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0. Introduction

This paper is concerned with the dynamical system generated by certain
semilinear damped wave equations. In §l we reproduce a result obtained in
a previous paper (Mora[1986]), which shows that, when the damping is suffi-
ciently large this dynamical system has the property that its global attrac-
tor is contained in a finite-dimensional local invariant manifold of class

cl. In the present paper, we will show that, on the other hand, when the
damping is small, it is a fairly generic fact that there is no finite-dimen
sional local invariant manifold of class C1 containing the global attrac-
tor. The exact result obtained in this connection is stated in Theorem 4.1
In the way towards this result, we have developed some auxiliary results
which have some interest by themselves, namely, a result giving optimal in-

ner products for linear wave equations (Theorem 2.1), and a Cﬂ lineari-
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zation theorem (Theorem 3.1) .

The reason why small damping makes difficult the existence of finite-
dimensional (local) invariant manifolds of class C4 is mainly linear.
When the damping is small, the linear part of the equation at a given sta-
tionary point easily has all its eigenvalues on the same vertical line of
the complex plane. This immediately implies that there is no normally hyper
bolic invariant manifold of class C! containing that point. If the eigen
values are all simple, then we can prove that, even dropping the condition
of normal hyperbolicity, one has only a countable family of finite-dimensio
nal invariant manifolds of class €' . 1In %2 , this crucial fact is esta-
blished for the linear problem. By using the Ct linearization theorem of
§3 , this fact can then be translated to the neighbourhood of a stationary
state of a nonlinear problem.

Let us now consider a nonlinear problem with a heteroclinic orbit from
¢ to 1, where b is a stationary state with a linearization of the
type described above. Certainly, the global attractor of the system must
contain the connecting orbit. But, on the other hand, it seems extremely
casual that this orbit arrives at the neighbourhood of \y by precisely one
of the few finite-dimensional invariant manifolds of class C‘ which con-
tain ‘\l) . If actually it does not do so, then we can conclude that the
global attractor is not contained in any finite-dimensional invariant mani-
fold of class Cl. 1n %4 , we exhibit a family of equations depending on
a parameter which varies over an open ball of a certain Banach space, for
which family we have been able to prove that the property of non-existence
of a finite-dimensional (local) invariant manifold of class C1 containing
the global attractor is indeed generic.

Finally, let us remark that this example of non-existence differs from
the one given by Mallet—Paret,Sell[l986l for parabolic equations in that

we do not require our manifolds to be normally hyperbolic.

1. The equations and a result of existence

We shall be considering evolution problems of the following form, where

W is a function of & (Ol'ﬂ\-_-.:_Q and teR with values in R :

Uy + 200U = U, + £6e,u) (1.1)
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“«.l,‘ = u,‘_\,‘__“ = o (1.2)y

=W, Ul =% (1.3)
or the analogous one where (l.2)y is replaced by

“\x.zo = U.L‘=“ = o (1.2)D

Here, O 1is a non-negative real parameter, called the damping coefficient,
and -F is a function QxR —» (R . The function -{: is assumed to satis-

fy the following conditions:

(Fla) Ac(-,u.‘) is measurable for all yeR ; G(x,-) is of class
C'“"\ for almost all 2¢e£) and some V\>o independent of »¢.

(F1b) For every bounded open interval J< R , the quantity

A % . )
\\H\Z“-'—‘*Sol-:(ﬁle[}lf(x,u)\)+(i'ég_lﬁ,ft.u)\)+ (Sup o - ffan| \)J d (1.4

\reJ' tu-viN
WU

is finite (di.e. the mapping st {(x)y from £ to the
Banach space C”’)(:‘f\ belongs to Lg in the sense of Bochner)

455 Sup {eu)

o (1.5)

(F2) &m Sup
(ul->c0

Thereafter, we shall consider variations in the function -c . For our
purpose, it will suffice to restrict our attention to variations of the fol-

lowing form
foemy = \(;(x.u\ + c&(—x.u.\ (1.6)

where -(:o is a fixed function satisfying (Fla),(Flb),(F2) , and the per-

turbation % varies within a space of the form

%(J\ 1= -\% Qle—»R\ % satisfies (Fla),(Flb) , and‘ 1.7

%(?cu.\ =0 whenever u.¢J

where J is a fixed bounded open interval of R . one easily verifies that

QCH is a Banach space with norm given by (1.4) .
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Problem (1.1),(1.2)B,(l.3) ( B stands for either N or D ) will
be viewed as a second order evolution problem for a functional variable

w: R —=> Ly=Ly(Q) , namely

W+ 2l + Aw = Fu (1.8)
wol = Ue,  Gfo)= W5 (1.9)

where A and F denote the operators on Lo given by
Au =, (1.10)
(Fuye = £(=e,um)) (1.11)

with domains respectively equal to Hg and H’ls . Here, H% (k=4.7-‘ deno
te the closures in Hh of the set -(U.:Q—-).R\ ueC”{ﬁ\ and satisfies
.2t

Problem (1.8),(1.9) can be rewritten as a first order evolution pro-
blem for the pair (w,&.) as a variable with values in HLX Lo . 1Instead

of this, we shall find more convenient to use the pair
U = (uw) = (u,ousit) (1.12)

The problem takes then the following form, where {(Ji= (u,“r\ represents
a variable with values in H‘Bx LZ:

U = —aU + AU + FU (1.13)
VY = U, (1.14)
Here, A and [F denote the operators on Hhxly given by
Auw) = (w,u-Awn) (1.15)

Fuw = (o, Fu) (1.16)

with domains respectively equal to HZBXHJ"B and BXLQ_ . When necessary,
the dependence of things with respect to % will be made explicit by wri-
ting ? as a subindex, like in -F 5 E s Or F . .

l T

It is a standard fact that the operator /A is the generator of a group
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on HABX L2 . In fact, this will follow as a lateral result from the esti-
mates obtained in §2 . On the other hand, the form of conditions (Fla)
and (Flb) implies that, for every bounded open interval JCR , the
mapping (U’%\I—»FU goes from (H"BX‘-Z\X%(J\ to H‘BXLZ , and it
is of class C"""] uniformly on bounded sets. With this, the preceeding pro-
blem fits in the standard theory of semilinear evolution equations, which

allows us to obtain the following result:

Theorem 1.1 . Assume that -F satisfies (¥la),(Flb),(F2) . Then, the pre
ceeding problem generates a group T('B\ (‘té R) (of nonlinear operators)
on HABXLZ with the following properties: (i) For every er H%XL-)_ s
the mapping T(-)U, : R —> H1BXL2 is continuous; if Uye& HQB."H‘B , then
this mapping is continuously differentiable. (ii) For each compact inter-
val [T},,T,JCR » the mapping H‘BXLQ_ 2 Uy = T\, e C(CTO,-E],H‘S*LQ)
is of class C“"l uniformly on bounded sets. (iii) There is a compact glo
bal attractor in the sense of Babin,Vishik[1983] and Hale[1985] . Assume
now that 'F has the form (1.6) , where {.‘0 satisfies (Fla),(Flb),(F2) ,
and varies over &y, JT being a fixed bounded open interval of R .
Let Tg(j\ (teR) denote the group corresponding to a given Cj’ . Then,
for each compact interval CTO,T‘I]CR’ the mapping

(HexLa)x GI) = (Uo,q) —— Tg(Wy € C(CTeTa] Hgela) s of

class CM"‘ uniformly on bounded sets. m

The proof of this theorem is fairly standard, so that we shall give only a

summary with references.

Summary of the proof. As usual, the curves T(-\Uo e C(fom), \-fsx\q\ are

looked for as solutions of the integral equation resulting from the varia-
tion of constants formula. The local existence and uniqueness of solutions
of this equation is obtained by means of a contraction mapping argument

(see for instance Tanabe[1979]3 (Thm.6.1.4) ). The proof that these solu
tions can be extended to the whole interval (—oo,-reo\ is based upon sui-
table a-priori estimates. These follow easily from the existence and pro-=

perties of the Lyapunov functional

- U
@(“,N‘\ = S-Q %Cgﬂ-%‘ﬁc - ﬁ_(-,ulhl , where q‘_(x,u 1= gf(ﬁ,g\dﬁ (1.17)

(here and in the following CL stands for W-®W. ), It is a well-known

fact that é , the derivative of & along a solution of (1.13) , is given
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by é =—2°(5;Q‘}2 . The a-priori estimates mentioned above follow from the
following twoproperties of é s whose derivation uses the fact that £
satisfies (F2) : (i) the level sets of § s {U\Q(U\Sc.} Cc.éR\ s
are bounded in H"BXLQ_ 5 (i1) é satisfies an inequality of the form
—40((\§+M\ < é < O .  The proof that T(*\Uo is continuously
differentiable when UOE.H%"HL can be found for instance in
Tanabe [1979]) (Thm.6.1.3) . The i dependence of solutions with res-
pect to the initial state Uo and the parameter q, can be obtained by
proceeding as in ‘Henry[1981] (Thm.3.4.4) . Finally, the proof of statement
(iii) can be found in Halef{1985] (§3, Thm.6.1) (see also Babin,Vi-
shik [198371 (Thm.6.1) ) .

In the following we shall refer to the group T(_k\ (ke RY as the dynami-
cal system generated by problem (l.l),(I.Z)B,(l.3) .

Next we reproduce a slightly generalized version of a result obtained
in Mora [1986] , which establishes the fact that, for large values of &,
the global attractor is contained in a finite-dimensional local invariant
manifold of class C4 . A previous result ofn this direction has been ob-
tained by Sola-Morales, Valencia L19861, who, for a spatially homoge-
neous problem with Neumann boundary conditions, give sufficient conditions
on the coefficients which ensure that all the flow is attracted by the in-

variant subspace formed by the spatially homogeneous states.

Theorem 1.2 . Assume that -F satisfies (Fla),(Flb),(F2) and (-'(-x,o\=0 s
and consider the dynamical system on H‘BKLQ_ generated by problem (l1.1),
(I.Z)B,(l.B) . There exists a finite constant € such that, for every
integer M satisfying the following condition
2
2 Al
zn+4 > 8L 2 > Y + —mo— (1.17)
J (2w+1) - 8L
there is a local invariant submanifold of class C‘l and dimension
n (for B=D ) or W+ (for B=N ) which contains the global attrac-

tor. m

*®
Corollary 1.3 . There exists a finite constant «* such that, for (>,
the global attractor lies in a finite-dimensional local invariant submani-
fold of class C4 . u

The proof of Theorem 1.2 is a trivial generalization of the ome given in
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Mora [198613 . We only remark here that it is crucially based upon the

use of the inner products presented in §2.1 below.

2. The linear problem

In this section we deal with an abstract linear evolution problem which
includes the linear damped wave equation as well as the linearization of a
semilinear equation about a stationary state. The problem under considera-

tion has the form

A+ 2 + Au = 0 (2.1)
wo) = Wo, Qp) = Vg (2.2)

where W is now a variable with values in a general Hilbert space E ., x
is a real number (not necessarily negative), and A 1is a self-adjoint ope-

rator on E with numerical range bounded from below; i.e.

in {AW,UY

= > -0 (2.3)
Pa weDom(a)y {Wn?

where &s,»» denotes the inner product of E . As it is well-known, M,
coincides with the smallest element of the spectrum of A . In the follo-
wing, E”" will denote the Hilbert space consisting of the domain of the

operator (A+EI)"2 endowed with the inner product
Ay A
wly, = {(A+EIYw, (A+ETY2U ) (2.4)

where & is a real number greater than —)M . Different choices of E)—}h
result in the same vector space with different but equivalent inner pro-
ducts.

Similarly as before, problem (2.1),(2.2) will be reconsidered as a

first order evolution problem for the pair U= uWw) 1= (u,xuﬁﬁ,\ ; i.e.

U = -«xU + AU (2.5)
vy = U, (2.6)

where A will have the form (1.15) . Here, U will be considered as ta-

)
king values in E:= E/"xE s and A will be considered as an operator on
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E with domain DOm (/A\==' DOM(A\X Edh .

2.1 Choice of inner products

The inner product on [E:= Evsz will be taken as the direct sum of
one of the inner products on E"z given by (2.4) and the inmer product
on E . Among all the possible values of 5 > we will choose a particular
one which makes the numerical range of A to be contained in a vertical
strip as small as possible. As it is shown by the following theorem, this is

obtained for & = wax ('O(Q,“q'-z}kq\ > which amounts to take
\ A, .
C(A-RY A, (A-LIV2 0D + <w&d 1 oL"'(,n,

UIO> = A (2.7)
W% {<(A+(u“-2}«.\1§‘"ul A+c£.2)mn‘"&>+<w,w> i atay

This choice of & has been inspired by the work of Sola-Morales,Valencia

[1986] .

Theorem 2.1 . For 0(.2<)L4 » the numerical range of A is contained in

the imaginary axis. For 0(7-)}11 > 1t is contained in the strip

RNl Volop,  .m

Proof.. We have to estimate \RZ(lAU,L’)E‘/<UyU>E when U=(“Nﬂ
is a general element of Dowm(A) = DOM(A.\XEV".
(a) Case 0(?'(}14 . It suffices to notice that

AU VY = ATy, (A-RLf20 ) + (oPu-Aw,w)
= LW, Au-2uy + {lu-Au,wYy
which implies
Re (AU,U)E = o
(b) Case of*> My - In this case we have
A,V = <(A+(e8-mn" ‘o, (A+(.&2}..\I§'zu> + (olu-Au, W)
W, Au+®u-2mu Y + {ofu-Aw,w )

= 2w, (Epuy + L, Au-otu + {olu-Au, Wy

Il
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which implies that
Re<AU VY, = 2R (W, (pany
From this we derive that
IRECAUUYE! < 2 1on B poudl = 2 e ) 1w, Vo pd )
< Vo L@ <uny + AWy

where in the last step we have used Schwarz inequality. Now, we only have
to verify that the quantity in square brackets is less than or equal to

<U,U>E . Indeed, we have
Uy = <Au + CE2uw, w Y+ wwy
Z (- pI<u iy + KWWy

where in the last step we have used (2.3) . Q.E.D.

From the properties of A one easily derives that RGV\%Q (AJ}‘I\ = E
for any real N with [\| > \JO&.}‘," . By applying the theory of dissipa
tive operators (see for instance Pazy [1983] (§1.4, Thm.4.3) ) one

then obtains the following result.

Corollary . For 0(‘()“ , A is the generator of a group J& @éR\
of unitary operators. For o(,"')}l4 , /M 1is the generator of a group
J® (te R\ satisfying the bound

& < exp (\l“'f‘: 1) (YeeR) = (2.8)
In order to see that the preceeding estimates are optimal, it suffices
to notice that )‘46 Spec_(A\ implies = (N.—)A\\‘/zé SPQC(A\ , which shows

that the vertical strip which contains the numerical range is the smallest

possible.

2.2 The infinite—dimensional whirl

In this paragraph we assume that A has compact resolvent. In the fol-
lowing, ek and Mk (k= 4,2,...\ denote respectively a complete orthonor-

mal system of eigenfunctions of A and the corresponding sequence of
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eigenvalues, which sequence is assumed to be non-decreasing. Finally, Ek
will denote the one-dimensional space generated by €, . We thenhave the
orthogonal decomposition invariant by A E=é.§Ek . Correspondingly,
the space E:i= E"'-xE has the orthogonal deco;;:)sition E= éEk s
where Ek-.-: Ek"Ek . This decomposition of (£ is invariant I‘;;‘A and
also by the group JM@\ 1= ZA{-' e R).

Let us now assume that 0(2<}A| . Then the effect of -J(‘(:\ on Ek con-
sists in a rotation of angle Q)kt s where wk"= (Hk_ 2\\/?- . From this
fact it follows that, for every U€&[E , the function Rt +—> JBIVEE
is almost periodic.

In the following we consider the group L(b\ (_-\:e R) sgenerated by

(2.5),(2.6) . Obviously, LM\ =& **T@) -

Proposition 2.3 . Assume that A has compact resolvent, X0 , and

o(,z<},\| . If a positive semiorbit of L{&) is contained in a submanifold
M of [E differentiable at the origin, then it is contained also in the

tangent subspace of M at the origin.m

Proof . Let Uy be a point of the semiorbit which is assumed to be contai
ned in M . Let F be the tangent subspace of M at the origin. Finally,

let P denote the orthogonal projection of [E onto F , and Q::I-P .

The fact that F is tangent to M at the origin means that

QUL = o(WPUIY as U—=>0 onu M

In particular, this implies that
IR\ Ul = o (WP LB Uoll) as t—+
or, equivalently since L (¥\ = e-“'bJﬁj s
HATE Ul = o (IPIW Uoll) as t—>+oco
Using the fact that JU‘-‘\ Uo is an almost periodic function of 't , one can
then derive that QU°=0 , i.e. erF . Q.E.D.

Corollary 2.4 . Under the hypotheses of Proposition 2.3 , the only
L(t} ~invariant submanifolds of E differentiable at the origin are the

invariant closed linear subspaces. &

Proposition 2.5 . Assume that A has compact resolvent, all its eigenva-

lues are simple, and %< }‘I . Then, the only L(t}-invariant closed linear
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subspaces of E are those of the form EK"EG Ek , where K is a
€
subset of INN{0} . m K

Proof . Let F be an invariant closed linear subspace. By linearity, inva
riance by L{) is equivalent to invariance by J\ = e“{"'L({;\ . On the
other hand, using the fact that the operators o\ (t€R) are unitary,
we see that the invariance of F by J& implies the same property for
F< . In order to prove the proposition, it suffices to show that, for any
R € N\4{ot one has either EoF or EKCF‘L . Now, since both F and
FL are invariant and, on the other hand, the Ek do not contain proper
invariant subspaces, the preceeding alternative is equivalent to the follo-

wing statement :

for any ke MNNdo} , it happens that
FAE# iot or FYNE, 4 Aot

(2.9)

In proving (2.9) , we shall use the fact that
Ve B, <> StU:= 2@+ = (esf)U (2.10)

which follows from the fact that J(t\ restricted to Ek is a rotation
of frequency (.\)k , and the hypothesis that the eigenvalues Pk s, and there-
fore the frequencies (,\)k , are all different. In order to prove (2.9) , we
shall take an arbitrary Ue Ek and show that it belongs to either F or
FL . For this, we decompose Ve Ek\{o} in its F and F+ components:

U=V+\)J, where VE€fF and WeF+

By applying the operators S(¥):= %[\T&\+J(~t\] , and using the inva-

riance and linearity of F and F< , one obtains that

SHU = SV + SEV\W , where SVeF and Sk\We F+

By using (2.10) , one immediately obtains that both VeF and WefF+
must belong to lEk . Since V and W cannot be simultaneously zero, this

proves (2.9) . Q.E.D.

Corollary 2.6 . Under the hypotheses of Proposition 2.5 , [E has only a
countable family of finite-dimensional L(t\ -invariant closed linear sub-

spaces. ®
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By combining the preceeding facts, we can state the following result :

Theorem 2.7 . Assume that A has compact resolvent, all its eigenvalues
are simple, ® >0 , and &< }‘l . Then the group generated by (2.5),(2.6)
has only a countable family of finite-dimensional invariant submanifolds

containing the origin and being differentiable at it. m

Remark . The result is no longer true when the condition of differentiabi-
lity at the origin is dropped. If the frequencies (A)k satisfy some linear
relation with integer coefficients, then one can have continuous families
of finite-dimensional invariant Lipschitzian submanifolds containing the

origin and being differentiable everywhere except at the origin.

3. A C:4 linearization theorem

In this section we give a C? 1linearization theorem which is applicable
to certain stationary states of semilinear damped wave equations. In the
finite-dimensional case, our result is included essentially in that of
Hartman [1960] (Thm.(I)) , which instead of our condition (3.2) requires

only that (. be a contraction.

Theorem 3.1 . Let U be an open subset of a Banach space X , and T a
t map U-—>X with a fixed point 1; . Let L. be the Fréechet derivative
of T at p > i L= DT(P\ . Assume that L. has a bounded inverse,

and that the following properties are satisfied for some '\1}0
DT(pte\ — L = o(ixl!) as —wo (3.1)
A+
ety et < 4 (3.2)

Then, there exist Vv » neighbouhood of /P in U , with T(V\CV , and R N
a CA diffeomorphism onto its image, with R(‘)\-;o R bR(P\-_-.I , and

DR(p+») = I = o(lxl?) as =—+o (3.3)

such that the following equation holds :

RT = LR (3.4)
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Such a map is unique in the following sense: if V' and R‘ satisfy also
the preceeding properties, then R and R‘ coincide in any ball centered

at /\o and contained in Vf\V‘ . u

Remarks . (i) Condition (3.2) implies that L is a contraction.
(ii) The exponent "M is by no means restricted to be less than 4 ;
increasing n makes condition (3.2) less restrictive, but then condition

(3.1) requires T to be closer to linear.

Proof . Without loss of generality, we assume /r)-'O . Let us rewrite equa

tion (3.4) in the equivalent form
R = U'RT (3.5)

By writing T= L+Y‘ and R:l‘\'P , this equation for R transforms into

the following equation for P :
—_ -A -1
p = Lo (L) + LY (3.6)

In the sequel, the right-hand side of (3.6) will be denoted by K(p\ N
and its first term will be denoted by KA(P\

Ky(p) := L“p(Lw\ , K= Klp)+ LY (3.7)

The existence and uniqueness of P satisfying (3.6) will be obtained
by verifying that the transformation K is a contraction in an appropriate
Banach space R . 1In the following, Xs denotes the open ball of radius
S in the space ¥ . The Banach space ®, will consist of the mappings
P € C'(¥5,X) satisfying plol=o , Dplol=0 , and Dppar = o (11"
as 2»-» 0 . One can check that this is a Banach space when endowed with the

norm

lpt, = 3% e ADPE (3.8)
xexs\*o}
We claim that, for S sufficiently small, K is a contraction of (R .
To have this property, we first need that K(P\ be defined on the same
domain as P , which amounts to ask that | = L+ map Xg into itself.
This is true for S' sufficiently small, because L. is a contraction , and

Y is ! with Yl\=o0 and DY@ =0 . In fact,

Bl < (e + e®y) U= (Yxexg), (3.9)
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where

€(3) z=jg§s IDYGON (3.10)

which has the property that E(S\J]o when SJ[O . Now we can verify that
K maps ®.  into itself. Indeed, L-l‘{éa because yek , and
K\(P\GR because PG(K ; the fact that D(K,‘(Q\\(‘x.\_—. o('lxu'\\ as

2->»0 follows from the estimate
il ) DKV = =ity DP(Clyre) (L Dyt |
IO WG i

< W L4+ DY e
< WA &R fae hrdyeal
A
< Wt (l\L\He(S\\"‘ \lb“(((L«:{\:}l\\ (YxeXgor)  (3.11)
L)

where 6(6\ is the quantity definmed by (3.10) . Finally, from (3.11) fol
lows that

"
———~,“K(9\_Km“& = IK(p-0, € 'y (ion+ec) lp-ole  G.12)

which shows that, if condition (3.2) 4is satisfied and S is sufficiently
small, K 1is a contraction of R, .

In order to complete the proof, it only remains to notice that, if %
is small enough, then R will be a C'_4 diffeomorphism onto its image,
which follows from the inverse function theorem. The theorem is thus esta-
blished with V=Xg. Q.E.D.

Corollary 3.2 . Let X be a Banach space, and Ty (’(’:G R\ a group of
diffeomorphisms of ¥ with a fixed point P . Let LU’u\ (fGR\ be the
group of bounded linear operators on X given by L = D(T(ﬂ\ (\:\

Assume that, for some TefR and some 2o , T:=Tlx) and L= L(T)
satisfy properties (3.1) and (3.2) . Then there exist V , neighbourhood
of P » and R:N=>X , a C‘\ diffeomorphism onto its image, with R(p\:O,
DR(p\=I » and (3.3) , such that, for every t€R , the equation

R Ty = W R (3.13)

holds in some ball centered at i’) and contained in \/ . Such a ball can be
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chosen independently of ¥ when € wvaries over any interval of the form

[ty,+0) with t; finite.®

Proof . By the preceeding theorem, there exist a neighbourhood V of ‘)
and R:V=2X ,a ! diffeomorphism onto its image, satisfying R(p\=0 ,
DR(P\=1 , (3.3) , and

Lty R Tty = R

Now, one easily verifies that the preceeding properties are also satisfied
if V and R are replaced by V':=T(-t)\/ and R:= Lt)RTH whe
re ¥ is any real number. By the uniqueness statement of Theorem 3.1 ,
this implies that equation L(—'b\R,T(_t\ =R holds in any ball contained in
Vf\T(-t\V . Finally, to establish the last statement of the corollary,
it suffices to show that Q;LT(-'I:\V is a neighbourhood of P . Using the
fact that T(=tW >V s this reduces to see that ﬁ T(_-e\\l is a
neighbourhood of , i.e. there exists a >0 sugl‘lbstio::; T(:‘t\VDXX
for all t€ [t,to+e] , or equivalently VDT({;\)(S for all te[{;,t‘-ﬂ'—] s
which follows from the joint continuity of the mapping RxX 2 (_{-.,-x.\ —
Tll= X at the points of the compact set C{:oltb-rt]x{‘;\ . Q.E.D.

Corollary 3.3 . Let us consider problem (l.l),(l.Z)B,(l.3) with the hypo
theses of Theorem 1.1 . Let W= W\ be a stationary state, and let

be the lowest eigenvalue of the differential operator -?:_Fu(x,u*(x\\
with boundary conditions (1.2)B . If oL'z<,A| , then, near this stationary
state, the flow T(t\ (keR) is d—equivalent to its linearization. m

Proof . Let L(t\ (teR\ be the group of bounded linear operators obtained
by linearizing T(£) (£€R) at the stationary state W=WF , This coincides
with the group generated by equation (2.5) or (2.1) with A being given
by the differential operator = Bi—ﬂ(vc.w‘m\ with the boundary condi-
tions (1.2)B . Let E:H‘BxLz be endowed with the inner product (2.7) .
According to Corollary 2.2 , <M =€°¢L&\ (teR) is a unitary group.
Corollary 3.2 can now be applied with no matter which 90 and small

Mo , since Tl is ™ and Ll =€ ™ . WUlx\l=¢*® . Q.E.D.

4, Exhibiting non-existence

Our example of non-existence belongs to problem (1.1),(1.2)N,(l.3)
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with -c of the form (1.6) , where 'Po will be fixed and 56‘, variable.
The fixed function Fo will be taken to be independent of a2 ; accor-

dingly, we shall write Fo(_u.\ for €°(x.u\ . This function ("o is assumed

to fulfil the general conditions (Fla),(Flb),(F2) , and also the following

particular ones :

.(20(0\ = go('ﬂ =0 3 A 1is the only positive zero of co (4.1)
0 < £ < 1 (4.2)
£y < —o* (4.3)

Since ﬁ, is independent of 2¢ , and the boundary conditions are of
Neumann type, the dynamical system on [E= H4BXL2 corresponding to %=0
has a two-dimensional invariant linear subspace consisting of the states
which are spatially homogeneous (i.e. constant with respect to ¢ ); on
this subspace, (l.1) reduces to a second-order ordinary differential equa
tion. In the following, 0 and 4 denote the points of this subspace given
respectively by u,=o'('4,-=.o and u.=4,l1=o . Conditions (4.1)-(4.3) im-
ply the following facts :

Both O and 4 are hyperbolic stationary states. (4.4)

0 has a one-dimensional unstable maniflod,

and 4 1is asymptotically stable. (4.5)
There is an heteroclinic orbit from O to 4 . (4.6)

In fact, the heteroclinic orbit which comnects O to 4 lies on the sub-
space of spatially homogeneous states. In the (\A,ﬁ.\ -plane this orbit looks
like shown in Fig.l below. In the following, the corresponding solution
of (1.1) (which is unique except for translations) will be denoted by

*
\{o(j:\ (teR) . As it is easily verified, there exists a time to such
that

On (—oo,t:] » Uy and \.10 are both strictly increasing. (4.7)

On Et':,m) , W remains uo({:’) =1 Qg (4.8)

We now introduce a perturbation ﬁ, which will break this special situa

tion occurring for %:o . This perturbation ? will be allowed to vary



203

Fn

Fig.l

within a certain ball of the Banach space (J) defined in (1.7) , where
Ji= (Gb) is a fixed open interval with O{a {o <A and ala,

where @&, is the quantity appearing in (4.8) . In the following, the

space i(l’) will be denoted simply by Z’t , and its ball of radius S will
be denoted by ss . Clearly, for every %et&_ > the corresponding flow still
satisfies (4.4) and (4.5) . In fact, these perturbed flows remain unchan-
ged inside the open set 3:: {U:(u‘w\\ukx\éﬁ (Vz_en\\ <k.

Let us look at the flow in the neighbourhood of the stationary state 4 ,
where we know it does not depend on %.. Since this stationary state is sta
ble, every neighbourhood contains another one which is positively invariant
(i.e. TH\ maps it into itself for every t20 ). Condition (4.3) im—
plies that this stationary state satisfies the hypotheses of Corollary 3.3 .
Therefore, we are ensured that contains a positively invariant neigh-
bourhood of 1 where the flow To(k\ (=T5(t\\ (keR) is C‘—equivalent
to its linearization at 4 , L) (€€ R) . In the following, V denotes
a small neighbourhood of 4 with this property. On the other hand, the
group Lﬂﬁ (keR\ coincides with the one generated by equation (2.5) ,
or (2.1) , with A being the operator given by -9:—&‘,(4\ with boundary
conditions (1.2)N s which clearly satisfies the hypotheses of Theorem 2.7 .
Therefore, we can conclude that V includes only a countable family of fini
te-dimensional local invariant manifolds of class Cj containing x..

Let us now consider the orbit that departs form 0 towards the positi~
ve (| direction. Before leaving > this orbit will coincide with that

corresponding to %:o . Therefore, by suitably choosing the time origin,
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we can assume that the corresponding solution of (1.1) , which we shall

denote by u%&,‘l\ s, satisfies the following relations :

[V

9

where @ 1is the left end of ¢ . In the following, (), will denote the

curve R—>E given by Us(j:\ 1= (us(e,-\,ﬁﬁ(e,\\ » where G,?-.--a ocu.3+u5.

Now, since Uo(h\—-x»—f as €490 , Theorem 1.1 ensures that, if S is

k= wln (Feso), uﬁto,x\ = a (4.9)

small enough, then the following property will hold :

JT>0 such that, for every €& , V.M e ) (4.10)
K 9

In particular, this implies that, for %6 98 N U (t\-—’rT as 'E—»-l'oo N
i.e. the corresponding dynamical system satisfies also (4.6) . From now
on, we assume ® small enough for property (4.10) to hold.

Let [* denote the C} mapping

r‘:ﬁsac&\—————v Uﬁ(T\e:Vc:E (4.11)

where T is the quantity appearing in (4.10) . Our purpose is to see that
there are many %E. 8&‘8 for which r‘(%\= Ué(_T) does not belong to any of
the countably many finite-dimensional local invariant manifolds of class
C-4 containing 4 . In this case, one can conclude that there is no fini
te-dimensional local invariant manifold of class C‘ containing the global

attractor. In fact, we will prove the following result :

Theorem 4.1 . Consider problem (1.1),(1.2)N,(1.3) with €o independent
of = and satisfying (Fla),(Flb),(F2),(4.1),(4.2),(4.3) , and belon-
ging to = Q(J\ , where Ji= (Cl.b\ is a bounded open interval with
0{a<b¢A and a.(O,o ( Q, is the quantity appearing in (4.8) , which
depends on ﬁ) ). There is a 8?0 and a residual subset (R of gs
such that if € ® then there is no finite-dimensional local invariant

manifold of class C.4 containing the global attractor. m

The proof of Theorem 4.1 will be based upon the following fact, whose

proof will be given afterwards

Proposition 4.2 . Under the hypotheses of Theorem 4.1 , there is a 3”70
and a dense subset d)x of %S such that if 66'6 Q)S then RC\V\%Q. (DP(%\\

is infinite-dimensional. m
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Proof of Theorem 4.1 . Let MK ( K varying among the finite subsets of

NN I\O\ ) be the countable family of finite-dimensional local invariant
manifolds containing x . We will see that, for every K , there is a open
and dense subset RK of %S such that %GRK = r'(_i\¢ MK . From this
the theorem will follow by a cathegory argument. The openness of QK is an
immediate consequence of the continuous dependence of solutions with respect
to (Theorem 1.1) . The denseness of (RK follows from Proposition 4.2 :
Indeed, if «K were not dense, there would be some open set 'u,é tJS such
that r'(_cs\eMK (_Vﬁ?'u,\ But this would imply that, for every %e‘u, s
Rav\qe_ (br'(‘j\\ < (MK\Ni\,which contradicts Proposition 4.2 since
T(MK\ is finite-dimensional. Q.E.D.

P(ﬁ\

Proof of Proposition 4.2 . We will take @S:s%(\ g, where éba_xgz%_%(ﬂ ,
which is easily verified to be dense in =5 . Let €-$6 > and assu
me that it belongs to Q(I\ with I=(¢l?'b7\ a<a§<\o,a<b . In order to

see that RC\VK}& (Dl"(o}“ is infinite-dimensional, we shall see that there is

a linearly independent family &h(heN\ of elements of such that the

images Dr'(a\ eAh (\AEN\ are linearly independent elements of { . For every
Ae% » the value of D\—‘(ﬁ\e\ is given by

Dl"(%\!n = Y(T) (4.12)

where

YR\ = (\a(e,-\,i‘a(k,-\), % = oy+y (4.13)

and %“‘,%\ is the solution of the first variation equation

Yoo ¥ XY, = Y (‘(u‘a\\ﬁ * gLculy + !}\(x,uiy (4.14)

= 0 (4.15)
%X—‘t:o = (a‘)(.\ﬂa.'n
\é‘hno ‘ét‘hw
In the following, and Y, denote the particular and Y that are
n n a
obtained when ‘?/\-_—_ w '

Our choice of the functions ‘vl\n will be based upon the following fact,

whose proof is given at the end of this section.:

Lemma 4.3 . 1If 870 is small enough, then, for every %6@8‘ s
we can find C'éé (a,aﬁ] and t%'>o such that
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P \:’% = u%(t,x.\ = Wl < ag (Ve Q) (4.17)
c zt’% = Uglk 2 cca’ (YeeQ) - (4.18)

We shall use this fact by taking the functions J’\h in such a way that
i\h(x.u.\ =0 for u¢ (a,cﬁ\ (4.19)

By doing so, it results that, in equation (4.14) , the term %u(x‘us)\é,
vanishes for tsb’% , and the term An(x. \ vanishes for 'EZ{-%.
According to this fact, D\"(cs\h“ will be given by

DPg b, = YoM = B(TE) Y& (4.20)

where é(_ﬁ"S\ (Ss"‘:\ denotes the system of evolution operators of the
linear problem obtained from (4.14),(4.15) when dropping the last term
of (4.14) . However, these operators are isomorphisms of the Hilbert space
E . Therefore, our problem reduces to show that the &n (ne N) s which
must satisfy (4.19) , can be chosen in such a way that the resulting x‘(_b*\
be linearly independent elements of [E . 5
To study this question, equation (4.14) needs to be considered only
in the interval 05‘:$€' s where, by Lemma 4.3 , we know that the term
%u'(x‘u‘.\ vanishes, and also that uﬁu-,x.\ is independent of both 2
and . We shall take advantage of these facts by choosing the functions
'(Ah in the factorial form &n(x.u,\ = C, () (.P“(u,\ > which makes possible
to solve the equation by separation of variables. More specifically, we

shall take
“/\h(-x..u.\ = ((J“(u\ osSnx (4.21)

where, for every ‘Vle(}\l s (P“ will be a function R-»WR of class CM'V‘
with support contained in the interval [_a,C.a'X . By separating variables,
we obtain that, for ogtgtg s

\é“(lc,—x,\ = Y, wshx (4.22)
where \‘v‘ is the solution of the ordinary differential equation problem

JE £ 2o+ R - ) YE = Q@ (uglk) (4.23)

YOl = Y6\ = o (4.24)
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In the following, the expression appearing at the left-hand side of (4.23)
will be denoted by L“(Y;t\ .
Obviously, to attain our purpose, it will suffice to find a family
‘()“ memN) of functions R R of class C“'\ supported in [a,c,a]
such that the corresponding solutions of (4.23),(4.24) satisfy

W) # 0 (Yned) (4.25)

/23
If ‘FO is of class C ! , this can be easily accomplished by taking

Gl == b (0 ; U5 (W) (4.26)

where, for each neN s &h is a solution of the homogeneous equation
L“(t.;t\=0 satisfying C({:"\:d , and O is a function R—» R of class
C™ such that 0'((-,\::0 for t€0 and O'(t\ =4 for L2 U, ‘(Cﬁ\ . By
introducing (4.26) into (4.23) , one immediately obtains that \‘ha O'Cv. s
which obviously satisfies Y“@:*\.— . If *"0 is not of class C2™ but
merely C"l , then the resultlng functions l{) need not be of class C“'\ 5
however, any functions Ce“ of class C 1 sufficiently near ‘P\n in the

sup norm will serve our purpose. Q.E.D.

Proof of Lemma 4.3 . 1In order to prove Lemma 4.3 , we shall need the fol-

lowing estimate
~ok
gl ) = wotll ¢ K@A-E1 gl (FxeQ VeeoTl) .o
This is an improvement of an estimate given by Theorem 1.1 , namely

luc)&nc\-uo(e\\ s Ky gl (FreeQ NeeloTl) (4.28)

In order to derive (4.27) , we proceed as follows. Let us define

VIt = uﬁ(t‘—g_\_uo&\ , and V(\:= (\)'(b,-\l\'i"(_t,-\) , where V=XV +V .

By the variation of constants formula, ViR—>E is given by

t - ot (k-
Ve, = S 2 Jie-s) ((F(U (sV) - F(U(s\\) ds (4.29)
Q0
where Ju’\ (tGR\ is the group of unitary operators generated by A (see
g 2 ) when A 1s the operator -’a.,‘,-(: (A\ with boundary conditions
(1. Z)N , and IF% denote the mapplngs HBqu_-b HBXLQ_ corresponding
to the functions ? defined by ﬂj(-ae MY = %(-x,u.\ --Fo(ﬁu. .
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From (4.29) one obtains that

S t é- (k-5)

A A
W < L EATPO R AR I, & (ugfs) l\Lz] ds

UN

S:é'“‘* '“ [@{,um;e\e:,m\) uu,dts\—uo(s\\\L: n%um] ds (4.30)
where uq(k\ t= uﬁ(%’-\ eﬂ‘e ,A{ga and & denote the functions H‘S—?LQ_
corresponding respectively to {30 and % , and M is some bounded open
interval of R . From here, the desired estimate (4.27) follows by sim-
ply introducing (4.28) into the right-hand side of (4.30) .

Let us proceed with the proof of Lemma 4.3 ., We start from (4.7) and
(4.8) , where we remark that J(:g'>0 , because aca, and we have chosen
t=90 when u,o=a . From (4.7) , it follows that

0ss<t &8 = sl < u®l — a'lt-s) (4.31)

where Q= (‘J.O(OY . We now claim that, by virtue of (4.27) , (4.31) and
(4.8) imply the following fact :

(A) 1If S is small enough, then, for every %é %S

0<ts, =+ W < uby  (Fxen) (4.32)
b 2
t’: St = uoc:%\ < u.j&.x\ (dee (4.33)

Specifically, it suffices that
s fok A
Vs wnin (8,3 (4.36)
In fact, for 0Cb<¥r , (4.27), (4.34), and (4.31) dimply that
Ughm >l - KA-€*¥13 > ugkl ~ Kakd
> W —aE > wlE)

On the other hand, for €:$E$T s (4.27), (4.34), (4.8), and (4.31) dim-
ply that

gt > ulkl - K(A-218 > udley ~ K3

3
> qo(t\-a‘% > uo(t‘é\—a‘fg__ > uo(%—\
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Furthermore, it is clear that, if the neighbourbhood V is small enough,
then (4.33) will also be true for t>T , because for such t Ua(;\'.,-\
remains always inside V.

Finally, the statement of Lemma 4.3 is easily obtained from (A) by
taking

t’% = { b it a3>’a° } ) cg= uo(%-\ (4.35)

uglagy if dg do
which quantities satisfy
0< & <k, a<cysag (4.36)
In fact, for -oo(&${-:; s (4.8) implies that
Ul = uoth < W(#3) s aq

On the other hand, for t%stékz s (4.22) and (4.8) imply that

uglt > w(k) > uo(f}\ = g

Finally, for & <t , (4.23) and (4.8) imply that

uﬁ(bﬂd > uo(%\ P uo(_%_\ =: C?

Q.E.D.
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