Euler and Lagrangian description of a fluid motion

Eulerian description consists of giving the velocity field $\mathbf{u}(\mathbf{x}, t)$: the velocity of the particle that at time t is in the position \mathbf{x}.

Lagrangian description, of giving $\Phi\left(\mathbf{x}_{0}, t\right)$: gives the position at each time t of the particle that at a reference time t_{0} was occupying the position \mathbf{x}_{0}. Sometimes written as $\Phi_{t}\left(\mathbf{x}_{0}\right)$.
To pass from one description to the other one has to solve the ODE system

$$
\begin{gathered}
\mathbf{x}^{\prime}(t)=\mathbf{u}(\mathbf{x}(t), t) \\
\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0},
\end{gathered}
$$

and then define $\Phi\left(\mathbf{x}_{0}, t\right)=\mathbf{x}(t)$. So,

$$
\frac{\partial \Phi}{\partial t}=\mathbf{u}(\Phi, t)
$$

Theorem: (Reynolds Transport Theorem) If $\Omega(t)$ represents a set of points that move along the integral trajectories of a velocity vector field $\mathbf{u}(\mathbf{x}, t)$, and $f(\mathbf{x}, t)$ is a function of the space and time, then

$$
\frac{d}{d t} \int_{\Omega(t)} f(\mathbf{x}, t) d \mathcal{V}=\int_{\Omega(t)}\left(\frac{\partial f}{\partial t}+\nabla \cdot(f \mathbf{u})\right) d \mathcal{V} .
$$

Problem 7.1: Prove it. Use a change of variables to write all the integrals over the same domain.

Continuity Equation (mass conservation)

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0
$$

(special cases: incompressible, incompressible and homogeneous)

Balance of momentum

Newton's Second Law: the time derivative of the total linear momentum of a set of particles must equal the resultant of the forces made upon these particles.
These forces can be of two types: volume forces acting on these particles like, for example, gravity fields created by distant masses ($\mathbf{F}(\mathbf{x}, t)$), and surface or continuity forces that are the forces that the rest of the fluid makes upon this set of particles through the boundary of this set ($\mathbf{S}(\mathbf{x}, t)$).

Inviscid character: $\mathbf{S}=-\mathbf{p n}$.

$$
\begin{gathered}
\frac{d}{d t} \int_{\Omega_{0}(t)} \rho \mathbf{u} d \mathcal{V}=\int_{\partial \Omega_{0}(t)}-p \mathbf{n} d \mathcal{S}+\int_{\Omega_{0}(t)} \rho \mathbf{F} d \mathcal{V}= \\
\int_{\Omega_{0}(t)}-\nabla p d \mathcal{V}+\int_{\Omega_{0}(t)} \rho \mathbf{F} d \mathcal{V}
\end{gathered}
$$

Aplying Reynolds Theorem to each of the components of these vector integrals, and omitting the integrals, since the domain of integration is arbitrary,

$$
\rho_{t} u^{i}+\rho u_{t}^{i}+u^{i} \nabla \cdot(\rho \mathbf{u})+\rho(\mathbf{u} \cdot \nabla) u^{i}=-p_{x_{i}}+\rho \mathbf{F}^{i}
$$

and then, using the continuity equation

$$
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=\frac{1}{\rho} \nabla p+\mathbf{F}
$$

Equations

$$
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=\frac{1}{\rho} \nabla p+\mathbf{F}
$$

(or (D/Dt)u= $\left.\rho^{-1} \nabla p+\mathbf{F}\right)$ and

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0
$$

constitute the system of Euler equations for the motion of an inviscid fluid. They are more popular in the incompressible case, where the continuity equation reduces to

$$
\nabla \cdot \mathbf{u}=0
$$

In the compressible case, they are usually closed with a new equation of the form

$$
\begin{equation*}
\rho=\rho(p) \tag{1}
\end{equation*}
$$

which is called equation of state (barotropic flow).

Theorem: (Kelvin's Circulation Theorem) If $\mathbf{u}(\mathbf{x}, t)$ is a solution of system of the Euler equations for a barotropic flow, with $\mathbf{F}=\nabla W$ (conservative forces) and c_{t} is a closed curve that moves in time following the integral curves of $\mathbf{u}(\mathbf{x}, t)$, then

$$
\begin{gathered}
\frac{d}{d t} \operatorname{circ}\left[c_{t}\right]=\frac{d}{d t} \int_{c_{t}} \mathbf{u}(\mathbf{x}, t) \cdot d \ell=0 . \\
\text { Proof: } \frac{d}{d t} \int_{c_{t}(s)} \mathbf{u} \cdot d \ell=\frac{d}{d t} \int_{0}^{1} \mathbf{u}\left(\Phi_{t}\left(c_{0}(s)\right), t\right) \cdot \frac{d}{d s} \Phi_{t}\left(c_{0}(s)\right) d s \\
=\int_{0}^{1}\left(\frac{D \mathbf{u}}{D t} \cdot \frac{d}{d s} \Phi_{t}\left(c_{0}(s)\right)+\mathbf{u} \cdot \frac{d}{d t} \frac{d}{d s} \Phi_{t}\left(c_{0}(s)\right)\right) d s \\
=\int_{0}^{1}\left(-\frac{\nabla p}{\rho}+\nabla W\right) \frac{d}{d s} \Phi_{t}\left(c_{0}(s)\right) d s=0,
\end{gathered}
$$

since $\mathbf{u} \cdot \frac{d}{d t} \frac{d}{d s} \phi_{t}\left(c_{0}(s)\right)=\frac{1}{2} \frac{d}{d s}(\mathbf{u} \cdot \mathbf{u})$.

Kelvin's Theorem is the basis of the importance given to potential flows $\mathbf{u}=\nabla \phi$ (ϕ is called the velocity potentia).
In the stationary, incompressible and homogeneous case Euler equations for are satisfied for $\mathbf{u}=\nabla \phi$ with $p=-\frac{1}{2} \rho \mathbf{u}^{2}+C$ (this is Bernoulli equation, use $\rho \equiv$ const. and $u_{j}^{i}=u_{i}^{j}$. Observe that one merely needs \mathbf{u} to be irrotational, $\nabla \times \mathbf{u}=0$, a bit less tan potential. This will be more important in the two-dimensional case).
The incompressibility gives $\nabla^{2} \phi=0$ (Laplace's equation), and giving $\nabla \phi \cdot \mathbf{n}$ at $\partial \Omega$ one fixes the mass flux across the boundaries of Ω.

You have an irregular cylinder S_{0} limited by two lids S_{1} and S_{2}, of areas A_{1} and A_{2}. You want to model a flow with a total flux of Q units of volume per unit of time from left to right. Under the hypothesis of potential flow, one would have to solve $\nabla^{2} \phi=0$ in the interior of the cylinder, with $\partial \phi / \partial \mathbf{n}=0$ on S_{0}, $\partial \phi / \partial \mathbf{n}=-Q / A_{1}$ on S_{1} and $\partial \phi / \partial \mathbf{n}=Q / A_{2}$ at S_{2}.

- the total flux Q must be the same on the two lids.
- with these boundary conditions we are not imposing the velocities at the two lids, but merely their normal components.
- we have chosen the constant value Q / A_{i} for the normal velocity at the lids, as the simplest choice: any other function with integral Q would be also admissible.

Theorem: Let Ω be a bounded region in $\mathbb{R}^{n}(n=2,3)$ and let be given a (compatible) flux $f(\mathbf{x})$ at $\partial \Omega$. Then, among all the possible stationary solutions of the incompressible and homogeneous Euler equations there is one and only one that is a potential flow. This solution $\mathbf{u}=\nabla \phi$ minimizes the kinetic energy $\frac{1}{2} \int_{\Omega} \rho \mathbf{v}^{2} d \mathcal{V}$ among al the vector fields \mathbf{v} such that $\nabla \cdot \mathbf{v}=0$, and $\mathbf{v} \cdot \mathbf{n}=f$ at $\partial \Omega$.

Proof:

$$
\begin{aligned}
\frac{1}{2} \int \rho\left(\mathbf{u}^{2}-\mathbf{v}^{2}\right) & =-\frac{1}{2} \int \rho(\mathbf{u}-\mathbf{v})^{2}+\int \rho(\mathbf{u}-\mathbf{v}) \cdot \mathbf{u} \\
& \leq \int \rho(\mathbf{u}-\mathbf{v}) \nabla \phi=0
\end{aligned}
$$

(in the last step one uses that gradient vector fields are orthogonal in the L^{2} sense to divergence-free vector fields that are parallel to the boundary)

The torrential flow around a bounded obstacle $K \subset \mathbb{R}^{n}$
$(n=2,3)$ is $\mathbf{u}=\nabla \phi$, where $\nabla^{2} \phi=0$ in $\Omega=\mathbb{R}^{n}-K, \nabla \phi \cdot \mathbf{n}=0$ on ∂K and $\nabla \phi \rightarrow \mathbf{V}_{\infty}$ as $\mathbf{x} \rightarrow \infty$.

If $K=B_{a}(0) \subset \mathbb{R}^{3}$ then

$$
\phi=\frac{a^{3}}{2|\mathbf{x}|^{2}} \mathbf{V}_{\infty} \cdot \frac{\mathbf{x}}{|\mathbf{x}|}+\mathbf{x} \cdot \mathbf{V}_{\infty}
$$

Theorem (the D'Alembert Paradox): Torrential flows do not exert any force on K (in \mathbb{R}^{3}).

Proof:
(Obs.: $\phi \leftrightarrow-\phi$)
We first accept that $\phi=\mathbf{x} \cdot \mathbf{V}_{\infty}+\phi_{1}$ with $\phi_{1}=O\left(1 /|\mathbf{x}|^{2}\right)$ and $\nabla \phi_{1}=O\left(1 /|\mathbf{x}|^{3}\right)$. Reasons to accept that:
First, that if $K=B_{a}(0)$ then $\phi_{1}=\frac{a^{3}}{2|\mathbf{x}|^{2}} \mathbf{V}_{\infty} \cdot \frac{\mathbf{x}}{|\mathbf{x}|}$.
Second, note that ϕ_{1} is a solution of $\nabla^{2} \phi_{1}=0$ on $\mathbb{R}^{3} \backslash K$ with $\partial_{\mathbf{n}} \phi_{1}=-\mathbf{V}_{\infty} \cdot \mathbf{n}$ on ∂K. But it is clear that the net flux $\int_{\partial K} \mathbf{V}_{\infty} \cdot \mathbf{n} d \mathcal{S}=0$. We could compare with $\phi(x)=\frac{1}{|\mathbf{x}|}$, the electrical potential due to a single charge: it tends to zero at infinity more slowly. But its gradient has a non-zero flux. The dipole potential, instead, $\phi=\frac{-x}{\left|x^{3}\right|^{2}}$ has a gradient with zero flux and tends to zero faster, as fast as we expect.

$$
\mathbf{F}=\int_{\partial K}-p \mathbf{n} d \mathcal{S}=-\int_{\partial K} p \mathbf{n}+\rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d \mathcal{S}=-\int_{\partial B_{R}(0)} p \mathbf{n}+\rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d \mathcal{S}
$$

To justify the second equality we call Ω^{\prime} the domain between K and $\partial B_{R}(0)$, for R large. The difference between the third and second integrals can be written as

$$
-\int_{\partial \Omega^{\prime}} p \mathbf{n}+\rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d \mathcal{S}
$$

and we are going to see that this integral is zero by changing it into a volume integral:

$$
\int_{\partial \Omega^{\prime}}-p \mathbf{n} d \mathcal{S}=-\int_{\Omega^{\prime}} \nabla p d \mathcal{V}=\int_{\Omega^{\prime}} \frac{1}{2} \rho \nabla|\nabla \phi|^{2} d \mathcal{V}
$$

and, the other part (looking at each component and using that $\nabla^{2} \phi=0$)

$$
-\int_{\partial \Omega^{\prime}} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d \mathcal{S}=-\int_{\partial \Omega^{\prime}} \rho \nabla \phi(\nabla \phi \cdot \mathbf{n}) d \mathcal{S}=-\frac{1}{2} \int_{\Omega^{\prime}} \rho \nabla|\nabla \phi|^{2} d \mathcal{V}
$$

So, the formula for \mathbf{F} is correct. Then

$$
\begin{aligned}
\mathbf{F}=-\int_{\partial B_{R^{(0)}}}\left(\left.p_{0} \mathbf{n}-\frac{\rho}{2} \right\rvert\, \mathbf{V}_{\infty}+\right. & \left.\underbrace{\nabla \phi_{1}}\right|^{2} \mathbf{n}+\rho\left(\mathbf{V}_{\infty}+\right. \\
& \sim \underbrace{\nabla \frac{1}{R^{3}}})((\mathbf{V}_{\infty}+\underbrace{\nabla \phi_{1}}) \cdot \mathbf{n})) d \mathcal{S} . \\
\sim \frac{1}{R^{3}} & \sim \frac{1}{R^{3}}
\end{aligned}
$$

And by letting $R \rightarrow \infty$ in some terms and using the Divergence Theorem in the others, we obtain $\mathbf{F}=0$.

