Boundary conditions

In a domain Ω one has to add boundary conditions to the heat (or diffusion) equation:

- 1. $u(\mathbf{x}, t)=\phi$ for $\mathbf{x} \in \partial \Omega$. Temperature given at the boundary. Also density given at the boundary. (Dirichlet)
- 2. $k u_{\mathbf{n}}(\mathbf{x}, t)=\phi$ for $\mathbf{x} \in \partial \Omega$. Flux given at the boundary. The most typical is $\phi \equiv 0$, isolated boundaries. (Neumann)
- 3. $k u_{\mathbf{n}}(\mathbf{x}, t)+h u(\mathbf{x}, t)=\phi$ for $\mathbf{x} \in \partial \Omega$. These are called convection boundary conditions in the thermal engineering literature: $-k \nabla u \cdot \mathbf{n}=h\left(u-u_{\infty}\right)$ if the temperature of the fluid around the body is u_{∞} far away. (third class, Robin, convection, Newton)
- 4. Perfect thermal contact: $-k_{1} \nabla u_{1} \cdot \mathbf{n}=-k_{2} \nabla u_{2} \cdot \mathbf{n}$. (\mathbf{n} is the exterior unit normal to Ω_{1}).
- 5. Dynamic boundary conditions: $u_{t}+\alpha u_{\mathbf{n}}=\phi$ at the boundary.

Example: bar ($-1<x<1$) with ends immersed into two fluid containers, at homogeneous temperatures $a(t)$ and $b(t)$.

$$
\begin{gathered}
V_{f} C_{f} \rho_{f} \frac{d}{d t} a(t)=\int_{A}-k u_{\mathrm{n}} d \mathcal{S}=A k u_{x}(-1, t) \\
V_{f} C_{f} \rho_{f} \frac{d}{d t} b(t)=-A k u_{x}(1, t) \\
a^{\prime}(t)=\alpha u_{x}, b^{\prime}(t)=-\alpha u_{x}, u(-1, t)=a(t) \text { and } u(1, t)=b(t) \\
\text { So, } u_{t}(-1, t)+\alpha\left(-u_{x}(-1, t)\right)=0 \text { and } u_{t}(1, t)+\alpha u_{x}(1, t)=0 .
\end{gathered}
$$

Example: (to understand conductivity, or diffusivity) Calculate the steady-state temperature profiles inside a wall $-1<x<1$ made of two parts in perfect thermal contact: one is $-1<x<0$ with conductivity k and the other is $0<x<1$ of conductivity 1 . The boundary temperatures are $u=0$ for $x=-1$ and $u=1$ for $x=1$.

$$
\left\{\begin{array}{l}
u_{x x}=0, \text { for }-1<x<0 \text { and } 0<x<1 \\
u(-1)=0 \\
u\left(0^{-}\right)=u\left(0^{+}\right), \quad k u_{x}\left(0^{-}\right)=u_{x}\left(0^{+}\right) \\
u(1)=1
\end{array}\right.
$$

The solution is $u=(x+1) /(1+k)$ for $-1<x<0$ and $u=(k x+1) /(1+k)$ for $0<x<1$.

Problem 3.1: (lumped approximation) Calculate the steady-state temperature profiles inside a wall $-1<x<1$ made of three parts in perfect thermal contact: one is
$-1<x<-\varepsilon$ with conductivity 1 , the second is $-\varepsilon<x<\varepsilon$ with conductivity k (small) and the third is $\varepsilon<x<1$ with conductivity 1 . The boundary temperatures are $u=a$ for $x=-1$ and $u=b$ for $x=1$. Observe that for k small, $u \sim a$ in the first part and $u \sim b$ in the third part. How small (with ε) should k be to keep this property as $\varepsilon \rightarrow 0$?

Dissipation and limit behavior (bounded domain)

Imagine $u_{\infty}=0$ and the three cases of boundary values for $u_{t}=D \nabla^{2} u$: (1) $u=0$; (2) $u_{\mathrm{n}}=-(h / k) u$, with $h>0$; and (3) $u_{\mathrm{n}}=0$. One has

$$
\frac{d}{d t} \int_{\Omega} \frac{1}{2} u^{2}=-D \int_{\Omega}(\nabla u)^{2}+D \int_{\partial \Omega} u u_{\mathrm{n}}
$$

In cases (1) and (2) this is strictly negative, unless $u \equiv 0$. In case (3) this is strictly negative, unless $u \equiv$ constant. Also,

$$
\frac{d}{d t} \int_{\Omega} \frac{1}{2}(\nabla u)^{2}=-D \int_{\Omega} u_{t}^{2}+D \int_{\partial \Omega} u_{t} u_{\mathbf{n}}
$$

In cases (1) and (3) this is strictly negative, except at equilibria. In case (2) we have $\frac{d}{d t}\left(\int_{\Omega} \frac{1}{2}(\nabla u)^{2}+(D h / k) \int_{\partial \Omega} \frac{1}{2} u^{2}\right)$ is strictly negative, except at equilibria.

Problem 3.2: By showing that $\int \frac{1}{2} u^{2}$ tends exponentially to zero, show that all solutions of $u_{t}=D \nabla^{2} u$ with $u=0$ at $\partial \Omega$ tend to zero exponentially, provided that Ω is bounded in one direction, that is $\Omega \subset\left\{a<x_{i}<a+L\right\}$. Hint: show first Poincare's inequality. If Ω is bounded in some direction and $u(\mathbf{x})$ is a smooth function in Ω that vanishes at $\partial \Omega$, then there exists a constant $C>0$, independent of u such that $\int_{\Omega} u^{2} \leq C \int_{\Omega}(\nabla u)^{2}$.
Can one show, with similar methods, that all the solutions of $u_{t}=D \nabla^{2} u$ with $u_{\mathrm{n}}=0$ at $\partial \Omega$ tend exponentially to a steady solution? Given the initial condition $u(\mathbf{x}, 0)$ can one predict which is the value of the constant solution at which $u(\mathbf{x}, t)$ tends as $t \rightarrow \infty$?

Dissipation and limit behavior (infinite domain)

Dimension one, $k=1$. Non-negative solutions with finite mass:
$0 \leq u(x, 0), \| u\left(\cdot, 0 \|_{1}<\infty\right.$.

$$
0 \leq u(x, t) \leq \frac{1}{\sqrt{4 \pi t}}\|u(\cdot, 0)\|_{1}
$$

Also, we have the particular solutions
$G(x, t)=(4 \pi t)^{-1 / 2} e^{-x^{2} /(4 t)}$. So, $t^{-1 / 2}$ is the optimal power.
Problem 3.3: Suppose $0 \leq u(x, 0),\|u(\cdot, 0)\|_{1}<\infty$, and $u(x, 0)$ nonzero. Prove that there is a value x_{0} and a constant $C>0$ such that $u\left(x_{0}, t\right) \geq C / \sqrt{t}$ for t sufficiently large.

For large t every positive solution approaches a Gaussian:
Suppose $0 \leq u(x, 0) \leq M_{1}\left(1+x^{2}\right)^{-\alpha}$ for some $\alpha>1$, and that $\|u(\cdot, 0)\|_{1}=M_{2}$. Then it can be proved that
$\left\|u(\cdot, t)-M_{2} G(\cdot, t)\right\|_{\infty} \sim 1 / t$.

Entropy

If an event happens with probability p, its (Shannon) amount of information is $-\log p$. If there are n possible events, with probabilities p_{i}, the (Shannon) entropy H of the system is the expected value of the amount of information: $\sum-p_{i} \log p_{i}(>0)$.

If we have a pdf $u(x)$ for $-\infty<x<\infty$ and a partition $\{$ ih $\leq x<(i+1) x, k \in \mathbb{Z}\}$ the entropy would be

$$
\begin{gathered}
\sum_{i}-\left(\int_{i h}^{(i+1) h} u d x\right) \log \left(\int_{i h}^{(i+1) h} u d x\right) \simeq \\
\sum_{i}-u(i h) h \log (u(i h) h) \simeq-\log h-\int_{-\infty}^{\infty} u \log u d x
\end{gathered}
$$

and we define its (renormalized) entropy as $h[u]=-\int_{-\infty}^{\infty} u \log u d x$. Observe that needs not to be positive.

If u satisfies $u_{t}=u_{x x}$ then

$$
\begin{gathered}
\frac{d}{d t} h[u]=-\int u_{x x} \log u-\underbrace{\int u_{x x}}_{=0}=\int\left(-\left(u_{x} \log u\right)_{x}+\left|u_{x}\right|^{2} / u\right)= \\
\int\left|u_{x}\right|^{2} / u>0,
\end{gathered}
$$

so the entropy always increases. The same is true in n dimensions or in a bounded domain with Neumann boundary conditions. Also, for the gaussian

$$
-\int G \log G=-\int \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}\left(\log \frac{1}{\sqrt{4 \pi t}}-\frac{x^{2}}{4 t}\right)
$$

Problem 3.4: Show that the first term tends to infinity as $\log t$ and the second does not depend on t.

Separation of variables in an interval

$$
\begin{gathered}
u_{t}=u_{x x} \text { in } 0<x<a \\
u_{x}(0)=u_{x}(a)=0 \\
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} e^{-n^{2} \frac{\pi^{2}}{a^{2}} t} \cos n \frac{\pi}{a} x \\
\alpha_{0}=\frac{1}{a} \int_{0}^{a} u(x, 0) d x, \alpha_{n}=\frac{2}{a} \int_{0}^{a} u(x, 0) \cos \frac{n \pi}{a} x d x
\end{gathered}
$$

Separation of variables in a rectangle

$u_{t}=\nabla^{2} u$ in $0<x<a, 0<y<b$ with Neumann boundary conditions.

$$
\begin{gathered}
u(x, y, t)=\sum_{n, m=0}^{\infty} \alpha_{n m} e^{-\left(n^{2} \frac{\pi^{2}}{a^{2}}+m^{2} \frac{\pi^{2}}{b^{2}}\right) t} \cos \left(n \frac{\pi}{a} x\right) \cos \left(m \frac{\pi}{b} y\right)= \\
\sum_{n=0}^{\infty} \alpha_{n 0} e^{-n^{2} \frac{\pi^{2}}{a^{2}} t} \cos \left(n \frac{\pi}{a} x\right)+ \\
\sum_{n, m-1=0}^{\infty} \alpha_{n m} \underbrace{e^{-\left(n^{2} \frac{\pi^{2}}{a^{2}}+m^{2} \frac{\pi^{2}}{b^{2}}\right) t}}_{\leq e^{-\pi^{2} t / b^{2}}} \cos \left(n \frac{\pi}{a} x\right) \cos \left(m \frac{\pi}{b} y\right) .
\end{gathered}
$$

So, if $0<b \ll 1 u$ becomes shortly independent of y and satisfies simply $u_{t}=u_{x x}$ in $0<x<a$ with Neumann boundary conditions.

Thin (slender) domains

$\Omega_{\varepsilon}=\{(x, y) \mid 0<x<a, 0<y<\varepsilon g(x)\}, u_{t}=D \nabla^{2} u$ in Ω_{ε},
$\partial u / \partial \mathbf{n}=0$ on $\partial \Omega_{\varepsilon}$. Suppose $u(x, y, t)=u^{0}(x, t)+\varepsilon u^{1}(x, y, t)+O\left(\varepsilon^{2}\right)$, and the same for the x-derivatives.

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{1}}^{x_{2}} \int_{0}^{\varepsilon g(x)} u(x, y, t) d y d x=\int_{0}^{\varepsilon g\left(x_{2}\right)} D u_{x} d y-\int_{0}^{\varepsilon g\left(x_{1}\right)} D u_{x} d y \\
& \frac{d}{d t} \int_{x_{1}}^{x_{2}} \varepsilon g(x) u^{0}(x, t) d x=\varepsilon g\left(x_{2}\right) D u_{x}^{0}\left(x_{2}, t\right)-\varepsilon g\left(x_{1}\right) D u_{x}\left(x_{1}, t\right)
\end{aligned}
$$

$$
\int_{x_{1}}^{x_{2}} g(x) u_{t}^{0}(x, t) d x=\int_{x_{1}}^{x_{2}}\left(g(x) D u_{x}^{0}(x, t)\right)_{x} d x
$$

$$
u_{t}^{0}=\frac{D}{g(x)}\left(g(x) u_{x}^{0}\right)_{x}, \quad u_{t}^{0}=D u_{x x}^{0}+D \frac{g^{\prime}(x)}{g(x)} u_{x}^{0}
$$

