The Stefan Problem (a free boundary problem)

Here \mathbf{n} is the exterior unit normal vector to the liquid phase and v is the (local) speed of the interphase Γ_{t} in the direction of \mathbf{n}.

$$
\begin{aligned}
\rho^{\ell} c^{\ell} u_{t}^{\ell} & =k^{\ell} \nabla^{2} u^{\ell} \text { in } \Omega_{t}^{\ell}, \\
\rho^{s} c^{s} u_{t}^{s} & =k^{s} \nabla^{2} u^{s} \text { in } \Omega_{t}^{s}, \\
u^{\ell} & =u^{*} \text { on } \Gamma_{t}, \\
u^{s} & =u^{*} \text { on } \Gamma_{t}
\end{aligned}
$$

+ heat balance across Γ_{t}.

$$
\Delta t A[\underbrace{-k^{\ell} u_{n}^{\ell}}_{\text {heat leaving } \Omega^{\ell}}-\underbrace{\left(k^{s} u_{(-\mathbf{n})}^{s}\right)}_{\text {heat entering } \Omega^{s}}]=L \rho^{s} A v \Delta t
$$

($v=0$ means perfect thermal contact, $v>0$ means melting, $v<0$ (with ρ^{ℓ} instead of ρ^{s} in the r.h.s.) would mean freezing). This is better written as

$$
\left[k u_{\mathbf{n}}\right]_{\ell}^{s}=\rho^{s} L v
$$

where L is the latent heat.

Exemple 1: A 1-d problem (of melting)

Suppose $\rho^{s}=\rho^{\ell}=c^{s}=c^{\ell}=k^{s}=k^{\ell}=1$. The liquid phase is $0<x<s(t)$ and the solid phase $s(t)<x<1$. We impose the boundary conditions $u(0, t)=1$ and $u_{x}(1, t)=0$, and the initial condition $u(x, 0) \equiv \theta<0$.

$$
\left\{\begin{array}{l}
u_{t}=u_{x x} \text { for } 0<x<s(t) \text { and } s(t)<x<1 \\
u(0, t)=1 \text { and } u_{x}(1, t)=0 \\
u(x, 0)=\theta<0 \\
u(s(t), t)=0 \\
{\left[u_{x}(s(t), t)\right]_{\ell}^{s}=L s^{\prime}(t)} \\
s(0)=0
\end{array}\right.
$$

Not easy to solve...

Suppose $L \gg 1$ so $s(t)$ grows slowly. We change to $\tau=t / L$ to make things to happen faster. Then $d / d t=(1 / L) d / d \tau$ and so $(1 / L) u_{\tau}=u_{x x}$ becomes $0=u_{x x}$ (quasi-static!) and $\left[u_{x}(s(t), t)\right]_{\ell}^{s}=L s^{\prime}(t)$ becomes $\left[u_{x}(s(\tau), \tau)\right]_{\ell}^{s}=s^{\prime}(\tau)$.

The solution is (disregarding the initial condition for u !) $u(x, \tau)=1-x / s(\tau)$ for $0<x<s(\tau)$ and $u(x, \tau)=0$ for $s(\tau)<x<1$. Then we get the ode $s^{\prime}(\tau)=1 / s(\tau)$ and with the initial condition $s(0)=0$ we conclude $s(\tau)=\sqrt{2 \tau}$ and $s(t)=\sqrt{2 t / L}$. So, for large L the solid gets completely melted in a total time of $L / 2$.

Let's study the other limiting case, $L \rightarrow 0$. We have to solve $u_{t}=u_{x x}$ for $0<x<1$ with $u(0, t)=1, u_{x}(1, t)=0$ and $u(x, 0)=\theta<0$, and then the interface $x=s(t)$ will be the isotherm $u(x, t)=0$. The solution is

$$
\begin{gathered}
u=1-\sum_{n=0}^{\infty} \frac{4(1-\theta)}{(2 n+1) \pi} e^{-\frac{(2 n+1)^{2} \pi^{2}}{4} t} \sin \left(\frac{(2 n+1) \pi}{2} x\right) \\
\simeq 1-\frac{4(1-\theta)}{\pi} e^{-\frac{\pi^{2}}{4} t} \sin \left(\frac{\pi}{2} x\right)
\end{gathered}
$$

Now we write $u(1, T)=0$ to calculate the time T needed to melt the whole bar of ice, and one gets

$$
e^{-\frac{\pi^{2}}{4} T}=\frac{\pi}{4(1-\theta)}
$$

and

$$
T=-\frac{4}{\pi^{2}} \log \left(\frac{\pi}{4(1-\theta)}\right)
$$

Exemple 2: The one-phase Stefan problem. The Neumann solution.

$$
\left\{\begin{array}{l}
u_{t}=u_{x x} \text { for } 0<x<s(t) \text { and } u(x, t)=0 \text { for } s(t)<x<\infty \\
u(x, 0)=0 \text { for } 0<x<\infty \\
u(0, t)=1 \\
-u_{x}(s(t)(-), t)=L s^{\prime}(t)
\end{array}\right.
$$

Problem 5.1: (Neumann solution)
Look for the solution of the form $u(x, t)=F(x / \sqrt{t})$, for
$0<x<s(t)$, obtain $s(t)=A \sqrt{t}, u(x, t)=1-\frac{\operatorname{erf}\left(\frac{x}{2 \sqrt{t}}\right)}{\operatorname{erf}(A / 2)}$ and
deduce the relation $A=A(L)$.

Black-Scholes

- Suppose we are a bank. At time $t=t_{0}$ a costumer can come saying he wants to warranty the possibility (the option) of buying at $t=T$ ($T \geq t_{0}$) a particular good or asset (the underlying asset, typically a good, a stock, a share) at a price E (the strike of the option). The costumer will not get obliged to buy the asset at the price E when $t=T$, he will merely have the option to do it (these kind of options are called European options).
- We want to tell this costumer the price of this service. We want to look at the price at this moment of the asset, say $S_{t_{0}}$, and be able to tell the client that in order to have this option he has to pay us (at time $\left.t_{0}\right)$ a quantity $C\left(S_{t_{0}}, t_{0}\right)$.
The mathematical task is now to find the function $C(S, t)$ for $0<S$ and $t \leq T$. We consider as given and fixed the other parameters of the system, as the strike E and the execution time T as well as other general properties of the market. The unknown function $C(S, t)$ will turn out to satisfy a partial differential equation like the heat equation but backwards in time, and the final condition instead of the initial condition will be given.

Example: our costumer wants to buy 20.000 Brendt oil barrels next Dec. 31 at a price of $62 \$$ each.
$t_{0}=$ today, in days. (LINK)
$T=365$, in days
$E=62$, in dollars.
$S=S_{t_{0}}=$ today price, in dollars (LINK)
We want to tell him the price of this option, say $1.5 \$$ for each barrel.

The first thing that is easy to see is that the final condition will be

$$
C(S, T)=\max (0, S-E)
$$

It is clear that if $S \leq E$ we would not ask the costumer to pay anything for such and disadvantageous (and useless) thing for him. It is also clear that if $S \geq E$ we would ask him to pay exactly the difference $S-E$.

The risk-free interest rate

- We suppose that in the market there is a financial product (German or USA government debt obligations, or something similar) without risk and with a (continuous) interest ρ constant.

$$
d R=R \rho d t
$$

- All the financial operations we, as a bank, are willing to do should give exactly this interest.

If we wanted to get a higher return, for sure another bank would appear that would offer our costumers better conditions (this hypothesis is called no-arbitrage). Equally, if we offer lower prices that will be a really bad deal for us.

Evolution of the asset price

The price S_{t} of the asset is not deterministic. We accept that it is a random process S_{t} whose variations are given by

$$
\frac{d S_{t}}{S_{t}}=\mu d t+\sigma d W_{t}
$$

where μ is the instantaneous average rate (deterministic) or drift rate, σ is the standard deviation of the instantaneous rate (volatility) and W_{t} is a standard Wiener process (or Brownian motion):

$$
W_{t}-W_{s} \sim \mathcal{N}(0, t-s)
$$

for $t>s$.
Recall that $X \sim \mathcal{N}(0,1) \Rightarrow \sqrt{t-s} X \sim \mathcal{N}(0, t-s)$. Recall also $\mathcal{N}=\mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right): \mu_{0}$ average, σ_{0}^{2} variance, σ_{0} standard deviation (root mean square) and pdf $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$.
Recall also that if a particle jumps by $\pm h$ each Δt and we define $k=h^{2} /(2 \Delta t)$ then its position $X(t)$ gives $d X=\sqrt{2 k} d W_{t}$.

Plots with $\mu=.5$. Cases $\sigma=0$ (deterministic) and $\sigma=.07$.
(MATLAB) $\gg D t=.01 ; y(1)=.3$; for $k=1: 200 ; y(k+1) \ldots$ $=y(k)+.5 * D t * y(k)+\operatorname{sqrt}(D t) * .07 * \operatorname{randn}(1) * y(k)$; end

For $C=C\left(S_{t}, t\right)$ we have (Taylor's formula):
$d C=\partial_{S} C d S_{t}+\partial_{t} C d t+\frac{1}{2} \partial_{S}^{2} C\left(d S_{t}\right)^{2}+\partial_{S} \partial_{t} C d S_{t} d t+\frac{1}{2} \partial_{t}^{2} C(d t)^{2}+\cdots$,
and we already knew that

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}=\mu S_{t} d t+\sigma S_{t} X_{t} \sqrt{d t}
$$

where $X_{t} \sim \mathcal{N}(0,1)$. So, in comparison with $d t$ one has $d S_{t} d t=(d t)^{2}=0$ and so $\left(d S_{t}\right)^{2}=\sigma^{2} S_{t}^{2} X_{t}^{2} d t$.
But this last expression can also be simplified in comparison with $d S_{t}$: the variance of $\left[\sigma^{2} S_{t}^{2} X_{t}^{2} d t\right]$ is of the order of $(d t)^{2}$ and that of $d S_{t}$ is $d t$ (larger!). This means that the first can be considered as deterministic in comparison with the second, and can be substituted by its mean value $\sigma^{2} S_{t}^{2} d t$. And we finally get

$$
d C=\underbrace{\partial_{S} C d S_{t}}_{\text {random }}+\underbrace{\partial_{t} C d t+\frac{1}{2} \partial_{S}^{2} C S_{t}^{2} \sigma^{2} d t}_{\text {deterministic }}
$$

Portfolio management, 1 (hedging, cobertura)

We (the bank) have a portfolio with n options and h assets. Its value is $R=n C+h S$, and the variation of its value

$$
d R=n d C+h d S+C d n+S d h
$$

We follow the self-financed strategy: if we sell assets then we buy options by the same amount, and viceversa, so: $C d n+S d h=0$. This relation allows us to obtain the proportion between the changes in $n(d n)$ and the changes in $h(d h)$ but still does not allow us to decide $d n$ and $d h$ without any ambiguity.

Portfolio management, 2 (hedging, cobertura)

So, for the time being,

$$
\begin{aligned}
d R=n d C & +h d S=n\left(\partial_{S} C d S+\partial_{t} C d t+\frac{1}{2} \partial_{S}^{2} C S^{2} \sigma^{2} d t\right)
\end{aligned}+h d S=
$$

and now we choose at each time n and h in such a way that $n \partial_{S} C+h=0$, and the random term disappears, $h=-n \partial_{S} C$ and we get

$$
d R=n\left(\partial_{t} C d t+\frac{1}{2} \partial_{S}^{2} C S^{2} \sigma^{2} d t\right)
$$

Black-Scholes equation

We said that the evolution of the value of our portfolio cannot be different from the evolution of the risk-free asset. So,

$$
d R=n\left(\partial_{t} C d t+\frac{1}{2} \partial_{S}^{2} C S^{2} \sigma^{2} d t\right)=R \rho d t=n\left(C-\partial_{S} C S\right) \rho d t
$$

and we get the (backwards) parabolic equation

$$
-C_{t}=\frac{1}{2} \sigma^{2} S^{2} C_{S S}+\rho S C_{S}-\rho C
$$

for $S>0$ i $t<T$, and the final condition $C(S, T)=\max (0, S-E)$. The changes $x=\log S-V t$, where $V=\rho-\sigma^{2} / 2, \tau=T-t$ and $u(x, \tau)=e^{-\rho(T-\tau)} C(S, t)$ converts the equation into the (forward) diffusion equation

$$
u_{\tau}=\frac{\sigma^{2}}{2} u_{x x}
$$

with the initial condition $u(x, 0)=e^{-\rho T} \max \left(0, e^{x+V t}-E\right)$.

Black-Scholes formula

Problem 5.2: Check that

$$
C(S, t)=N\left(d_{1}(S, t)\right) S-N\left(d_{2}(S, t)\right) E e^{-\rho(T-t)}
$$

where

$$
\begin{gathered}
d_{1}=\frac{\log (S / E)+\left(\rho+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}} \\
d_{2}=d_{1}-\sigma \sqrt{T-t} \\
N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-z^{2} / 2} d z .
\end{gathered}
$$

Make a broad estimate of the parameters for our first example (Brendt barrels), and plot some reasonable solution curves.

Plots of solutions for different times.
(after http://www.math.unl.edu/ sdunbar1/MathematicalFinance/Lessons/BlackScholes/Solution/solution.pdf)

