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and it was with great joy that our families got together every
summer.

We share, with his wife Gaby and two daughters Do-
minique and Anne, the feeling of having lost an exceptional
human being.

Notes

1. In fact Borel stayed only one year in Paris.

2. The conjecture indeed appears as a question in a letter
(dated April 2nd, 1953) from Borel to Serre commenting
on Mostow’s result.
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mission to reproduce it here and to Dominique Borel for the
translation into English.
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A solution of
the Ten Martini
problem

The Ten Martini problem asks for the Cantor structure of the
so-called Almost Mathieu or Harper operator which is the fol-
lowing operator

(Hb@’q,x)n = gXp+1 +xp—1 + bcos 2nwn+ ) x,,.

on [>(Z) where b is a coupling parameter, o is a frequency
and ¢ a phase.

Apart from its naturality (it is probably the “simplest” ex-
ample of a quasi-periodic Schrodinger operator) this operator
appears in the study of the Hamiltonian of an electron in a
rectangular lattice subject to a perpendicular magnetic field.
The frequency o stands for the intensity of the magnetic field
while b/2 takes into account the nearest neighbour couplings.
This model was introduced by Peierls and Harper in 1955 and
Azbel, in 1962, conjectured that the spectrum of the opera-
tor for irrational frequencies (which does not depend on ¢ for
such irrational values) should be a Cantor set if b # 0. This
conjecture was strengthened by the numerical experiments of
Hofstadter (1976) and Aubry (1977) who, in addition, conjec-
tured that the measure of the spectrum should be zero in the
“square case” |b| = 2. Such numerical computations are usu-
ally referred as “Hofstadter butterflies”: the spectrum is plot-
ted against the frequency and a fixed value of the coupling
constant (see Figure 1).

In the beginning of the eighties there was a lot of work in
the mathematical theory of almost periodic Schrodinger op-
erators and, in fact, the name of the “Ten Martini problem”
was coined by Simon after an offer by Kac in a meeting of
the American Mathematical Society in 1981. The problem,
which appeared in a famous list of problems in almost pe-
riodic Schrodinger operators (1982) remained open until re-
cently.

Previous partial results include Bellissard & Simon
(1982) who prove Cantor structure for generic pairs of (b, ®);
Sinai (1987) proved that if ® satisfies a Diophantine condition
then the spectrum is a Cantor set provided |b| is small enough
(how small depending on the precise Diophantine condition).
These Diophantine frequencies, a total measure subset of the
real numbers, are characterized by being “far from rational
numbers”. Regarding non-Diophantine irrational numbers,
the so-called Liouville numbers, Choi, Elliot & Yui (1991)
proved the Ten Martini Problem for a class of these Liouville
numbers.

The “square case” is special because the spectrum is a
Cantor set of zero measure, as a series of works by Helffer &
Sjostrand (1989), Last (1994) and Avila & Krikorian (2004)
show. This case is also know as the “self-dual” case because
it is invariant by Fourier transform, known as “Aubry duality”
in this context. More generally, the Fourier transform can be
used to show that the spectrum of the Almost Mathieu oper-
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Figure 1. Hofstadter butterflies for values of » = 1 (top) and 2 (bottom)
from top to bottom and left to right respectively. These pictures are com-
puted taking rational frequencies ® in the vertical direction and com-
puting the spectral bands of the periodic problem. The “classical”” Hofs-
tadter butterfly corresponds to the case b = 2 where the measure of the

spectrum is zero for irrational frequencies.

ator for some b # 0 is just a dilatation of the spectrum for its
“dual” value 2/b.

Joaquim Puig, in the paper “Cantor spectrum for the Al-
most Mathieu operator” and as a part of his PhD thesis proved
that if |b| # 2 and ® is Diophantine, then the spectrum of
the Almost Mathieu operator is a Cantor set. The idea of
the proof is the combination of tools coming from spectral
theory and dynamical systems. On the spectral side a non-
perturbative localization result due to Jitomirskaya (1999) is
key for the proof. On the dynamical side, the concept of re-
ducibility of quasi-periodic cocycles is also very important.
While these two techniques can be generalized to other quasi-
periodic Schrodinger operators, an adaption of Ince’s (1922)
argument for the classical Mathieu equation to the present al-
most periodic case is very specific of this model. The com-
bination of these spectral and dynamical techniques for the
study of quasi-periodic Schrédinger operators is powerful and
opens a promising field of research. Recently, for instance,
Avila & Jitomirskaya (preprint 2005) have obtained a proof of
the Ten Martini problem which includes the non-Diophantine
frequencies which were not covered by Choi, Elliot & Yui so
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that the Ten Martini problem is now settled for all irrational
frequencies.

Joaquim Puig i Sadurni, presently at the Poly-
technic University of Catalonia, received his
PhD in Mathematics by the University of
Barcelona with the thesis “Reducibility of
Quasi-Periodic Skew-Products and the Spec-
trum of Schrodinger Operators”, under the su-
. pervision of Carles Simo i Torres, on June
4‘& 2 22nd 2004. Among the results in the thesis
there is the proof of the conjecture known as the Ten Martini
Problem for Diophantine frequencies.

| etter to the
Editor:

An Observation
on Real Division
Algebras

Holger P. Petersson, Hagen (Germany)

In [1] a short and elementary proof is given for the well-known fact
that there are no associative real divison algebras of dimension 3.
Without claiming originality, we present here an even shorter but still
elementary proof for the following general observation that holds for
both associative and non-associative division algebras:

Observation. There are no real division algebras of odd dimension
> 1.

Proof. Suppose on the contrary that A is such an algebra and write
L,:A— A, v— L,(v) = uv, for the left multiplication by u € A,
which, thanks to our hypothesis, is a bijective linear transformation
unless u = 0. Hence, given linearly independent vectors x,y € A and
t € R, p(t) = detLyyy is a real polynomial of odd degree without
real roots, a contradiction. O
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