STRUCTURAL STABILITY

I. Baldomá

QQMDS, 2022

I.B.

STRUCTURAL STABILITY

Э QQMDS 1/42

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQC

OUTLINE

PRELIMINARIES

- 2 STRUCTURAL STABILITY OF LINEAR SYSTEMS
- 3 LOCAL STRUCTURAL STABILITY
 - FLOWS ON TWO DIMENSIONAL MANIFOLDS
 - Definitions
 - Results
- 5
- ANOSOV DIFFEOMORPHISMS
- A first result
- Morse-Smale systems
- The Anosov diffeomorphisms in \mathbb{T}^n
- The Anosov automorphism
- An example

INTRODUCTION

FIRST NAIVE DEFINITION

Roughly speaking, we say that a dynamical system is structurally stable if the qualitative behaviour does not change when sufficiently close systems are considered.

That is: we want to characterize *robust* systems.

However we need to be more precise:

- What does mean qualitative behaviour?
- What does mean sufficiently close systems?

The another important fact is

TO BE OR NOT BE STRUCTURALLY STABLE

The set of structurally stable systems is dense? open?

RECALL:

• Let $A \in \mathcal{M}_{n \times n}$. The linear flow $\dot{x} = Ax$ is hyperbolic if

Spec
$$A \subset \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \neq 0\}.$$

When a discrete linear dynamical system is considered, i.e. $\bar{x} = Ax$, we say it is hyperbolic if

Spec
$$A \subset \{\lambda \in \mathbb{C} : |\lambda| \neq 1\}.$$

A point x is a non-wandering point for the diffeomorphism f (resp. for the flow φ_t) if, given any neighbourhood W of x, there exists some m > 0 (resp. t > t₀ > 0) for which

$$f^m(W) \cap W \neq \emptyset$$
, (resp. $\varphi_t(W) \cap W \neq \emptyset$).

• In a topological space, we say that that a set is residual if it is the countable intersection of open dense sets.

QQMDS 4/42

RECALL:

- We say that a property is generic if it is shared by the elements of a residual set.
- Two diffeomorphisms $f, g: M \to M$ are said to be C^r conjugate if there is a homeomorphism $h: M \to M, C^r$ such that

$$h \circ f = g \circ h.$$

- Two flows φ_t, ψ_t are C^r-equivalent if there exists a C^r homeomorphism that sends orbits of φ_t onto orbits of ψ_t preserving orientation.
- Hartman's theorem. If a dynamical system (either flow or map) has an equilibrium hyperbolic point, then it is topologically conjugated to its linearised part.

イロト イポト イヨト イヨト 二日

LINEAR SYSTEMS

Let *A* be a $n \times n$ matrix, $A \in L(\mathbb{R}^n)$. We first define an ε -neighbourhood as:

$$N_{\varepsilon}(A) = \{B \in L(\mathbb{R}^n) : \|B - A\| < \varepsilon\}.$$

DEFINITION OF STRUCTURALLY STABLE

A linear system (either flow or map) is said to be structurally stable in $L(\mathbb{R}^n)$ if there is an ε -neighbourhood of A, $N_{\varepsilon}(A)$, such that for every $B \in N_{\varepsilon}(A)$:

- in the case of flows, e^{tA} and e^{tB} are topologically equivalent;
- in the case of maps, f(x) = Ax and g(x) = Bx are topologically conjugate.
- To be topologically equivalent (or topologically conjugated) will be the definition of the same qualitative behaviour.
- Notice that the definition depends on the set (in this case $L(\mathbb{R}^n)$) we take a priori.

CHARACTERIZATION OF STRUCTURALLY LINEAR SYSTEMS

PROPOSITION

A linear flow or diffeomorphism on \mathbb{R}^n is structurally stable in $L(\mathbb{R}^n)$ if and only if it is hyperbolic.

Idea of the proof:

- Prove that if ε is small enough and B ∈ N_ε(A), then B is also hyperbolic (you can prove it using Gershgorin's theorem) with the same stability index n^s, i.e., the same number of stable eigenvalues.
- For flows, they are both topologically conjugated to $\dot{x} = -x$, $\dot{y} = y$, $x \in \mathbb{R}^{n^s}$, $y \in \mathbb{R}^{n-n^s}$. In conclusion *A* is structurally stable.
- For flows, if A is not hyperbolic then it has at least one eigenvalue with real part equal to 0. Then, taking ε small enough $B_{\varepsilon}^{\pm} = A \pm \varepsilon I$ is hyperbolic. Since $B_{\varepsilon}^{+}, B_{\varepsilon}^{-}$ are not topologically equivalent, A is not structurally stable.
- Do the same for diffeomorphism (first part of Exercise 115).

イロト イポト イヨト イヨト 二日

REMARKS

- The dependence on the set. If we take the subset of linear systems having eigenvalues with real part equal to 0, to be a center is structurally stable. Even more, in the subset of Hamiltonian linear system, also the centers are structurally stable.
- The differential equivalence is too restrictive. If two linear flows are differentiably equivalent, their matrices have to be *almost* similar. Indeed, if $h(e^{At}x) = e^{B\tau(t,x)}h(x)$,

$$Dh(x)Ax = \tau'(0, x)Bh(x) \Longrightarrow Dh(\lambda v)Av = \tau'(0, \lambda v)B\frac{h(\lambda v)}{\lambda} \Longrightarrow Dh(0)A = \tau'(0)BDh(0)$$

For instance

$$\dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} x \qquad \dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \varepsilon \end{pmatrix} x$$

Are not differentiably equivalent.

• The topological type can be different in the same equivalence class. Take

$$\dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} x$$
 $\dot{x} = \begin{pmatrix} 1 & \varepsilon \\ -\varepsilon & 1 \end{pmatrix} x.$

The first is a node (eigenvalue 1) and the second are focus (eigenvalues $1 \pm i\varepsilon$).

・ロット (四) ・ (日) ・ (日)

OPEN AND DENSE

PROPOSITION

The set $SDD(\mathbb{R}^n)$ of structurally stable linear dynamical systems, is open and dense in $L(\mathbb{R}^n)$. That is the property of being structurally stable is generic.

- Idea of the proof. SDD(ℝⁿ) = HDD(ℝⁿ) with HDD(ℝⁿ) being the set of hyperbolic linear dynamical systems.
- To be open. Let $A \in SDD(\mathbb{R}^n)$, by definition there exists

 $N_{\varepsilon}(A) \subset L(\mathbb{R}^n)$, *A* is topologically conjugated to $B \in N_{\varepsilon}(A)$.

Then *B* has to be hyperbolic and consequently *B* has to be structurally stable.

To be dense in L(ℝⁿ). If A ∉ HDD(ℝⁿ), then B_ε = A + εId ∈ HDD(ℝⁿ) if ε is small enough and B_ε is arbitrarily close to A. In fact,

$$\lim_{\varepsilon\to 0}B_{\varepsilon}=A.$$

Do the same for diffeomorphism (second part of Exercise 115).

I.B.

NON LINEAR SYSTEMS

The first thing we need to do is to define what means close enough. That is a set of appropriate perturbations.

For that we first define a norm along with a set. For U ⊂ ℝⁿ, we denote:

$$\operatorname{Vec}^{1}(U) = \{X : U \to \mathbb{R}^{n}, \ C^{1} \text{ vector fields}\},\$$
$$\|X\|_{1} = \sup_{x \in U} \sum_{i=1}^{n} |X^{i}(x)| + \sup_{x \in U} \sum_{i,j=1}^{n} |D_{x_{j}}X^{i}(x)|.$$

Note that ||X|| is small if $|X^i|$ and $|D_{x_j}X^i|$ are small.

• A *ε*-neighbourhood:

$$N_{\varepsilon}(X) = \{ Y \in \operatorname{Vec}^{1}(U) : \|X - Y\| < \varepsilon \}.$$

• We say that Y is $\varepsilon - C^1$ close enough of X if $Y \in \mathcal{N}_{\varepsilon}(X)$.

LOCAL STRUCTURAL STABILITY

DEFINITION

Let $X \in \text{Vec}^{1}(U)$. We say that X is locally structurally stable if there exists $N_{\varepsilon}(X) \subset \text{Vec}^{1}(U)$ such that for any $Y \in N_{\varepsilon}(X)$, there exist $V, W \subset U$ such that $X_{|V}$ and $Y_{|W}$ are topologically equivalent. That is there exists a homeomorphism $h : V \to W$ such that

$$\varphi_t(h(x)) = h(\psi_{\tau(t)}x), \qquad \varphi_t, \psi_t \text{ flows of } X, Y.$$

The corresponding definition for *f* diffeomorphisms.

- The question is then: can we characterize the local structurally stable vector fields?
- For arbitrary dimension we only have partial results.
- By the flow box theorem, given a vector field X, in a neighbourhood of a regular point (X(p) ≠ 0), X is local structurally stable.
- What does happen around a singular point?

PARTIAL RESULTS (I)

PROPOSITION

Let $X \in \text{Vec}^{1}(U)$ have a hyperbolic fixed point x_* . Then, X is locally structurally stable.

Idea of the proof:

- There exists $\hat{V} \subset U$ neighbourhood of x_* and a $N_{\varepsilon}(X)$ such that if $Y \in N_{\varepsilon}(X)$ it has a unique hyperbolic fixed point $y_* \in \hat{V}$. In addition the linearised systems $DX(x_*), DY(y_*)$ have stable spaces of the same dimension.
- Then the flows of $DX(x_*)$, $DY(y_*)$ are topologically conjugated.
- By Hartman's theorem, $X_{|V}$ and $Y_{|W}$ are topologically conjugated to $DX(x_*)_{|V}$ and $DY(y_*)_{|W}$.
- By transitivity of topological equivalence the results follows.

We have the corresponding result for maps:

PROPOSITION

Let f be a diffeomorphism having a hyperbolic fixed point x_* . Then f is locally structurally stable.

Do exercise 120.

I.B.

QQMDS 12 / 42

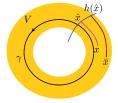
PARTIAL RESULTS (II)

COROLLARY

As a consequence, if we have a vector field $X \in \text{Vec}^1(U)$ with a hyperbolic closed orbit γ , it is locally structurally stable in a neighbourhood of the closed orbit.

Idea of the proof:

- Take Y ∈ N_ε(U) with ε sufficiently small, a cross section Σ of X at γ and the associated Poincaré map P₀.
- The flows $\varphi_t^0, \varphi_t^{\varepsilon}$ of *X*, *Y* are ε -close around the periodic orbit.
- The section Σ is a cross section also for Y.



イロト イポト イヨト イヨト

- Consider the map $P_{\varepsilon}: \Sigma \to \Sigma$ defined by $P_{\varepsilon}(x) = \varphi_{\tau(x;\varepsilon)}^{\varepsilon}(x) \in \Sigma$.
- *P*_ε is ε− close to *P*₀. Therefore they both are locally topologically conjugated, by *h*, around the hyperbolic equilibrium point *x*_{*} = Σ ∩ γ.
- From this we deduce that the flows φ^0 and φ^{ε} are topologically equivalent in a neighbourhood *V* of γ by the homeomorphism defined by

$$x \in V \to \hat{\tau}(x) := \tau(x;0), \ \hat{x} := \varphi^0_{\hat{\tau}(x)}(x) \in \Sigma \to h(\hat{x}) \to \bar{x} = \varphi^{\varepsilon}_{-\hat{\tau}(x)}(h(\hat{x})).$$

OUTLINE

2 STRUCTURAL STABILITY OF LINEAR SYSTEMS

3 LOCAL STRUCTURAL STABILITY

4

FLOWS ON TWO DIMENSIONAL MANIFOLDS Definitions

- Results
- 5 Anosov diffeomorphisms
 - A first result
 - Morse-Smale systems
 - The Anosov diffeomorphisms in \mathbb{T}^n
 - The Anosov automorphism
 - An example

PRELIMINARIES

We begin by vector fields defined on \mathbb{R}^2 .

• To guarantee that $||X||_1$ is finite we restrict ourselves to the unit disc:

$$\mathbb{D}^2 = \{x \in \mathbb{R}^2 : \|x\| \le 1\}$$

- Consider the set Vec¹(D²) defined as the set of vector fields X ∈ Vec¹(U) being U an open set which contains D².
- For $X \in \operatorname{Vec}^1(\mathbb{D}^2)$, we define

$$\|X\|_{1} = \max_{x \in \mathbb{D}^{2}} \sum_{i=1}^{2} \|X^{i}(x)\| + \max_{x \in \mathbb{D}^{2}} \sum_{i=1,j}^{2} \|D_{x_{j}}X^{i}(x)\|$$

which is finite.

• A neighbourhood $N_{\varepsilon}(X) \subset \operatorname{Vec}^{1}(\mathbb{D}^{2})$ of $X \in \operatorname{Vec}^{1}(\mathbb{D}^{2})$

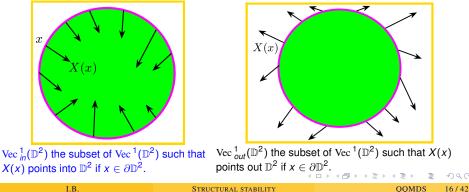
$$N_{\varepsilon}(X) = \{ Y \in \operatorname{Vec}^{1}(\mathbb{D}^{2}) : \|X - Y\|_{1} < \varepsilon \}.$$

GLOBAL STRUCTURAL STABILITY

DEFINITION

A vector field $X \in \text{Vec}^{1}(\mathbb{D}^{2})$ is said to be structurally stable if there exists a neighbourhood $N_{\varepsilon}(X)$ such that any $Y \in N_{\varepsilon}(X)$ is topologically equivalent to X on \mathbb{D}^{2} .

To prove powerful results we deal with transversal vector fields on $\partial \mathbb{D}^2$.



OUTLINE

2 STRUCTURAL STABILITY OF LINEAR SYSTEMS

- 3 LOCAL STRUCTURAL STABILITY
- 4

FLOWS ON TWO DIMENSIONAL MANIFOLDS

- Definitions
- Results
- 5 Anosov diffeomorphisms
 - A first result
 - Morse-Smale systems
 - The Anosov diffeomorphisms in \mathbb{T}^n
 - The Anosov automorphism
 - An example

→ Ξ →

PEIXOTO'S THEOREM ON \mathbb{D}^2

THEOREM

Let $X \in \text{Vec}_{in}^{1}(\mathbb{D}^{2}) \cup \text{Vec}_{out}^{1}(\mathbb{D}^{2})$. Then X is structurally stable if and only if its flows satisfies:

- A) All fixed points are hyperbolic.
- B) All closed orbits are hyperbolic.
- c) There are no orbits connecting saddle points.

Even more

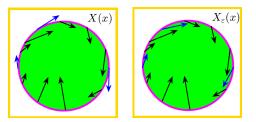
THEOREM

The subset of vector fields in $\operatorname{Vec}_{in}^{1}(\mathbb{D}^{2})$ (resp. $\operatorname{Vec}_{out}^{1}(\mathbb{D}^{2})$) that are structurally stable is open and dense in $\operatorname{Vec}_{in}^{1}(\mathbb{D}^{2})$ (resp. $\operatorname{Vec}_{out}^{1}(\mathbb{D}^{2})$). That is, to be structually stable in Vec $_{in}^{1}(\mathbb{D}^{2})$ and Vec $_{out}^{1}(\mathbb{D}^{2})$ is a generic condition.

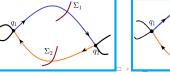
Some comments about Peixoto's theorem

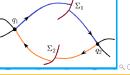
Some comments:

• If X does not belong to $\operatorname{Vec}_{in}^{1}(\mathbb{D}^{2}) \cup \operatorname{Vec}_{out}^{1}(\mathbb{D}^{2})$ and satisfies some conditions, there is a sequence of vector fields $X_{\varepsilon_{n}}$ belonging to $\operatorname{Vec}_{in}^{1}(\mathbb{D}^{2}) \cup \operatorname{Vec}_{out}^{1}(\mathbb{D}^{2})$ and $\|X_{\varepsilon_{n}} - X\|_{1} \to 0$ as $n \to \infty$.



- The conditions a), b) assures that the vector field is locally structurally stable.
- The only global condition is c).





RESULTS

PEIXOTO'S THEOREM ON M

Let *M* be a two dimensional compact manifold without boundary. We call Vec $^{1}(M)$ the set of C^{1} -vector fields on M with the C^{1} -norm (the C^{1} -norm on each of the charts)

THEOREM

A vector field in Vec¹(M) is structurally stable if and only if its flows satisfies

- All fixed points are hyperbolic.
- B) All closed orbits are hyperbolic.
- There are no orbits connecting saddle points. C)
- D) The non-wandering set consists only of fixed points and periodic orbits.

In addition, when M is orientable, the set of structurally stable C¹ vector fields consists on an open dense subset of $\operatorname{Vec}^{1}(M)$. That is, to be structurally stable is a generic condition. See the book Geometric Theory of Dynamical Systems. An introduction', by Jacob Palis, Jr. and Welington de Melo.

Do exercise 122.

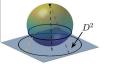
< ロ > < 同 > < 回 > < 回 > < 回 > <

REMARKS:

 Orientable manifold means that two distinct sides of M can be recognised. For instance the sphere, torus, pretzel (see figure)

- Considering the flow on the torus: $\theta(t) = (t, t\omega), \omega \in \mathbb{R} \setminus \mathbb{Q}$ which is unstable and the non wandering set is always \mathbb{T}^2 . The last condition can not be skipped.
- Since *M* is compact, flows on it can only have finitely many fixed and periodic points if they are all hyperbolic. This is due to the fact that hyperbolic fixed points are isolated.
- What does happen with the condition that the vector field points in or out?

Sterographic projection



- Let $X \in \text{Vec}^{1}(\mathbb{S}^{2})$.
- Any closed cap of \mathbb{S}^2 is diffeomorphic to \mathbb{D}^2 by the sterographic projection. Let $\hat{X} \in \text{Vec}^1(\mathbb{D}^2)$ the corresponding vector field
- The condition X̂ ∈ Vec¹_{in}(D²) is equivalent for X to have a repellor in the north pole.

イロト イポト イヨト イヨト

Sar

STRUCTURAL STABILITY IN NON COMPACT SETS

FIRST IDEA

If a system is structurally unstable in a compact set is unstable at the whole plane.

Show that the vector field, X, defined by

$$X(x, y) = (2x - x^2, -y + xy),$$

is not structurally stable on any compact subset of the plane with the line segment joining the singular points of X in its interior.

SECOND (WRONG) IDEA

If a system is structurally stable in any compact set is structurally stable at the whole plane.

Show that there are arbitrarily large compact subsets of the plane on which the system

$$\dot{x} = -x, \qquad \dot{y} = \sin(\pi y)e^{-y^2}$$

is structurally stable. However it is not structurally stable in \mathbb{R}^2 .

Stable vectors fields in \mathbb{R}^2

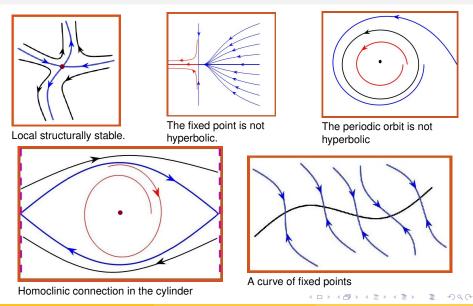
We can get them by using the sterographic projection. But they will only have a finite number of fixed points

I.B.

STRUCTURAL STABILITY

QQMDS 22 / 42

SOME EXAMPLES

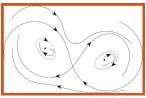


QQMDS 23 / 42

MORE EXAMPLES

Structurally unstable on compacts.

Structurally unstable on compacts.



Structurally stable on \mathbb{R}^2 by structurally stable on \mathbb{S}^2 : The infinity is a repellor.

Structurally stable on \mathbb{R}^2 by structurally stable on \mathbb{S}^2 : The infinity is a repellor. Note that there are not saddle connections.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sar

OUTLINE

- 2 STRUCTURAL STABILITY OF LINEAR SYSTEMS
- 3 LOCAL STRUCTURAL STABILITY
- 4 FLOWS ON TWO DIMENSIONAL MANIFOLDS
 - Definitions
 - Results

5

ANOSOV DIFFEOMORPHISMS

- A first result
- Morse-Smale systems
- The Anosov diffeomorphisms in \mathbb{T}^n
- The Anosov automorphism
- An example

- 4 ∃ > 4

A first result for maps on \mathbb{S}^1

THEOREM

A diffeomorphism $f : \mathbb{S}^1 \to \mathbb{S}^1$ ($f \in Diff$) is structurally stable if and only if its non-wandering set consists of finitely many fixed points or periodic orbits all of them hyperbolic. Moreover, the subset of structurally stable maps is open and dense in Diff.

Idea for the proof.

Peixoto's Theorem along with the relationship between two dimensional flows and one dimensional maps by means of Poincaré map.

A COMMENT

Recall that for a diffeomorphism $f : \mathbb{S}^1 \to \mathbb{S}^1$ to have a periodic orbit means that the rotation number is rational. As a consequence, if $f \in \text{Diff}$ is structurally stable, then the rotational number is rational. The converse is not true $(x \to x + p/q)$ is unstable. Remember that when the rotation number is irrational, every orbit is dense.

OUTLINE

- 2 STRUCTURAL STABILITY OF LINEAR SYSTEMS
- 3 LOCAL STRUCTURAL STABILITY
- 4 FLOWS ON TWO DIMENSIONAL MANIFOLDS
 - Definitions
 - Results

ANOSOV DIFFEOMORPHISMS

- A first result
- Morse-Smale systems
- The Anosov diffeomorphisms in Tⁿ
- The Anosov automorphism
- An example

→ Ξ →

THE MORSE-SMALE DYNAMICAL SYSTEMS

Morse-Smale dynamical systems satisfy the conditions in Peixoto's theorem:

- There are finitely many hyperbolic equilibrium points and periodic orbits.
- The intersection, if it exists, between the stable and unstable invariant manifolds, is transversal.
- The non-wandering set consists of finitely many hyperbolic equilibrium points and hyperbolic periodic orbits

THEOREM

The Morse-Smale systems are structurally stable.

However:

THEY DO NOT CHARACTERIZE STRUCTURAL STABLE SYSTEMS

There are other systems with this property which are not of Morse-Smale type. In particular there are diffomorphisms on manifolds of dimension $n \ge 2$ that their non-wandering set contains infinitely many hyperbolic periodic orbits: the Anosov diffeomorphism of the torus \mathbb{T}^n . As a consequence the Morse-Smale systems are not generic.

ヘロト 人間 ト イヨト イヨト

OUTLINE

- 2 STRUCTURAL STABILITY OF LINEAR SYSTEMS
- **3** LOCAL STRUCTURAL STABILITY
- 4 FLOWS ON TWO DIMENSIONAL MANIFOLDS
 - Definitions
 - Results

ANOSOV DIFFEOMORPHISMS

- A first result
- Morse-Smale systems
- The Anosov diffeomorphisms in \mathbb{T}^n
- The Anosov automorphism
- An example

→ Ξ →

DEFINITION

Roughly speaking Anosov diffeomorphisms are the ones having *expansion* and *contraction* directions.

The rigourous definition is the following:

DEFINITION

Let $f: M \to M$ be a diffeomorphism defined on a differential manifold. We define the tangent bundle:

$$TM = \{(x, v) : x \in M, v \in T_xM\}.$$

Then, there exists constants C > 0 and $0 < \lambda < 1$ such that

•
$$TM = E^s \oplus E^u$$
, $DfE^s = E^s$, $DfE^u = E^u$

•
$$(x, v) \in E^s$$
, $\|Df^n(x)v\| \leq C\lambda^n \|v\|$,

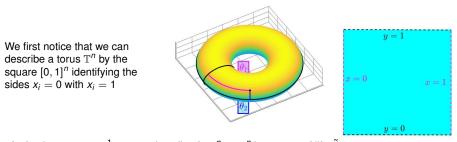
•
$$(x, v) \in E^u$$
, $\|Df^n(x)v\| \ge C\lambda^{-n}\|v\|$.

We focus on the Anosov diffeomorphisms defined on $M = \mathbb{T}^n$. They have non-wandering sets having infinitely many periodic points.

I.B.

QQMDS 30 / 42

LIFTS



As for the maps on \mathbb{S}^1 we can describe $f : \mathbb{T}^n \to \mathbb{T}^n$ by means of lifts \tilde{f} .

DEFINITION OF LIFTS

Let $f : \mathbb{T}^n \to \mathbb{T}^n$ a diffeomorphism. Consider the projection

 $\pi: \mathbb{R}^n \to \mathbb{T}^n, \qquad \pi(x) = (x_1 \pmod{1}, \cdots, x_n \pmod{1}) = (\theta_1, \cdots, \theta_n) = \theta.$

A lift \tilde{f} of f is a diffeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ such that

 $f(\pi(x)) = \pi(\tilde{f}(x))$

PROPERTIES OF THE LIFS

x.	• x	
		<i>x</i>
		• x
	$\pi(x)$ •	$\pi(x)$
		_
	•x	
	x	

- They are not unique: if \tilde{f} is a lift, $\tilde{f} + 1$ is also a lift.
- If $k = (k_1, \cdots, k_n) \in \mathbb{Z}^n$, then for all $x \in \mathbb{R}^n$:

$$\pi(\tilde{f}(x+k)) = f(\pi(x+k)) = f(\pi(x)) = \pi(\tilde{f}(x)).$$

Since \tilde{f} is continuous,

$$\widetilde{f}(x+k) = \widetilde{f}(x) + l(k), \qquad l(k) \in \mathbb{Z}^n$$

with I(k) independent on x.

• \tilde{f} is a lift of f if and only \tilde{f}^{-1} is a lift of f^{-1} . Indeed, take $y = \tilde{f}(x)$ at $f(\pi(x)) = \pi(\tilde{f}(x))$:

$$f(\pi(\tilde{f}^{-1}(y))) = \pi(y) \Leftrightarrow \pi(\tilde{f}^{-1}(y)) = f^{-1}(\pi(y)).$$

• \tilde{f}^q is a lift of f^q if $q \in \mathbb{Z}$.

= 900

OUTLINE

- 2 STRUCTURAL STABILITY OF LINEAR SYSTEMS
- 3 LOCAL STRUCTURAL STABILITY
- 4 FLOWS ON TWO DIMENSIONAL MANIFOLDS
 - Definitions
 - Results

ANOSOV DIFFEOMORPHISMS

- A first result
- Morse-Smale systems
- The Anosov diffeomorphisms in \mathbb{T}^n
- The Anosov automorphism
- An example

→ Ξ →

DEFINITION

DEFINITION

The lift of an Anosov automorphism *f* is a hyperbolic, linear diffeomorphism, $A : \mathbb{R}^n \to \mathbb{R}^n$ satisfying

$$A: \mathbb{Z}^n \to \mathbb{Z}^n$$
, $\det A = \pm 1$.

An Anosov automorphism is a diffeomorphism.

Indeed: let A be a lift of f. Then:

- It is clear that $A^{-1} : \mathbb{Z}^n \to \mathbb{Z}^n$.
- A^{-1} satisfies the necessary condition for being a lift:

$$A^{-1}(x+k) = A^{-1}x + l(k).$$

• f^{-1} exists and its lift is A^{-1} . Indeed, define $g(\pi(x)) = \pi(A^{-1}x)$. Since $f(\pi(x)) = \pi(Ax)$,

$$f(g(\pi(x)) = f(\pi(A^{-1}x) = \pi(x)).$$

Changing the role of f, (A) and g, (A^{-1}) we also have $g(f(\pi(x))) = \pi(x)$.

f, *f*⁻¹ are differentiable since *A*, *A*⁻¹ are obviously differentiable and π is a local diffeomorphism.

I.B.

AN IMPORTANT PROPERTY

PROPOSITION

Let $f : \mathbb{T}^n \to \mathbb{T}^n$ be an Anosov automorphism. A point $\theta \in \mathbb{T}^n$ is a periodic orbit of f if and only if $\theta = \pi(x)$, with $x = (x_1, \dots, x_n) \in \mathbb{Q}^n$.

Proof. Let f be an Anosov autohomorphism and A one lift.

- Let q ∈ N be such that f^q(θ) = θ. and let x ∈ ℝⁿ be such that π(x) = θ.
- We have that $(A^q \mathrm{Id})x = m$, with $m \in \mathbb{Z}^n$. Indeed,

$$\pi(x) = \theta = f^q(\theta) = f^q(\pi(x)) = \pi(A^q(x)).$$

 Since A is hyperbolic, A^q has not 1 as eigenvalue so that

$$x = (A^q - \mathrm{Id})^{-1}m, m \in \mathbb{Z}^n$$

• Since A^q is an integer matrix, the elements of $(A^q - \text{Id})^{-1}$ are rational numbers and we conclude.

• We write
$$x = \left(\frac{p_1^{(0)}}{r}, \cdots, \frac{p_n^{(0)}}{r}\right) \in \mathbb{Q}^n$$
.

• We notice that, for any $k \in \mathbb{N}$:

$$A^k x = \left(\frac{p_1^{(k)}}{r}, \cdots, \frac{p_n^{(k)}}{r}\right),$$

with the same denominator r and $p_i^{(k)} \in \mathbb{Z}$.

- There are rⁿ numbers on Tⁿ represented by such a numbers.
- Therefore there is q > 0 such that $\pi(A^q x) = \pi(x)$.

I.B.

nac

STRUCTURAL STABILITY

The non-wandering set of Anosov automorphism

As a consequence of the previous result, $\Omega(f) = \mathbb{T}^n$ (the non-wandering set).

Notice that the periodic points are dense in the torus and they belong to the non-wandering set.

THEOREM (CONJUGATION RESULT)

Every Anosov diffeomorphism $f : \mathbb{T}^n \to \mathbb{T}^n$ having $\Omega(f) = \mathbb{T}^n$, is topologically conjugated to some Anosov automorphism.

 $\Omega(f)$ contains infinitely many hyperbolic periodic orbits distributed densely on the torus. But, \mathbb{T}^n is compact, so there are finitely many periodic orbits for each period q, so that there are infinitely many periods.

THEOREM (THE SURPRISING RESULT)

The Anosov diffeomorphisms on \mathbb{T}^n are structurally stable in *Diff*.

Even maps having a very complicated dynamics can be structurally stable. This is a big

difference with two dimensional flows.

I.B.

STRUCTURAL STABILITY

QQMDS 36/42

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

OUTLINE

- 2 STRUCTURAL STABILITY OF LINEAR SYSTEMS
- **3** LOCAL STRUCTURAL STABILITY
- 4 FLOWS ON TWO DIMENSIONAL MANIFOLDS
 - Definitions
 - Results

ANOSOV DIFFEOMORPHISMS

- A first result
- Morse-Smale systems
- The Anosov diffeomorphisms in \mathbb{T}^n
- The Anosov automorphism
- An example

- 4 ∃ > 4

A WELL QUOTED EXAMPLE (ARNOLD CAT MAP)

Consider $A : \mathbb{R}^2 \to \mathbb{R}^2$ given by

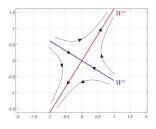
$$A = \left(egin{array}{cc} 1 & 1 \ 1 & 2 \end{array}
ight).$$

It is clear that it is an Anosov automorphism since

$${old A}: {\mathbb Z}^2 o {\mathbb Z}^2, \qquad \det {old A} = \pm 1.$$

STRUCTURAL STABILITY

The behaviour of A on \mathbb{R}^2 is clear



• x = (0, 0) is the unique fixed point.

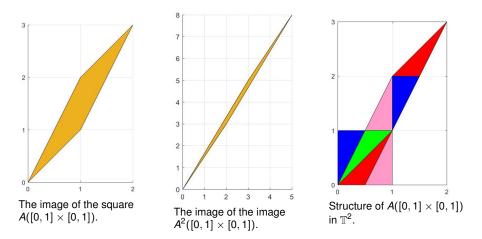
• The eigenvalues of *A* are
$$\lambda_{\pm} = \frac{3 \pm \sqrt{5}}{2}$$
.

• The eigenvectors are
$$v_{\pm} = \left(1, \frac{1 \pm \sqrt{5}}{2}\right)$$

The origin is a saddle point,

I.B.

WHAT DOES HAPPEN IN THE TORUS?



I.B.

< ロ > < 同 > < 回 > < 回 >

Sar

THE INVARIANT MANIFOLDS ARE DENSE ON THE TORUS

$$\overline{W^{u,s}} = \mathbb{T}^2$$

 Recall that, in R², the points of the either stable or unstable manifold are respectively:

$$y = \alpha^{-}x, \qquad y = \alpha^{+}x, \qquad \alpha^{\pm}$$

• The intersection of $y = \alpha^+ x$ with $y = k \in \mathbb{Z}$ are

$$\left(\frac{k}{\alpha^+},k\right) = \left(\frac{k}{\alpha^+},0\right), \qquad (\mathrm{mod}\,\mathbf{1}).$$

• The intersection with $x = m \in \mathbb{Z}$ are

 $(m, \alpha^+ m) = (0, \alpha^+ m), \pmod{1}.$

- Recall that, for the maps $g_{\beta} : \mathbb{S}^1 \to \mathbb{S}^1$, $g_{\beta}(\theta) = \theta + \beta$ with $\beta \in \mathbb{R} \setminus \mathbb{Q}$, orb (0) is dense.
- Then the points $\{k/\alpha^+ \pmod{1}\}_{k\in\mathbb{Z}}$ are dense in [0, 1] (apply the previous item for $\beta = 1/\alpha^+$). The same for the points $\{m\alpha^+ \pmod{1}\}_{m\in\mathbb{Z}}$.
- We conclude $\overline{W^u} = \mathbb{T}^2$.

• The same for α^- .

 $=\frac{1\pm\sqrt{5}}{5}$

QQMDS 40 / 42

200

THE INVARIANT MANIFOLDS INTERSECT

In blue W^s , in red W^u

Take one of the branch of W^u inside of the square
 [0, 1] × [0, 1] and let ε > 0 small.

HOMOCLINIC POINTS

• For every point, x_0^u of this branch, there is a point x^s of W^s such that

$$|x_0^u-x^s|<\varepsilon.$$

 Since, locally, the invariant manifolds are straight lines, we have a transversal intersection between W^u, W^s belonging to

$$B_{\varepsilon}(x_0^{u}) = \{ x \in [0,1] \times [0,1] : |x - x_0^{u}| < \varepsilon \}.$$

• Since W^u is dense in the torus, the torus is compact and $\varepsilon > 0$ is arbitrary, the transversal intersection points are dense.

The homoclinic points are the intersection between the stable and unstable manifolds. As a consequence the set of homoclinic (transversal) points is dense.

QQMDS 41/42

THE ARNOLD'S CAT MAP, HATES CATS

This is what happens when we apply Arnold's cat map to a cat:

PLAY

See the program in Atenea, try to understand what the program does and think about why is this possible? Hint: Periodic points!

Do exercise 128

LB.

STRUCTURAL STABILITY

QOMDS 42/42

< □ > < □ > < □ > < □ >