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PRELIMINARIES

INTRODUCTION

FIRST NAIVE DEFINITION

Roughly speaking, we say that a dynamical system is structurally
stable if the qualitative behaviour does not change when sufficiently
close systems are considered.

That is: we want to characterize robust systems.

However we need to be more precise:
What does mean qualitative behaviour?
What does mean sufficiently close systems?

The another important fact is

TO BE OR NOT BE STRUCTURALLY STABLE

The set of structurally stable systems is dense? open?
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PRELIMINARIES

RECALL:

Let A ∈Mn×n. The linear flow ẋ = Ax is hyperbolic if

Spec A ⊂ {λ ∈ C : Reλ 6= 0}.

When a discrete linear dynamical system is considered, i.e.
x̄ = Ax , we say it is hyperbolic if

Spec A ⊂ {λ ∈ C : |λ| 6= 1}.

A point x is a non-wandering point for the diffeomorphism f (resp.
for the flow ϕt ) if, given any neighbourhood W of x , there exists
some m > 0 (resp. t > t0 > 0) for which

f m(W ) ∩W 6= ∅,
(
resp. ϕt (W ) ∩W 6= ∅).

In a topological space, we say that that a set is residual if it is the
countable intersection of open dense sets.
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PRELIMINARIES

RECALL:

We say that a property is generic if it is shared by the elements of
a residual set.
Two diffeomorphisms f ,g : M → M are said to be Cr - conjugate if
there is a homeomorphism h : M → M, Cr such that

h ◦ f = g ◦ h.

Two flows ϕt , ψt are Cr -equivalent if there exists a Cr

homeomorphism that sends orbits of ϕt onto orbits of ψt
preserving orientation.
Hartman’s theorem. If a dynamical system (either flow or map)
has an equilibrium hyperbolic point, then it is topologically
conjugated to its linearised part.
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STRUCTURAL STABILITY OF LINEAR SYSTEMS

LINEAR SYSTEMS

Let A be a n× n matrix, A ∈ L(Rn). We first define an ε-neighbourhood
as:

Nε(A) = {B ∈ L(Rn) : ‖B − A‖ < ε}.

DEFINITION OF STRUCTURALLY STABLE

A linear system (either flow or map) is said to be structurally stable in
L(Rn) if there is an ε-neighbourhood of A, Nε(A), such that for every
B ∈ Nε(A):

in the case of flows, etA and etB are topologically equivalent;
in the case of maps, f (x) = Ax and g(x) = Bx are topologically
conjugate.

To be topologically equivalent (or topologically conjugated) will be the definition of the
same qualitative behaviour.

Notice that the definition depends on the set (in this case L(Rn)) we take a priori.
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STRUCTURAL STABILITY OF LINEAR SYSTEMS

CHARACTERIZATION OF STRUCTURALLY LINEAR

SYSTEMS

PROPOSITION

A linear flow or diffeomorphism on Rn is structurally stable in L(Rn) if and only
if it is hyperbolic.

Idea of the proof:

Prove that if ε is small enough and B ∈ Nε(A), then B is also hyperbolic (you can prove it
using Gershgorin’s theorem) with the same stability index ns , i.e., the same number of
stable eigenvalues.

For flows, they are both topologically conjugated to ẋ = −x , ẏ = y , x ∈ Rns
, y ∈ Rn−ns

. In
conclusion A is structurally stable.

For flows, if A is not hyperbolic then it has at least one eigenvalue with real part equal to 0.
Then, taking ε small enough B±ε = A± εI is hyperbolic. Since B+

ε ,B
−
ε are not topologically

equivalent, A is not structurally stable.

Do the same for diffeomorphism (first part of Exercise 115).
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STRUCTURAL STABILITY OF LINEAR SYSTEMS

REMARKS

The dependence on the set. If we take the subset of linear systems having eigenvalues
with real part equal to 0, to be a center is structurally stable. Even more, in the subset of
Hamiltonian linear system, also the centers are structurally stable.

The differential equivalence is too restrictive. If two linear flows are differentiably
equivalent, their matrices have to be almost similar. Indeed, if h(eAt x) = eBτ(t,x)h(x),

Dh(x)Ax = τ ′(0, x)Bh(x) =⇒ Dh(λv)Av = τ ′(0, λv)B
h(λv)

λ
=⇒ Dh(0)A = τ ′(0)BDh(0)

For instance

ẋ =

(
1 0
0 1

)
x ẋ =

(
1 0
0 1 + ε

)
x

Are not differentiably equivalent.

The topological type can be different in the same equivalence class. Take

ẋ =

(
1 0
0 1

)
x ẋ =

(
1 ε
−ε 1

)
x .

The first is a node (eigenvalue 1) and the second are focus (eigenvalues 1± iε).
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STRUCTURAL STABILITY OF LINEAR SYSTEMS

OPEN AND DENSE

PROPOSITION

The set SDD(Rn) of structurally stable linear dynamical systems, is open and
dense in L(Rn). That is the property of being structurally stable is generic.

Idea of the proof. SDD(Rn) = HDD(Rn) with HDD(Rn) being the set of hyperbolic linear
dynamical systems.

To be open. Let A ∈ SDD(Rn), by definition there exists

Nε(A) ⊂ L(Rn), A is topologically conjugated to B ∈ Nε(A).

Then B has to be hyperbolic and consequently B has to be structurally stable.

To be dense in L(Rn). If A /∈ HDD(Rn), then Bε = A + εId ∈ HDD(Rn) if ε is small enough
and Bε is arbitrarily close to A. In fact,

lim
ε→0

Bε = A.

Do the same for diffeomorphism (second part of Exercise 115).
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LOCAL STRUCTURAL STABILITY

NON LINEAR SYSTEMS

The first thing we need to do is to define what means close enough.
That is a a set of appropriate perturbations.

For that we first define a norm along with a set. For U ⊂ Rn, we
denote:

Vec 1(U) = {X : U → Rn, C1 vector fields},

‖X‖1 = sup
x∈U

n∑
i=1

|X i(x)|+ sup
x∈U

n∑
i,j=1

|Dxj X
i(x)|.

Note that ‖X‖ is small if |X i | and |Dxj X
i | are small.

A ε-neighbourhood:

Nε(X ) = {Y ∈ Vec 1(U) : ‖X − Y‖ < ε}.

We say that Y is ε− C1 close enough of X if Y ∈ Nε(X ).
I.B. STRUCTURAL STABILITY QQMDS 10 / 42



LOCAL STRUCTURAL STABILITY

LOCAL STRUCTURAL STABILITY

DEFINITION

Let X ∈ Vec 1(U). We say that X is locally structurally stable if there exists
Nε(X ) ⊂ Vec 1(U) such that for any Y ∈ Nε(X ), there exist V ,W ⊂ U such
that X|V and Y|W are topologically equivalent. That is there exists a
homeomorphism h : V →W such that

ϕt (h(x)) = h(ψτ(t)x), ϕt , ψt flows of X ,Y .

The corresponding definition for f diffeomorphisms.

The question is then: can we characterize the local structurally stable
vector fields?

For arbitrary dimension we only have partial results.

By the flow box theorem, given a vector field X , in a neighbourhood of a
regular point (X (p) 6= 0), X is local structurally stable.

What does happen around a singular point?
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LOCAL STRUCTURAL STABILITY

PARTIAL RESULTS (I)

PROPOSITION

Let X ∈ Vec 1(U) have a hyperbolic fixed point x∗. Then, X is locally
structurally stable.

Idea of the proof:
There exists V̂ ⊂ U neighbourhood of x∗ and a Nε(X) such that if Y ∈ Nε(X) it has a
unique hyperbolic fixed point y∗ ∈ V̂ . In addition the linearised systems DX(x∗),DY (y∗)
have stable spaces of the same dimension.
Then the flows of DX(x∗),DY (y∗) are topologically conjugated.
By Hartman’s theorem, X|V and Y|W are topologically conjugated to DX(x∗)|V and
DY (y∗)|W .
By transitivity of topological equivalence the results follows.

We have the corresponding result for maps:

PROPOSITION

Let f be a diffeomorphism having a hyperbolic fixed point x∗. Then f is locally
structurally stable.

Do exercise 120.
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LOCAL STRUCTURAL STABILITY

PARTIAL RESULTS (II)

COROLLARY

As a consequence, if we have a vector field X ∈ Vec 1(U) with a hyperbolic closed orbit γ, it is
locally structurally stable in a neighbourhood of the closed orbit.

Idea of the proof:

Take Y ∈ Nε(U) with ε sufficiently small, a cross section Σ of
X at γ and the associated Poincaré map P0.

The flows ϕ0
t , ϕ

ε
t of X ,Y are ε-close around the periodic orbit.

The section Σ is a cross section also for Y .

Consider the map Pε : Σ→ Σ defined by Pε(x) = ϕετ(x ;ε)(x) ∈ Σ.

Pε is ε− close to P0. Therefore they both are locally topologically conjugated, by h, around
the hyperbolic equilibrium point x∗ = Σ ∩ γ.
From this we deduce that the flows ϕ0 and ϕε are topologically equivalent in a
neighbourhood V of γ by the homeomorphism defined by

x ∈ V → τ̂(x) := τ(x ; 0), x̂ := ϕ0
τ̂(x)(x) ∈ Σ→ h(x̂)→ x̄ = ϕε−τ̂(x)(h(x̂)).
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FLOWS ON TWO DIMENSIONAL MANIFOLDS DEFINITIONS

PRELIMINARIES

We begin by vector fields defined on R2.

To guarantee that ‖X‖1 is finite we restrict ourselves to the unit disc:

D2 = {x ∈ R2 : ‖x‖ ≤ 1}

Consider the set Vec 1(D2) defined as the set of vector fields
X ∈ Vec 1(U) being U an open set which contains D2.

For X ∈ Vec 1(D2), we define

‖X‖1 = max
x∈D2

2∑
i=1

‖X i (x)‖+ max
x∈D2

2∑
i=1,j

‖Dxj X
i (x)‖

which is finite.

A neighbourhood Nε(X ) ⊂ Vec 1(D2) of X ∈ Vec 1(D2)

Nε(X ) = {Y ∈ Vec 1(D2) : ‖X − Y‖1 < ε}.
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FLOWS ON TWO DIMENSIONAL MANIFOLDS DEFINITIONS

GLOBAL STRUCTURAL STABILITY

DEFINITION

A vector field X ∈ Vec 1(D2) is said to be structurally stable if there
exists a neighbourhood Nε(X ) such that any Y ∈ Nε(X ) is topologically
equivalent to X on D2.

To prove powerful results we deal with transversal vector fields on ∂D2.

Vec 1
in(D2) the subset of Vec 1(D2) such that

X(x) points into D2 if x ∈ ∂D2.
Vec 1

out (D
2) the subset of Vec 1(D2) such that X(x)

points out D2 if x ∈ ∂D2.
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FLOWS ON TWO DIMENSIONAL MANIFOLDS RESULTS

PEIXOTO’S THEOREM ON D2

THEOREM

Let X ∈ Vec 1
in(D2) ∪ Vec 1

out (D2). Then X is structurally stable if and
only if its flows satisfies:

A) All fixed points are hyperbolic.
B) All closed orbits are hyperbolic.
C) There are no orbits connecting saddle points.

Even more

THEOREM

The subset of vector fields in Vec 1
in(D2) (resp. Vec 1

out (D2)) that are
structurally stable is open and dense in Vec 1

in(D2) (resp. Vec 1
out (D2)).

That is, to be structually stable in Vec 1
in(D2) and Vec 1

out (D2) is a
generic condition.
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FLOWS ON TWO DIMENSIONAL MANIFOLDS RESULTS

SOME COMMENTS ABOUT PEIXOTO’S THEOREM

Some comments:

If X does not belong to
Vec 1

in(D2) ∪ Vec 1
out (D2)

and satisfies some
conditions, there is a
sequence of vector fields
Xεn belonging to
Vec 1

in(D2) ∪ Vec 1
out (D2)

and ‖Xεn − X‖1 → 0 as
n→∞.
The conditions a), b) assures that the vector field is locally structurally
stable.

The only global condition
is c).
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FLOWS ON TWO DIMENSIONAL MANIFOLDS RESULTS

PEIXOTO’S THEOREM ON M

Let M be a two dimensional compact manifold without boundary. We call
Vec 1(M) the set of C1- vector fields on M with the C1-norm (the C1-norm on
each of the charts)

THEOREM

A vector field in Vec 1(M) is structurally stable if and only if its flows satisfies

A) All fixed points are hyperbolic.

B) All closed orbits are hyperbolic.

C) There are no orbits connecting saddle points.

D) The non-wandering set consists only of fixed points and periodic orbits.

In addition, when M is orientable, the set of structurally stable C1 vector fields consists on an
open dense subset of Vec 1(M). That is, to be structurally stable is a generic condition.
See the book Geometric Theory of Dynamical Systems. An introduction’, by Jacob Palis, Jr. and
Welington de Melo.

Do exercise 122.
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FLOWS ON TWO DIMENSIONAL MANIFOLDS RESULTS

REMARKS:

Orientable manifold means that two distinct sides of
M can be recognised. For instance the sphere,
torus, pretzel (see figure)

Considering the flow on the torus: θ(t) = (t , tω), ω ∈ R\Q which is unstable and the non
wandering set is always T2. The last condition can not be skipped.

Since M is compact, flows on it can only have finitely many fixed and periodic points if they
are all hyperbolic. This is due to the fact that hyperbolic fixed points are isolated.

What does happen with the condition that the vector field points in or out?

Let X ∈ Vec 1(S2).

Any closed cap of S2 is diffeomorphic to
D2 by the sterographic projection. Let
X̂ ∈ Vec 1(D2) the corresponding vector
field

The condition X̂ ∈ Vec 1
in(D2) is equivalent

for X to have a repellor in the north pole.
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FLOWS ON TWO DIMENSIONAL MANIFOLDS RESULTS

STRUCTURAL STABILITY IN NON COMPACT SETS

FIRST IDEA

If a system is structurally unstable in a compact set is unstable at the whole
plane.

Show that the vector field, X , defined by

X(x , y) = (2x − x2,−y + xy),

is not structurally stable on any compact subset of the plane with the line segment joining the
singular points of X in its interior.

SECOND (WRONG) IDEA

If a system is structurally stable in any compact set is structurally stable at the whole plane.

Show that there are arbitrarily large compact subsets of the plane on which the system

ẋ = −x , ẏ = sin(πy)e−y2

is structurally stable. However it is not structurally stable in R2.

STABLE VECTORS FIELDS IN R2

We can get them by using the sterographic projection. But they will only have a finite number of
fixed points
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FLOWS ON TWO DIMENSIONAL MANIFOLDS RESULTS

SOME EXAMPLES

Local structurally stable.
The fixed point is not
hyperbolic.

The periodic orbit is not
hyperbolic

Homoclinic connection in the cylinder
A curve of fixed points
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FLOWS ON TWO DIMENSIONAL MANIFOLDS RESULTS

MORE EXAMPLES

Structurally unstable on compacts.
Structurally stable on R2 by structurally
stable on S2: The infinity is a repellor.

Structurally unstable on compacts.

Structurally stable on R2 by structurally
stable on S2: The infinity is a repellor. Note
that there are not saddle connections.
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ANOSOV DIFFEOMORPHISMS A FIRST RESULT

A FIRST RESULT FOR MAPS ON S1

THEOREM

A diffeomorphism f : S1 → S1 (f ∈ Diff) is structurally stable if and only if its
non-wandering set consists of finitely many fixed points or periodic orbits all
of them hyperbolic.
Moreover, the subset of structurally stable maps is open and dense in Diff.

Idea for the proof.
Peixoto’s Theorem along with the relationship between two dimensional flows
and one dimensional maps by means of Poincaré map.

A COMMENT

Recall that for a diffeomorphism f : S1 → S1 to have a periodic orbit means
that the rotation number is rational.
As a consequence, if f ∈ Diff is structurally stable, then the rotational number
is rational. The converse is not true (x → x + p/q) is unstable.
Remember that when the rotation number is irrational, every orbit is dense.
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ANOSOV DIFFEOMORPHISMS MORSE-SMALE SYSTEMS

THE MORSE-SMALE DYNAMICAL SYSTEMS

Morse-Smale dynamical systems satisfy the conditions in Peixoto’s theorem:

There are finitely many hyperbolic equilibrium points and periodic orbits.

The intersection, if it exists, between the stable and unstable invariant
manifolds, is transversal.

The non-wandering set consists of finitely many hyperbolic equilibrium
points and hyperbolic periodic orbits

THEOREM

The Morse-Smale systems are structurally stable.

However:

THEY DO NOT CHARACTERIZE STRUCTURAL STABLE SYSTEMS

There are other systems with this property which are not of Morse-Smale type. In particular there
are diffomorphisms on manifolds of dimension n ≥ 2 that their non-wandering set contains
infinitely many hyperbolic periodic orbits: the Anosov diffeomorphism of the torus Tn.
As a consequence the Morse-Smale systems are not generic.
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ANOSOV DIFFEOMORPHISMS THE ANOSOV DIFFEOMORPHISMS IN Tn

DEFINITION

Roughly speaking Anosov diffeomorphisms are the ones having expansion
and contraction directions.
The rigourous definition is the following:

DEFINITION

Let f : M → M be a diffeomorphism defined on a differential manifold. We
define the tangent bundle:

TM = {(x , v) : x ∈ M, v ∈ TxM}.

Then, there exists constants C > 0 and 0 < λ < 1 such that

TM = Es ⊕ Eu, DfEs = Es, DfEu = Eu

(x , v) ∈ Es, ‖Df n(x)v‖ ≤ Cλn‖v‖,

(x , v) ∈ Eu, ‖Df n(x)v‖ ≥ Cλ−n‖v‖.

We focus on the Anosov diffeomorphisms defined on M = Tn.
They have non-wandering sets having infinitely many periodic points.
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ANOSOV DIFFEOMORPHISMS THE ANOSOV DIFFEOMORPHISMS IN Tn

LIFTS

We first notice that we can
describe a torus Tn by the
square [0, 1]n identifying the
sides xi = 0 with xi = 1

As for the maps on S1 we can describe f : Tn → Tn by means of lifts f̃ .

DEFINITION OF LIFTS

Let f : Tn → Tn a diffeomorphism. Consider the projection

π : Rn → Tn, π(x) = (x1 (mod1), · · · , xn (mod1)) = (θ1, · · · , θn) = θ.

A lift f̃ of f is a diffeomorphism f : Rn → Rn such that

f (π(x)) = π(f̃ (x))
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ANOSOV DIFFEOMORPHISMS THE ANOSOV DIFFEOMORPHISMS IN Tn

PROPERTIES OF THE LIFS

They are not unique: if f̃ is a lift, f̃ + 1 is also a lift.

If k = (k1, · · · , kn) ∈ Zn, then for all x ∈ Rn:

π(f̃ (x + k)) = f (π(x + k)) = f (π(x)) = π(f̃ (x)).

Since f̃ is continuous,

f̃ (x + k) = f̃ (x) + l(k), l(k) ∈ Zn

with l(k) independent on x .

f̃ is a lift of f if and only f̃−1 is a lift of f−1. Indeed,
take y = f̃ (x) at f (π(x)) = π(f̃ (x)):

f (π(f̃−1(y))) = π(y)⇔ π(f̃−1(y)) = f−1(π(y)).

f̃ q is a lift of f q if q ∈ Z.
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ANOSOV DIFFEOMORPHISMS THE ANOSOV AUTOMORPHISM

DEFINITION

DEFINITION

The lift of an Anosov automorphism f is a hyperbolic, linear diffeomorphism,
A : Rn → Rn satisfying

A : Zn → Zn, det A = ±1.

An Anosov automorphism is a diffeomorphism.
Indeed: let A be a lift of f . Then:

It is clear that A−1 : Zn → Zn.
A−1 satisfies the necessary condition for being a lift:

A−1(x + k) = A−1x + l(k).

f−1 exists and its lift is A−1. Indeed, define g(π(x)) = π(A−1x). Since f (π(x)) = π(Ax),

f (g(π(x)) = f (π(A−1x) = π(x).

Changing the role of f , (A) and g, (A−1) we also have g(f (π(x))) = π(x).
f , f−1 are differentiable since A,A−1 are obviously differentiable and π is a local
diffeomorphism.
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ANOSOV DIFFEOMORPHISMS THE ANOSOV AUTOMORPHISM

AN IMPORTANT PROPERTY

PROPOSITION

Let f : Tn → Tn be an Anosov automorphism. A point θ ∈ Tn is a periodic orbit of f if and only if
θ = π(x), with x = (x1, · · · , xn) ∈ Qn.

Proof. Let f be an Anosov autohomorphism and A one lift.

Let q ∈ N be such that f q(θ) = θ. and let
x ∈ Rn be such that π(x) = θ.

We have that (Aq − Id)x = m, with
m ∈ Zn. Indeed,

π(x) = θ = f q(θ) = f q(π(x)) = π(Aq(x)).

Since A is hyperbolic, Aq has not 1 as
eigenvalue so that

x = (Aq − Id)−1m, m ∈ Zn

Since Aq is an integer matrix, the
elements of (Aq − Id)−1 are rational
numbers and we conclude.

We write x =

(
p(0)

1
r
, · · · ,

p(0)
n

r

)
∈ Qn.

We notice that, for any k ∈ N:

Ak x =

(
p(k)

1
r
, · · · ,

p(k)
n

r

)
,

with the same denominator r and
p(k)

i ∈ Z.

There are rn numbers on Tn represented
by such a numbers.

Therefore there is q > 0 such that
π
(
Aqx

)
= π(x).
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ANOSOV DIFFEOMORPHISMS THE ANOSOV AUTOMORPHISM

STRUCTURAL STABILITY

THE NON-WANDERING SET OF ANOSOV AUTOMORPHISM

As a consequence of the previous result, Ω(f ) = Tn (the non-wandering set).

Notice that the periodic points are dense in the torus and they belong to the non-wandering set.

THEOREM (CONJUGATION RESULT)

Every Anosov diffeomorphism f : Tn → Tn having Ω(f ) = Tn, is topologically
conjugated to some Anosov automorphism.

Ω(f ) contains infinitely many hyperbolic periodic orbits distributed densely on the torus. But, Tn

is compact, so there are finitely many periodic orbits for each period q, so that there are infinitely

many periods.

THEOREM (THE SURPRISING RESULT)

The Anosov diffeomorphisms on Tn are structurally stable in Diff.

Even maps having a very complicated dynamics can be structurally stable. This is a big

difference with two dimensional flows.
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ANOSOV DIFFEOMORPHISMS AN EXAMPLE

A WELL QUOTED EXAMPLE (ARNOLD CAT MAP)

Consider A : R2 → R2 given by

A =

(
1 1
1 2

)
.

It is clear that it is an Anosov automorphism since

A : Z2 → Z2, det A = ±1.

The behaviour of A on R2 is clear

x = (0,0) is the unique fixed point.

The eigenvalues of A are λ± =
3±
√

5
2

.

The eigenvectors are v± =

(
1,

1±
√

5
2

)
.

The origin is a saddle point.
I.B. STRUCTURAL STABILITY QQMDS 38 / 42



ANOSOV DIFFEOMORPHISMS AN EXAMPLE

WHAT DOES HAPPEN IN THE TORUS?

The image of the square
A([0, 1]× [0, 1]). The image of the image

A2([0, 1]× [0, 1]).

Structure of A([0, 1]× [0, 1])

in T2.
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THE INVARIANT MANIFOLDS ARE DENSE ON THE TORUS

W u,s = T2

Recall that, in R2, the points of the either
stable or unstable manifold are
respectively:

y = α−x , y = α+x , α± =
1±
√

5
2

.

The intersection of y = α+x with
y = k ∈ Z are(

k
α+

, k
)

=

(
k
α+

, 0
)
, (mod 1).

The intersection with x = m ∈ Z are(
m, α+m

)
=
(
0, α+m

)
, (mod 1).

Recall that, for the maps gβ : S1 → S1,
gβ(θ) = θ + β with β ∈ R\Q, orb (0) is
dense.

Then the points {k/α+ (mod 1)}k∈Z are
dense in [0, 1] (apply the previous item for
β = 1/α+). The same for the points
{mα+ (mod 1)}m∈Z.

We conclude W u = T2.

The same for α−.

I.B. STRUCTURAL STABILITY QQMDS 40 / 42


DenseTorus.mp4
Media File (video/mp4)
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THE INVARIANT MANIFOLDS INTERSECT

In blue W s , in red W u

Take one of the branch of W u

inside of the square
[0, 1]× [0, 1] and let ε > 0 small.

For every point, xu
0 of this branch, there is a point xs

of W s such that

|xu
0 − xs| < ε.

Since, locally, the invariant manifolds are straight
lines, we have a transversal intersection between
W u ,W s belonging to

Bε(xu
0 ) = {x ∈ [0, 1]× [0, 1] : |x − xu

0 | < ε}.

Since W u is dense in the torus, the torus is
compact and ε > 0 is arbitrary, the transversal
intersection points are dense.

HOMOCLINIC POINTS

The homoclinic points are the intersection between the stable and unstable manifolds.
As a consequence the set of homoclinic (transversal) points is dense.
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THE ARNOLD’S CAT MAP, HATES CATS

This is what happens when we apply Arnold’s cat map to a cat:

PLAY

See the program in Atenea, try to understand what the program does and think about why is this
possible? Hint: Periodic points!

Do exercise 128
I.B. STRUCTURAL STABILITY QQMDS 42 / 42


	Preliminaries
	Structural stability of linear systems
	Local structural stability
	Flows on two dimensional manifolds
	Definitions
	Results

	Anosov diffeomorphisms
	A first result
	Morse-Smale systems
	The Anosov diffeomorphisms in Tn
	The Anosov automorphism
	An example


