Euler and Lagrangian description of a fluid motion

Eulerian description consists of giving the velocity field $\mathbf{u}(\mathbf{x}, t)$: the velocity of the particle that at time *t* is in the position \mathbf{x} .

Lagrangian description, of giving $\Phi(\mathbf{x}_0, t)$: gives the position at each time *t* of the particle that at a reference time t_0 was occupying the position \mathbf{x}_0 . Sometimes written as $\Phi_t(\mathbf{x}_0)$.

To pass from one description to the other one has to solve the ODE system

$$\mathbf{x}'(t) = \mathbf{u}(\mathbf{x}(t), t)$$

 $\mathbf{x}(t_0) = \mathbf{x}_0,$

and then define $\Phi(\mathbf{x}_0, t) = \mathbf{x}(t)$. So,

$$\frac{\partial \Phi}{\partial t} = \mathbf{u}(\Phi, t).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Theorem: (Reynolds Transport Theorem) If $\Omega(t)$ represents a set of points that move along the integral trajectories of a velocity vector field $\mathbf{u}(\mathbf{x}, t)$, and $f(\mathbf{x}, t)$ is a function of the space and time, then

$$\frac{d}{dt}\int_{\Omega(t)}f(\mathbf{x},t)\ d\mathcal{V}=\int_{\Omega(t)}\left(\frac{\partial f}{\partial t}+\nabla\cdot(f\mathbf{u})\right)\ d\mathcal{V}.$$

Problem 7.1: Prove it. Use a change of variables to write all the integrals over the same domain.

Continuity Equation (mass conservation)

$$rac{\partial
ho}{\partial t} +
abla \cdot (
ho \mathbf{u}) = \mathbf{0}$$

(special cases: incompressible, incompressible and homogeneous)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Balance of momentum

Newton's Second Law: the time derivative of the total linear momentum of a set of particles must equal the resultant of the forces made upon these particles.

These forces can be of two types: *volume forces* acting on these particles like, for example, gravity fields created by distant masses ($\mathbf{F}(\mathbf{x}, t)$), and *surface* or *continuity forces* that are the forces that the rest of the fluid makes upon this set of particles through the boundary of this set ($\mathbf{S}(\mathbf{x}, t)$).

Inviscid character: $\mathbf{S} = -p\mathbf{n}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\frac{d}{dt} \int_{\Omega_0(t)} \rho \mathbf{u} \ d\mathcal{V} = \int_{\partial \Omega_0(t)} -\rho \mathbf{n} \ d\mathcal{S} + \int_{\Omega_0(t)} \rho \mathbf{F} \ d\mathcal{V} = \\ \int_{\Omega_0(t)} -\nabla \rho \ d\mathcal{V} + \int_{\Omega_0(t)} \rho \mathbf{F} \ d\mathcal{V}$$

Aplying Reynolds Theorem to each of the components of these vector integrals, and omitting the integrals, since the domain of integration is arbitrary,

$$\rho_t u^i + \rho u^i_t + u^i \nabla \cdot (\rho \mathbf{u}) + \rho (\mathbf{u} \cdot \nabla) u^i = -\mathbf{p}_{\mathbf{x}_i} + \rho \mathbf{F}^i,$$

and then, using the continuity equation

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} = \frac{1}{\rho} \nabla \rho + \mathbf{F}.$$

< ≣ >

Equations

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} = \frac{1}{\rho} \nabla \rho + \mathbf{F}$$

(or
$$(D/Dt)\mathbf{u} = \rho^{-1}\nabla \boldsymbol{p} + \mathbf{F}$$
) and

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}$$

constitute the system of Euler equations for the motion of an inviscid fluid. They are more popular in the incompressible case, where the continuity equation reduces to

$$abla \cdot \mathbf{u} = \mathbf{0}$$

In the compressible case, they are usually closed with a new equation of the form

$$\rho = \rho(\boldsymbol{p}) \tag{1}$$

which is called equation of state (barotropic flow).

Theorem: (Kelvin's Circulation Theorem) If $\mathbf{u}(\mathbf{x}, t)$ is a solution of system of the Euler equations for a barotropic flow, with $\mathbf{F} = \nabla W$ (conservative forces) and c_t is a closed curve that moves in time following the integral curves of $\mathbf{u}(\mathbf{x}, t)$, then

$$\frac{d}{dt} \operatorname{circ} [c_t] = \frac{d}{dt} \int_{c_t} \mathbf{u}(\mathbf{x}, t) \cdot d\ell = 0.$$

Proof:
$$\frac{d}{dt} \int_{c_t(s)} \mathbf{u} \cdot d\ell = \frac{d}{dt} \int_0^1 \mathbf{u}(\Phi_t(c_0(s)), t) \cdot \frac{d}{ds} \Phi_t(c_0(s)) ds$$
$$= \int_0^1 \left(\frac{D\mathbf{u}}{Dt} \cdot \frac{d}{ds} \Phi_t(c_0(s)) + \mathbf{u} \cdot \frac{d}{dt} \frac{d}{ds} \Phi_t(c_0(s)) \right) ds$$
$$= \int_0^1 \left(-\frac{\nabla p}{\rho} + \nabla W \right) \frac{d}{ds} \Phi_t(c_0(s)) ds = 0,$$
since $\mathbf{u} \cdot \frac{d}{dt} \frac{d}{ds} \Phi_t(c_0(s)) = \frac{1}{2} \frac{d}{ds} (\mathbf{u} \cdot \mathbf{u}).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Kelvin's Theorem is the basis of the importance given to *potential flows* $\mathbf{u} = \nabla \phi$ (ϕ is called the *velocity potential*).

In the stationary, incompressible and homogeneous case Euler equations for are satisfied for $\mathbf{u} = \nabla \phi$ with $\rho = -\frac{1}{2}\rho \mathbf{u}^2 + C$ (this is Bernoulli equation, use $\rho \equiv \text{const.}$ and $u_j^i = u_j^j$. Observe that one merely needs \mathbf{u} to be irrotational, $\nabla \times \mathbf{u} = 0$, a bit less tan potential. This will be more important in the two-dimensional case).

The incompressibility gives $\nabla^2 \phi = 0$ (Laplace's equation), and giving $\nabla \phi \cdot \mathbf{n}$ at $\partial \Omega$ one fixes the mass flux across the boundaries of Ω .

You have an irregular cylinder S_0 limited by two lids S_1 and S_2 , of areas A_1 and A_2 . You want to model a flow with a total flux of Q units of volume per unit of time from left to right. Under the hypothesis of potential flow, one would have to solve $\nabla^2 \phi = 0$ in the interior of the cylinder, with $\partial \phi / \partial \mathbf{n} = 0$ on S_0 , $\partial \phi / \partial \mathbf{n} = -Q/A_1$ on S_1 and $\partial \phi / \partial \mathbf{n} = Q/A_2$ at S_2 .

- the total flux *Q* must be the same on the two lids.

- with these boundary conditions we are not imposing the velocities at the two lids, but merely their normal components. - we have chosen the constant value Q/A_i for the normal velocity at the lids, as the simplest choice: any other function with integral Q would be also admissible. **Theorem**: Let Ω be a bounded region in \mathbb{R}^n (n = 2, 3) and let be given a (compatible) flux $f(\mathbf{x})$ at $\partial\Omega$. Then, among all the possible stationary solutions of the incompressible and homogeneous Euler equations there is one and only one that is a potential flow. This solution $\mathbf{u} = \nabla \phi$ minimizes the kinetic energy $\frac{1}{2} \int_{\Omega} \rho \mathbf{v}^2 d\mathcal{V}$ among all the vector fields \mathbf{v} such that $\nabla \cdot \mathbf{v} = 0$, and $\mathbf{v} \cdot \mathbf{n} = f$ at $\partial\Omega$.

Proof:

$$\begin{split} \frac{1}{2} \int \rho(\mathbf{u}^2 - \mathbf{v}^2) &= -\frac{1}{2} \int \rho(\mathbf{u} - \mathbf{v})^2 + \int \rho(\mathbf{u} - \mathbf{v}) \cdot \mathbf{u} \\ &\leq \int \rho(\mathbf{u} - \mathbf{v}) \nabla \phi = \mathbf{0} \end{split}$$

(in the last step one uses that gradient vector fields are orthogonal in the L^2 sense to divergence-free vector fields that are parallel to the boundary)

<ロ> (四) (四) (三) (三) (三) (三)

The *torrential flow* around a bounded obstacle $K \subset \mathbb{R}^n$ (n = 2, 3) is $\mathbf{u} = \nabla \phi$, where $\nabla^2 \phi = 0$ in $\Omega = \mathbb{R}^n - K$, $\nabla \phi \cdot \mathbf{n} = 0$ on ∂K and $\nabla \phi \to \mathbf{V}_{\infty}$ as $\mathbf{x} \to \infty$.

If $K = B_a(0) \subset \mathbb{R}^3$ then

$$\phi = \frac{a^3}{2|\mathbf{x}|^2} \mathbf{V}_{\infty} \cdot \frac{\mathbf{x}}{|\mathbf{x}|} + \mathbf{x} \cdot \mathbf{V}_{\infty}.$$

(문화)(문화)

ъ

Theorem (the D'Alembert Paradox): Torrential flows do not exert any force on K (in \mathbb{R}^3).

Proof:

(Obs.: $\phi \leftrightarrow -\phi$) We first accept that $\phi = \mathbf{x} \cdot \mathbf{V}_{\infty} + \phi_1$ with $\phi_1 = O(1/|\mathbf{x}|^2)$ and $\nabla \phi_1 = O(1/|\mathbf{x}|^3)$. Reasons to accept that: First, that if $K = B_a(0)$ then $\phi_1 = \frac{a^3}{2|\mathbf{x}|^2} \mathbf{V}_{\infty} \cdot \frac{\mathbf{x}}{|\mathbf{x}|}$. Second, note that ϕ_1 is a solution of $\nabla^2 \phi_1 = 0$ on $\mathbb{R}^3 \setminus K$ with $\partial_{\mathbf{n}}\phi_1 = -\mathbf{V}_{\infty} \cdot \mathbf{n}$ on ∂K . But it is clear that the net flux $\int_{\partial K} \mathbf{V}_{\infty} \cdot \mathbf{n} \, dS = 0$. We could compare with $\phi(x) = \frac{1}{|\mathbf{x}|}$, the electrical potential due to a single charge: it tends to zero at infinity more slowly. But its gradient has a non-zero flux. The dipole potential, instead, $\phi = \frac{-x}{|\mathbf{x}|^3}$ has a gradient with zero flux and tends to zero faster, as fast as we expect.

$$\mathbf{F} = \int_{\partial K} -\rho \mathbf{n} \, d\mathcal{S} = -\int_{\partial K} \rho \mathbf{n} + \rho \mathbf{u} (\mathbf{u} \cdot \mathbf{n}) \, d\mathcal{S} = -\int_{\partial B_{R}(\mathbf{0})} \rho \mathbf{n} + \rho \mathbf{u} (\mathbf{u} \cdot \mathbf{n}) \, d\mathcal{S}$$

To justify the second equality we call Ω' the domain between K and $\partial B_R(0)$, for R large. The difference between the third and second integrals can be written as

$$-\int_{\partial\Omega'} \rho \mathbf{n} +
ho \mathbf{u} (\mathbf{u} \cdot \mathbf{n}) \ d\mathcal{S}$$

and we are going to see that this integral is zero by changing it into a volume integral:

$$\int_{\partial\Omega'} -p\mathbf{n} \, d\mathcal{S} = -\int_{\Omega'} \nabla p \, d\mathcal{V} = \int_{\Omega'} \frac{1}{2} \rho \nabla |\nabla \phi|^2 \, d\mathcal{V},$$

and, the other part (looking at each component and using that $abla^2\phi=$ 0)

$$-\int_{\partial\Omega'}\rho\mathbf{u}(\mathbf{u}\cdot\mathbf{n})\,d\mathcal{S}=-\int_{\partial\Omega'}\rho\nabla\phi(\nabla\phi\cdot\mathbf{n})\,d\mathcal{S}=-\frac{1}{2}\int_{\Omega'}\rho\nabla|\nabla\phi|^2\,d\mathcal{V}.$$

So, the formula for F is correct. Then

$$\mathbf{F} = -\int_{\partial B_{R}(0)} \left(p_{0}\mathbf{n} - \frac{\rho}{2} |\mathbf{V}_{\infty} + \underbrace{\nabla \phi_{1}}_{R^{3}} |^{2}\mathbf{n} + \rho(\mathbf{V}_{\infty} + \underbrace{\nabla \phi_{1}}_{R^{3}}) ((\mathbf{V}_{\infty} + \underbrace{\nabla \phi_{1}}_{R^{3}}) \cdot \mathbf{n}) \right) d\mathcal{S}.$$

And by letting $R \to \infty$ in some terms and using the Divergence Theorem in the others, we obtain $\mathbf{F} = 0$.

イロン 不得 とくほ とくほ とうほ