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Abstracts

Nonperturbative reducibility and irreducibility
JoAQUIM PulG

In this talk we consider discrete, one-dimensional Schrodinger operators with
real analytic potentials and Diophantine frequencies

(1) (Hv,0,0T)n = Tni1 + o1 + V(2mwn + 0)z,, n € 7.

and the relation with the reducibility problem of the associated quasi-periodic
cocycle, which is the following dynamical system on SL(2,R) x T¢,

) (Awv,w): SL(2,R)xT¢ — SL(2,R) x T¢
(2) (X,0) — (A(0)X,0+27w).

with ) v
wo=( O )

As many recent works have outlined, there is a close relationship between spectral
properties of (1) and dynamics of the cocycle (2) which arise from the fact that
the latter is the matrix first-order system associated to the eigenvalue equation of
(1),

Tnt1 + Tno1 +V 2rwn +0) x, = ax,, n€Z.

Among dynamical properties which are relevant for the spectral description of
(1), conjugacy of cocycles is a key tool, since it allows to classify different dynamical
types. Two cocycles (A,w) and (B,w) are conjugated if there is a conjugation
Z : T — SL(2,R) such that (A,w) o (Z,0) = (Z,0) o (B,w). The notion of
conjugacy, once a regularity class for the transformation has been imposed, allows
to classify dynamically quasi-periodic cocycles. A particularly important class is
that of reducible cocycles, which are those conjugated to a cocycle with constant
coefficients, which is called a Floquet matriz.

In our case of interest, i.e. when the frequencies are Diophantine, w € DC(c, 7)
for some ¢, T,

[(k,w)| = ke 2%\ {0},

c
k|7
and the potential V is real analytic, C’g(']l‘d, R) for some p > 0 with the norm
VI, = sup [V(8)] < ox,
|S0[<p

Johnson [7] showed that a is not in the spectrum of (1) if, and only if, the cocycle
(2) is reducible to constant coefficients with hyperbolic Floquet matrix (possibly
halving the frequency). In the spectrum, however, the situation is much more
involved.

Eliasson [6], among other results, showed that, once p,c and 7 positive have
been fixed, there is a eg = eg(c, 7, p) > 0 such that if |V|, < eg, then the cocycle
(Aq,v,w) is analytically reducible to constant coefficients for Lebesgue almost all
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a € R. Moreover, for a generic V, with |V, < € the spectrum of (1) is a Cantor
set and it contains a subset of a’s for which (A, v,w) is not reducible to constant
coefficients.

This result is optimal for d > 1 due to an example of Bourgain [2] and, in
fact, it gives a characterization of the set of “reducible energies a” in terms of
their rotation number or integrated density of states. When d = 1, we can use
localization results by Bourgain & Jitomirskaya [3] and Aubry duality to show the
following.

Theorem 1 ([10]). Let p > 0. Then,there is a € = e(p) > 0 such that if
Vi, <e
and w € DC(c,T) then the following holds

(i) (Aqv,w) is reducible to constant coefficients for almost all a € R.

(1) For a generic V € Cg(T,R), the spectrum o(V,w) is a Cantor set.

(2) If o(V,w) is a Cantor set, there is a residual set in o(V,w) for which
(Ag,v,w) is not reducible to constant coefficients.

The theorem above is not a full extension of Eliasson’s result, since the set
of reducible energies has no characterization in terms of the IDS (see the talk by
Avila and Jitomirskaya on these reports for an answer to this question), but it
clarifies the relationship between Cantor spectrum and irreducibility (which was
an ingredient in the proof of [6]).

As said before the proof of the first item is an application of [3] for which it
suffices to realize that the (analytic) reducibility of a Schrédinger cocycle with
Floquet matrix in SO(2,R) is equivalent to the existence a pair of linearly in-
dependent Bloch waves for the Harper-like equation. Passing to the equation in
Fourier space, one needs to find exponentially localized eigenvalues of a long-range
operator (with exponentially decaying coefficients) and a small cosine potential.
Such solutions are provided by Bourgain & Jitomirskaya. To prove full measure,
one only needs to apply the bounds for the growth of the density of states when
the Lyapunov exponent is zero [5].

Items (ii) and (iii) in Theorem 1 allow a d-dimensional version. Indeed, using
the analyticity of m-functions, as in Avila & Jitomirskaya [1], one can show that,
whenever the spectrum has an open interval with zero Lyapunov exponent, then
the corresponding cocycle is reducible to constant coefficients and the Floquet
matrix is a rotation. In such a case, an application of Moser & Pdschel [8] (cf. [10])
shows that an arbitrarily small and generic perturbation opens up all collapsed
gaps in the interval and the spectrum in the interval becomes a Cantor set. When
d = 1, Cantor spectrum is supposed to be generic without the smallness hypothesis
or, even, to hold always when the Lyapunov exponent is positive (see Sinai [11]
for results in this direction), but there is no proof in this generality.

The relationship between Cantor spectrum and irreducibility can also be gen-
eralized to more general potentials (such as ergodic potentials, see [9]). For defi-
niteness, let us consider continuous quasi-periodic potentials on T% with irrational
frequency vector w and Cantor spectrum where the Lyapunov exponent vanishes.
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Then, there is a residual G5 in the spectrum where the corresponding cocycle is
not reducible to constant coefficients by a continuous transformation. In fact such
a transformation cannot be square integrable either. The latter is related to the
existence of Kotani eigenstates (pair of solutions with norms given by the absolute
values of an L? function along the trajectory of the ergodic transformation) which
Kotani considered in the set where the Lyapunov exponent vanishes in the ergodic
setting. De Concini & Johnson [4] showed that when this set contains an interval
then there are Kotani eigenstates for all points in the interval. Our result shows
that whenever the spectrum is a Cantor set and the Lyapunov exponent vanishes
there, then there is a topologically significant set for which these eigenstates do
not exist.
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Schrodinger cocycles at non-perturbatively small coupling
ARTUR AVILA, SVETLANA JITOMIRSKAYA

We are interested in one-dimensional quasiperiodic Schrodinger operators H =
H, . defined on [?(Z)

(1) (Hu)p = Upt1 + tup—1 + v(0 + na)uy,

where v : R/Z — R is the potential, a € R\ Q is the frequency and 6 € R is
the phase. The most important example is given by the almost Mathieu operator,
when v(x) = 2\ cos(2mz).

In [6], Eliasson obtained a very precise description of such operators for «
Diophantine, in the case of small analytic potentials in the perturbative regime
(this means that a smallness condition depends on «, and thus the analysis of a
given potential, however small, can only be carried out for a positive Lebesgue



