Intuitive review of Vector Calculus: gradient, divergence, curl and laplacian

- Frequently, x is a scalar and \mathbf{x} is a vector. A column vector, mostly: $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$, or $\mathbf{x}=(x, y, z)^{T}$ when $n=3$.
- The nabla operator of Hamilton $\nabla=\left(\partial_{x}, \partial_{y}, \partial_{z}\right)^{T}$ is a vector operator. If $u(x)$ is a scalar function, then

$$
\nabla u=\left(\partial_{x} u, \partial_{y} u, \partial_{z} u\right)^{T}=\operatorname{grad} u
$$

to mean its gradient vector field.

- Taylor's formula: $u\left(\mathbf{x}_{0}+\mathbf{h}\right)=u\left(\mathbf{x}_{0}\right)+\nabla u\left(x_{0}\right) \cdot \mathbf{h}+O\left(\|h\|^{2}\right)$.
- For a given $\|\mathbf{h}\|$, the maximal increase in $u\left(\mathbf{x}_{0}+\mathbf{h}\right)-u\left(\mathbf{x}_{0}\right)$ happens when \mathbf{h} is collinear with $\nabla u\left(\mathbf{x}_{0}\right)(\|\mathbf{h}\|$ small).
- $\nabla u\left(\mathbf{x}_{0}\right)$ points in the direction of steepest ascent of u near \mathbf{x}_{0}.
- $\left\|\nabla u\left(\mathbf{x}_{0}\right)\right\|$ is larger if u is steeper near \mathbf{x}_{0} (closer level surfaces or lines). Also, $\nabla u\left(\mathbf{x}_{0}\right)$ is orthogonal to the surface $u(\mathbf{x})=u\left(\mathbf{x}_{0}\right)$.

Problem 1.1: It is sometimes said that if $u(x, y)$ represents the height of a mountain (say), then the vector field $-\nabla u(\mathbf{x})$ would be a vector field collinear with the velocities of a water drop falling downhill. That velocity would even be larger at the points where the gradient is larger. Is there any justification for that? A solid ball rolling down would do the same?
Problem 1.2: Suppose that A is an $n \times n$ symmetric positive-definite matrix, and define $u(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} A \mathbf{x}$. Check that $\nabla u(\mathbf{x})=A \mathbf{x}$. Prove the following: if $\mathbf{x}(t)$ is the solution of $\mathbf{x}^{\prime}=-\nabla u(\mathbf{x})$ with $\mathbf{x}(0)=\mathbf{x}_{0}$, then $\mathbf{x}(t)$ is the unique absolute minimum of

$$
J[\mathbf{y}]=\int_{0}^{T}\left(\frac{1}{2} \mathbf{y}(t)^{T} A \mathbf{y}(t)+\frac{1}{2} \mathbf{y}^{\prime}(t)^{T} A^{-1} \mathbf{y}^{\prime}(t)\right) d t+\frac{1}{2}|y(T)|^{2}
$$

among all curves $\mathbf{y}:[0, T] \rightarrow \mathbb{R}^{n}$ such that $\mathbf{y}(0)=\mathbf{x}_{0}$. Prove also a similar result when $u(\mathbf{x})$ is a more general function such that $D^{2} u>0$.

The steepest descent method of minimization

Divergence

If we have a vector field $\mathbf{v}=\left(v^{x}, v^{y}, v^{z}\right)^{T}$, its divergence is the scalar field

$$
\begin{array}{r}
\operatorname{div} \mathbf{v}\left(\mathbf{x}_{0}\right)=\nabla \cdot \mathbf{v}\left(x_{0}\right)=\partial_{x} v^{x}\left(\mathbf{x}_{0}\right)+\partial_{y} v^{y}\left(\mathbf{x}_{0}\right)+\partial_{z} v^{z}\left(\mathbf{x}_{0}\right) \\
=\left(\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right) \cdot\left(\begin{array}{c}
v^{x} \\
v^{y} \\
v^{z}
\end{array}\right)=\left(\partial_{x}, \partial_{y}, \partial_{z}\right) \cdot\left(\begin{array}{c}
v^{x} \\
v^{y} \\
v^{z}
\end{array}\right)
\end{array}
$$

Also,

$$
\operatorname{div} \mathbf{v}\left(\mathbf{x}_{0}\right)=\operatorname{Trace} D \mathbf{v}\left(\mathbf{x}_{0}\right)=\operatorname{Trace}\left(\begin{array}{ccc}
v_{x}^{x} & v_{y}^{x} & v_{z}^{x} \\
v_{x}^{y} & v_{y}^{y} & v_{z}^{y} \\
v_{x}^{z} & v_{y}^{z} & v_{z}^{x}
\end{array}\right)
$$

The Divergence Theorem says that

$$
\int_{\Omega} \nabla \cdot \mathbf{v} d \mathcal{V}=\int_{\partial \Omega} \mathbf{v} \cdot \mathbf{n} d \mathcal{S}
$$

Problem 1.3: Using the Divergence Theorem, prove the following vector identity: $\int_{\partial \Omega}-p \mathbf{n} d \mathcal{S}=\int_{\Omega}-\nabla p d \nu$ and deduce from it Archimedes Principle, when p is the hydrostatic pressure $p=\rho g h$.
Deduce also the following classical (and nice) form of the divergence theorem for a scalar funtion u and a direction i :

$$
\int_{\Omega} \partial_{i} u d \mathcal{V}=\int_{\partial \Omega} u n_{i} d \mathcal{S},
$$

where n_{i} is the i-th direction cosine of \mathbf{n}. Deduce also the integration by parts version of the previous formula, for two scalar functions u and v :

$$
\int_{\Omega}\left(\partial_{i} u\right) v d \mathcal{V}=-\int_{\Omega} u\left(\partial_{i} v\right) d \mathcal{V}+\int_{\partial \Omega} u v \mathbf{n}_{i} d \mathcal{S}
$$

Suppose $\mathbf{v}(\mathbf{x}, t)$ is a velocity. Particles moving with this velocity field will describe trajectories solution of

$$
\left\{\begin{array}{l}
\mathbf{x}^{\prime}(t)=\mathbf{v}(\mathbf{x}(t), t) \\
\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
\end{array}\right.
$$

that we represent with the (flow) map $\mathbf{x}_{0} \mapsto \mathbf{x}(t)=T_{t_{0}, t}\left(\mathbf{x}_{0}\right)$, which can be seen as a map from \mathbb{R}^{3} to \mathbb{R}^{3} (when t_{0} and t are fixed). Note that $T_{t_{0}, t_{0}}=I d$ and $T_{s, t} \circ T_{r, s}=T_{r, t}$.

Given a set $\Omega \subset \mathbb{R}^{3}$ we ask ourselves about the volume of $T_{t_{0}, t}(\Omega)$ or, more precisely, about $\frac{d}{d t}\left[\text { vol } T_{t_{0}, t}(\Omega)\right]_{t=t_{0}}$.

$$
\begin{gathered}
\text { vol } T_{t_{0}, t}(\Omega)=\int_{T_{t_{0}, t}(\Omega)} d \mathcal{V}=\int_{\Omega} J T_{t_{0}, t}(\mathbf{x}) d \mathcal{V} \\
T_{t_{0}, t_{0}+\varepsilon}(\mathbf{x})=\mathbf{x}+\varepsilon \mathbf{v}\left(\mathbf{x}, t_{0}\right)+O\left(\varepsilon^{2}\right) \\
D T_{t_{0}, t_{0}+\varepsilon}(\mathbf{x})=I+\varepsilon D \mathbf{v}\left(\mathbf{x}, t_{0}\right)+O\left(\varepsilon^{2}\right) \\
\operatorname{det} D T_{t_{0}, t_{0}+\varepsilon}(\mathbf{x})=1+\varepsilon \operatorname{Trace} D \mathbf{v}(\mathbf{x})+O\left(\varepsilon^{2}\right) \\
\text { vol } T_{t_{0}, t}(\Omega)=\int_{\Omega}\left[1+\varepsilon \operatorname{Trace} D \mathbf{v}(\mathbf{x})+O\left(\varepsilon^{2}\right)\right] d \mathcal{V} \\
\frac{d}{d t}\left[\operatorname{vol} T_{t_{0}, t}(\Omega)\right]_{t=t_{0}}=\int_{\Omega}(\nabla \cdot \mathbf{v}) d \mathcal{V}
\end{gathered}
$$

So, $\nabla \cdot \mathbf{v}\left(\mathbf{x}_{0}, t_{0}\right)$ is the rate of variation with respect to time of the volume of a set near (\mathbf{x}_{0}, t_{0}) that moves with velocity \mathbf{v}.

Problem 1.4: Show that if I_{n} is the $n \times n$ identity matrix and A is any $n \times n$ matrix, then $\operatorname{det}\left(I_{n}+\varepsilon A\right)=1+\varepsilon \operatorname{Trace} A+O\left(\varepsilon^{2}\right)$.

But we could also compute the changes in volume of Ω just by looking at the changes at the boundary.

This is the statement of the Divergence Theorem,

$$
\int_{\Omega} \nabla \cdot \mathbf{v} d \mathcal{V}=\int_{\partial \Omega} \mathbf{v} \cdot \mathbf{n} d \mathcal{S}
$$

A new view of Divergence and a look to Curl (dimension 3)

$$
\frac{d}{d t} \mathbf{x}=\mathbf{v}(x, t) \simeq \mathbf{v}\left(\mathbf{x}_{0}, t_{0}\right)+\partial_{t} \mathbf{v}\left(\mathbf{x}_{0}, t_{0}\right)\left(t-t_{0}\right)+D \mathbf{v}\left(\mathbf{x}_{0}, t_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)+\cdots
$$

We write $t^{\prime}=t-t_{0}$ and $\mathbf{x}^{\prime}=\mathbf{x}-\mathbf{x}_{0}$, we drop the primes and consider

$$
\begin{gathered}
\frac{d}{d t} \mathbf{x}=\underbrace{\mathbf{v}_{0}}_{\text {constant velocity }}+\underbrace{\mathbf{v}_{1}}_{\text {constant acceleration }} t+\underbrace{M}_{n \times n \text { matrix }} \mathbf{x} \\
\frac{d}{d t} \mathbf{x}=M \mathbf{x}=\underbrace{\frac{1}{2}\left(M+M^{T}\right)}_{\text {symmetric }} \mathbf{x}+\underbrace{\frac{1}{2}\left(M-M^{T}\right)}_{\text {anti-symmetric }} \mathbf{x}
\end{gathered}
$$

We are going to look at the three effects separately.
$\frac{1}{2}\left(M+M^{T}\right)$ diagonalizes along 3 orthogonal axes x_{1}, x_{2} and x_{3} with real eigenvalues.

$$
\left\{\begin{array}{l}
\frac{d}{d t} x_{1}=\lambda_{1} x_{1} \\
\frac{d}{d t} x_{2}=\lambda_{2} x_{2} \\
\frac{d}{d t} x_{3}=\lambda_{3} x_{3}
\end{array}\right.
$$

which is a very simple deformation. The volume of a deformed orthogonal box would be given in a first approximation by
$\left(1+\Delta t \lambda_{1}\right)\left(1+\Delta t \lambda_{2}\right)\left(1+\Delta t \lambda_{3}\right) \simeq 1+\Delta t\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)=1+\Delta t \nabla \cdot \mathbf{v}$.
This tells us again that the divergence is the local rate of volume change.

$$
\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
a y+b z \\
-a x+c z \\
-b x-c y
\end{array}\right)=\left(\begin{array}{c}
-c \\
b \\
-a
\end{array}\right) \times\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

So, let us study $\frac{d}{d t} \mathbf{x}=\mathbf{h} \times \mathbf{x}$. Its solution is a rotation around the axis \mathbf{h} with angular speed $|\mathbf{h}|$ in the positive sense.

$$
\frac{1}{2}\left(D \mathbf{v}-(D \mathbf{v})^{T}\right)=\frac{1}{2}\left(\begin{array}{ccc}
0 & v_{y}^{x}-v_{x}^{y} & v_{z}^{x}-v_{x}^{z} \\
v_{x}^{y}-v_{y}^{x} & 0 & v_{z}^{y}-v_{y}^{z} \\
v_{x}^{z}-v_{z}^{x} & v_{y}^{z}-v_{z}^{y} & 0
\end{array}\right)
$$

So, the anti-symmetric part of $D \mathbf{v}$ means a rotation given by

$$
\mathbf{h}=\frac{1}{2}\left(\begin{array}{c}
v_{y}^{z}-v_{z}^{y} \tag{1}\\
v_{z}^{x}-v_{y}^{z} \\
v_{x}^{y}-v_{y}^{x}
\end{array}\right)=\frac{1}{2} \nabla \times \mathbf{v}=\frac{1}{2} \text { Curl } \mathbf{v}
$$

Problem 1.5: Check the statements we did: the constant-coefficients system of odes

$$
\frac{d}{d t} \mathbf{x}=\frac{1}{2}\left(D \mathbf{v}-(D \mathbf{v})^{T}\right) \mathbf{x}
$$

can be written as $(d / d t) \mathbf{x}=\mathbf{h} \times \mathbf{x}$ where $\mathbf{h}=\frac{1}{2}$ Curl \mathbf{v} and its solution consists on a rotation around the axis \mathbf{h} with angular speed $|\mathbf{h}|$ in the positive sense. (Hint: for the second part, suppose $\mathbf{h}=(\omega, 0,0)^{T}$ and solve explicitly.)

Stokes Formula:

$$
\int_{\Sigma}(\nabla \times \mathbf{v}) \cdot \mathbf{n} d \mathcal{S}=\int_{\partial \Sigma} \mathbf{v} \cdot d \ell
$$

Relations:

$$
\begin{gathered}
\nabla \times(\nabla u) \equiv 0 \\
\nabla \cdot(\nabla \times \mathbf{v}) \equiv 0 \\
\nabla \cdot(\nabla u)=\nabla^{2} u=\Delta u=\sum_{i=1}^{n} \partial_{x_{i} x_{i}}^{2} u
\end{gathered}
$$

Integration by parts formula:

$$
\nabla \cdot(f \mathbf{X})=\nabla f \cdot \mathbf{X}+f \nabla \cdot \mathbf{X}
$$

so

$$
\int_{\partial \Omega} f \mathbf{X} \cdot \mathbf{n} d \mathcal{S}=\int_{\Omega} \nabla f \cdot \mathbf{X} d \mathcal{V}+\int_{\Omega} f \nabla \cdot \mathbf{X} d \mathcal{V}
$$

In dimension 3 we have that

[scalar fields $] \xrightarrow{\nabla}[3 \mathrm{D}$ vector fields $] \rightarrow$

$\xrightarrow{\nabla \times}$ [3D vector fields] $\xrightarrow{\nabla \cdot}$ [scalar fields]

and $(\nabla \times) \circ(\nabla)=0$ and $(\nabla \cdot) \circ(\nabla \times)=0$.
Poincaré's lemma says that if $\Omega \subset \mathbb{R}^{3}$ is an open set that is the image by an homeomorphism of the open unit ball, then
$\nabla \times \mathbf{u}=0$ in Ω implies the existence of a scalar field f such that $\mathbf{u}=\nabla f$, and also $\nabla \cdot \mathbf{w}=0$ implies the existence of a vector field \mathbf{v} such that $\nabla \times \mathbf{w}=\mathbf{v}$.
This is more often stated in terms of differential forms.

If $\mathbf{v}(\mathbf{x}, t)$ is a vector field in \mathbb{R}^{3} defined on a domain Ω, then \mathbf{v} is determined by its divergence, its curl and its values on $\partial \Omega$.
There are formulas for that (Helmholtz decomposition, sometimes called the Fundamental Theorem of Vector Analysis). When $\Omega=\mathbb{R}^{3}$ and \mathbf{v} vanishes at infinity faster than $1 /|\mathbf{x}|$, these formulas are $\mathbf{v}=-\nabla \Phi+\nabla \times \mathbf{A}$ with

$$
\begin{aligned}
& \Phi(\mathbf{x})=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\nabla^{\prime} \cdot \mathbf{v}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathrm{d} \mathcal{V}^{\prime} \\
& \mathbf{A}(\mathbf{x})=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\nabla^{\prime} \times \mathbf{v}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathrm{d} \mathcal{V}^{\prime}
\end{aligned}
$$

Problem 1.6: Show something weaker, also in this direction: if two vector fields $\mathbf{v}(\mathbf{x})$ and $\mathbf{v}^{\prime}(\mathbf{x})$ in \mathbb{R}^{3} share the same divergence and the same curl, and both tend to zero at infinity, then they must be equal.

Interpretation of the Laplacian: The laplacian of a function measures the difference between the average of this function on a small sphere and the value of the function at the center of the sphere.

Claim:

$$
\lim _{r \rightarrow 0^{+}} \frac{\left(\frac{1}{r^{n-1}\left|S_{n-1}\right|} \int_{\|\mathbf{h}\|=r} u\left(\mathbf{x}_{0}+\mathbf{h}\right) d \mathcal{S}_{\mathbf{h}}\right)-u\left(\mathbf{x}_{0}\right)}{r^{2}}=\frac{1}{2 n} \nabla^{2} u\left(\mathbf{x}_{0}\right)
$$

Proof: $u\left(\mathbf{x}_{0}+\mathbf{h}\right)=a+\sum_{i=1}^{n} b_{i} h_{i}+\sum_{i, j=1}^{n} c_{i j} h_{i} h_{j}+\ldots$ Then $r^{1-n}\left|S_{n-1}\right|^{-1} \int_{\|\mathbf{h}\|=r} a=u\left(\mathbf{x}_{0}\right), \int b_{i} h_{i}=0$, because of the symmetry $h_{i} \leftrightarrow-h_{i}, \int c_{i j} h_{i} h_{j}=0$ when $i \neq j$, because of the same reason. Then, obviously,

$$
\begin{gathered}
\int_{\|\mathbf{h}\|=r} h_{i}^{2}=\int_{\|\mathbf{h}\|=r} h_{j}^{2}, \\
\int_{\|\mathbf{h}\|=r} h_{i}^{2}=n^{-1} \int_{\|\mathbf{h}\|=r} r^{2}=n^{-1} r^{2} r^{n-1}\left|S_{n-1}\right| .
\end{gathered}
$$

Problem 1.7: Make similar calculations to interpret the Laplacian as a measure of the difference between the average of the function on a small ball (instead of a sphere) and the value of the function at the center of the ball.

The transport of a density

$u(\mathbf{x}, t)$ is an (unknown) density that is convected by a fluid with velocity $\mathbf{v}(\mathbf{x}, t)$. We want to derive the equation of its time evolution.
Ω is an arbitrary domain. The mass flux that crosses $\partial \Omega$ (units of mass per units of time, from inside to outside) is
$\int_{\partial \Omega} u \mathbf{v} \cdot \mathbf{n} d \mathcal{S}$.
Balance of mass + divergence theorem:

$$
\begin{gathered}
\frac{d}{d t} \int_{\Omega} u d \mathcal{V}=-\int_{\partial \Omega} u \mathbf{v} \cdot \mathbf{n} d \mathcal{S}=-\int_{\Omega} \nabla \cdot(u \mathbf{v}) d \mathcal{V} \\
\int_{\Omega}\left(\frac{\partial u}{\partial t}+\nabla \cdot(u \mathbf{v})\right) d \mathcal{V}=0 \\
\frac{\partial u}{\partial t}+\nabla \cdot(u \mathbf{v})=0 \quad\left(\frac{\partial u}{\partial t}=-\nabla u \cdot \mathbf{v}-u \nabla \cdot \mathbf{v}\right)
\end{gathered}
$$

- In 1-D, with $v=c$ (constant): $u_{t}+c u_{x}=0$
- Transport + reaction

$$
u_{t}+\nabla \cdot(u \mathbf{v})=f(u, x, t)
$$

that comes from

$$
\frac{d}{d t} \int_{\Omega} u d \mathcal{V}=-\int_{\partial \Omega} u \mathbf{v} \cdot \mathbf{n} d \mathcal{S}+\int_{\Omega} f d \mathcal{V}
$$

Example of transport + reaction: 1-D persistent motion with random orientation in animal search strategies
(V. Méndez et al., Stochastic Foundations in Movement Ecology, Sect. 6.1.2)

$$
\begin{gathered}
\rho_{t}^{+}+\boldsymbol{c} \rho_{x}^{+}=\lambda\left(\rho^{-}-\rho^{+}\right) \\
\rho_{t}^{-}-\boldsymbol{c} \rho_{x}^{-}=-\lambda\left(\rho^{-}-\rho^{+}\right)
\end{gathered}
$$

for $0<x<L$, and boundary conditions $\rho^{+}(0, t)=0$,
$\rho^{-}(L, t)=0$.
$\rho^{+}(x, t)$ (resp., $\left.\rho^{-}(x, t)\right)$ is the pdf for a predator to be at position x at time t while walking to the right (resp. left) with speed c.
Two prays are supposed to be located at $x=0$ and $x=L$.
$\lambda>0$ is the switching rate: the probability of switching orientation between t and $t+\Delta t$ is $\lambda \Delta t$.

References:

https://en.wikipedia.org/wiki/Vector_calculus
A.J. Chorin, J.E. Marsden: A mathematical Introduction to Fluid Mechanics. Springer. (§ 1.2)

