
Diffusion of a density in a static fluid

u(x , y , z, t), density (M/L3) of a substance (dye). Diffusion:
motion of particles from places where the density is higher to
places where it is lower, due to random independent motion
(http://en.wikipedia.org/wiki/Diffusion).
Ficks law (1870): flux vector

J︸︷︷︸
M/(TL2)

= − D︸︷︷︸
L2/T

∇u︸︷︷︸
M/L4

,

where
∫

Σ J · n dS (M/T ) is the net flux of mass per unit time
crossing Σ in the direction of n. D: diffusivity.
Balance of mass:

d
dt

∫
Ω0

u dV = −
∫
∂Ω0

J · n dS +

∫
Ω0

g︸︷︷︸
reaction

dV,

ut = ∇ · (D∇u) + g, diffusion equation.
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ut = ∇ · (D∇u) + g

D ≡ D0, Laplacian, linear diffusion.
D = D(u) = D0mum−1, porous medium equation, m > 1.
D = D(∇u) = D0|∇u|p−1 p-laplacian, p > 2.
g = g(u) (kinetics), reaction-diffusion equation. The
reaction part is the ODE

du
dt

= g(u).
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1-dimensional random walk (Bachelier, 1900, finance)

A particle moves in a net {x = xi = ih; i ∈ Z} ⊂ R jumping each
∆t either left or right with probability 1/2 (h,∆t > 0). Let u(x , t)
be the probability that the particle occupies the position x at
time t .

u(x , t + ∆t) =
1
2

[u(x + h, t) + u(x − h, t)]

u(x , t + ∆t)− u(x , t)
∆t

=
h2

2∆t
u(x + h, t)− 2u(x , t) + u(x − h, t)

h2

If h→ 0 and ∆t → 0 with h2/(2∆t)→ D0 (better with the
density u′ = u/h), then we get

ut = D0uxx .

Observe that if h2/(2∆t)→ D0 > 0 then the speed h/∆t →∞.
Observe h ∼

√
∆t .

This deduction gives an interpretation for the diffusivity D0.
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Observe that if
∫∞
−∞ u dx = 1 initially, then the same will hold in

the future.

The same deduction holds when u(x , t) is the density of
individuals between x − h/2 and x + h/2 (the number of
individuals being then hu) at time t when half of them jump right
and half of them jump left each ∆t .

Then, the total population
∫∞
−∞ u dx is no longer restricted to be

1, but can be arbitrary (positive).
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Problem 2.1: Suppose that a particle in Rn moves in the net
{(i1h, i2h, . . . inh); ij ∈ Z} and jumps every ∆t from one point to
one of its neighbours (along one of the axes) with a probability
1/(2n). Deduce ut = D0∇2u and state the hypotheses on how
h→ 0 and ∆t → 0.

Problem 2.2 : (anisotropic diffusion) Consider the situation of
the previous problem for n = 2 and supose that the probability
of jumping left is d/2, right is d/2, up is (1− d)/2 and down is
(1− d)/2, for some 0 < d ≤ 1. Write the limit equation in the
form ut = ∇ ·M0∇u, where now M0 is a 2× 2 matrix.

Problem 2.3: Suppose a particle moves in a 1-dimensional net
{x = xi = ih; i ∈ Z} ⊂ R, and each ∆t either remains in its
place with a probability (1− d), or with a probability d jumps
either left or right with probability d/2. We suppose 0 < d ≤ 1.
Deduce ut = D0uxx , for some D0 and state the hypotheses.
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Heat Conduction, Fourier’s Law

Heat conduction in an equilibrium isotropic solid.

u, temperature (degrees); Q is the heat density
(energy/volume); ρ, density (mass/volume); C heat capacity
(specific heat) (energy/(temperature×mass)).

Q = ρCu.

The quantities u and Q, the unknowns, depend on space and
time. In non-homogeneous solids also ρ and C can depend on
x, or, in more realistic but complicate situations, also on u. The
total heat in Ω0 is

QΩ0 =

∫
Ω0

Q dV.
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One postulates the existence of a flux vector q (energy/(area ×
time)) whose integral gives us the net heat flux:

d
dt

∫
Ω0

Q dV = −
∫
∂Ω0

q · n dS︸ ︷︷ ︸
conduction

+

∫
Ω0

f dV︸ ︷︷ ︸
generation

.

Fourier’s Law(1822): (isotropic case)

q = −k∇u,

where k is the thermal conductivity (large in metals, low in
isolating materials).

ρCut = ∇ · (k∇u) + f heat equation.

If ρ,C, k are constants and f = 0 then ut = D∇2u, where
D = k/(ρC) is the thermal diffusivity.
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A self-similar solution

A solution of ut = Duxx of the form u = ϕ(r(t)x), with ϕ
bounded. We use the new variables ξ = rx and t , and the
special function erf(z) = 2√

π

∫ z
0 e−σ

2
dσ and obtain

(Problem 2.4: make this calculation)

u(x , t) =
u∞ + u−∞

2
+

u∞ − u−∞
2

erf
(

x
2
√

Dt

)
,

whose initial condition is

u(x ,0) =

{
u−∞ for x < 0
u∞ for x > 0

.
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Take u−∞ = 0, u∞ = 1 and D = 1, then

U(x , t) =
1
2

+
1
2

erf
(

x
2
√

t

)
.

We see that U(x ,0) ≡ 0 for x < 0, but U > 0 for t > 0 (infinite
speed of propagation). The same happens with
U(x − a, t)− U(x − b, t). We see also the irreversibility of the
diffusion.
Observe that the Gaussian

G(x , t) = Ux =
1√
4πt

e−
x2
4t

satisfies
∫∞
−∞G(x , t) dx = 1 and has as its initial condition

Dirac’s δ-function. From here, Poisson’s formula

u(x , t) =
1√
4πt

∫ ∞
−∞

e−
(x−x′)2

4t u(x ′,0) dx ′.
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Also, in 2 dimensions, U(x)U(y) is also a solution of
ut = uxx + uyy , and we get (in n dimensions)

u(x, t) =
1

(4πt)n/2

∫
Rn

e−
||x−x′||2

4t u(x′,0) dV(x′).

Problem 2.5: Deduce this last formula from what we know
about G(x , t).

Problem 2.6: Are there more (bounded) solutions of ut = uxx of
the form u = r(t)ϕ(r(t)x) apart from G(x , t)?
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A. Einstein calculation on Brownian motion (1905)

Suppose X (t) is a random variable depending on time (a
random process) such that

X (t + ∆t) =


X (t) + h with probability d/2
X (t) with probability (1− d)

X (t)− h with probability d/2

for some 0 < d ≤ 1.

A. Einstein claim (1905): The (net) displacement is not
proportional to the elapsed time, but to its square root
(supposing ∆t ,h� 1).

JS-M 02. Diffusion 1: Fick, Bachelier, Fourier, Einstein.



Proof: Supposing ∆t and h small and defining D = dh2/(2∆t),
the position of the particle at time t has a pdf u(x , t) such that

ut = Duxx

(one of the problems above), and since the initial pdf is a Dirac
delta function then

u(x , t) =
1√

4πDt
e−

x2
4Dt .

So, the average square of the net displacement is

x2 =

∫ ∞
−∞

x2
√

4πDt
e−

x2
4Dt = 2Dt ,

Problem 2.7: Check the last equality. That was the expected
value of x2. Calculate the expected value of |x |. Check also that
X (t)− X (s) ∼ N (0,2D(t − s)) (normal distribution, N (µ, σ2)).
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Einstein calculation, in other words, says that the variance of
X (1) is σ2 = 2D. This is the reason of the probabilistic tradition
of writing the diffusion equation as ut = σ2

2 uxx .
Einstein’s calculation was used (by him) to support atomic
theory and to calculate Avogadro’s number.

https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Louis_Bachelier
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Diffusion and advection

By adding to Fick’s law the flux due to advection by a velocity
field v(x , t) one gets

J = −D∇u + uv

and the advection-diffusion equation

ut +∇ · (uv) = D∇2u.
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