Diffusion of a density in a static fluid

$u(x, y, z, t)$, density $\left(M / L^{3}\right)$ of a substance (dye). Diffusion: motion of particles from places where the density is higher to places where it is lower, due to random independent motion (http://en.wikipedia.org/wiki/Diffusion).
Ficks law (1870): flux vector

$$
\underbrace{J}_{M /\left(T L^{2}\right)}=-\underbrace{D}_{L^{2} / T} \underbrace{\nabla u}_{M / L^{4}},
$$

where $\int_{\Sigma} \mathbf{J} \cdot \mathbf{n} d \mathcal{S}(M / T)$ is the net flux of mass per unit time crossing Σ in the direction of \boldsymbol{n}. D : diffusivity. Balance of mass:

$$
\frac{d}{d t} \int_{\Omega_{0}} u d \mathcal{V}=-\int_{\partial \Omega_{0}} \mathbf{J} \cdot \mathbf{n} d \mathcal{S}+\int_{\Omega_{0}} \underbrace{g}_{\text {reaction }} d \mathcal{V},
$$

$$
u_{t}=\nabla \cdot(D \nabla u)+g, \text { diffusion equation. }
$$

$$
u_{t}=\nabla \cdot(D \nabla u)+g
$$

- $D \equiv D_{0}$, Laplacian, linear diffusion.
- $D=D(u)=D_{0} m u^{m-1}$, porous medium equation, $m>1$.
- $D=D(\nabla u)=D_{0}|\nabla u|^{p-1} p$-laplacian, $p>2$.
- $g=g(u)$ (kinetics), reaction-diffusion equation. The reaction part is the ODE

$$
\frac{d u}{d t}=g(u)
$$

1-dimensional random walk (Bachelier, 1900, finance)

A particle moves in a net $\left\{x=x_{i}=i h ; i \in \mathbb{Z}\right\} \subset \mathbb{R}$ jumping each Δt either left or right with probability $1 / 2(h, \Delta t>0)$. Let $u(x, t)$ be the probability that the particle occupies the position x at time t.

$$
\begin{aligned}
u(x, t+\Delta t) & =\frac{1}{2}[u(x+h, t)+u(x-h, t)] \\
\frac{u(x, t+\Delta t)-u(x, t)}{\Delta t} & =\frac{h^{2}}{2 \Delta t} \frac{u(x+h, t)-2 u(x, t)+u(x-h, t)}{h^{2}}
\end{aligned}
$$

If $h \rightarrow 0$ and $\Delta t \rightarrow 0$ with $h^{2} /(2 \Delta t) \rightarrow D_{0}$ (better with the density $u^{\prime}=u / h$), then we get

$$
u_{t}=D_{0} u_{x x} .
$$

Observe that if $h^{2} /(2 \Delta t) \rightarrow D_{0}>0$ then the speed $h / \Delta t \rightarrow \infty$. Observe $h \sim \sqrt{\Delta t}$.
This deduction gives an interpretation for the diffusivity D_{0}.

Observe that if $\int_{-\infty}^{\infty} u d x=1$ initially, then the same will hold in the future.

The same deduction holds when $u(x, t)$ is the density of individuals between $x-h / 2$ and $x+h / 2$ (the number of individuals being then $h u$) at time t when half of them jump right and half of them jump left each Δt.

Then, the total population $\int_{-\infty}^{\infty} u d x$ is no longer restricted to be 1 , but can be arbitrary (positive).

Problem 2.1: Suppose that a particle in \mathbb{R}^{n} moves in the net $\left\{\left(i_{1} h, i_{2} h, \ldots i_{n} h\right) ; i_{j} \in \mathbb{Z}\right\}$ and jumps every Δt from one point to one of its neighbours (along one of the axes) with a probability $1 /(2 n)$. Deduce $u_{t}=D_{0} \nabla^{2} u$ and state the hypotheses on how $h \rightarrow 0$ and $\Delta t \rightarrow 0$.

Problem 2.2 : (anisotropic diffusion) Consider the situation of the previous problem for $n=2$ and supose that the probability of jumping left is $d / 2$, right is $d / 2$, up is $(1-d) / 2$ and down is $(1-d) / 2$, for some $0<d \leq 1$. Write the limit equation in the form $u_{t}=\nabla \cdot M_{0} \nabla u$, where now M_{0} is a 2×2 matrix.

Problem 2.3: Suppose a particle moves in a 1-dimensional net $\left\{x=x_{i}=i h ; i \in \mathbb{Z}\right\} \subset \mathbb{R}$, and each Δt either remains in its place with a probability $(1-d)$, or with a probability d jumps either left or right with probability $d / 2$. We suppose $0<d \leq 1$. Deduce $u_{t}=D_{0} u_{x x}$, for some D_{0} and state the hypotheses.

Heat Conduction, Fourier's Law

Heat conduction in an equilibrium isotropic solid.
u, temperature (degrees); Q is the heat density
(energy/volume); ρ, density (mass/volume); C heat capacity (specific heat) (energy/(temperature \times mass)).

$$
Q=\rho C u .
$$

The quantities u and Q, the unknowns, depend on space and time. In non-homogeneous solids also ρ and C can depend on \mathbf{x}, or, in more realistic but complicate situations, also on u. The total heat in Ω_{0} is

$$
Q_{\Omega_{0}}=\int_{\Omega_{0}} Q d \mathcal{V}
$$

One postulates the existence of a flux vector \mathbf{q} (energy/(area \times time)) whose integral gives us the net heat flux:

$$
\frac{d}{d t} \int_{\Omega_{0}} Q d \mathcal{V}=-\underbrace{\int_{\partial \Omega_{0}} \mathbf{q} \cdot \mathbf{n} d \mathcal{S}}_{\text {conduction }}+\underbrace{\int_{\Omega_{0}} f d \mathcal{V}}_{\text {generation }} .
$$

Fourier's Law(1822): (isotropic case)

$$
\mathbf{q}=-k \nabla u,
$$

where k is the thermal conductivity (large in metals, low in isolating materials).

$$
\rho C u_{t}=\nabla \cdot(k \nabla u)+f \text { heat equation. }
$$

If ρ, C, k are constants and $f=0$ then $u_{t}=D \nabla^{2} u$, where
$D=k /(\rho C)$ is the thermal diffusivity.

A self-similar solution

A solution of $u_{t}=D u_{x x}$ of the form $u=\varphi(r(t) x)$, with φ bounded. We use the new variables $\xi=r x$ and t, and the special function $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-\sigma^{2}} d \sigma$ and obtain
(Problem 2.4: make this calculation)

$$
u(x, t)=\frac{u_{\infty}+u_{-\infty}}{2}+\frac{u_{\infty}-u_{-\infty}}{2} \operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)
$$

whose initial condition is

$$
u(x, 0)= \begin{cases}u_{-\infty} & \text { for } x<0 \\ u_{\infty} & \text { for } x>0\end{cases}
$$

Take $u_{-\infty}=0, u_{\infty}=1$ and $D=1$, then

$$
U(x, t)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x}{2 \sqrt{t}}\right)
$$

We see that $U(x, 0) \equiv 0$ for $x<0$, but $U>0$ for $t>0$ (infinite speed of propagation). The same happens with
$U(x-a, t)-U(x-b, t)$. We see also the irreversibility of the diffusion.
Observe that the Gaussian

$$
G(x, t)=U_{x}=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

satisfies $\int_{-\infty}^{\infty} G(x, t) d x=1$ and has as its initial condition Dirac's δ-function. From here, Poisson's formula

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{\left(x-x^{\prime}\right)^{2}}{4 t}} u\left(x^{\prime}, 0\right) d x^{\prime}
$$

Also, in 2 dimensions, $U(x) U(y)$ is also a solution of $u_{t}=u_{x x}+u_{y y}$, and we get (in n dimensions)

$$
u(\mathbf{x}, t)=\frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{4 t}} u\left(\mathbf{x}^{\prime}, 0\right) d \mathcal{V}\left(\mathbf{x}^{\prime}\right)
$$

Problem 2.5: Deduce this last formula from what we know about $G(x, t)$.

Problem 2.6: Are there more (bounded) solutions of $u_{t}=u_{x x}$ of the form $u=r(t) \varphi(r(t) x)$ apart from $G(x, t)$?

A. Einstein calculation on Brownian motion (1905)

Suppose $X(t)$ is a random variable depending on time (a random process) such that

$$
X(t+\Delta t)= \begin{cases}X(t)+h & \text { with probability } d / 2 \\ X(t) & \text { with probability }(1-d) \\ X(t)-h & \text { with probability } d / 2\end{cases}
$$

for some $0<d \leq 1$.
A. Einstein claim (1905): The (net) displacement is not proportional to the elapsed time, but to its square root (supposing $\Delta t, h \ll 1$).

Proof: Supposing Δt and h small and defining $D=d h^{2} /(2 \Delta t)$, the position of the particle at time t has a pdf $u(x, t)$ such that

$$
u_{t}=D u_{x x}
$$

(one of the problems above), and since the initial pdf is a Dirac delta function then

$$
u(x, t)=\frac{1}{\sqrt{4 \pi D t}} e^{-\frac{x^{2}}{4 D t}} .
$$

So, the average square of the net displacement is

$$
\overline{x^{2}}=\int_{-\infty}^{\infty} \frac{x^{2}}{\sqrt{4 \pi D t}} e^{-\frac{x^{2}}{4 D t}}=2 D t,
$$

Problem 2.7: Check the last equality. That was the expected value of x^{2}. Calculate the expected value of $|x|$. Check also that $X(t)-X(s) \sim \mathcal{N}(0,2 D(t-s))$ (normal distribution, $\left.\mathcal{N}\left(\mu, \sigma^{2}\right)\right)$.

Einstein calculation, in other words, says that the variance of $X(1)$ is $\sigma^{2}=2 D$. This is the reason of the probabilistic tradition of writing the diffusion equation as $u_{t}=\frac{\sigma^{2}}{2} u_{x x}$. Einstein's calculation was used (by him) to support atomic theory and to calculate Avogadro's number.
https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Louis_Bachelier

Diffusion and advection

By adding to Fick's law the flux due to advection by a velocity field $\mathbf{v}(x, t)$ one gets

$$
J=-D \nabla u+u \mathbf{v}
$$

and the advection-diffusion equation

$$
u_{t}+\nabla \cdot(u \mathbf{v})=D \nabla^{2} u
$$

