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Problem 6.2. The thing is not so difficult. With a change of variable (that has already been
done several times) you can write

V (x) =

∫
R3

m(x′)

|x− x′|
dV ′ =

∫
R3

m(x− x′)

|x′|
dV ′.

With this second form it is easier to show that V is continuous at a generic point x = x0. The only
Functional Analysis result you have to use is that if f ∈ L1 then for each ε there exists a δ such that
if |h| < δ then ‖f(x) − f(x + h)‖1 < ε (you can use this without proof, but the proof is an easy
consequence of the fact that continuous functions of compact support are dense in L1). The same
argument does not hold in L∞, and the only thing you can say is that ‖f(x)− f(x + h)‖∞ ≤ 2‖f‖∞

Therefore

|V (x0)− V (x0 + h)| = |
∫
R3

m(x0 − x′)−m(x0 − x′ + h)

|x′|
dV ′| ≤

≤ 3

2
(4π)1/3||m(·)−m(·+ h)||2/31 |||m(·)−m(·+ h)||1/3∞ ,

the first factor tends to zero if h→ 0, and the second remains bounded.

Problem 6.3 When m(x) has compact support, say inside the ball of radius R, then

|V (x)| = |
∫
R3

m(x′)

|x− x′|
dV ′| = |

∫
BR

m(x′)

|x− x′|
dV ′| ≤

≤ 1

|x| −R

∫
BR

|m(x′| dV ′|,

if |x| > R. And this quantity tends to zero as |x| → ∞.

Then, for a general m(x′) you can approximate m(x′) by the truncated functions mN (x′) that
coincide with m inside the ball of radius N and vanish outside. For these functions ‖m−mN‖1 → 0
as N →∞, while ‖m−mN‖∞ remains bounded. Therefore

|V (x)− VN (x)| ≤ 3

2
(4π)1/3||m−mN ||2/31 |||m−mN ||1/3∞ ,

a quantity that tends to zero as N → ∞. From this and the fact that each |VN | vanishes at infinity,
it is easily deduced the same property for V .

Problem 6.4 This problem is solved in
Lawrence C. Evans, Partial Differential Equations, American Mathematical Society, 1998
Theorem 1 on page 23. He also assumes that m(x) is of compact support. You can also use this extra
assumption, if you wish. Else, you can use an arbitrary ball and express m = m1 + m2, where both
are of class C2, m2 vanishes inside this ball, and m1 has compact support inside a concentric ball of
twice the radius. Then you can use the proof of Evans for the potential created by m1, but you can
observe that the potential created by m2 is harmonic in the ball (the potential is harmonic outside
the masses). Poisson’s equation is satisfied only in the ball, but remember that the ball is arbitrary.
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The proof of Evans is excellent and has three steps. In the first step he proves that the potential
is of class C2. Then the conclusion can be derived from Gauss Theorem (page 7 of my slides). That
would be an alternative to the steps 2 and 3 of Evans. But the spirit of the problem is more in the
direction of the Evans’ proof, because in the C2 case everything can be computed without (say) much
work.

Problem 6.5 The way I see it is the following. First start with test functions φ ∈ C4c (R3) instead
of merely C2c . Let V ′ be the potential created by the density ∇2φ. Since ∇2φ is of class C2 you can
use the previous problem, and deduce that ∇2V ′ = −4π∇2φ, and using the behaviour at infinity we
can deduce (maximum principle for the difference V ′ + 4πφ) that V ′ = −4πφ. Then,

−
∫
∇φ · ∇V =

∫
∇2φ V =

∫
∇2φ (m ∗ 1/|x|) =

∫
∇2φ(x)

∫
m(y)(1/|x− y|) dy dx

=

∫
m(y)

∫
∇2φ(x)(1/|x− y|) dx dy =

∫
m(y)V ′(y) dy =

∫
m(y)(−4πφ(y)) dy,

as we wanted to prove.

Now the problem is to pass from C4c to C1c . Forget this part, if you are too busy. What I would do
is to use mollifiers of class C∞c of the form ρn(x) = n3ρ0(nx) and consider φn = φ ∗ ρn. We have that
the functions φn are of class C4, that φn → φ in the C1 norm, and that the φn and φ have a compact
supports contained in a common bounded set K. Then,∫

∇φ · ∇V =

∫
K
∇φ · ∇V = lim

n→∞

∫
∇φn · ∇V = lim

n→∞

∫
m(x)(4πφn(x)) = 4π

∫
m(x)φ(x).

Problem 6.6 You can use problem 6.5, because C∞c ⊂ C1. The rest of the problem is just using
the definition of distributional derivatives, and the definition of the δ function.
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