can be achieved by Floquet theory and the system can be
reduced to constant coefficients. Although quasi-periodic systems need not to be reducible,
one can sometimes reduce them to constant coefficients. More precisely, we say that a cocycle
(A, ω) is reducible to constant coefficients whenever there is a continuous transformation
Z : T → SL(2, R) such that

A(θ)Z(θ) = Z(θ + ω)B, θ ∈ T
d ,

where B ∈ SL(2, C) is a constant matrix, called the Floquet matrix. Whenever a skew-prod-
uct like (2.1) is reducible to constant coefficients, a fundamental matrix for the system can
be expressed in terms of the following Floquet representation

Xn(θ0) = Z(nω + θ0)Bn Z(θ0)
−1 X0(θ0) (2.3)
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for any initial phase θ0 ∈ T
d . Reducibility in quasi-periodic ODE systems which are pertur-

bations of cocycles with constant coefficients has been studied in [8,30,18].
The dynamics of reducible systems are well understood in terms of the eigenvalues of

the corresponding Floquet matrices. For instance, if its trace is greater than two in absolute
value the skew-product has no bounded solutions in Z apart from the trivial one. That is, it
is uniformly hyperbolic [39]. In general to measure the exponential growth of solutions, one
can use the (upper) Lyapunov exponent,

β(a, b) = lim
N→∞

1

N

∫

T

∥
∥Aa,b((N − 1)ω + θ) · · · Aa,b(ω + θ)Aa,b(θ)

∥
∥ dθ,

which exists by Kingman subadditive ergodic theorem [31]. Whenever a system has positive
Lyapunov exponent but it is not uniformly hyperbolic, we will call it nonuniformly hyper-
bolic. Note that systems reducible to constant coefficients are either uniformly hyperbolic or
have zero Lyapunov exponent.

2.2 Rotation Number, Spectral Gaps and Resonance Tongues

The rotation number is a useful object for the study of the spectrum of Schrödinger opera-
tors with quasi-periodic potential. To define it, take (xn)n∈Z a non-trivial solution of (1.2),
for some fixed a, b, φ. Let S(N ) be the number of changes of sign of such solution for
1 ≤ n ≤ N , paying attention to the cases in which some xn = 0. Then the limit

ρ(a, b) = lim
N→∞

S(N )

2N
∈ [0, 1/2] (2.4)

exists, it does not depend on the chosen solution x , nor on φ and it is called the rotation
number [16] originally introduced for the continuous case by Johnson and Moser [29] (see
also the definition of the fibered rotation number for SL(2, R)-cocycles by Herman [26]).

Remark 2.1 If in (2.1) we consider b = 0, the constant matrix is conjugated to a rotation
of angle 2πα if a = 2 cos(2πα), while it is hyperbolic (resp. hyperbolic with reflection) if
a > 2 (resp. a < −2). It is natural to define its rotation number as ρ = α if |a| ≤ 2, ρ = 0
(resp. ρ = 1/2) for a > 2 (resp. a < −2). This agrees with the definition (2.4) and we
shall use it for the numerical computations, although the rotation number is then decreasing
as a function of a. One could also define rot(a, b) = 1 − 2ρ(a, b) so that rot is a function
increasing from 0 to 1 when b = 0 and a ranges in R. We shall use this function rot(·, b)

in some plots. In other words, there are several possible “natural” definitions of the rotation
number.

Remark 2.2 If we look at the argument of vectors in (2.1), we obtain a “non-autonomous”
circle map. In contrast with the autonomous case which, for good regularity conditions and
Diophantine (or Brjuno) conditions on the rotation number, is conjugated to a rigid rotation,
the iterates do not appear in the same order as in a rigid rotation. This prevents the use of
methods based on the order of the iterates in S

1 (see, e.g., the Appendix in [40]).

For a fixed potential V : T
d → R and irrational frequency vector ω ∈ R

d , the rotation
number is a continuous function of (a, b) ∈ R

2. Also, for a fixed b, the spectrum of (1.1),
denoted as σb, is the set of a0 ∈ R, such that the map a �→ rot(a, b), which never decreases,
is not locally constant at a0. The values of rot(a, b) in these sets of constancy are of a very
particular form, as the Gap Labelling theorem, by Johnson and Moser [29], predicts. Indeed,
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if I is an open spectral gap, that is a non-void interval in the resolvent set of (1.1), then there
is a multi-integer k = (k1, . . . , kd) ∈ Z

d such that the rotation number is resonant

rot(a, b) − 〈k, γ 〉 ∈ Z

for all a ∈ I.
From this theorem, we conclude that the resolvent set is the disjoint union of countably (or

finitely) many open intervals called spectral gaps, possibly void, and which can be uniquely
labelled by an index k called the resonance. By abuse of notation we will say that, for a fixed
b, a value a is a collapsed gap whenever its rotation number is resonant and rot is strictly
increasing at that value of a, and we will distinguish it from non-collapsed gaps which are
the actual open intervals in the resolvent set (whose rotation number is thus resonant). As
said in the introduction, open gaps and closed gaps can coexist and Cantor spectrum occurs
whenever open spectral gaps are dense in the spectrum.

The global structure of spectral gaps for varying b can be better understood in terms
of resonance tongues, which are the connected components of constancy of the rotation
number in the (a, b)-plane. More precisely, given a resonant rotation number, rot0 with
rot0 − 〈k, γ 〉 ∈ Z, the resonance tongue associated to rot0 (or, equivalently, to k) is the set
of (a, b) ∈ R

2 for which rot(a, b) = rot0. Using this notation, spectral gaps are the “slices”
of resonance tongues for b constant. The slice for a fixed rot0 has some amplitude, which
depends on b, defined as the length �rot0(b) in a of the interval for the given value of b, which
can become zero at some values of b. Assume �rot0(b1) = �rot0(b2) = 0 for b1 < b2 while
�rot0(b) > 0 for b ∈ (b1, b2). The set of (a, b) in the resonance tongue with b ∈ (b1, b2) is
known as an “instability pocket”. See [10,9,37] and Sects. 4.1 and 4.3 for the analysis in the
ODE periodic and quasi-periodic cases in the perturbative domain.

2.3 Numerical Methods

We have computed the Lyapunov exponent β(a, b) and the rotation number ρ(a, b) (or some
equivalent magnitude, see the remarks in Sect. 2.2) in different cases for more than hundred
millions of couples (a, b). Our main method has been the use of iterations of (2.1). Typically
the computations are done in double precision arithmetic. The values of β(a, b) and ρ(a, b)

are essential for all the items of the study.
Assume we start with an initial vector v0 = (x0, y0)

T and θ0 ∈ T
d so that vk are computed

recurrently using (2.2). To prevent from overflow one has to scale vk from time to time. The
main algorithm is as follows

• Choose an initial vector v0 ∈ R
2 with ||v0||2 = 1. Set L = R = 0, select natural numbers

N1, N2, N3, N4 and tolerances εL , εR and start the iterations.
• After every iteration check if the y component of v has changed sign. If it does add 1 to

R. After N1 iterations compute the current norm ||v||2, normalise the current v vector by
dividing by ||v||2 and add log(||v||2) to L , known as the “Lyapunov sum”.

• After every N1 × N2 iterations store the current values of L , R. Then, when the number of
iterates is a multiple of N1 × N2 × N3 do a linear fit of the stored values of L and R using
the last 50%, 30% and 10% of the data. Let the slopes obtained in this way be denoted as
s50

L , s30
L , s10

L , s50
R , s30

R , s10
R , respectively. Then the computation is stopped if both

mL := max{|s50
L − s30

L |, |s30
L − s10

L |} < εL ,

m R := max{|s50
R − s30

R |, |s30
R − s10

R |} < εR .
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Otherwise it continues up to a maximum of Nmax = N1 N2 N3 N4 iterates. When the com-
putation is stopped the values s50

L and s50
R are used as estimates of β(a, b) and ρ(a, b),

respectively. The values of mL , m R and k/(N1 N2 N3), where k is the current number of
iterates, are also stored.

Typical values for v0, N1, N2, N3, N4 are (1, 0)T , 100, 10, 1000, 1000 and for εL , εR are
10−7 in the case of one frequency and 10−6 in case of two or more frequencies. See Sect. 4.2
for comments on alternative methods and different kinds of checks.

Using finite digits representation it is impossible to use the exact selected values for the
components of ω. Furthermore, to take the values of nω mod 2π would also require π to
be exactly represented. Both things give a small systematic error for a large number of iter-
ates. Furthermore to speed up the computations the values of trigonometric polynomials in
θ have been obtained by the recurrences of the cos(nϕ) and sin(nϕ) functions. Despite the
recurrences are stable, this is affected by propagation of round off errors. All these errors
are not so relevant taking into account the continuous dependence of the desired indicators
as functions of (a, b). See [32,41] and references therein for other algorithms that have also
been tested.

Concerning the computation of the resonance tongues a bisection method has been used.
If for given values of (a, b) the computation of ρ(a, b) has been done as described above
with a tolerance εR , the end points of the interval for given b and ρ0 are obtained by bisection
by looking for zeros of ρ − (ρ0 ± mεR), where ρ0 is the value associated to the desired
resonance. The value of m is taken to ensure that the errors in the computation of ρ do not
give spurious estimates. In these computations we have used typically εR = 10−8 and m
between 2 and 5. The bisection is stopped when the a-interval which contains the zero is
also less than εR . Then ρ is evaluated at values of a in that interval with step size εR/10, as
an additional check. Finally the computation is repeated changing b with step size 0.01, or
smaller in selected domains.

From these computations not only the boundaries of the tongues are obtained, but also the
amplitudes �rot0(b), which allow to detect instability pockets and collapsed gaps.

3 Results

In our numerical study we decided to choose some representative models of discrete
Schrödinger operators with one and several frequencies. For a single frequency the most
studied model is, by far, the Almost Mathieu model, which is given by

V (θ) = cos θ (3.1)

and ω = 2πγ, γ being an irrational number that has been taken equal to the golden mean
(
√

5 − 1)/2 for most of the effective computations. This is a very particular model whose
spectrum is symmetric with respect to a = 0. In general it is immediate to check the

Proposition 3.1 Assume there exist an unimodular matrix M and a constant vector ϕ ∈ T
d

such that

−V (θ) = V (Mθ + ϕ)

for all θ ∈ T
d . Then the spectrum is symmetric with respect to a = 0.

As a less simple model we consider also the following modified potential

V (θ) = cos θ + 1

m
(cos 2θ + cos 3θ + cos 4θ) (3.2)
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which for m ∈ (0, 11) has several maxima and minima, in contrast with the Almost Mathieu
model. Following the terminology used in [42] we will refer to 3.2 as a non-Morse potential.
For m > 11 the potential (3.2) has only one maximum and one minimum, both non-degen-
erate. For two frequencies, we chose the model:

V (θ1, θ2) = cos θ1 + cos θ2, γ =
(
(
√

5 − 1)/2,
√

3 − 1
)

, (3.3)

which is the simplest generalisation of the Almost Mathieu model for two frequencies. For
three frequencies we used the straightforward generalisation

V (θ1, θ2, θ3) = cos θ1 + cos θ2 + cos θ3, γ =
(√

2 − 1,
√

3 − 1,
√

5 − 2
)

. (3.4)

Other γ sets have been tested without detecting essential changes.

3.1 Rotation Numbers and Lyapunov Exponents

The results for the Almost Mathieu case are illustrated in Fig. 1. This case has to be consid-
ered as a check of the procedure. Due to the symmetry of (3.1), it is enough to consider a ≥ 0
(see Proposition 3.1). For this computation and the ones displayed in Figs. 2, 3, 4, and 5 the
values of N1, N2, N3 and N4, see Sect. 2.3, are 100, 10, 1000 and 1000, respectively. Data
for the number of pixels, tolerances and about the output can be found in Table 1, which also
contains data for the above mentioned figures.

In the green domains in Fig. 1 (grey in the printed version) there is evidence that the
operator is non-reducible. To check this property one looks for places where the Lyapunov
exponent is positive and the rotation number is not constant.

Last two lines in Fig. 1 show the evolution of the Lyapunov exponent and rot as a function
of a for b = 1, 2 and 4. As is well known, for b = 2 the spectrum has zero measure, the
Lyapunov exponent is positive except in a set of zero measure and the rotation number is
constant almost everywhere. On the other hand the values b = 1 and b = 4 are “dual” and
their plots, letting aside changes of scale and a translation, are identical. An additional check
will be presented in Sect. 3.2.

In Table 1 the first column refers to the potential, the second one shows the kilopixels used
in horizontal and vertical directions, eL ,R denote the present tolerances, AI and MI stand for
the average and maximal number of iterates (in millions). Then “cases” means for how many
(a, b) values one reaches Nmax iterates and, after this, in how many cases one can not satisfy
mL ≤ εL and the maximal mL found, and similar results for m R . Anyway, in the (3.4) case,
most computations exceeding eL have mL < 10−5 and most computations exceeding eR

have m R < 2 × 10−6.
As second example we present in Fig. 2 the case (3.2) for m = 2 and the golden mean.

There is no symmetry and we have considered both negative and positive values of a. This
example shows some remarkable features when compared to the Almost Mathieu Case.

• The Almost Mathieu model does not show any collapsed gap, as proved in [12,4] for Dio-
phantine γ , whereas the case of (3.2) does show several collapsed gaps. There are two
types of these collapsed gaps. When the Lyapunov exponent is zero, gaps may collapse
for a single value of b producing instability pockets as explained in Sect. 4.1. When the
Lyapunov exponent is positive a different phenomenon appears, which is emphasized in
the second and third rows of Fig. 6. Some resonance tongues may collapse for an interval
of b values and then may reopen for a larger value of b. In all cases the collapse is sharp,
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Fig. 1 Top: Resonance tongues for the Almost Mathieu Model (3.1) and γ1 =
√

5−1
2 . Last two bottom lines

show Lyapunov exponent (upper line) and rot (lower line) for b = 1, 2, 4 (from left to right) as a function of
a. The green domains (grey in the printed version) correspond to values of (a, b) for which one has evidence
of lack of reducibility. To prevent from too many data in the plot, the order of the maximal resonance retained
is 34. This figure and subsequent ones allow for magnification in the electronic version. See text for details on
the computations

in the sense that gap length tends linearly to zero at the tip of the tongue. In both cases,
there are sufficiently many open spectral gaps to infer that the spectrum is a Cantor set.

• Concerning the regularity of tongue boundaries, as noted in Sect. 4.1, tongue bound-
aries are given by analytic functions for small values of b and, thus, with zero Lyapunov
exponent. When the Lyapunov exponent is positive, tongue boundaries are analytic for
the Almost Mathieu case (this is a consequence of Aubry duality) whereas they seem to
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Fig. 2 Top: Similar to Fig. 1 for the one-frequency model (3.2) γ1 =
√

5−1
2 and m = 2. Lyapunov exponent

and rot displayed for b = 1, 2, 3 (from left to right). Again only resonances up to order 34 have been retained

have non-smooth tips in the case of the potential (3.2). This seems to be related to the
non-Morse character of the potential.

• In both cases, the Lyapunov exponent and the rotation number seem to be Hölder contin-
uous but not differentiable at the endpoints of gaps.

• An interesting feature of (3.2) is the existence of ranges of a, say (a1, a2), for which rot
behaves almost linearly with a small slope but in which, definitely, rot is non constant,
which end at places where a Hölder-1/2 behaviour is apparent at the left of a1 and at the
right of a2.
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Fig. 3 Top: Similar to Fig. 1 for the two-frequency model (3.3) and γ1 = (
√

5 − 1)/2 and γ2 = √
3 − 1.

Lyapunov exponent and rot displayed (from left to right) for b = 0.75, 1.5, 4. All the resonances up to order
6 are shown and some selected resonances, with relatively large resonant zone, up to order 10

Last two examples correspond to the potentials (3.3) and (3.4) with 2 and 3 frequencies,
respectively, and the first results are shown in Figs. 3 and 4. Compared to the case with a
single frequency, these examples have the following features:

• For b large enough all gaps are collapsed and the spectrum consists of a single spectral
band with positive Lyapunov exponent. At the point of collapse of a resonance tongue,
the gap length tends to zero linearly. This non-smooth character also shows up at some
places when the tongue is still open and the Lyapunov exponent is positive, the tongue
boundaries being also non-smooth.
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Fig. 4 Top: Similar to Fig. 1 for the three-frequency model (3.4) and γ1 = √
2−1, γ2 = √

3−1, γ3 = √
5−2.

Lyapunov exponent and rot displayed (from left to right) for b = 0.5, 1, 2. All the resonances up to order 4 are
shown and some selected resonances up to order 10. Note that the computations have been done up to a = 8
but only a ∈ [0, 4] is shown here for better detail. This has to be taken into account in Fig. 7

• When the Lyapunov exponent is positive, tongues which collapse do not seem to reopen
again, in contrast with some tongues for the model (3.2). The behaviour with zero Lyapu-
nov exponent is very different and there tongue boundaries are smooth and pockets may
appear, see Sect. 4.1.

• When the Lyapunov exponent is positive, both the rotation number and the Lyapunov
exponent seem to have one-sided derivatives (without the root behaviour at the endpoint
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Fig. 5 Magnifications of Fig. 2 (top) and Fig. 3 (bottom) showing details of tongues, pockets and resonances.
On the top plot all the resonances up to order 34 which fall in the domain are retained. On the bottom one all
the resonances to order 10 and some selected ones to order 20 are shown

of gaps observed in one frequency) and, whenever there is an spectral band in the spectrum
with positive Lyapunov exponent, they seem to be smooth there.

Additional checks have been done for larger values of b, outside the ranges shown in
the figures. To have “equivalent” behaviour (see also Sect. 3.2) we consider as parameter
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Table 1 Data for the potentials (3.1) to (3.4)

Case Kpixels eL ,R AI MI Cases mL > eL mL max m R > eR m R max

3.1 4.0 × 4.0 1E–7 11.49 108 0 0 eL 0 eR

3.2 6.0 × 4.8 1E–7 18.59 147 0 0 eL 0 eR

3.3 8.0 × 4.0 1E–6 46.88 1000 9 9 0.9E–5 0 eR

3.4 5.3 × 4.0 1E–6 136.06 1000 231402 229859 3.5E–5 72712 6.0E-6

Details in the text
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Fig. 6 Amplitudes of a selected set of resonances for potentials (3.1), (3.2) and (3.3). The corresponding data
are given in Table 2 below. They illustrate the different behaviour of non-collapsed and collapsed gaps, as well
are the lack of smoothness of the tongue boundaries. The case (3.4) is quite similar to (3.3)

b̂ = b × |V |∞. The values of b̂ go from moderate, say b̂ = 20, to as large as b̂ = 100. The
goal has been to detect the spectral gaps with a step 10−6 in a, step which has been decreased
to 10−9 around the places where rot crosses a resonance. No relevant differences have been
found between (3.1) and (3.2). For b̂ = 20 very few gaps exceed the amplitude 0.1 a few
more exceed 0.001 and most of the other gaps are below amplitude 10−6. On the other hand
no trace of gaps has been found for (3.3) and (3.4) for b̂ ≥ 8.
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Table 2 Data for Fig. 6

Case k k0 Rot Case k k0 Rot Case k k0 Rot

3.1 1 0 0.618034 3.1 –4 3 0.527864 3.1 –10 7 0.819660

3.2 –1 1 0.381966 3.2 2 –1 0.236068 3.2 –4 3 0.527864

3.2 –14 9 0.347524 3.2 9 –5 0.562306 3.2 –20 13 0.639320

3.3 0,–2 2 0.535898 3.3 0,–3 3 0.803848 3.3 –2,4 –1 0.692135

The table is ordered in the same way as the plots in the figure. For every plot we identify the case and then the
coefficients k, k0 in rot = 〈k, γ 〉 + k0, according to the Gap Labelling, and the approximate value of rot

Figure 5 shows magnifications of Figs. 2 and 3, to illustrate the existence of several insta-
bility pockets for (3.2) and the existence of almost tangential “contacts” between the different
resonances (see Sect. 3.2 for more information). These contacts seem to define a separation
between reducible and non-reducible domains outside the resonance tongues. On the top plot
one can see some “holes” without almost contacts. But this is only due to the reduced number
of resonances shown in the plot. The holes seem to disappear if resonances up to order 200
are retained, but then the figure will look as “fully black”.

In Fig. 6 we display the amplitudes �rot0(b), see Sect. 2.2, for several resonances and
potentials. This small sample illustrates the behaviour of different tongues and gives support
to the list of items given before concerning differences between (3.1) and (3.2), from one
side, and between the case of one frequency and more frequencies from the other.

3.2 Measure of the Spectrum

A natural question to ask is what is the Lebesgue measure of the spectrum of a quasi-periodic
Schrödinger operator (1.1) as a function of b. When b = 0, the spectrum is the set [−2, 2]
and the measure is thus 4. In the Almost Mathieu case, there is a general formula for the
measure of the spectrum

|σb|Leb = |4 − 2|b||
as shown in a series of works, see [27] for references. A very particular feature of the Almost
Mathieu case is that when b = ±2 the spectrum has zero measure. This does not happen in
general, as seen in Fig. 7 for the models under consideration and can be understood looking
at the structure of resonance tongues. Indeed, for each boundary of a resonance tongue, there
seems to be a height b for which nearby resonance tongues have almost tangential contacts.
This height of b is precisely the value of b for which the Lyapunov exponent, restricted to the
tongue boundary, “takes off” from β = 0 to positive values. In the (a, b)-parameter plane,
the set of such critical points (defined only in the spectrum) seems to lie along a curve, which
in the Almost Mathieu case is b = 2 but, in general is not horizontal, even far from horizon-
tal, see related results [1,25]. Thus, although resonance tongues cluster when the Lyapunov
exponent becomes positive, this happens in general at different values of b and the measure
of the spectrum is in general positive. The existence of that curve was already detected in the
numerical experiments in [10] for the continuous case.

Note that, along this critical curve, the measure of the spectrum (i.e. values of (a, b) not
in the interior of resonance tongues) is zero. A related result [5] states that in one frequency
(inside a full measure class of Diophantine numbers), V real analytic and for a fixed value of
b, then for Lebesgue almost every value of a, the cocycle (Aa,b, ω) is either reducible to a
rotation (and thus in the spectrum) or has positive Lyapunov exponent. Since cocycles along
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Fig. 7 The plots display the measure of the spectrum as a function of b × |V |∞ for the cases studied, (3.1),
(3.2), (3.3) and (3.4). On the left we plot an “absolute” value, that is, the estimated measure of the spectrum
in the a interval explored divided by the amplitude of this interval. This means that we divided by 8 in the
symmetric cases and by 12 in the non-symmetric case (3.2). In particular, when b = 0 the scaled values are
1/4 and 1/3, respectively. On the right we plot a “relative” value, that is the measure of the spectrum divided
by the amplitude of the range of a between the left and right uniformly hyperbolic zones. All resonances up
to order 100 have been used for (3.1) and (3.2), to order 20 for (3.3) and to order 10 for (3.4)

the critical line cannot be reducible to a rotation and have zero Lyapunov exponent, along
any such horizontal line (e.g. b = 2 in the Almost Mathieu case), the intersection with the
spectrum would have zero Lebesgue measure.

Figure 7 also shows that the measure of the spectrum decreases linearly around b = 0
(gaps appear when b �= 0) and also grows linearly with b as b → ∞. Both limit cases can
be studied by refined perturbative techniques of reducible systems [18,24,4] and diagonal
operators [19,6].

4 Discussion

In this article we have numerically explored the structure of the spectrum of one-dimensional
Schrödinger operators with a quasi-periodic potential having one or more frequencies, with
an eye on the differences that this multifrequency character makes on the structure. As an
additional example we have also explored the case of a single frequency with a potential
that has several minima and maxima. We have numerically observed that, for small values
of b our models have basically all gaps open and zero Lyapunov exponent in the spectrum.
When b grows the Lyapunov exponent becomes positive at a certain height and gaps start
decreasing in size. When b grows further and there are many frequencies, gaps collapse in a
non-smooth way and stay collapsed for larger values of b, whereas in the case with a single
frequency, there seems to be a dense set of open spectral gaps (coexisting with collapsed
gaps in some cases). In this section we want to discuss some of these different properties.

4.1 Perturbative Gap Opening

As we see from Figs. 1–5, the behaviour for small values of b is similar and, although
some differences, can be understood using a common framework, which, incidentally, is also
similar to the periodic case.

For b = 0, the rotation number can be directly computed (since the cocycle is in constant
coefficients) and it is seen that resonance tongues emanate from the points in the b = 0 axis
of the form

ak = ±2 cos (〈k, ω〉π), k ∈ Z
d .

123



664 J Dyn Diff Equat (2011) 23:649–669

The cases k = 0 correspond to the maximum (a = 2) and minimum (a = −2) of the
spectrum in the trivial b = 0 case. The cases k �= 0 correspond to the tips at b = 0 of
tongue-shaped regions in the (a, b)-plane which, for every value of b are given by an interval
[a−

k (b), a+
k (b)] which may collapse.

Using perturbative techniques and reducibility results it is possible to understand the struc-
ture of resonance tongues for small values of |b| and a fixed analytic potential V as it was
done in [9] for the continuous analog (described briefly in 4.3). Let us give the main ideas in
this discrete context.

Let ak = ±2 cos (〈k, ω〉π) be one of the resonant values of a for b = 0 and k �= 0. Then

Aak,0 =
(

ak −1
1 0

)

and, since all solutions are quasi-periodic with frequency ω, after a quasi-periodic change of
variables, Zk, the system reduces to the identity when b = 0 and a = ak. Introducing new
local coordinates δ = a − ak then the cocycle (Aa,b, ω) reduces to one of the form

B(θ, δ, b) = I d + Z−1
k (θ + ω)

(
δ + bV (θ) 0

0 0

)
Zk(θ)

which is a perturbation of the identity. After r steps of averaging, this can be analytically
reduced to a cocycle (Br , ω) of the form

Br (θ, δ, b) = Mr (δ, b) + Pr+1(θ, δ, b)

where the remainder, Pr+1, which contains the θ -dependence, is of order r + 1 in (δ, b)

and Mr is a matrix independent of θ with Mr (0, 0) = I d . As in the continuous case, the
normal form up to order r can be used to derive the Taylor expansions a = a±

k (b) of tongue
boundaries up to order r around (a, b) ≡ (ak, 0). In particular, the order of tangency for every
tongue can be computed performing a finite number of averaging steps and, for example,
tongues with index k and Vk �= 0, the k-th Fourier coefficient of V , are transversal at the ori-
gin. For potentials like the Almost Mathieu (3.1) or containing its two and three-dimensional
analogues, like (3.3) and (3.4), the order of tangency at b = 0 of the k-th tongue is, at least
|k|, and sometimes greater than this value, see Appendix B in [9].

For small values of |b|, Eliasson’s reducibility theory applies [18,24] and tongue bound-
aries can be seen to be smooth functions of b, whose Taylor expansions around b = 0 can
be effectively computed. This allows to create examples which display instability pockets
(i.e. tongue boundary crossings) at small values of b. Besides, for a generic real analytic V ,
all gaps are open for small values of |b| [18,9,36]. For the analytic character of the tongue
boundaries for b small one can adapt the methods of [37] to the discrete case.

4.2 Accuracy of Numerical Computations

As the study carried out in this article is based on numerical explorations, we have tried to
do different kinds of extensive checks. They can be mainly classified as follows.

(1) As described in Sect. 2.3 most of the computations have been done up to a max-
imal number of iterates Nmax = 109 and internal coherence between estimates
of β and ρ equal to εL and εR . Our primordial interest is on the accuracy of ρ.
Hence we have carried out checks with different values of εR and Nmax while
εL has been taken larger than εR (say, εL = 100εR) in order that most of the
computations stop before Nmax iterates.
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Almost in all cases the observed “error” in ρ, taking as correct the one obtained
with many more iterates (up to 1012) is below the requested εR , and in all cases
is less than 2εR . The results are worse for β. Despite in a large part of the cases
the observed error (in the above sense) is below εL , in a few cases it reaches
10εL . As it is natural the largest errors are found for the largest values of b that
we have explored.

(2) As mentioned, the value of the phase φ is irrelevant for the computation of β

and ρ. This fact can be used to produce different estimates obtained by using
different initial phases. We proceed as in Sect. 2.3 using the slopes s50

L and
s50

R as estimators and going always to a number of iterates equal to Nmax. Then
one can compute the average and standard deviation of a sample obtained with
equispaced φ ∈ [0, 2π).
The method has been implemented and tested for several ranges of a and dif-
ferent b values in the studied examples. Using Nmax = 107 and samples of size
100 the average 〈s50

R 〉 differs from the value obtained as described in Sect. 2.3
using Nmax = 109 by less than εR . Furthermore the standard deviation σs50

R
is of

the order of 2εR .
(3) One can proceed by a direct approximate computation of the spectrum as follows.

Consider a symmetric tridiagonal matrix Gφ whose elements are

gn,n = bV (ωn + φ), gn,n+1 = gn+1,n = 1.

The spectrum of the Schrödinger operator is the spectrum of the “infinite matrix”
Gφ when n ∈ Z. One can “truncate” Gφ between n1 and n2 (for instance n1 =
0, n2 = 106) to obtain an approximation Gφ,[n1,n2] of the operator and approxi-
mations of both the rotation number and the Lyapunov exponent can be computed
from the eigenvalues, obtained using a QR method adapted to band matrices,
from this truncation. In fact, each of the four elements of the transfer matrix

Mn
a,b(θ) = Aa,b(θ + (n − 1)ω) · · · Aa,b(θ),

which is a polynomial in a and b can be expressed as a determinant of Gφ,[n1,n2]−
aI for suitable values of φ, n1 and n2. In particular, the first column is formed
by the determinants of Gθ,[0,n] − aI and Gθ,[0,n−1] − aI .
Carrying out explicit computations for the different examples and a selected
sample of values of b one checks that, with the resolution provided by this direct
method, the gaps coincide with the ones determined using the rotation number.

(4) When collapsed gaps are detected, say for a = ac for a given b, a range of the
form (ac − δ, ac + δ) around ac has been scanned with a small step size in a,
small εR and large Nmax. Typical values for δ range from 10−6 to 10−9. It has been
checked that ρ behaves in a strict monotonous way around ac without numerical
traces of gap.

As additional checks some one frequency cases have been tested, like (3.2) for some
m > 11 or W (θ) = W (θ) − W̄ , where W (θ) = exp(cos(θ)), W̄ = 1

2π

∫ 2π

0 W (θ)dθ . The
potential V (θ) = cos(θ) + 1

2 sin(2θ) + 1
4 sin(4θ) has also been checked. For last two cases

the symmetry applies and it is enough to explore a ≥ 0. As value of γ1 either the golden mean
or other quadratic irrationals have been tested. In these Morse cases the behaviour is similar
to the one found in Almost Mathieu. On the other hand, model (3.2) for m < 11, going up
to m = 1 looks like the m = 2 case in what concerns collapsed gaps and subsistence of very
narrow resonant zones for b large.
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We want to add some final comments on bounds of the errors in the computation of Lyapu-
nov exponent and rotation number. As clearly mentioned in [17] there are three main sources
of error: (a) the ones due to the algorithm in the computation, as analysed in [17] when using
QR methods; (b) the ones due to round-off (or in the continuous case due to the truncation
errors of the integration method) and its propagation; (c) the ones due to the “convergence to
the limit”. Last one is, in most cases, the most important and difficult to estimate, particularly
in the nonuniformly hyperbolic zones, where no a priori estimates are known. Several ways
to “extrapolate to the limit” are presented in [10,32,41] and references therein, and a slightly
different version has been used in present article and in [38]. Finally, let us mention that
inside resonance tongues, in the uniformly hyperbolic domain, it is possible to use computer
assisted proofs to provide rigourous bounds for the Lyapunov exponent [21].

An indication of the convergence to the limit can be obtained as follows. Let Ln be the
Lyapunov sum after n iterates, see Sect. 2.3, and fN (n) a linear fit to the values of Ln up
to n = N . Then let d(N ) = max{|Ln − fN (n)|, n ≤ N }. Note that, as fN changes with N
the function d(N ) is not necessarily monotonically increasing. While in the reducible case
d(N ) turns out to be bounded, and hence the errors in the computation of β(a, b) are at most
O(N−1), in the non-reducible case values up to d(N ) = O(N 1/4) have been observed. See
[38] for details and illustrations. Hence, with the algorithm used in present article we can
be confident on errors in β(a, b) below O(10−6) in the reducible domain and at most below
O(10−5) in the non reducible one. The results are better, typically by a factor of 10, for the
rotation number. When the computations for an (a, b) region are completed, a “quick” way
to guess the non-reducible domain can be to look at the number of iterates needed to stop the
computations. If with the tolerances used (see Sect. 2.3) it exceeds, say, a value like 108 for
some values of (a, b), one can be confident that the system is non-reducible there.

4.3 Extension to the Continuous Case

An important companion model to discrete Schrödinger operators are their continuous ana-
logues, whose eigenvalue equations are second order differential equations of the form

x ′′(t) + bQ(ωt + φ)x(t) = ax(t) (4.1)

where Q : T
d → R is a quasi-periodic function with frequency vector ω. Note that, in con-

trast with the discrete case the periodic case occurs with d = 1. The perturbative situation has
been studied in [18,30,9,37] and the situation is similar to the discrete case. It is clear that the
study of (4.1) can be reduced to a discrete case if we use the “map time one of the periods”
(say, the time-2π/ω1-map) which depends on the other frequencies. However, while in (2.1)
the role of (a, b) is linear, in the continuous case it can be highly non-linear. Another strong
difference with (2.1) is that, while in the discrete case for a given value of b, no matter how
large it is, the spectrum stops at a sufficiently large value of a, in (4.1) for large a most of
the values belong to the spectrum.

The situation for larger values of b has been studied by [22] for a model and [7] for more
general analytic potentials, yielding positivity of the Lyapunov exponents for sufficiently
large b and a in the bottom of the spectrum. The existence of gaps in this setting was con-
sidered in a particular example by [20]. For an analytic and numerical study in the case of
two frequencies we refer to [10] which contains a detailed account of efficient numerical
methods in the continuous case and the relation with other problems. An extension of this
work to the case of three frequencies can be found in [38]. The results for this continuous
case are similar to the ones found in the present study for the discrete version. Furthermore,
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details on the maximal deviation d(N ) of the current Lyapunov and rotation sums, L and
R, and the values given by a linear fit, are shown as a function of the number of iterates N .
Some hints on a relation between d(N ) and the simultaneous Diophantine properties of the
frequencies are also given.

Finally we want to stress that, beyond the spectral problems in Schrödinger operators,
equations of the type (4.1) appear in the study of the stability of invariant tori, as normal
variational equations along a quasi-periodic solution. They are a natural generalisation of
the classical Hill equations which appear in the periodic case. Furthermore, more general
equations arise in higher dimensional normal variational equations. Most of the problems in
this case, away from perturbative ones, are open.

4.4 A Summary of Detected Phenomena

We summarize here some of the phenomena observed in this numerical study.

(1) The separation between the reducible and non-reducible domains in (a, b) has a com-
plicated structure. A wild line seems to separate both domains. That line was simply
b = 2 in the Almost Mathieu case. Of course, the line can be drawn in different ways
inside the uniformly hyperbolic zones.

(2) In contrast with the case of one frequency, the collapse of resonances is produced in a
sharp way when there are two or more frequencies. Before reaching the collapse, the
width of resonance tongues behaves almost linearly. Some of the collapsed tongues can
reopen and have a definitive collapse for larger values of b.

(3) In the nonuniformly hyperbolic zones, the boundaries of the resonant tongues seem to
be nondifferentiable, with lateral derivatives, at some points.

(4) In the case of several frequencies and even for moderate values of b, the spectrum seems
to have no gaps inside.

All these phenomena should be checked on a variety of examples and analysed theoreti-
cally.
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