
Boundary conditions

In a domain Ω one has to add boundary conditions to the heat
(or diffusion) equation:

1. u(x, t) = φ for x ∈ ∂Ω. Temperature given at the
boundary. Also density given at the boundary. (Dirichlet)
2. kun(x, t) = φ for x ∈ ∂Ω. Flux given at the boundary.
The most typical is φ ≡ 0, isolated boundaries. (Neumann)
3. kun(x, t) + hu(x, t) = φ for x ∈ ∂Ω. These are called
convection boundary conditions in the thermal engineering
literature: −k∇u · n = h(u − u∞) if the temperature of the
fluid around the body is u∞ far away. (third class, Robin,
convection, Newton)
4. Perfect thermal contact: −k1∇u1 · n = −k2∇u2 · n. (n is
the exterior unit normal to Ω1).
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5. Dynamic boundary conditions: ut + αun = φ at the
boundary.

Example: bar (−1 < x < 1) with ends immersed into two fluid
containers, at homogeneous temperatures a(t) and b(t).

Vf Cfρf
d
dt

a(t) =

∫
A
−kun dS = Akux (−1, t)

Vf Cfρf
d
dt

b(t) = −Akux (1, t)

a′(t) = αux , b′(t) = −αux , u(−1, t) = a(t) and u(1, t) = b(t).
So, ut (−1, t) + α(−ux (−1, t)) = 0 and ut (1, t) + αux (1, t) = 0.
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Example: (to understand conductivity, or diffusivity) Calculate
the steady-state temperature profiles inside a wall −1 < x < 1
made of two parts in perfect thermal contact: one is
−1 < x < 0 with conductivity k and the other is 0 < x < 1 of
conductivity 1. The boundary temperatures are u = 0 for
x = −1 and u = 1 for x = 1.

uxx = 0, for − 1 < x < 0 and 0 < x < 1,
u(−1) = 0,
u(0−) = u(0+), kux (0−) = ux (0+)

u(1) = 1.

The solution is u = (x + 1)/(1 + k) for −1 < x < 0 and
u = (kx + 1)/(1 + k) for 0 < x < 1.
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Problem 3.1: (lumped approximation) Calculate the
steady-state temperature profiles inside a wall −1 < x < 1
made of three parts in perfect thermal contact: one is
−1 < x < −ε with conductivity 1, the second is −ε < x < ε with
conductivity k (small) and the third is ε < x < 1 with
conductivity 1. The boundary temperatures are u = a for
x = −1 and u = b for x = 1. Observe that for k small, u ∼ a in
the first part and u ∼ b in the third part. How small (with ε)
should k be to keep this property as ε→ 0?
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Dissipation and limit behavior (bounded domain)

Imagine u∞ = 0 and the three cases of boundary values for
ut = D∇2u: (1) u = 0; (2) un = −(h/k)u, with h > 0; and (3)
un = 0. One has

d
dt

∫
Ω

1
2

u2 = −D
∫

Ω
(∇u)2 + D

∫
∂Ω

uun.

In cases (1) and (2) this is strictly negative, unless u ≡ 0. In
case (3) this is strictly negative, unless u ≡ constant. Also,

d
dt

∫
Ω

1
2

(∇u)2 = −D
∫

Ω
u2

t + D
∫
∂Ω

utun.

In cases (1) and (3) this is strictly negative, except at equilibria.
In case (2) we have d

dt

(∫
Ω

1
2(∇u)2 + (Dh/k)

∫
∂Ω

1
2u2) is strictly

negative, except at equilibria.
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Problem 3.2: By showing that
∫ 1

2u2 tends exponentially to
zero, show that all solutions of ut = D∇2u with u = 0 at ∂Ω
tend to zero exponentially, provided that Ω is bounded in one
direction, that is Ω ⊂ {a < xi < a + L}. Hint: show first
Poincaré’s inequality. If Ω is bounded in some direction and
u(x) is a smooth function in Ω that vanishes at ∂Ω, then there
exists a constant C > 0, independent of u such that∫

Ω u2 ≤ C
∫

Ω(∇u)2.

Can one show, with similar methods, that all the solutions of
ut = D∇2u with un = 0 at ∂Ω tend exponentially to a steady
solution? Given the initial condition u(x,0) can one predict
which is the value of the constant solution at which u(x, t) tends
as t →∞?
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Dissipation and limit behavior (infinite domain)

Dimension one, k = 1. Non-negative solutions with finite mass:
0 ≤ u(x ,0), ||u(·,0||1 <∞.

0 ≤ u(x , t) ≤ 1√
4πt
||u(·,0)||1.

Also, we have the particular solutions
G(x , t) = (4πt)−1/2e−x2/(4t). So, t−1/2 is the optimal power.

Problem 3.3: Suppose 0 ≤ u(x ,0), ||u(·,0)||1 <∞, and u(x ,0)
nonzero. Prove that there is a value x0 and a constant C > 0
such that u(x0, t) ≥ C/

√
t for t sufficiently large.

For large t every positive solution approaches a Gaussian:
Suppose 0 ≤ u(x ,0) ≤ M1(1 + x2)−α for some α > 1, and that
||u(·,0)||1 = M2. Then it can be proved that
||u(·, t)−M2G(·, t)||∞ ∼ 1/t .
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Entropy
If an event happens with probability p, its (Shannon) amount of
information is − log p. If there are n possible events, with
probabilities pi , the (Shannon) entropy H of the system is the
expected value of the amount of information:

∑
−pi log pi (> 0).

If we have a pdf u(x) for −∞ < x <∞ and a partition
{ih ≤ x < (i + 1)x , k ∈ Z} the entropy would be

∑
i

−

(∫ (i+1)h

ih
u dx

)
log

(∫ (i+1)h

ih
u dx

)
'

∑
i

−u(ih)h log(u(ih)h) ' − log h −
∫ ∞
−∞

u log u dx

and we define its (renormalized) entropy as
h[u] = −

∫∞
−∞ u log u dx . Observe that needs not to be positive.
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If u satisfies ut = uxx then

d
dt

h[u] = −
∫

uxx log u −
∫

uxx︸ ︷︷ ︸
=0

=

∫ (
−(ux log u)x + |ux |2/u

)
=

∫
|ux |2/u > 0,

so the entropy always increases. The same is true in n
dimensions or in a bounded domain with Neumann boundary
conditions. Also, for the gaussian

−
∫

G log G = −
∫

1√
4πt

e−
x2
4t

(
log

1√
4πt
− x2

4t

)

Problem 3.4: Show that the first term tends to infinity as log t
and the second does not depend on t .
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Separation of variables in an interval

ut = uxx in 0 < x < a

ux (0) = ux (a) = 0

u(x , t) =
∞∑

n=0

αne−n2 π2

a2 t
cos n

π

a
x

α0 =
1
a

∫ a

0
u(x ,0) dx , αn =

2
a

∫ a

0
u(x ,0) cos

nπ
a

x dx .
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Separation of variables in a rectangle

ut = ∇2u in 0 < x < a, 0 < y < b with Neumann boundary
conditions.

u(x , y , t) =
∞∑

n,m=0

αnme−(n2 π2

a2 +m2 π2

b2 )t
cos(n

π

a
x) cos(m

π

b
y) =

∞∑
n=0

αn0e−n2 π2

a2 t
cos(n

π

a
x)+

∞∑
n,m−1=0

αnm e−(n2 π2

a2 +m2 π2

b2 )t︸ ︷︷ ︸
≤e−π2t/b2

cos(n
π

a
x) cos(m

π

b
y).

So, if 0 < b � 1 u becomes shortly independent of y and
satisfies simply ut = uxx in 0 < x < a with Neumann boundary
conditions.
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Thin (slender) domains

Ωε = {(x , y)|0 < x < a,0 < y < εg(x)}, ut = D∇2u in Ωε,
∂u/∂n = 0 on ∂Ωε. Suppose
u(x , y , t) = u0(x , t) + εu1(x , y , t) + O(ε2), and the same for the
x-derivatives.

d
dt

∫ x2

x1

∫ εg(x)

0
u(x , y , t) dy dx =

∫ εg(x2)

0
Dux dy−

∫ εg(x1)

0
Dux dy

d
dt

∫ x2

x1

εg(x)u0(x , t) dx = εg(x2)Du0
x (x2, t)− εg(x1)Dux (x1, t)∫ x2

x1

g(x)u0
t (x , t) dx =

∫ x2

x1

(g(x)Du0
x (x , t))x dx

u0
t =

D
g(x)

(g(x)u0
x )x , u0

t = Du0
xx + D

g′(x)

g(x)
u0

x .
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