
Euler and Lagrangian description of a fluid motion

Eulerian description consists of giving the velocity field u(x, t):
the velocity of the particle that at time t is in the position x.

Lagrangian description, of giving Φ(x0, t): gives the position at
each time t of the particle that at a reference time t0 was
occupying the position x0. Sometimes written as Φt (x0).

To pass from one description to the other one has to solve the
ODE system

x′(t) = u(x(t), t)

x(t0) = x0,

and then define Φ(x0, t) = x(t). So,

∂Φ

∂t
= u(Φ, t).
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Theorem: (Reynolds Transport Theorem) If Ω(t) represents a
set of points that move along the integral trajectories of a
velocity vector field u(x, t), and f (x, t) is a function of the space
and time, then

d
dt

∫
Ω(t)

f (x, t) dV =

∫
Ω(t)

(
∂f
∂t

+∇·(fu)

)
dV.

Problem 7.1: Prove it. Use a change of variables to write all
the integrals over the same domain.

Continuity Equation (mass conservation)

∂ρ

∂t
+∇ · (ρu) = 0

(special cases: incompressible, incompressible and
homogeneous)
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Balance of momentum

Newton’s Second Law: the time derivative of the total linear
momentum of a set of particles must equal the resultant of the
forces made upon these particles.

These forces can be of two types: volume forces acting on
these particles like, for example, gravity fields created by distant
masses (F(x, t)), and surface or continuity forces that are the
forces that the rest of the fluid makes upon this set of particles
through the boundary of this set (S(x, t)).

Inviscid character: S = −pn.
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d
dt

∫
Ω0(t)

ρu dV =

∫
∂Ω0(t)

−pn dS +

∫
Ω0(t)

ρF dV =∫
Ω0(t)
−∇p dV +

∫
Ω0(t)

ρF dV

Aplying Reynolds Theorem to each of the components of these
vector integrals, and omitting the integrals, since the domain of
integration is arbitrary,

ρtui + ρui
t + ui∇ · (ρu) + ρ(u · ∇)ui = −pxi + ρFi ,

and then, using the continuity equation

ut + (u · ∇)u =
1
ρ
∇p + F.
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Equations

ut + (u · ∇)u =
1
ρ
∇p + F

(or (D/Dt)u = ρ−1∇p + F) and

∂ρ

∂t
+∇ · (ρu) = 0

constitute the system of Euler equations for the motion of an
inviscid fluid. They are more popular in the incompressible
case, where the continuity equation reduces to

∇ · u = 0

In the compressible case, they are usually closed with a new
equation of the form

ρ = ρ(p) (1)

which is called equation of state (barotropic flow).
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Theorem: (Kelvin’s Circulation Theorem) If u(x, t) is a solution
of system of the Euler equations for a barotropic flow, with
F = ∇W (conservative forces) and ct is a closed curve that
moves in time following the integral curves of u(x, t), then

d
dt

circ [ct ] =
d
dt

∫
ct

u(x, t) · d` = 0.

Proof:
d
dt

∫
ct (s)

u · d` =
d
dt

∫ 1

0
u(Φt (c0(s)), t) · d

ds
Φt (c0(s)) ds

=

∫ 1

0

(
Du
Dt
· d

ds
Φt (c0(s)) + u · d

dt
d
ds

Φt (c0(s))

)
ds

=

∫ 1

0

(
−∇p

ρ
+∇W

)
d
ds

Φt (c0(s)) ds = 0,

since u · d
dt

d
ds Φt (c0(s)) = 1

2
d
ds (u · u).

JS-M 07. Euler equations and potential flows



Kelvin’s Theorem is the basis of the importance given to
potential flows u = ∇φ (φ is called the velocity potential).

In the stationary, incompressible and homogeneous case Euler
equations for are satisfied for u = ∇φ with p = −1

2ρu2 + C (this
is Bernoulli equation, use ρ ≡const. and ui

j = uj
i . Observe that

one merely needs u to be irrotational, ∇× u = 0, a bit less tan
potential. This will be more important in the two-dimensional
case).

The incompressibility gives ∇2φ = 0 (Laplace’s equation), and
giving ∇φ · n at ∂Ω one fixes the mass flux across the
boundaries of Ω.
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You have an irregular cylinder S0 limited by two lids S1 and S2,
of areas A1 and A2. You want to model a flow with a total flux of
Q units of volume per unit of time from left to right. Under the
hypothesis of potential flow, one would have to solve ∇2φ = 0
in the interior of the cylinder, with ∂φ/∂n = 0 on S0,
∂φ/∂n = −Q/A1 on S1 and ∂φ/∂n = Q/A2 at S2.

- the total flux Q must be the same on the two lids.
- with these boundary conditions we are not imposing the
velocities at the two lids, but merely their normal components.
- we have chosen the constant value Q/Ai for the normal
velocity at the lids, as the simplest choice: any other function
with integral Q would be also admissible.
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Theorem: Let Ω be a bounded region in Rn (n = 2,3) and let
be given a (compatible) flux f (x) at ∂Ω. Then, among all the
possible stationary solutions of the incompressible and
homogeneous Euler equations there is one and only one that is
a potential flow. This solution u = ∇φ minimizes the kinetic
energy 1

2

∫
Ω ρv2 dV among al the vector fields v such that

∇ · v = 0, and v · n = f at ∂Ω.

Proof:

1
2

∫
ρ(u2 − v2) = −1

2

∫
ρ(u− v)2 +

∫
ρ(u− v) · u

≤
∫
ρ(u− v)∇φ = 0

(in the last step one uses that gradient vector fields are
orthogonal in the L2 sense to divergence-free vector fields that
are parallel to the boundary)
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The torrential flow around a bounded obstacle K ⊂ Rn

(n = 2,3) is u = ∇φ, where ∇2φ = 0 in Ω = Rn − K , ∇φ · n = 0
on ∂K and ∇φ→ V∞ as x→∞.

If K = Ba(0) ⊂ R3 then

φ =
a3

2|x|2
V∞ ·

x
|x|

+ x · V∞.
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Theorem (the D’Alembert Paradox): Torrential flows do not
exert any force on K (in R3).

Proof:

(Obs.: φ↔ −φ)
We first accept that φ = x · V∞ + φ1 with φ1 = O(1/|x|2) and
∇φ1 = O(1/|x|3). Reasons to accept that:

First, that if K = Ba(0) then φ1 =
a3

2|x|2
V∞ ·

x
|x|

.

Second, note that φ1 is a solution of ∇2φ1 = 0 on R3 \ K with
∂nφ1 = −V∞ · n on ∂K . But it is clear that the net flux∫
∂K V∞ · n dS = 0. We could compare with φ(x) = 1

|x| , the
electrical potential due to a single charge: it tends to zero at
infinity more slowly. But its gradient has a non-zero flux. The
dipole potential, instead, φ = −x

|x|3 has a gradient with zero flux
and tends to zero faster, as fast as we expect.
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F =

∫
∂K
−pn dS = −

∫
∂K

pn + ρu(u · n) dS = −
∫
∂BR (0)

pn + ρu(u · n) dS.

To justify the second equality we call Ω′ the domain between K and ∂BR (0), for R large. The difference between
the third and second integrals can be written as

−
∫
∂Ω′

pn + ρu(u · n) dS

and we are going to see that this integral is zero by changing it into a volume integral:∫
∂Ω′
−pn dS = −

∫
Ω′
∇p dV =

∫
Ω′

1

2
ρ∇|∇φ|2 dV,

and, the other part (looking at each component and using that∇2φ = 0)

−
∫
∂Ω′

ρu(u · n) dS = −
∫
∂Ω′

ρ∇φ(∇φ · n) dS = −
1

2

∫
Ω′
ρ∇|∇φ|2 dV.

So, the formula for F is correct. Then

F = −
∫
∂BR (0)

(
p0n−

ρ

2
|V∞ + ∇φ1︸ ︷︷ ︸

∼
1

R3

|2n + ρ(V∞ + ∇φ1︸ ︷︷ ︸
∼

1

R3

)
(

(V∞ + ∇φ1︸ ︷︷ ︸
∼

1

R3

) · n
))

dS.

And by letting R →∞ in some terms and using the Divergence Theorem in the others, we obtain F = 0.
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