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08028 Barcelona, Spain

E-mail: alex@maia.ub.es and joaquim.puig@upc.edu

Received 16 October 2012, in final form 21 February 2013
Published 26 March 2013
Online at stacks.iop.org/Non/26/1163

Recommended by J Marklof

Abstract
In this paper, we study the dynamical properties of a class of ergodic linear skew-
products which includes the linear skew-products defined by quasi-periodic
Schrödinger operators and their duals, in Aubry sense, when the potential is
a trigonometric polynomial. Notably, these linear skew-products preserve an
adapted complex-symplectic structure. We prove a Thouless formula relating
the sum of the positive Lyapunov exponents and the logarithmic potential
associated with the density of states of the corresponding operator. In particular,
for quasi-periodic Schrödinger operators and their duals, we prove an identity
for the upper Lyapunov exponent of the skew-product and the sum of the positive
Lyapunov exponents of their dual, which generalizes the well-known formula
for the Almost Mathieu. We illustrate these identities with some numerical
illustrations.

Mathematics Subject Classification: 34L40, 37H15, 39A70, 47B36, 70K43

(Some figures may appear in colour only in the online journal)

1. Introduction, setting and main results

In recent years there have been significant advances in the theory of Schrödinger operators with
quasi-periodic coefficients and their associated eigenvalue equations. These display rich and
interesting properties and are ubiquitous in many situations, both in dynamical systems and
mathematical physics. Two of the main approaches in their study are the possible extension of
Floquet reducibility of the associated linear skew-products (after the work of Eliasson [Eli92])
and that of exponential localization (with the nonperturbative results of Jitomirskaya [Jit99] and
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Bourgain and Goldstein [BG00]). In the case of the Almost Mathieu model, the two approaches
are intimately related by means of Aubry duality (invariance through Fourier transform) because
the potential has a single harmonic. This connection has led to quite definitive answers to some
long-standing problems [AJ09, AK06, Pui04].

In this paper, we will be interested in extending this duality to other trigonometric potentials
and to see which are the consequences for the Lyapunov exponents. Although our setting is
more general, let us introduce our main focus of interest now in order to formulate the results.
We will consider (discrete) quasi-periodic Schrödinger operators on �2(Z) of the form

(hx)n = xn+1 + xn−1 + W(θn)xn, n ∈ Z, (1.1)

where θn = θ0 + nω ∈ T = R/Z, for an irrational frequency ω ∈ R, is a quasi-periodic orbit
and W : T → R is the potential. When

W(θ) =
d ′∑

k=−d ′
Wke2πkθ i

is a trigonometric polynomial, the Aubry dual of the operator above [AA80], which will be
reviewed in section 1.5.1, is the following difference operator of order 2d:

(h′x)n =
d ′∑

k=−d ′
Wkxn+k + 2 cos(2πθn)xn, n ∈ Z. (1.2)

For any value of the energy α, the eigenvalue equation of (1.1), hx = αx, gives rise to a
quasi-periodic Schrödinger skew-product on R

2

(
xn+1

xn

)
=

(
α − W(θn) −1

1 0

) (
xn

xn−1

)
, θn+1 = θn + ω (1.3)

while for its dual, h′x = αx, the corresponding linear skew-product is 2-dimensional. The
main application of this paper is a relation between the upper Lyapunov exponent of quasi-
periodic Schrödinger skew-products with trigonometric potentials and the sum of the positive
Lyapunov exponents of the linear skew-product associated with their dual. Although this result
will be presented in corollary 1.3, we now anticipate the main application of our paper:

Main Application. Let W : T → R be a trigonometric polynomial and ω an irrational
frequency. Let us denote by γ h(α) the upper Lyapunov exponent of (1.1) for a given energy
α ∈ C and γ h′

(α) the sum of the positive Lyapunov exponents of the linear skew-product
generated by the eigenvalue equation of its dual operator (1.2). Then,

γ h(α) = γ h′
(α) + log |Wd ′ |. (1.4)

The Almost Mathieu case, when W(θ) = β cos(2πθ), is the only potential when (1.1)
and (1.2) are the same, which leads to the above formula, referred to sometimes as the duality
of the Lyapunov exponents. Of course, this does not happen for other potentials, even simple
trigonometric ones, as we see in the following example.

Main example. As an illustration of the main application, let us consider the following
Schrödinger operator with a potential with two harmonics:

(hx)n = xn+1 + xn−1 + 2β (cos (2πθn) + cos (4πθn)) xn, θn = θ0 + ωn, n ∈ Z, (1.5)

being β �= 0 a coupling constant. Its dual is a difference operator of order 4:

(h′x)n = β (xn+2 + xn+1 + xn−1 + xn−2) + 2 cos(2πθn)xn, n ∈ Z. (1.6)
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For any α, the eigenvalue equation of the dual operator (1.2), h′x = αx, generates a linear
skew-product on R

4,




xn+2

xn+1

xn

xn−1


 =




−1
α

β
− 2

β
cos(2πθn) −1 −1

1 0 0 0
0 1 0 0
0 0 1 0







xn+1

xn

xn−1

xn−2


 , θn+1 = θn + ω.

As we will see, for any α ∈ C and β �= 0, this linear skew-product has two Lyapunov exponents
which are non-negative out of four Lyapunov exponents, which we denote by γ1(α, β) and
γ2(α, β). Then, formula (1.4) above reads as

γ h(α, β) = γ h′
1 (α, β) + γ h′

2 (α, β) + log |β|, (1.7)

where γ h(α, β) is the upper Lyapunov exponent of the Schrödinger skew-product (1.3) with
W(θ) = 2β(cos(2πθ) + cos(4πθ)). One can see a numerical illustration of this identity in
figure 1.

Although our initial motivation was to consider applications like above, we have proven
most of the results in a more general setting. In the rest of the introduction, which we now
briefly outline, we shall present the setting and the results. In section 1.1, we introduce the
general framework of the ergodic self-adjoint operators of our interest, using Schrödinger
operators and their duals as motivating examples. The corresponding dynamical systems are
introduced in section 1.2, again referencing to Schrödinger operators. The main result for
these general operators is given in section 1.3 and the consequences for Schrödinger operators,
which were our motivating application, in section 1.5. We conclude this introduction with
some numerical illustrations in section 1.6.

1.1. Setting

Although our motivation comes from Schrödinger operators with quasi-periodic potentials
and their duals, in this paper we will consider the spectral properties of the following class of
ergodic long-range operators in �2 spaces of sequences. These are defined from the following
ingredients:

(HL1) A dynamical system (�, τ, µ) given by a homeomorphism τ : � → � on a compact
metric space �, the base, and preserving an ergodic measure µ that is topological (i.e.
positive on open sets);

(HL2) A dense base orbit (θn = τn(θ0))n∈Z ⊂ � with initial phase θ0 ∈ �;
(HL3) A trigonometric polynomial V : T = R/Z → R, with Fourier representation

V (θ) =
d∑

k=−d

Vke2π ikθ

with average V0 = 0, V−k = V̄k for k = 1, . . . , d and Vd �= 0. We will refer to it as the
symbol;

(HL4) A continuous function W : � → R, called the potential.

The existence of dense orbits, i.e. that τ is topologically transitive, assumed in (HL2),
comes from the fact that τ is regionally recurrent (all the points are nonwandering) because
(HL1) holds.
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Figure 1. Numerical computation of the Lyapunov exponents and their sums for (1.6) and (1.5)
as a function of α for selected values of β and ω = (

√
5 − 1)/2. In each cell the upper plot

displays the Lyapunov exponents for the dual (1.6), γ h′
1 (α, β) and γ h′

2 (α, β), in blue, and the sum

γ h′
1 (α, β) + γ h′

2 (α, β) + log |β| in red. The lower plot of each cell displays, in red, the upper
Lyapunov exponent, γ h(α, β), of the original Schrödinger model (1.5). Formula (1.7) implies that
the two curves in red agree in each cell. We used 104 iterations of the skew-products with 103

values on the α-axis.

Assuming (HL1–HL4), we define the long-range operator (of range d) on �2(Z, C),
h = hV,W,θ0 as

(hx)n =
d∑

k=−d

Vkxn+k + W(θn)xn, n ∈ Z,

where x = (xn)n ∈ �2(Z, C). Our main examples of quasi-periodic Schrödinger operators
(1.1) and their duals (1.2) are included in this setting when the dynamical system (�, τ, µ)

is the quasi-periodic rotation on the base T = R/Z with frequency ω, τ(θ) = θ + ω. For
the Schrödinger operator with potential W we take V = 2 cos 2π · while for the duals, we
exchange V and W when the latter is a trigonometric polynomial.

1.2. From spectrum to dynamics

The long-range operator is self-adjoint and the spectrum Spec(h, �2(Z, C)) is a compact subset
of the real line which consists of approximate eigenvalues. It turns out that the spectrum of
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the long-range operator can be characterized by dynamical and spectral properties of some
associated linear skew-products, their Lyapunov exponents and the density of states, which we
now introduce.

1.2.1. Long-range linear skew-products. Since the symbol V is a trigonometric polynomial,
one can express the eigenvalue equation of h as

d∑
k=−d

Vkxn+k + W(θn)xn = αxn, n ∈ Z, (1.8)

for α ∈ C, as the following recursion of order 2d:

xn+d = −
d−1∑

k=−d

Vk

Vd

xn+k +
1

Vd

(α − W(θn)) xn, n ∈ Z.

As usual, instead of considering the previous finite difference equation of order 2d, we consider a linear
system of dimension 2d ,


xn+d

...

xn+2

xn+1

xn

...

xn−d+2

xn−d+1




︸ ︷︷ ︸
un+1

= 1

Vd




−Vd−1· · · −V1 α − W(θn) −V−1· · · −V−d+1 −V−d

Vd

. . .

Vd

Vd

Vd

. . .

Vd




︸ ︷︷ ︸
Ah

α(θn)




xn+d−1

...

xn+1

xn

xn−1

...

xn−d+1

xn−d




︸ ︷︷ ︸
un

θn+1 = τ(θn), (1.9)

defining a long-range linear skew-product (Ah
α, τ ) : C

2d ×� → C
2d ×�. As we will see, the dynamical

properties of these linear skew-product systems are intimately related to the spectral properties of the
corresponding long-range operator.

1.2.2. Lyapunov exponents and entropy. In general, for a linear skew-product (A, τ) in C
m over τ ,

generated by a continuous map A : � → GL(m, C), a fundamental matrix is given by the composition

A(n; θ) =



A(τn−1(θ)) · · · A(θ), n � 1,

I n = 0,

A(τn(θ))−1 · · · A(τ−1(θ))−1 n � −1.

(1.10)

An important tool when studying the dynamics of linear skew-products are the Lyapunov exponents,
which measure the rates of growth of orbits. As a consequence of Oseledec’s theory [Ose68, BP02],
there exist m real numbers (the Lyapunov exponents ) γ1 � . . . � γm such that for any j = 1, . . . , m

γ1 + · · · + γj = lim
n→∞

1

n

∫
�

log
∥∥∧jA(n; θ)

∥∥ dµ,

and, for µ-a.e. θ ∈ �,

lim
n→∞

1

n
log

∥∥∧jA(n; θ)
∥∥ = γ1 + · · · + γj .

To measure the total expansion rate of a linear skew-product one can introduce the (fibred) entropy as
the sum of the positive Lyapunov exponents, γ h(α).
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For a long-range linear skew-product of dimension 2d, (Ah
α, τ ), we will see that this entropy is

precisely the sum

γ h(α) = γ h
1 (α) + · · · + γ h

d (α),

where γ h
1 (α), . . . , γ h

d (α) are the first d Lyapunov exponents of (Ah
α, τ ). Indeed, when α is not real we

will see in section 2.4 that long-range linear skew-products are uniformly hyperbolic and the dimensions
of the unstable and stable subbundles agree, so that there are exactly d positive and d negative Lyapunov
exponents. For α real, the skew-products are complex symplectic and the Lyapunov exponents come
into positive-negative pairs, even if these can vanish, see section 2.3. For convenience, for long-range
skew-products, we introduce the normalized (fibred) entropy as

γ̄ h(α) = γ h(α) + log |Vd |.
In the Schrödinger case, the entropy and the normalized entropy agree and are equal to the upper Lyapunov
exponent of the corresponding Schrödinger skew-product.

1.2.3. The integrated density of states. An essential ingredient for the description of the spectrum
of these long-range operators is the integrated density of states, IDS for short, which we now consider
shortly. For any long-range operator h satisfying (HL1–HL4) and any integer N > 0, consider h[−N,N ],
its restriction to the interval [−N, N ] with zero boundary conditions. Since θ0 generates a dense orbit in
�, the quantity

k
[−N,N ]
h (a) = 1

2N + 1
#

{
eigenvalues � a of h[−N,N ]

}
.

converges to a continuous, non-decreasing, function a 	→ kh(a), which is independent of the chosen
dense orbit, and is called the integrated density of states of the operator h. The IDS kh is constant exactly
at the open intervals in the resolvent set of the spectrum of h and it is the distribution function of a Borel
measure κh, called the density of states measure of the operator [AS83, GJLS97, BJ02a, Pui06].

1.3. Thouless formula for long-range operators

The fundamental result of this paper is that the normalized entropy of a long-range linear skew-product
is the logarithmic potential [Tho95] associated with the density of states measure of the corresponding
long-range operator:

Theorem 1.1 (Thouless formula). Let (�, τ, µ), θ0 ∈ �, V and W satisfy (HL1–HL4) above, and let
h be the associated long-range operator. Then, the following integral formula holds:∫

R

log |α − a| dκh(a) = γ̄ h(α), (1.11)

where κh is the density of states of the long-range operator h, and γ̄ h(α) = γ h(α) + log(Vd) is the
normalized entropy.

This result is analogous to the case of Schrödinger operators on a strip, which was already considered
by Craig and Simon [CS83a], and Kotani and Simon [KS88]. Nevertheless, our methods are closer to
the dynamical and geometrical approach of Johnson [Joh87].

1.4. Application to log-Hölder continuity of the IDS

As a first application of theorem 1.11 we borrow some arguments from [CS83a] to prove the log-Hölder
continuity of the IDS.

Theorem 1.2 (Log-Hölder continuity of the IDS). Let (�, τ, µ), θ0 ∈ �, V and W satisfy (HL1–HL4)
above, and let h be the associated long-range operator. Let ρh be its spectral radius and κh be its IDS.
Then, for α1, α2 ∈ R with |α2 − α1| < 1,

|kh(α2) − kh(α1)| � log
(|Vd |−1(|α1| + ρh)

)
log

(|α2 − α1|−1
) . (1.12)



Thouless formula and Aubry duality 1169

Proof. Let us assume α1 < α2. From Thouless formula (1.11), and since the entropy is non-negative,

log |Vd | � γ h(α1) + log |Vd | =
∫

R

log |α1 − a| dκh(a).

We split the domain of the integral, R, in three subdomains

R1 = [α1, α2],

R2 = {a ∈ R | |a − α1| � 1, a < α1 or α > α2} ,

R3 = {a ∈ R | |a − α1| � 1} .

Then, since ∫
R1

log |α1 − a| dκh(a) � log(α2 − α1) (κh(α2) − κh(α1)) ,

∫
R2

log |α1 − a| dκh(a) � 0

and ∫
R3

log |α1 − a| dκh(a) � log (|α1| + ρh) ,

we obtain the bound (1.12). �

1.5. Applications to quasi-periodic operators

We are now ready to state in general the main application of this paper, which is the relationship between
the Lyapunov exponents of ‘dual’ quasi-periodic models through Aubry duality that we outlined in the
introduction. Assuming that V and W are two real-analytic potentials and that the dynamics of the base
� = T is given by an irrational rotation of frequency ω we will consider both the long-range operators(
hθ0x

)
n

= (
hV,W,θ0x

)
n

=
∑
k∈Z

Vkxn+k + W(θ0 + nω)xn, n ∈ Z, (1.13)

and their Aubry duals(
h′

θ1
x
)
n

= (
hW,V−,θ1x

)
n

=
∑
k∈Z

Wkxn+k + V (−θ1 − nω)xn, n ∈ Z. (1.14)

Aubry duality comes from the observation that if a is a point eigenvalue of hθ0 whose eigenfunction
(xn)n decays sufficiently fast (e.g. exponentially), then the eigenvalue equation h′

θ1 − aI = 0 has a
quasi-periodic Bloch wave solution (yn)n, with yn = e2π inθ0ψ(θ1 + nω) where ψ(θ) = ∑

k∈Z
xke2π ikθ .

Since we are considering a class of quasi-periodic operators larger than Schrödinger operators (where
the symbol V is simply 2 cos 2π ·), we can also consider other transformations of the operator, like taking
mirror symbols: (

h−
θ0

x
)
n

= (
hV−,W,θ0x

)
n

=
∑
k∈Z

V−kxn+k + W(θ0 + nω)xn, n ∈ Z. (1.15)

We will devote some time to discuss these operators in section 1.5.1 before stating the applications of
Thouless formula in section 1.5.2.

1.5.1. Aubry duality and dihedrality. In order to establish relationships between the operators h, h′

and h− on �2(Z, C) above, it is convenient to consider their actions on the Hilbert space L2 (T × Z, C),
which consists of functions 
 = 
(θ, n) satisfying

∑
n∈Z

∫
T

|
(θ, n)|2 dθ < ∞.
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These actions are given by their direct integrals [GJLS97, BJ02a], which are, respectively, the operators
(
h̃


)
(θ, n) =

∑
k∈Z

Vk
(θ, n + k) + W(θ + nω)
(θ, n),

(
h̃′


)
(θ, n) =

∑
k∈Z

Wk
(θ, n + k) + V (−θ − nω)
(θ, n)

and (
h̃−


)
(θ, n) =

∑
k∈Z

V−k
(θ, n + k) + W(θ + nω)
(θ, n).

In this setting, Aubry duality corresponds to the unitary equivalence

h̃ U = U h̃′,

where U is the unitary operator

(U
) (θ, n) = 
̂ (θ + nω, n) ,

and 
̂ the Fourier transform. At a formal level, this operator is given by

(U
) (θ, n) =
∑
�∈Z

∫
T


(ϕ, �)e−2π in(ϕ+�ω) dϕ e−2π i�θ ,

and its inverse by

(
U−1


)
(θ, n) =

∑
�∈Z

∫
T


(ϕ, �)e2π in(ϕ+�ω) dϕ e2π i�θ .

A computation shows that U 4 = I .
In addition to Aubry duality, what might be called mirror duality corresponds to the anti-unitary

equivalence

h̃ R = R h̃−,

where R is the anti-unitary operator

(R
) (θ, n) = 
 (θ, n),

which is involutive, R2 = I . Morever, U is reversible with R as reversion, since UR = RU−1.
The combination of the operators U, R generates a group of order 8, namely

Dih4 = {I, U, U 2, U 3, R, UR = RU 3, U 2R = RU 2, U 3R = RU},
which is the dihedral group of order 8, i.e. the group of symmetries of the square. Applying each of these
elements to a quasi-periodic long-range operator hV,W,θ0 we obtain the following eight quasi-periodic
long-range operators

hV,W,θ0 , hW,V−,θ0 , hV−,W−,θ0 , hW−,V ,θ0 (1.16)

and

hV−,W,θ0 , hW−,V−,θ0 , hV,W−,θ0 , hW,V,θ0 . (1.17)

Following the arguments of [GJLS97, BJ02a, Pui06] the IDS of these operators, and in particular the
spectra, agree. See figure 2 for an illustration of the elements of this group.
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Figure 2. Dihedrality of the action of U (red) and R (blue) on long-range operators.

1.5.2. Duality and Dihedrality of Lyapunov exponents. In view of the equality between the IDS
of the operators h = hV,W,θ0 and h′ = hW,V−,θ0 (the Aubry duals), as well as any of the operators obtained
by the dihedrality in (1.16) and (1.17), the Thouless formula in theorem 1.1 implies that their entropies
are related as well whenever V and W are trigonometric polynomials. This is the content of the following
result:

Theorem 1.3 (Duality for trigonometric polynomials). For any real trigonometric polynomials V and
W of degrees d and d ′, respectively, and an irrational frequency ω, let γ h(α) and γ h′

(α) be the entropy
of the operator (1.13), h = hV,W,θ0 , and its Aubry dual (1.14), h′ = hW,V−,θ1 , for an energy α ∈ C. Then
the entropies (sum of the positive Lyapunov exponents) are related by the formula

γ h(α) + log |Vd | = γ h′
(α) + log |Wd ′ |. (1.18)

Remark 1.4. As a consequence of the dihedrality of section 1.5.1, the same relation holds for any of the
operators in (1.16) and (1.17).

Since the entropy is always positive (it is the sum of the positive Lyapunov exponents of a skew-
product), the above result yields a lower bound on the sum of the positive Lyapunov exponents of the
skew-products, which is finer than the one that would be obtained by applying Herman’s subharmonicity
trick [Her83] to the dth iteration of the linear skew-products (see section 2.1 for more details):

Corollary 1.5 (Lower bounds for the entropy). For any real trigonometric polynomials V and W of
degrees d and d ′ respectively and an irrational frequency ω, let γ h(α) the entropy (i.e. the sum of positive
Lyapunov exponents) of the operator (1.13), h = hV,W,θ0 for an energy α ∈ C. Then the lower bound

γ h(α) � log

( |Wd ′ |
|Vd |

)
(1.19)

holds for any α ∈ C. In particular, one has the bound on the upper Lyapunov exponent:

γ h
1 (α) � 1

d
log

( |Wd ′ |
|Vd |

)
.

There are several situations when theorem 1.3 can be refined. The first one is for our motivating
example of Schrödinger operators where V (θ) = 2 cos 2πθ . Indeed, for operators of the form (1.1) and
their duals (1.2), the entropy of the former is simply the upper Lyapunov exponent and so that one has:
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Corollary 1.6 (Duality for Schrödinger operators). For any real trigonometric polynomial W of
degree d ′ and an irrational frequency ω, the Lyapunov exponent of the Schrödinger operator (1.1),
γ h(α), satisfies the equality

γ h(α) = γ h′
(α) + log |Wd ′ |, α ∈ C

where γ h′
is the entropy of the dual operator (1.2).

The second interesting situation is what we will call self-dual models, among which the Almost
Mathieu is the most prominent example (see section 1.6.1 for a numerical illustration), which correspond
to trigonometric functions V and W related by a coupling constant W = βV :

Corollary 1.7 (Self-dual models). Let V be a trigonometric polynomial of degree d and an irrational
frequency ω. For any nonzero coupling constant β ∈ R, let h = hV,βV,θ0 be a self-dual operator and
γ h(α, β) its entropy. Then the following formula holds

γ h(α, β) = γ h

(
α

β
,

1

β

)
+ log |β|

for any α, β �= 0. In particular γ h(α, β) � log |β|.

Proof. It suffices to note that W = βV and

γ h′
(α, β) = γ h

(
α

β
,

1

β

)

as a consequence of the eigenvalue equation. �
Note that the only example of a self-dual Schrödinger operator is the Almost Mathieu operator

(where the entropy equals the upper Lyapunov exponent). In this case, the above corollary implies that
the upper Lyapunov exponent of

(h2 cos 2π ·,2β cos 2π ·,θ0x)n = xn+1 + xn−1 + 2β cos (2πθ0 + ωn) xn = αxn, n ∈ Z

equals that of

(h β
2 cos 2π ·,cos 2π ·,θ0

x)n = β (xn+1 + xn−1) + 2 cos (2πθ0 + ωn) xn = αxn, n ∈ Z

plus the term log |β|. This leads to the well-known formula for the upper Lyapunov exponent, taking
b = 2β as the new coupling parameter.

To end this section, we state a result for Schrödinger operators with analytic potentials. Note that
when W is a real-analytic potential with infinitely many harmonics, the dual does not give rise to a
finite-dimensional skew-product. Nevertheless, one can use the continuity in the potential for the upper
Lyapunov exponent for quasi-periodic Schrödinger operators with one frequency (as is the case), which
was proved by Bourgain and Jitomirskaya [BJ02b], to obtain the following approximation result (see
section 1.6.3 for a numerical illustration):

Corollary 1.8 (An approximation result for Schrödinger operators). Let W : T → R a real-
analytic function and Wk a sequence of trigonometric polynomials of degree dk , with dk → ∞, converging
to W in some complex strip of T. Then the upper Lyapunov exponent of the Schrödinger operator (1.1),
γ h(α), is the limit

γ h(α) = lim
k→∞

γ̄ h′
k (α),

where γ̄ h′
k is the normalized entropy of the dual operator (1.2) with symbol Wk .

1.6. Numerical illustrations

In order to illustrate the results on the duality (and dihedrality) of Lyapunov exponents, we selected
few models in which we computed numerically the Lyapunov exponents and the entropy in the same
way that we presented the main example in the introduction. In all the examples we approximated the
Lyapunov exponents computing the products (1.10) for a certain number of iterates, after a transient, and
computing their eigenvalues. See [BS98, PS11b, PS11a] for more detailed numerical computations on
similar quasi-periodic Schrödinger operators.
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Figure 3. Numerical computation of the Lyapunov exponents of (1.21) and (1.20) as a function of
α for selected values of β. In each cell the upper plot displays the Lyapunov exponents for the dual
(1.21), γ h′

1 and γ h′
2 in blue, as well as the value of its normalized entropy (in red). The lower plot

of each cell displays the same for γ h
1 and γ h

2 . We used 104 iterations of the skew-products with
103 values on the a-axis.

1.6.1. A self-dual model. To illustrate corollary 1.7, let us consider a self-dual model, probably the
simplest one after the Almost Mathieu. This is given by

(hx)n = xn+2 + xn+1 + xn−1 + xn−2 + βV (θ0 + ωn)xn, n ∈ Z, (1.20)

when V (θ) = 2 cos(2πθ) + 2 cos(4πθ), W(θ) = βV (θ), ω = (
√

5 − 1)/2 and β is a nonzero real
coupling constant. Its Aubry dual is the operator

(h′x)n = β (xn+2 + xn+1 + xn−1 + xn−2) + V (θ0 + ωn)xn, n ∈ Z. (1.21)

For both h and its dual h′, and for any α ∈ C, the entropy is always the sum of two Lyapunov exponents
which satisfy

γ h
1 (α, β) + γ h

2 (α, β) = γ h′
1 (α, β) + γ h′

2 (α, β) + log |β|.
A numerical illustration for selected values of β can be seen in figure 3. A very special case occurs when
β = 1 and the two operators are the same, thus having equal Lyapunov exponents as well.

1.6.2. Dihedrality of the Lyapunov exponents. In order to illustrate the dihedrality of the normalized
entropy of the eight operators (1.16) and (1.17), we selected a model with symbol

V (θ) = 2 cos(2πθ) + 3 sin(2πθ) + cos(4πθ) + sin(4πθ)
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Figure 4. Lyapunov exponents for the operators (1.16) and (1.17) for non-even functions V and W

(horizontal axis) and complex values of α (vertical axis) with real part equal to one. In continuous
lines, we plot all the Lyapunov exponents, whereas the dashed line, which is the same for all eight
combinations, is the normalized entropy. We used 104 iterations of the skew-products with 200
values of the imaginary part of a equally spaced in [−3, 3].

and potential

W(θ) = cos(2πθ) + sin(2πθ) + cos(4πθ) + 3 sin(4πθ).

We computed the Lyapunov exponents for complex energies α in a segment with real part equal to one
and imaginary part in [−3, 3], see figure 4.

1.6.3. An analytic example. We conclude this section on numerical illustrations with an example of
a Schrödinger operator (thus V = 2 cos(2πθ)) with an analytic potential which is not a trigonometric
polynomial. We took

W(θ) =
∑
j�1

1

10j
cos (2πjθ) = 10 cos 2πθ − 1

101 − 20 cos 2πθ
(1.22)

and the sequence of approximating trigonometric polynomials

Wk(θ) =
k∑

j=1

1

10j
cos (2πjθ) . (1.23)

We approximated numerically the Lyapunov exponent of the Schrödinger operator hV,W,θ0 for α = 1
and the entropy of the dual operators hWk,V,θ0 for increasing values of k. Each of these operators defines
2k-dimensional skew-products which have k non-negative Lyapunov exponents. Results are summarized
in figure 5, where a convergence to the original Lyapunov exponent is observed.

1.7. Organization of the paper

The rest of the paper is devoted to the proof of theorem 1.1, although an important part of this proof
is the discussion of relationship between spectral properties of long-range operators and the dynamical
properties of the associated skew-products, which is done in section 2. Finally, in section 3, the Thouless
formula of theorem 1.1 is proven.
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Figure 5. Plot of the differences between the normalized entropies of the dual model of the
Schrödinger operator with analytic potential (1.22) for an increasing number of harmonics (1.23)
and the original operator, whose value, with 108 iterations, is 0.403 738 759 209. The results
correspond to α = 1.

2. Spectrum of generalized Schrödinger skew-products

This section contains the main tools which are used to prove theorem 1.1 and to understand the dynamics
of the long-range skew-products. It is convenient to consider a more general class of operators, which
is done in section 2.1 and the class defined in 2.2. Similarly to Schrödinger operators, a key idea
is the combination of the spectral properties with the dynamics of the linear skew-products that their
eigenvalue equations define. The dynamics of these skew-products, whose complex-symplectic structure
is considered in section 2.3, is uniformly hyperbolic in the resolvent set, as is proven in theorem 2.8 of
section 2.4.

2.1. From long-range operators to generalized Schrödinger operators

Given a long-range operator h = hV,W,θ0 , instead of writing the eigenvalue equation hx = αx in �2(Z, C)

for α ∈ C as a 2dth order 1-dimensional difference equation (1.9), we can write it as a second-order
d-dimensional difference equation by introducing the auxiliary variables

Xk = (
xdk+d−1 . . . xdk+1 xdk

)


for k ∈ Z. Hence, it is easy to check that (Xk)k satisfies

CXk+1 + B(θdk)Xk + C∗Xk−1 = αXk (2.1)

where

C =




Vd · · · V1

0
. . .

...

0 0 Vd


 , (2.2)

C∗ is its adjoint (the conjugate transpose) and B(θ) is the Hermitian matrix

B(θ) =




W(θd−1) V−1 · · · V−d+1

V1
. . .

. . .
...

...
. . . W(θ1) V−1

Vd−1 · · · V1 W(θ0)


 , (2.3)
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where θj = τ j (θ0). Note that equation (2.1) is an eigenvalue equation of the following generalized
Schödinger operator

(HC,B,θ0X)k = CXk+1 + B(ϑk)Xk + C∗Xk−1,

acting on �2(Z, C
d), over the orbit ϑk = τ dk(ϑ0) where ϑ0 = θ0.

To obtain a first-order system and the corresponding linear skew-product we use the fact that C is
invertible (since Vd �= 0 because the degree of V is exactly d) and write

(
Xk+1

Xk

)
︸ ︷︷ ︸

Uk+1

=
(

C−1 (αI − B(ϑk)) −C−1C∗

Id Od

)
︸ ︷︷ ︸

AH
α (ϑk)

(
Xk

Xk−1

)
︸ ︷︷ ︸

Uk(
ϑk+1

) = τ d(ϑk),

where ϑ0 = θ0. Here, and in the following, Id and Od are the d-dimensional identity and zero matrices,
respectively.

Note that the matrices of the skew-products associated with the eigenvalue equations (1.8) and (2.1)
are related by

(AH
α , τ d) = (Ah

α, τ )d

or, equivalently, AH
α (ϑ) = Ah

α(d; ϑ).

2.2. Spectrum of generalized Schrödinger operators and their transfer operators

In the following, we will generalize the setting of the previous section with the following ingredients:

(HS1) A base dynamical system (�, ν, µ) given by a homeomorphism ν : � → � on a compact metric
space �, and preserving an ergodic measure µ that is topological (i.e. positive on open sets);

(HS2) A dense base orbit (ϑk = νk(ϑ0))k∈Z ⊂ � with initial phase ϑ0 ∈ �;

(HS3) An invertible complex matrix C ∈ Md(C);

(HS4) A continuous matrix valued map B : � → Md(C) such that for each ϑ ∈ �, B(ϑ) is Hermitian
(i.e. B(ϑ)∗ = B(ϑ)).

We consider the following (generalized) Schrödinger operator acting on �2(Z, C
d)

(HX)k = CXk+1 + B(ϑk)Xk + C∗Xk−1, (2.4)

where X = (Xk)k ∈ �2(Z, C
d). In the setting of the previous section, ν, which is simply τ d , and C and

B, given by (2.2) and (2.3), respectively, satisfy the above hypotheses.
Hence, the associate eigenvalue problems are of the form

HX = αX,

for α ∈ C. As in the previous section, the (generalized) Schrödinger skew-product arising from this
eigenvalue equation is (Aα, ν) : C

2d × � → C
2d × � where

Aα(ϑ) =
(

C−1 (αI − B(ϑ)) −C−1C∗

Id Od

)
.

As it happens with many families of SL(2, R) linear skew-products [Joh86], it turns out that the
spectrum of H is linked to the uniform hyperbolicity of the linear skew-products (Aα, ν).

Let us recall that a linear skew-product (A, ν) in C
m × � is uniformly hyperbolic, or it has an

exponential dichotomy, if and only if there exist positive constants ρ < 1 and C > 0 and an invariant
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Whitney splitting C
m × � = Es ⊕ Eu characterized by the following rates of growth:

• vs ∈ Es(ϑ) ⇔ ||A(k; ϑ)vs || � Cρk||vs || for all k � 0;

• vu ∈ Eu(ϑ) ⇔ ||A(k; ϑ)vu|| � Cρ−k||vu|| for all and k � 0.

Here, and in the following, by Es(ϑ) and Eu(ϑ) we mean the fibres of the continuous bundles Es and
Eu, respectively, at the point ϑ .

The key result that links the spectral theory of Schrödinger operators and the dynamics of the
corresponding linear skew-products is the following.

Theorem 2.1. Let H be a generalized Schrödinger operator of the form (2.4) satisfying (HS1-4) above.
Then, the spectrum of H acting in �2(Z, C

d) is the set α ∈ C for which (Aα, ν) is not uniformly hyperbolic:

Spec(H, �2(Z, C
d)) = {α ∈ C | (Aα, ν) is not uniformly hyperbolic}.

In particular, the spectrum of H does not depend on the dense base orbit chosen.

Proof. In the present proof, we use several results relating dynamical properties of linear skew-products
and spectral properties of associated transfer operators, a point of view that was initiated in [Mat68],
and that has been fruitfully explored by many authors, i.e. [CL99, HPS77, dlL93, Mañ78, Swa81]. Some
results in [HdlL07] are also used.

The linear skew-product (Aα, ν) defines a transfer operator acting on sections U : � → C
2d of the

trivial bundle C
2d × �, by

AαU(ϑ) = Aα(ν
−1(ϑ)) U(ν−1(ϑ)). (2.5)

Note that, in principle, the spectrum of the operator depends on the space of sections it is acting on.
However, it is well known that the spectra of the transfer operator acting on the space of bounded
sections, B(�, C

2d), and on the space of continuous sections, C0(�, C
2d), are the same:

Spec((Aα, ν), B(�, C
2d)) = Spec((Aα, ν), C0(�, C

2d)).

An ingredient of the proof is that the spectral subbundles produced by the spectral gaps in
Spec((Aα, µ), B(�, C

2d)) are continuous. Moreover, one has the following characterization of uniform
hyperbolicity (see also [HPS77]):

(Aα, ν) is uniformly hyperbolic ⇔ (Aα, ν) is a hyperbolic operator in B(�, C
2d).

In general, a bounded linear operator is hyperbolic if its spectrum does not intersect the unit circle of
the complex plane. Using again Mather’s approach [Mat68], and the fact that there is a dense orbit, one
can see that the Weyl spectrum (also known as approximate point spectrum) is rotationally invariant, and
hence the full spectrum is rotationally invariant. That is, Spec((Aα, ν), B(�, C

2d)) consists of finitely
many annuli of the complex plane centred at 0, and, hence,

(Aα, ν) is not uniformly hyperbolic ⇔ 1 ∈ Spec((Aα, ν), B(�, C
2d)).

A crucial fact is that, since the base dynamics is regionally recurrent (and hence chain recurrent), then
the whole spectrum is Weyl spectrum:

Spec((Aα, ν), B(�, C
2d)) = SpecW ((Aα, ν), B(�, C

2d)).

Here, one uses fundamental results of Sacker and Sell [SS76], and Selgrade [Sel75], see [Swa81, HdlL07].
One can also consider (Aα, ν) as a transfer operator acting on sequences of vectors U = (Uk)k∈Z

supported on the dense orbit (ϑk = νk(ϑ0))k , by

(AαU)k = Aα(ϑk−1) Uk−1.

We consider its action on the space of bounded sequences, b(Z, C
2d), and on the space of �2 sequences,

�2(Z, C
d). Using localization arguments, in [HdlL07] it is proved that the corresponding Weyl spectra

are equal:

SpecW ((Aα, ν), b(Z, C
2d)) = SpecW ((Aα, ν), �2(Z, C

2d)).



1178 A Haro and J Puig

Moreover, since the orbit (ϑk = νk(ϑ0))k is dense, the spectra of the transfer operator acting on bounded
sections and on bounded sequences are the same, and the spectra are in fact Weyl spectra:

Spec((Aα, ν), B(�, C
2d)) = Spec((Aα, ν), b(Z, C

2d)),

‖
SpecW ((Aα, ν), B(�, C

2d)) = SpecW ((Aα, ν), b(Z, C
2d)).

In order to complete the proof, first note that

α ∈ SpecW (Hϑ0 , �
2(Z, C

d)) ⇔ 1 ∈ SpecW (Aα, �
2(Z, C

2d)) = Spec(Aα, B(�, C
2d)).

Then, since Hϑ0 is self-adjoint in �2(Z, C
d), Weyl criterium applies and

Spec(Hϑ0 , �
2(Z, C

d)) = SpecW (Hϑ0 , �
2(Z, C

d)).

With this spectral identity we are done with the proof of theorem 2.1. �

2.3. Geometry of Schrödinger skew-products

An important ingredient for our results is the complex-symplectic structure

� =
(

0 −C∗

C 0

)
, (2.6)

which satisfies �∗ = −�, and the fact that the our Schrödinger skew-products (Aα, ν), are complex
symplectic for real α, as we will now see. Following lemma, which is a straigthforward computation,
summarizes the main complex-symplectic geometrical properties of our Schrödinger skew-products.

Lemma 2.2. Aα(ϑ) = A0(ϑ) + α� where:

(SP1) A0(ϑ) is complex symplectic with respect to �: A0(ϑ)∗�A0(ϑ) = �;

(SP2) � is constant and zero-symplectic: �∗�� = 0;

(SP3) G = A0(ϑ)∗�� is constant, Hermitian and positive-semidefinite;

with

A0(ϑ) =
(−C−1B(ϑk) −C−1C∗

Id Od

)
, � =

(
C−1 Od

Od Od

)
, G =

(
Id Od

Od Od

)
.

An immediate consequence is the following:

Lemma 2.3. For α1, α2 ∈ C,

A∗
α1

�Aα2 = � + (α2 − ᾱ1)G.

In particular, for α ∈ C, A∗
α�Aα = � + 2 Im α G i. Hence, if α ∈ R, then Aα is complex symplectic.

2.4. Dynamics of Schrödinger skew-products

In view of theorem 2.1, the Schrödinger skew-product (Aα, ν) is uniformly hyperbolic if α is non-real
or sufficiently big, since the spectrum of the Schrödinger operator Hϑ0 is a compact set in the real line.
In this section, we review this statement, proving at the same time that the stable and unstable bundles
of (Aα, ν) are trivial, and constructing the so-called M-matrices (see [Joh87]) to parametrize them.

The following Atkinson’s condition is a key property for a direct proof of uniform hyperbolicity of
the Schrödinger skew-products (Aα, ν) for α ∈ C \ R, which we will see later in lemma 2.5.

Lemma 2.4. The Schrödinger skew-products (Aα, ν) satisfy:

(SP4) for any orbit (Uk, ϑk)k∈Z of (Aα, ν),∑
k∈Z

U ∗
k Uk � c

∑
k∈Z

U ∗
k GUk ,

with c = 2.
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Lemma 2.5. For any α ∈ C \ R, the Schrödinger skew-product (Aα, ν) is uniformly hyperbolic, and its
stable and unstable bundles are d-dimensional and trivial. That is, the bundles Es

α, E
u
α are parametrized

by global frames V s
α , V u

α : � → M2d×d(C) of the form

V s
α (ϑ) =

(
Ms

α(ϑ)

Id

)
, V u

α (ϑ) =
(

Id

Mu
α (ϑ)

)
,

where Ms
α, M

u
α : � → Md(C) are the so-called M-matrices, in such a way that

Es
α = {(V s

α (θ)vs, ϑ) | vs ∈ C
d , ϑ ∈ �}, Eu

α = {(V u
α (θ)vu, ϑ) | vu ∈ C

d , ϑ ∈ �}.
Moreover, Ms

α(ϑ) and Mu
α(ϑ) are invertible matrices for any ϑ ∈ �.

Proof. Since base dynamics is chain recurrent, in order to prove the uniform hyperbolicity of the
Schrödinger skew-product (Aα, ν) it suffices to prove that the only bounded orbits are the zero orbits
[SS76, Sel75]. Hence, let (Uk, ϑk)k∈Z be a bounded orbit. Using (SP1–SP3) above, for any couple of
indices m < n,

U ∗
n �Un − U ∗

m�Um = 2 Im α

n−1∑
k=m

U ∗
k GUk i. (2.7)

The left-hand side of (2.7) is uniformly bounded in both m, n and, since Im α �= 0,

∞ > c

∞∑
k=−∞

U ∗
k GUk �

∞∑
k=−∞

U ∗
k Uk ,

where in the second inequality we apply (SP4). Since the last infinite sum of non-negative numbers is
convergent, then limk→±∞ U ∗

k Uk = 0, and limk→±∞ Uk = 0. Taking limits m → −∞ and n → +∞ in
(2.7), we reach

0 = c

∞∑
k=−∞

U ∗
k GUk �

∞∑
k=−∞

U ∗
k Uk ,

and hence Uk = 0 for all k ∈ Z. That is, the only bounded orbit is the trivial one, and the Schrödinger
skew-product (Aα, ν) is uniformly hyperbolic.

In order to prove that the stable bundle Es
α can be parametrized by a global frame we proceed as

follows. First, for any ϑ ∈ � and U0 = (X0, X−1) ∈ Es(ϑ) \ {0}, consider the corresponding orbit
(Uk, ϑk)k∈Z. Then, taking m = 0 and limn→∞ in (2.7), we obtain

−U ∗
0 �U0 = 2Im α

∞∑
k=0

U ∗
k GUk i .

and, using the definitions of � and G,

Im (X∗
0C

∗X−1) =
∞∑

k=0

X∗
kXk Im α.

Hence, X0 �= 0 �= X−1, because otherwise
∑∞

k=0 X∗
kXk = 0, that implies Uj = 0 for all j � 1 and,

hence, Uj = 0 for all j ∈ Z, in contradiction with the fact that U0 �= 0. As a consequence, for any ϑ ∈ �

and for any X−1 ∈ C
d , there exists an unique X0 ∈ C

d such that U0 = (X0, X−1) ∈ Es
α(ϑ). This defines a

ϑ-depending invertible linear mapping Ms
α(ϑ) : C

d → C
d such that U0 = (Ms(ϑ)X−1, X−1) ∈ Es

α(ϑ).
The dependence of ϑ is continuous because the bundle Es is continuous.

Similar arguments lead to finding a parametrization of the unstable bundle Eu
α , as stated in the

lemma. �

In the following lemma, we consider the uniform hyperbolicity of (Aα, ν) when the modulus of α

is sufficiently large.
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Lemma 2.6. There exists ρ > 0 such that, for any α ∈ C with |α| > ρ, the Schrödinger skew-product
(Aα, ν) is uniformly hyperbolic, and its stable and unstable bundles are d-dimensional and trivial. That
is, the bundles Es

α, E
u
α can be parametrized by global frames V s

α , V u
α : � → M2d×d(C) of the form

V s
α (ϑ) =

(
Ms

α(ϑ)

Id

)
, V u

α (ϑ) =
(

Id

Mu
α (ϑ)

)
,

where Ms
α, M

u
α : � → Md(C) are the so-called M-matrices, in such a way that

Es
α = {(V s

α (θ)vs, ϑ) | vs ∈ C
d , ϑ ∈ �}, Eu

α = {(V u
α (θ)vu, ϑ) | vu ∈ C

d , ϑ ∈ �}.
Moreover, Ms

α(ϑ) and Mu
α(ϑ) are invertible matrices for any ϑ ∈ �.

Proof. We write the invariance equations of the stable and unstable bundles as

Aα(ϑ)V s(ϑ) = V s(ν(ϑ))�s(ϑ) , (2.8)

Aα(ϑ)V u(ϑ) = V u(ν(ϑ))�u(ϑ) , (2.9)

where the unknowns are the M-matrices Ms, Mu : � → Md×d(C), and the corresponding dynamics
given by the �-matrices �s, �u : � → Md×d(C).

Let us start by analysing (2.8). This is equivalent to solving the Ricatti equation

C−1(α − B(ϑ))Ms(ϑ) − C−1C∗ = Ms(ν(ϑ))Ms(ϑ), (2.10)

and taking �s(ϑ) = Ms(ϑ) or, equivalently, the fixed point equation

Ms(ϑ) = 1

α
(C∗ + B(ϑ)Ms(ϑ) + CMs(ν(ϑ))Ms(ϑ)). (2.11)

Note that a solution Ms(ϑ) of the Ricatti equation is invertible for all ϑ ∈ �, since C is invertible. We
consider the operator �s : C0(�, Md×d(C)) → C0(�, Md×d(C)) defined by the right-hand side of (2.11)
in the Banach spaceC0(�, Md×d(C)) endowed with the sup-norm‖·‖. Let us defineas = |C∗|, bs = ‖B‖,
cs = |C|. Then, for any closed ball of radius R in C0(�, Md×d(C)), and for any Ms

1 , M
s
2 ∈ B̄(0, R), then

||�sMs
1 || � 1

|α| (as + bsR + csR
2)

and

||�sMs
2 − �sMs

1 || � 1

|α| (bs + 2csR)||Ms
2 − Ms

1 ||.

Hence, for R2
s � as

cs
= |C∗|

|C| and |α| > bs + 2csRs , the operator �s is contracting in B̄(0, Rs), with

contraction rate Ks = 1
|α| (bs + 2csRs). Hence, there is an unique Ms

α ∈ B̄(0, Rs) solving (2.11), and
Ms

α, �
s = Ms solve (2.8). Moreover, taking Ms

0(ϑ) = 0, then

||Ms
α|| � 1

1 − Ks

||�sMs
0 − Ms

0 || = 1

1 − Ks

1

|α|as.

As a result, if |α| > as + bs + 2csRs , then ||�s
α|| = ||Ms

α|| < 1 and the forward dynamics on the bundle
parametrized by V s

α is uniformly contracting.
The analysis of (2.9) is analogous. The Ricatti equation is

Mu(ν(ϑ))C−1(α − B(ϑ)) − Mu(ν(ϑ))C−1C∗Mu(ϑ) = I, (2.12)

and, then �u(ϑ) = C−1(α −B(ϑ))−C−1C∗Mu(ϑ). Note that, a posteriori, both �u(ϑ) and Mu(ν(ϑ))

are invertible, and �u(ϑ) = (Mu(ν(ϑ)))−1. The Ricatti equation is equivalent to the fixed point equation

Mu(ϑ) = 1

α
(C + Mu(ϑ)C−1B(ν−1(ϑ))C + Mu(ϑ)C−1C∗Mu(ν−1(ϑ))C). (2.13)

We consider the operator �u : C0(�, Md×d(C)) → C0(�, Md×d(C)) defined by the right-hand side of
(2.13). Let us define au = |C|, bu = ||C−1BC||, cu = |C−1C∗| |C|. Hence, for R2

u � au

cu
= 1

|C−1C∗| and

|α| > bu + 2cuRu, the operator �u is contracting in B̄(0, Ru), and there is an unique Mu
α ∈ B̄(0, Ru)

solving (2.13), and Mu
α, �u

α = (Mu
α ◦ ν)−1 solve (2.9). If, moreover, |α| > au + bu + 2cuRu, then
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‖(�u
α)

−1‖ = ‖Mu
α‖ < 1, and the backward dynamics on the bundle parametrized by V u

α is uniformly
contracting.

In summary, if |α| is sufficiently large, the skew-product (Aα, ν) is hyperbolic, and the stable and
unstable bundles are d-dimensional. �

Remark 2.7. Since the linear skew-product (Aα, ν) is hyperbolic for any α in the resolvent set
C \ Spec(H, �2(Z, C

d)), the corresponding stable and unstable bundles are d-dimensional, since they
depend analytically on α in the resolvent set. In fact, for α ∈ R \ Spec(H, �2(Z, C

d)) the stable and
unstable bundles are Lagrangian (and hence d-dimensional), since the linear skew-product is complex
symplectic.

Lemmas 2.5 and 2.6 are statements about the existence of a conjugacy (Pα, id) between the
Schrödinger skew-product (Aα, ν) and a block-diagonal skew-product (�α, ν), for α ∈ C \ R or
sufficiently large |α|, respectively. In the following theorem, we restate these results, for future reference.

Theorem 2.8. There exists ρ > 0 such that, for any α ∈ C \ [−ρ, ρ], there exist an invertible linear
skew-product (Pα, id), of the form

Pα(ϑ) =
(

Ms
α(ϑ) I

I Mu
α (ϑ)

)

and a block-diagonal skew-product (�α, id), of the form

�α(ϑ) =
(

�s
α(ϑ) 0
0 �u

α(ϑ)

)

such that:

(1) (Pα, id) conjugates (Aα, ν) with (�α, id), that is:

Aα(ϑ)Pα(ϑ) = Pα(ν(ϑ))�α(θ); (2.14)

(2) the stable and unstable bundles of the uniformly hyperbolic linear skew-product (Aα, ν) are

Es
α = {(V s

α (ϑ)vs, ϑ) | vs ∈ C
d , ϑ ∈ �},

Eu
α = {(V u

α (ϑ)vu, ϑ) | vu ∈ C
d , ϑ ∈ �},

where

V s
α (ϑ) =

(
Ms

α(ϑ)

Id

)
, V u

α (ϑ) =
(

Id

Mu
α (ϑ)

)
;

(3) For any ϑ ∈ �, the d × d matrices Ms
α(ϑ), Mu

α (ϑ), �s
α(ϑ), �u

α(ϑ) are invertible, and �s
α(ϑ) =

Ms
α(ϑ), �u

α(ϑ) = (
Mu

α(ν(ϑ))
)−1

;

(4) For any ϑ ∈, the d × d matrices I − Ms
α(ϑ)Mu

α (ϑ) and I − Mu
α(ϑ)Ms

α(ϑ) are invertible and

Pα(ϑ)−1 =
(−Mu

α(ϑ) I

I −Ms
α(ϑ)

) (
I −Ms

α(ϑ)Mu
α(ϑ) 0

0 I −Mu
α(ϑ)Ms

α(ϑ)

)−1

(2.15)

Proof. Statements (1), (2) and (3) of the theorem follow from lemmas 2.5 and 2.6, for α ∈ C \ R and
|α| > ρ, respectively.

We have to prove now that matrices I −Ms
α(ϑ)Mu

α(ϑ) and I −Mu
α(ϑ)Ms

α(ϑ) are invertible, and then
the formula for Pα(ϑ)−1 follows immediately. Suppose that I − Ms

α(ϑ)Mu
α(ϑ) is not invertible. Hence,

there exists v ∈ C
d \ {0} such that Ms

α(ϑ)Mu
α(ϑ)v = v. Note that (v, Mu

α (ϑ)v) ∈ Eu
α(ϑ) \ {0}, and

w = Mu
α(ϑ)v ∈ C

d \{0}. Now, (Ms
α(ϑ)w, w) ∈ Es

α(ϑ)\{0}. But, then, (Ms
α(ϑ)w, w) = (v, Mu

α (ϑ)v) ∈
Eu

α(ϑ) \ {0}, which is incompatible. The proof that I − Mu
α(ϑ)Ms

α(ϑ) is invertible is similar. �
As a consequence of the previous result we can derive, for α ∈ C\[−ρ, ρ], a formula for the entropy

of the uniformly hyperbolic linear skew-product (Aα, ν), given by the sum of the d positive Lyapunov
exponents.
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Corollary 2.9. For α ∈ C \ [−ρ, ρ], and for µ-a.e. ϑ ∈ �,

lim
k→∞

1

k
log |det A11(k; ϑ, α)| = γ (α),

where

Aα(k; ϑ) =
(

A11(k; ϑ, α) A12(k; ϑ, α)

A21(k; ϑ, α) A22(k; ϑ, α)

)

and

γ (α) = γ1(α) + . . . + γd(α)

is the sum of the d positive Lyapunov exponents of the uniformly hyperbolic linear skew-product (Aα, ν).

Proof. By iterating the conjugacy identity Aα(ϑ)Pα(ϑ) = Pα(ν(ϑ))�α(θ), we obtain

Aα(k; ϑ) = Pα(ν
k(ϑ))�α(k; ϑ)Pα(ϑ)−1,

from where

A11(k; ϑ, α) = (I − �s
α(k + 1, ϑ)�u

α(−(k + 1), νk(ϑ))) �u
α(k; θ)(I − �s

α(1, ϑ)�u
α(−1, ϑ))−1.

Hence, since both forward dynamics of (�s
α, ν) and backward dynamics of (�u

α, ν) are contracting,

lim
k→∞

1

k
log |det A11(k; ϑ, α)| = lim

k→∞
1

k
log

∣∣det �u
α(k; ϑ)

∣∣ .
Oseledec’s theorem [Ose68, BP02] applies to the linear skew-product (�u

α, ν), so that its Lyapunov
exponents, γ1(α) � · · · � γd(α), which are defined µ-almost everywhere and are positive, satisfy

lim
k→∞

1

k
log

∣∣det �u
α(k; ϑ)

∣∣ = γ1(α) + . . . + γd(α).

The proof of the corollary is finished by noting that these Lyapunov exponents are in fact the first d

Lyapunov exponents of (Aα, ν). �

3. Proof of Thouless formula

To prove theorem 1.1 we will proceed as in [KS88] and [CS83b] but replacing the Schrödinger skew-
product on a strip by the generalized Schrödinger skew-products. We must show that

γ̄ h(α) = γ h(α) + log |Vd | =
∫

R

log |α − a| dκh(a), (3.1)

where the integration is in terms of the density of states for the long-range operator

(hx)n =
d∑

k=−d

Vkxn+k + W(θn)xn,

and γ h(α) = γ h
1 (α) + · · · + γ h

d (α) is the entropy of the long-range skew-product (Ah
α, τ ). Recall that

the relation between the long-range skew-product (Ah
α, τ ) and the generalized Schrödinger skew-product

(AH
α , τ d) is given by the composition formula (AH

α , τ d) = (Ah
α, τ )d . Hence, the corresponding entropies

satisfy the identity

γ H (α) = dγ h(α) = d
(
γ̄ h(α) − log |Vd |

)
. (3.2)



Thouless formula and Aubry duality 1183

3.1. Subharmonicity of the entropy

A key point in the proof of a Thouless formula is that the two sides of (3.1) are subharmonic functions
of α in C (see [CS83a, CS83b, Joh87, KS88]). Indeed, the right-hand side is clearly a subharmonic
function [CS83b] and, as we will see in lemma 3.1, one can use a classical argument to prove that the
left-hand side is subharmonic as well. Since two subharmonic functions which agree on a full-measure
set of C (as, for example, C \ R), must agree on all the complex plane, it suffices to prove the formula
(3.1) for non-real α.

Lemma 3.1. The map α ∈ C 	→ γ h(α) is subharmonic.

Proof. For any θ ∈ T the map

α 	→ ∧pAh
α(n; θ)

is analytic in C so

α 	→ γ h,n(α) = 1

n

∫
�

log
∥∥∧dAh

α(n; θ)
∥∥ dµ

is subharmonic for n > 0. Since, for any α ∈ C, the sequence (γ h,n(α))n is subadditive, then
limn→∞ γ h,n(α) = infn>0 γ h,n(α). Moreover, the subsequence (γ h,2k

(α))k is decreasing. Since the
pointwise limit of a decreasing family of subharmonic functions is subharmonic, then the map

α 	→ γ h(α) = lim
k→+∞

γ h,2k

(α)

is subharmonic. �

3.2. Spectral properties of the restriction of the long-range operator

A connection between the dynamics and the spectral problem for finite sequences is given by the following
relationship. This will be useful later on, since we will pass to the limit.

Lemma 3.2. Let (Ah
α, τ ) be the long-range skew-product of the long-range operator hθ0 = hV,W,θ0 .

Denote

Ah
α(n; θ0) =

(
Ah

11(n; θ0, α) Ah
12(n; θ0, α)

Ah
21(n; θ0, α) Ah

22(n; θ0, α)

)
.

For k � 1:

det Ah
11 (kd; θ0, α) = V −kd

d det
(
αIkd − h

[0,kd[
θ0

)
,

where h
[0,n[
θ0

is the restriction of the operator hθ0 to [0, n[ with zero boundary conditions.

Proof. From the definition of Ah
α(n; θ0)



xn+d−1

...

xn

xn−1

...

xn−d




= Ah
α(n; θ0)




xd−1

...

x0

x−1

...

x−d




.

In addition, the restriction of the operator αI − hθ0 to [0, n[ with zero boundary conditions, i.e.

xn+d−1 = · · · = xn = 0 and x−1 = · · · = x−d = 0,
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is given by the n-dimensional self-adjoint matrix αIn − h
[0,n[
θ0

where

h
[0,n[
θ0

=




wn−1 V1 V2 . . .

V−1 wn−2 V1
. . .

V−2 V−1
. . .

. . . V2

...
. . .

. . . V1

V−2 V−1 w0




,

where wj = W(τj (θ0)).
Therefore, a vector

x = (
xn−1 . . . x0

)
 ∈ C
n

is a nonzero solution of the eigenvalue equation h
[0,n[
θ0

x = αx if and only if the vector of the last d

components, x[0,d[ = (xd−1, . . . , x0), is nonzero and moreover


0
...

0
xn−1

...

xn−d




= Ah
α(n; θ)




xd−1

...

x0

0
...

0




.

In terms of the block decomposition of Ah
α , this condition reads as

0 = Ah
11(n; θ, α)x[0,d[.

This implies that the determinant of Ah
11(n; θ0, α) vanishes if and only if the determinant of

(αIn − h
[0,n[
θ0

) vanishes. As functions of α both are polynomials and the latter is monic of degree n

and divides det Ah
11(n; θ0, α). Indeed, since h

[0,n[
θ0

is self-adjoint, it diagonalizes and the geometric and

algebraic multiplicities of its eigenvalues agree. Moreover, dim ker(αIn−h
[0,n[
θ0

) � dim ker Ah
11(n; θ0, α).

We will show now that the degree of Ah
11(n; θ0, α) is also n and therefore, the two polynomials differ

in a multiplicative constant. We will prove that this multiplicative constant is V −n
d , for n multiple of d

(although this is true for any n).
The 11 block of the fundamental matrix of the linear skew-product (AH

α , τ ), given by AH
α (k; θ0) =

Ah
α(kd; θ0), satisfies the recurrence

CAH
11(k + 1; θ0, α) + Bk(θ0)A

H
11(k; θ0, α) + C∗AH

11(k − 1; θ0, α) = αAH
11(k; θ0, α),

with AH
11(0; θ0, α) = I and AH

11(1; θ0, α) = C−1(α −B0(θ0)). Here Bk(θ0) = B(τdk(θ0)). By induction,
AH

11(k; θ0, α) is of the form

AH
11(k; θ0, α) = C−kαk +

k−1∑
�=0

Dk �(θ0)α
�,

where Dk,0(θ0), . . . , Dk,k−1(θ0) are matrices that can be computed recursively (in particular D1,0 =
−C−1B0(θ0)). Hence, det Ah

11(kd; θ0, α) = det AH
11(k; θ0, α) is a polynomial of degree kd in α, whose

main coefficient is V −kd
d . �

3.3. Proof of Thouless formula for Im α �= 0

With the preliminaries of the previous section, the proof is now as for Schrödinger operators on a strip.
First of all we show the following:
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Proposition 3.3. Let α ∈ C \ R. Then

lim
n→∞

1

n
log

∣∣∣det
(
αIn − h

[0,n[
θ0

)∣∣∣ =
∫

R

log |α − a| dκh(a),

where κh is the density of states of the long-range operator h.

Proof. Let λ
(n)

1 , . . . , λ(n)
n the eigenvalues of h

[0,n[
θ0

(which are real) counted with multiplicities. That is

det
(
αI − h

[0,n[
θ0

)
= (α − λ

(n)

1 ) · · · · · (α − λ(n)
n ).

Since Im α �= 0, we can write

1

n
log

∣∣∣det
(
αI − h

[0,n[
θ0

)∣∣∣ = 1

n

n∑
k=1

log
∣∣∣α − λ

(n)

k

∣∣∣
=

∫
R

log |α − a| dκ
[0,n[
h (a),

where

κ
[0,n[
h = 1

n

n∑
k=1

δ
λ
(n)
k

is the spectral measure of h
[0,n[
θ0

, which is a discrete uniform probability measure supported on the

eigenvalues λ
(n)

1 , . . . , λ(n)
n . Since the density of states is the weak limit of the measures κ

[0,n[
h

lim
n→∞

∫
R

log |α − a| dκ
[0,n[
h (a) =

∫
R

log |α − a| dκh(a),

because log |α − a| is continuous for (α, a) ∈ (C \ R) × R (note that the support of the measures is
contained in R). �

Corollary 3.4. Let α ∈ C \ R. Then∫
R

log |α − a| dκh(a) = γ h(α) + log |Vd |,

where γ h(α) = γ h
1 (α) + · · · + γ h

d (α) is the sum of the d positive Lyapunov exponents of the long-range
linear skew-product (Ah

α, τ ).

Proof. The result is a consequence of lemma 3.2 and corollary 2.9, since∫
R

log |α − a| dκh(a) = lim
k→∞

1

kd
log

∣∣∣det
(
αIkd − h

[0,kd[
θ0

)∣∣∣
= lim

k→∞
1

kd
log

∣∣V kd
d det Ah

11 (kd; θ0, α)
∣∣

= lim
k→∞

1

kd
log

∣∣det Ah
11(kd; θ, α)

∣∣ + log |Vd |

= 1

d
lim
k→∞

1

k
log

∣∣det AH
11(k; θ, α)

∣∣ + log |Vd |

= 1

d
γ H (α) + log |Vd |

= γ h(α) + log |Vd |. �

With the proof of this corollary we end the proof of theorem 1.1.
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