The Stefan Problem (a free boundary problem)
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Here n is the exterior unit normal vector to the liquid phase and
v is the (local) speed of the interphase I'; in the direction of n.

ptetul = k'V2u in QfF,

pScSus = kSV2uS in QF,
u =utonTy,
us=u*onrl;

+ heat balance across I';.

JS-M 05. Diffusion Applications, 2: Stefan and Black-Scholes



t, TpedE

AtAl —K'uy  — (KU ) 1= Lp°AvAt
~— N———
heat leaving Q°  heat entering Qs

(v = 0 means perfect thermal contact, v > 0 means melting,
v < 0 (with p’ instead of p® in the r.h.s.) would mean freezing).
This is better written as

[kunlf = p°Lv,

where L is the latent heat.
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Exemple 1: A 1-d problem (of melting)

Suppose p® = p’ = ¢ = ¢! = kS = k! = 1. The liquid phase is
0 < x < s(t) and the solid phase s(t) < x < 1. We impose the
boundary conditions u(0,t) = 1 and ux(1,t) = 0, and the initial
condition u(x,0) =6 < 0.

Ur = Uxx for 0 < x < s(t) and s(t) < x < 1
u(0,t)=1and ux(1,t)=0
u(x,0)=60<0

u(s(t),t)=0

[ux(s(t), DI} = Ls'(1)

s(0)=0

Not easy to solve...
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Suppose L > 1 so s(t) grows slowly. We change to 7 = t/L to
make things to happen faster. Then d/dt = (1/L)d/dr and so
(1/L)u; = uxx becomes 0 = uyy (quasi-static!) and

[ux(s(t), 1)]; = Ls'(t) becomes [ux(s(7), T)]; = /(7).

The solution is (disregarding the initial condition for u!)
u(x,7)=1—x/s(r) for 0 < x < s(r) and u(x,7) = 0 for

s(7) < x < 1. Then we get the ode s'(7) = 1/s(7) and with the
initial condition s(0) = 0 we conclude s(7) = v27 and

s(t) = y/2t/L. So, for large L the solid gets completely melted
in a total time of L/2.
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Let’s study the other limiting case, L — 0. We have to solve
Ut = Uxx for 0 < x < 1 with u(0,t) =1, ux(1,t) = 0 and
u(x,0) = 6 < 0, and then the interface x = s(t) will be the
isotherm u(x, t) = 0. The solution is
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Now we write u(1, T) = 0 to calculate the time T needed to
melt the whole bar of ice, and one gets
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Exemple 2: The one-phase Stefan problem. The Neumann solution.

u=+%

{ by

\(_ X= SK\

Ut = Uxx for 0 < x < s(t) and u(x,t) = 0 for s(t) < x < oo
u(x,0) = Ofor0<x<oo
u(0,t) =

—Ux(8( )( ):t) = Ls'(1)

Problem 5.1: (Neumann solution)
Look for the solution of the form u(x, t) = F(x/\/1), for

. . . . 2\/}
0 < x < s(t), obtain s(t) = AV't, u(x,t) = 1 orf(A/2)
deduce the relation A = A(L).
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Black-Scholes

e Suppose we are a bank. At time t = { a costumer can come saying
he wants to warranty the possibility (the option) of buyingatt =T

(T > 1) a particular good or asset (the underlying asset, typically a
good, a stock, a share) at a price E (the strike of the option). The
costumer will not get obliged to buy the asset at the price E when

t = T, he will merely have the option to do it (these kind of options
are called European options).

e We want to tell this costumer the price of this service. We want to
look at the price at this moment of the asset, say S;,, and be able to
tell the client that in order to have this option he has to pay us (at time
fo) a quantity C(Sy,, fy).

The mathematical task is now to find the function C(S, t) for0 < S
and t < T. We consider as given and fixed the other parameters of
the system, as the strike E and the execution time T as well as other
general properties of the market. The unknown function C(S, t) will
turn out to satisfy a partial differential equation like the heat equation
but backwards in time, and the final condition instead of the initial
condition will be given.
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Example: our costumer wants to buy 20.000 Brendt oil barrels next
Dec. 31 at a price of 62$ each.

o = today, in days. (LINK)

T = 365, in days

E =62, in dollars.

S = §;, = today price, in dollars (LINK)

We want to tell him the price of this option, say 1.5%$ for each barrel.
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http://www.epochconverter.com/epoch/daynumbers.php
http://www.nasdaq.com/markets/crude-oil-brent.aspx

The first thing that is easy to see is that the final condition will be

C(S,T) =max(0,S - E).

alsm)

d:lM&x{O) S—E>

It is clear that if S < E we would not ask the costumer to pay anything

for such and disadvantageous (and useless) thing for him. It is also
clear that if S > E we would ask him to pay exactly the difference

S—-E.
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The risk-free interest rate

e We suppose that in the market there is a financial product (German
or USA government debt obligations, or something similar) without
risk and with a (continuous) interest p constant.

dR = Rpat

o All the financial operations we, as a bank, are willing to do should
give exactly this interest.

If we wanted to get a higher return, for sure another bank would
appear that would offer our costumers better conditions (this
hypothesis is called no-arbitrage). Equally, if we offer lower prices that
will be a really bad deal for us.
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Evolution of the asset price

The price S; of the asset is not deterministic. We accept that it is a
random process S; whose variations are given by

ds

==L = jdt + ocdW,

Si
where 1 is the instantaneous average rate (deterministic) or drift rate,
o is the standard deviation of the instantaneous rate (volatility) and
W; is a standard Wiener process (or Brownian motion):

W; — Ws ~ N(0,t — 5)

fort > s.

Recall that X ~ A/(0,1) = /t — sX ~ N(0,t — s). Recall also

N = N(uo,03): o average, o3 variance, oo standard deviation (root
mean square) and pdf f(x) = L exp (— (XZ;‘;)Z)

Recall also that if a particle jumps by +h each At and we define

k = h?/(2At) then its position X(t) gives dX = v2kdW,.
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Plots with © = .5. Cases o = 0 (deterministic) and ¢ = .07.

(MATLAB) >> Dt =.01;y(1) = .3;for k =1:200;y(k+1)...
= y(k) + .5 % Dt x y(k)+sqrt(Dt) « .07xrandn(1) * y(k); end
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Ito’s Lemma (lto-Doeblin)

For C = C(S;,t) we have (Taylor’s formula):
dC = 8sC dS;+8;C dt+%8§C (dS)?+0s0;C dStdt+%8fC (dt)?+-- -,
and we already knew that

as; = ,qu at+ oS dW; = MS[ at + oS X \/&

where X; ~ N(0,1). So, in comparison with dt one has

dSidt = (dt)? = 0 and so (dS;)? = 02S2X? dft.

But this last expression can also be simplified in comparison with dS;:
the variance of [02S2X? df] is of the order of (dt)? and that of dS; is
dt (larger!). This means that the first can be considered as
deterministic in comparison with the second, and can be substituted
by its mean value 02S2dt. And we finally get

dC = 9sC dS; +0;C dt + 1a§c S2o2dt
N—_—— 2

random

deterministic
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Portfolio management, 1 (hedging, cobertura)

We (the bank) have a portfolio with n options and h assets. Its value
is R = nC + hS, and the variation of its value

dR=ndC+hdS+ Cdn+ Sdh.

We follow the self-financed strategy: if we sell assets then we buy
options by the same amount, and viceversa, so: C dn+ S dh = 0.
This relation allows us to obtain the proportion between the changes
in n (dn) and the changes in h (dh) but still does not allow us to
decide dn and dh without any ambiguity.
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Portfolio management, 2 (hedging, cobertura)

So, for the time being,

dR = n dC + h dS = n(dsC dS + 9,C dt + %agc S%02at) + h dS =

= (ndsC + h) dS+ n(8;C dt + %agc S2o2dt)
—_— ——

random

deterministic

and now we choose at each time n and hin such a way that
ndsC + h = 0, and the random term disappears, h = —ndsC and we
get

dR = n(d;C dt + %agc S2o2dt).
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Black-Scholes equation

We said that the evolution of the value of our portfolio cannot be
different from the evolution of the risk-free asset. So,

dR = n(d;C dt + %agc S?02dt) = Rpdt = n(C — dsC S)p dt,
and we get the (backwards) parabolic equation
—Ct = %0’282033 + pSCs — pC
for S>0it < T, and the final condition C(S, T) = max(0, S — E).
The changes x = log S — Vt, where V = p—02/2, 7 = T — t and

u(x,7) = e "(T-7)C(S, t) converts the equation into the (forward)
diffusion equation

Ur = ?Uxx

with the initial condition u(x,0) = e=*" max(0, &+" — E).
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Black-Scholes formula
Problem 5.2: Check that
C(S,t) = N(di(S,1)) S— N(do(S, t))Ee*p(T*”

where

o — log(S/E) + (p+0°/2)(T — 1)
! oV T —t
bh=0d —ovT -t

N(x ~2/2 gz,

1 X
)= e

27T —00
Make a broad estimate of the parameters for our first example
(Brendt barrels), and plot some reasonable solution curves.
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Plots of solutions for different times.

(after http://www.math.unl.edu/ sdun-
bar1/MathematicalFinance/Lessons/BlackScholes/Solution/solution.pdf)
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