### SMALE'S HORSESHOE

I. Baldomá

QQMDS, 2022

SMALE'S HORSESHOE

DQC

1/43

∃ → ∃

QQMDS

I.B.

- 1 Int
  - INTRODUCTION
  - CANTOR'S SETS
- **3** Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
- THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

#### Some facts we will see

- The classical map being structurally stable and having complicated non-wandering set.
- There is a Cantor invariant set.
- We will study what is called symbolic dynamics associated to bisequences.
- The dynamics associated to this Cantor set is extremely complicated. In fact it will be the first example of chaotic dynamics.
- It can be defined in several ways. We are going to study one of them.
- When a map has transversal homoclinic intersection, it exhibits Smale's horseshoe. For that reason the maps with transversal homoclinic intersections are so important. We will see this phenomenon.

### CANTOR'S SET

| The most popular Cantor set                      | is:                                           | 200                                                                       |
|--------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|
| $I^{(0)} = [0,1]$                                |                                               |                                                                           |
| $I_1^{(1)}=ig[0,rac{1}{3}ig]$                   | $I_2^{(1)}=\left[rac{2}{3},1 ight]$          |                                                                           |
| $I_2^{(2)} = \left[rac{2}{9}, rac{3}{9} ight]$ | $I_3^{(2)}=\left[rac{6}{9},rac{7}{9} ight]$ |                                                                           |
| $\overline{I_1^{(2)}=\left[0,rac{1}{9} ight]}$  | $I_4^{(2)} = \left[\frac{8}{9}, 1\right]$     | It has a fractal structure and it is not countable. If $C_0 = [0, 1]$ and |
| $\overline{I_1^{(3)}}$ $\overline{I_4^{(3)}}$    |                                               |                                                                           |
| $I_i^{(4)}$ $I_i^{(4)}$                          | $I_i^{(4)} = I_i^{(4)}$                       | $C_n=\frac{C_{n-1}}{3}\cup\left(\frac{2}{3}+\frac{C_{n-1}}{3}\right).$    |
| $I_i^{(5)}$ $I_i^{(5)}$                          | $I_i^{(5)}$ $I_i^{(5)}$                       | Then the Cantor set is $\bigcap C_n$ .                                    |
|                                                  |                                               | <i>n</i> >0                                                               |

#### DEFINITION

A set is totally disconnected if it has no intervals. A set is perfect if every point of the set is an accumulation point of the set itself.

A set  $\Gamma \subset [0,1]$  is a Cantor's set if it is closed, totally disconnected and perfect of [0,1].

I.B.

SMALE'S HORSESHOE

QQMDS

・ロット (雪) (日) (日) (日)

୬ ବ (ବ 4/43

э

- INTRODUCTION
  - CANTOR'S SETS
- **3** Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
- 4 THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

#### **BI-INFINITE SEQUENCES**

DEFINITION OF BI-INFINITE SEQUENCES

Take the binary symbols

{**0**, **1**}.

A symbol sequence is  $\sigma : \mathbb{Z} \to \{0, 1\}$ . That is

$$\sigma = \{\sigma_n\}_{n \in \mathbb{Z}} = \{\cdots \sigma_{-2}\sigma_{-1} \cdot \sigma_0\sigma_1\sigma_2\cdots\}, \qquad \sigma_n \in \{0, 1\}.$$

We call

 $\Sigma = \{ \sigma : \sigma \text{ is a symbol sequence} \} = \{ \sigma : \sigma : \mathbb{Z} \to \{0, 1\} \}.$ 

Define the function  $d : \Sigma \times \Sigma \rightarrow \mathbb{R}$  by:

$$d(\sigma,\tau) = \sum_{n=-\infty}^{\infty} \frac{|\sigma_n - \tau_n|}{2^{|n|}}$$

We can take two other symbols, for instance  $\{r, s\}, \{*, \circ\}, \text{etc.}$ 

200

### A topology on $\Sigma$

#### PROPOSITION

The function d defines a distance on  $\Sigma$ , i.e.  $\Sigma$  endowed with the distance d is a metric space. If  $d(\sigma, \tau) < 1/2^k$  for some  $k \in \mathbb{N}$ , then  $\sigma_n = \tau_n$  for  $|n| \le k$  and if  $\sigma_n = \tau_n$  for  $|n| \le k$ , then  $d(\sigma, \tau) \le 1/2^{k-1}$ .

#### Proof

• The distance is well defined since the series is absolutely convergent. In fact  $d(\sigma, \tau) \leq 3$ .

• Properties:  $d(\sigma, \tau) \ge 0$ , if  $d(\sigma, \tau) = 0$ , then for any  $n \in \mathbb{Z}$ ,  $|\sigma_n - \tau_n| = 0$  which implies that  $\sigma = \tau$ . Symmetry  $d(\sigma, \tau) = d(\tau, \sigma)$  is obvious. Triangular inequality: take  $\nu \in \Sigma$ :

$$d(\sigma,\tau)=\sum_{n=-\infty}^{\infty}\frac{|\sigma_n-\tau_n|}{2^{|n|}}\leq \sum_{n=-\infty}^{\infty}\frac{|\sigma_n-\nu_n|+|\nu_n-\tau_n|}{2^{|n|}}=d(\sigma,\nu)+d(\nu,\tau).$$

• Assume that  $d(\sigma, \tau) < 1/2^k$  and that  $\sigma_n \neq \tau_n$  for some  $|n| \leq k$ . Then, since  $|s_n - t_n| = 1$ ,

$$\frac{1}{2^{k}} \leq \frac{1}{2^{|n|}} \leq \sum_{m=-\infty}^{\infty} \frac{|\sigma_{m} - \tau_{m}|}{2^{|m|}} < \frac{1}{2^{k}}$$

which is a contradiction. Conversely, if  $\sigma_n = \tau_n$  for  $|n| \le k$ ,

$$d(\sigma,\tau) = \sum_{|n| \ge k+1} \frac{|s_n - t_n|}{2^{|n|}} \le 2\frac{1}{2^{k+1}} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2^{k-1}}$$

- INTRODUCTION
  - CANTOR'S SETS
- SYMBOLIC DYNAMICS
  - The space of sequences
  - Bernoulli's shift
- 4 THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

### BERNOULLI'S SHIFT

The map  $\alpha: \Sigma \to \Sigma$  defined by

 $\tau = \alpha(\sigma)$  with  $\tau_n = \sigma_{n-1}, n \in \mathbb{Z}$ 

is known as the left Bernoulli's shift:

$$\alpha(\{\cdots\sigma_{-1}\cdot\sigma_{0}\sigma_{1}\sigma_{2}\cdots\})=\{\cdots\sigma_{-2}\cdot\sigma_{-1}\sigma_{0}\sigma_{1}\cdots\}$$

We can also define the *right* Bernoulli's shift by  $\beta(\sigma)_n = \sigma_{n+1}$ .

#### PROPOSITION

The map  $\beta$  is an homeomorphism. In addition

- It has periodic orbits of all periods.
- The periodic orbits are dense in Σ.
- It has a dense orbit (which is not periodic).

We also have that  $\alpha = \beta^{-1}$  and consequently  $\alpha$  has the same properties as  $\beta$ .

The map  $\beta$  is chaotic: that is i) the map is sensitive to initial conditions, ii) the map is topologically transitivity (consequence to have a dense orbit) iii) the periodic points are dense.

I.B. SMALE'S HORSESHOE QQMDS 9/43

#### Proof of chaotic character of $\beta$ (I)

PERIODIC ORBITS

Notice that  $\sigma$  is a periodic orbit of  $\beta$  (and  $\alpha$ ) if and only if

$$\beta^{q}(\sigma) = \sigma \iff \sigma_{n+q} = \sigma_{n}, \qquad \forall n \in \mathbb{Z}.$$

• First we see that  $\beta$  is an homeomorphism. Notice that it is obvious that  $\alpha = \beta^{-1}$  is a bijection. Then we only need to prove that it is continuous. Take  $\varepsilon > 0$  and  $\sigma^* \in \Sigma$ . Let  $k \in \mathbb{N}$  be such that  $1/2^{k-1} \le \varepsilon$  and  $\delta = 1/2^k$ . Then

$$d(\sigma^*,\sigma) < \delta \Rightarrow \sigma_n^* = \sigma_n, \ |n| \le k \Rightarrow \sigma_{n+1}^* = \sigma_{n+1}, \ |n| \le k-1.$$

Therefore  $d(\beta(\sigma^*), \beta(\sigma)) \leq 1/2^{k-1} \leq \varepsilon$  and we are done.

 To get σ q-periodic, we need σ<sub>i</sub> = σ<sub>i+q</sub>; we can repeat the sequence of length q

I.B.

**QOMDS** 

#### **PROOF OF CHAOTIC CHARACTER OF** $\alpha$ (II)

• Take  $\sigma \in \Sigma$  and  $\varepsilon > 0$ . Let q be such that  $1/2^{q-1} \le \varepsilon$  and consider  $\sigma^q \in \Sigma$  such that

 $\sigma_n = \sigma_n^q$  if  $|n| \le q$ ,  $\sigma^q$  having period 2q + 1.

That is

$$\sigma^{q} = \{\cdots \overline{\sigma_{-q}\sigma_{-q+1}\cdots\sigma_{-1}\cdot\sigma_{0}\sigma_{1}\cdots\sigma_{q}}\cdots\}.$$

Then  $d(\sigma^q, \sigma) \leq 1/2^{q-1} \leq \varepsilon$ .

• One dense orbit is the orbit of the sequence  $\sigma^* \in \Sigma$ :

 $\sigma^* = \{ \cdots \sigma_{-2} \sigma_{-1} \cdot 0 \, 1 \, | \, 00 \, 01 \, 10 \, 11 \, | \, 000 \, 100 \cdots \}$ 

composed by all the sequence of finite length. The value of  $\sigma_n$  for  $n \le -1$  **does not matter**. Indeed, given  $\varepsilon > 0$  and  $\sigma \in \Sigma$  there is *m* such that

$$\beta^m(\sigma^*)_n = \sigma^*_{n+m} = \sigma_n$$

for  $|n| \leq q$  with  $1/2^q < \varepsilon$ .

Do exercise 135

I.B.

QQMDS 11/43

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

- INTRODUCTION
- 2 CANTOR'S SETS
- **3** Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
  - THE CANONICAL EXAMPLE
     Definition of the map
    - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

### DESCRIPTION OF THE SMALE'S HORSESHOE

Consider the domain  $D = D_1 \cup Q \cup D_2$  defined in the figure below:



Take a < 1/2 and  $h \ge 0$ . We denote the Smale's horseshoe

 $f: D \rightarrow D$ 

as the map satisfying:

- First, it shrinks in the vertical direction by *a* and expands in the horizontal direction by 1/*a*. A *rectangle R* is produced.
- Second, it bends the central part of *R* performing the horseshoe shape, that is simetrically with respect y = 1/2.
- Third, it places the horseshoe into the domain *D* leaving a distance *h* with the top and bottom boundary.

< ロ > < 同 > < 回 > < 回 >

#### THE SMALE'S HORSESHOE GRAPHICALLY



### ANOTHER SMALE'S HORSESHOE MAP



- INTRODUCTION
- 2 CANTOR'S SETS
- 3 Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
  - THE CANONICAL EXAMPLE
    - Definition of the map
    - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

#### **REMARKS ABOUT SMALE'S HORSESHOE**

- $f, \tilde{f}$  are not diffeomorphisms.
- However  $f, \tilde{f}$  are injective maps.
- *f* and  $\tilde{f}$  are well defined if a condition on the contraction factor *a* and *h* is satisfied: 2h + 2a < 1. For instance a = h = 1/5.
- In some sense,  $\tilde{f}$  is the inverse of f on  $f(Q) \cap Q$  (see lemma below)

VERTICAL AND HORIZONTAL RECTANGLES

We say that V is a vertical rectangle if it has width  $\alpha \in (0, 1)$  and height 1. Conversely, we say that H is a horizontal rectangle if it has width 1 and height  $\alpha \in (0, 1)$ .

#### LEMMA

Let f and  $\tilde{f}$  be defined as before with h = 0. Then

- f(Q) ∩ Q = Q<sub>0</sub> ∪ Q<sub>1</sub> with Q<sub>0</sub>, Q<sub>1</sub> two horizontal rectangles Q<sub>0</sub> ∩ Q<sub>1</sub> = Ø and Q<sub>0</sub>, Q<sub>1</sub> having height a.
- $\tilde{f}(Q) \cap Q = P_0 \cup P_1$  with  $P_0, P_1$  two vertical rectangles  $P_0 \cap P_1 = \emptyset, P_0, P_1$  having width a.
- We can construct  $f, \tilde{f}$  such that  $f(P_0) = Q_0, f(P_1) = Q_1, \tilde{f}(Q_0) = P_0$  and  $\tilde{f}(Q_1) = P_1$ .
- If  $x \in f(Q) \cap Q$ , then  $f \circ \tilde{f}(x) = x$ .

イロト イポト イヨト イヨト 二日

# The relation between f and $\tilde{f}$

Idea of the proof. The first three items are obvious.



Let  $(x_1, x_2) \in Q_1 = [0, 1] \times [0, a]$ . We have that  $\tilde{f}$  acts as:

$$(x_1, x_2) \mapsto \left(ax_1, \frac{1}{a}x_2\right) \mapsto \left(1 - a + ax_1, \frac{1}{a}x_2\right).$$

In addition, *f* acts on  $P_1 = [1 - a, 1] \times [0, 1]$  as:

$$(x_1', x_2') \mapsto \left(\frac{1}{a}x_1', ax_2'\right) \mapsto \left(\frac{1}{a}x_1' + 1 - \frac{1}{a}, ax_2'\right).$$

Henceforth,  $f \circ \tilde{f}(x) = x$ .

Exercise: Do the same for  $Q_0$ .

I.B.

18/43

#### THE FRACTAL STRUCTURE

#### LEMMA

If *H* is an horizontal rectangle of height  $\alpha$ , then f(H) is another horseshoe. In addition  $f(H) \cap Q$  consists on two horizontal rectangles,  $H^0$ ,  $H^1$  of height  $\alpha$ a with  $H^0 \in Q_0$  and  $H^1 \in Q_1$ . Analogously for *V*, a vertical rectangle of width  $\beta$ ,  $\tilde{f}(V)$  is another horseshoe with  $\tilde{f}(V) \cap Q = V^0 \cup V^1$  two vertical rectangles of width  $\beta$ a such that  $V^0 \in P_0$  and  $V^1 \in P_1$ .



### More on the fractal structure

In fact, for instance for  $\tilde{f}$ , we have:



|      |                   |      |   | <br>  |
|------|-------------------|------|---|-------|
| I.B. | SMALE'S HORSESHOE | QQMD | S | 20/43 |

SOG

-

# The behavior of $f, \tilde{f}$ on rectangles

- In the following diagram we sketch how the maps f, f act on vertical and horizontal rectangles on the rectangle Q.
- We have drawn  $f(Q) \cap Q$ ,  $f^2(Q) \cap Q$ ,  $\tilde{f}(Q) \cap Q$  and  $\tilde{f}^2(Q) \cap Q$ .
- Recall that  $\tilde{f} = f^{-1}$  on  $Q_0 \cup Q_1$ .



#### AN INTERESTING COMMENT

- Consider  $f: D \rightarrow D$  defined as before.
- Take a disc D<sup>2</sup> containing *D* and define *g̃* : D<sup>2</sup> → D<sup>2</sup> to be of the form in the figure



• Identify  $\mathbb{D}^2$  with a closed cap  $C^2$  in the sphere  $\mathbb{S}^2$ . Recall that we can do this by using the sterographic projection  $h: C^2 \to \mathbb{D}^2$ .



- Call  $\bar{g}: C^2 \to C^2, \, \bar{g} = h^{-1} \circ \tilde{g} \circ h$
- Extend  $\bar{g}$  to a function  $g : \mathbb{S}^2 \to \mathbb{S}^2$  by adding a unique, repelling, hyperbolic fixed point in  $\mathbb{S}^2 \setminus C^2$ .
- g is a diffeomorphism on  $\mathbb{S}^2$ .
- Then, when restricting to D (respectively D'),  $f = h \circ g \circ h_{|D_{D}}^{-1}$  and  $\tilde{f} = h \circ g^{-1} \circ h_{|D'}$ .

- INTRODUCTION
- **2** CANTOR'S SETS
- **3** Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
- 4 THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

#### PRELIMINARIES

The dynamics of f on  $D_1$ ,  $D_2$  as well as the dynamics of  $\tilde{f}$  on  $D'_1$ ,  $D'_2$  are very simple:

- *f*<sub>|D2</sub>, *f*<sub>|D2</sub> are contractions. Therefore they have a unique fixed point *q*, *q* which are global attractors for *f*, *f* respectively.
- Notice also that  $f(D_1) \subset D_2$  and  $\tilde{f}(D'_1) \subset D'_2$ .
- As a consequence,

$$p\in D_1\cup D_2,\quad \lim_{n o\infty}f^n(p) o q,\qquad ilde{p}\in D_1'\cup D_2',\quad \lim_{n o\infty} ilde{f}^n( ilde{p}) o ilde{q},$$

• Recall that 
$$\tilde{f} = f^{-1}$$
 on  $Q \cap f(Q)$ .

As a consequence, for understanding what happens with the orbits of *f* we only need to understand the orbits remaining at *Q* for any  $n \in \mathbb{Z}$ . That is the set:

$$\Lambda = \{ q \in Q : f^n(q) \in Q, \ n \in \mathbb{Z} \}.$$

**QOMDS** 

#### The set $\Lambda$

- Consider two horseshoe map defined by  $f(Q_0) = P_0$ ,  $f(Q_1) = P_1$  with  $Q_0, Q_1$  two horizontal rectangles and its *inverse*  $\tilde{f}$ .
- Define the sets  $Q^{(1)} = Q_0 \cup Q_1$ ,

$$Q^{(n+1)} = f(Q^{(n)}) \cap Q, \qquad n \in \mathbb{N}.$$

- Define the sets  $Q^{(0)} = P_0 \cup P_1 = \tilde{f}(Q^{(1)}) = \tilde{f}(Q) \cap Q$ ,  $Q^{(-n)} = \tilde{f}(Q^{(-n+1)}) \cap Q$ ,  $n \in \mathbb{N}$ .
- Then it is clear that

$$\Lambda = \{ q \in Q : f^n(q) \in Q, \ n \in \mathbb{Z} \} = \bigcap_{n \in \mathbb{Z}} Q^{(n)}.$$

Indeed, if  $q \in \Lambda$ , since  $f^{-1}(q)$  has to be in  $Q, q \in Q_0 \cup Q_1$ . In this case  $f^{-1}(q) = \tilde{f}(q)$ .

As a consequence Λ is invariant by *f* and *f*. Notice that, when considering the extension *g* : S<sup>2</sup> → S<sup>2</sup>, the corresponding set will satisfy the same topological properties as the ones for Λ.

25/43

- INTRODUCTION
- **2** CANTOR'S SETS
- 3 Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
- 4 THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions

#### 5 THE CANTOR SET IN THE HORSESHOE MAP

- Preliminaries
- A result
- 6 Conjugation with the shift
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

### Cantor sets in $\Lambda$

#### PROPOSITION

The sets defined by

$$egin{aligned} &\Lambda_+ = \{ oldsymbol{q} \in oldsymbol{Q}, \ oldsymbol{n} \in \mathbb{Z}^+ \} = igcap_{n \in \mathbb{Z}^+} oldsymbol{Q}^{(-n)} \ &\Lambda_- = \{ oldsymbol{q} \in oldsymbol{Q}: f^{-n}(oldsymbol{q}) \in oldsymbol{Q}, \ oldsymbol{n} \in \mathbb{N} \} = igcap_{n \in \mathbb{N}} oldsymbol{Q}^{(n)} \end{aligned}$$

can be written as

$$\Lambda_+=\Gamma\times[0,1],\qquad \Lambda_-=[0,1]\times\Gamma$$

with  $\Gamma$  a Cantor set. In addition  $\Lambda_+$  is invariant by f and  $\Lambda_-$  is invariant by  $\tilde{f} = f^{-1}$ . As a consequence  $\Lambda = \Lambda_+ \cap \Lambda_- = \bigcap_{n \in \mathbb{Z}} Q^{(n)}$  is invariant by f and  $\tilde{f} = f^{-1}$  and hence  $f(\Lambda) = \Lambda$ .

I.B.

27/43

### PROOF OF PREVIOUS RESULT (I)

Write

$$\Lambda_+ = igcap_{k\in\mathbb{Z}^+} \Lambda^k_+, \qquad \Lambda^k_+ = igcap_{n=0}^k Q^{(-n)}.$$

- The induction hypothesis is that  $\Lambda_+^k$  is the union of  $2^{k+1}$  disjoint vertical rectangles of width  $a^{k+1}$ .
- Take k = 0,  $\Lambda^0_+ = Q^{(0)} = P_0 \cup P_1$ . For k = 1, 2 recall how the map  $\tilde{f}$  acts on vertical rectangles.
- The induction step assume the equality for k 1. Then, using that  $Q^{(0)} = P_0 \cup P_1$  and the injectivity of  $\tilde{f}$  as well:

$$\begin{split} \Lambda^k_+ &= \bigcap_{n=1}^k \tilde{f}(Q^{(-n+1)}) \cap (P_0 \cup P_1) = \tilde{f}\left(\bigcap_{n=1}^k Q^{(-n+1)}\right) \cap (P_0 \cup P_1) \\ &= \tilde{f}(\Lambda^{k-1}_+) \cap (P_0 \cup P_1). \end{split}$$

28/43

**QOMDS** 

#### PROOF OF PREVIOUS RESULT (II)

- By induction hypothesis, Λ<sup>k-1</sup><sub>+</sub> is the union of 2<sup>k</sup> disjoint vertical rectangles. Then its image by *t̃* is the union of 2<sup>k+1</sup> vertical rectangles of width *aa<sup>k</sup>* that have to be disjoint because of the injectivity of *t̃*.
- Take a look again how  $\tilde{f}$  acts on vertical rectangles



#### PROOF OF PREVIOUS RESULT (III)

 Then, by construction, any vertical rectangle in Λ<sup>k-1</sup><sub>+</sub> contains two and only two rectangles of Λ<sup>k</sup><sub>+</sub>. In fact, taking a = 1/3, Λ<sub>+</sub> = Γ × [0, 1] with Γ the Cantor's set introduced before:



- Analogous arguments hold true for Λ\_.
- The remaining properties are obvious.

**QOMDS** 

#### Some remarks from the proof

Notice that in the same way we have proven that Λ<sup>k</sup><sub>+</sub> are 2<sup>k+1</sup> vertical rectangles, we can
prove that

$$\Lambda_{-} = \bigcap_{k \in \mathbb{Z}^{+}} \Lambda_{-}^{k}, \qquad \Lambda_{-}^{k} = \bigcap_{n=1}^{k} Q^{(n)}$$

is the union of  $2^k$  horizontal rectangles of height  $a^k$ .

• Then the set  $\tilde{\Lambda}^N = \bigcap_{n=-N+1}^N Q^{(n)}$  is  $2^{2N}$  disjoint

squares of side  $a^N$ . In the figure the set for N = 2.

• Since  $f(Q^{(1)}) \cap Q \subset Q^{(1)}$  and  $\tilde{f}(Q^{(0)}) \cap Q \subset Q^{(0)}$ , we have that

$$Q^{(n)} \subset Q^{(n-1)}, \qquad Q^{(-n)} \subset Q^{(-n+1)}$$

Therefore, in fact  $\Lambda_{-}^{k} = Q^{(k)}$  and  $\Lambda_{+}^{k} = Q^{(-k)}$ .



**QOMDS** 

#### HORSESHOES AND SEGMENTS

Since  $\Lambda = \Lambda_+ \cap \Lambda_-$ , with

$$\Lambda_+=\Gamma\times[0,1],\;\Lambda_-=[0,1]\times\Gamma$$

being  $\Gamma$  a Cantor set, we can also write  $\Lambda_{+} = \bigcup_{p \in \Gamma} V_{\infty}(p),$   $\Lambda_{-} = \bigcup_{p \in \Gamma} H_{\infty}(p),$ with  $(p, 0) \in V_{\infty}(p)$  a vertical segment and  $(0, p) \in H_{\infty}(p)$  an horizontal segment.



#### Horseshoe on segments belonging to $\Lambda_+ \cup \Lambda_-$

#### Vertical segments

- Recall that  $f(\Lambda_+) \subset \Lambda_+ \subset P_0 \cup P_1$ .
- Let V<sub>∞</sub> ⊂ Λ<sub>+</sub>. f<sup>n</sup>(V<sub>∞</sub>) is a vertical segment of length a<sup>n</sup> belonging to one of the vertical rectangles, P<sub>0</sub> or P<sub>1</sub>.

#### Horizontal segments

- Recall that  $f^{-1}(\Lambda_{-}) \subset \Lambda_{-} \subset Q_0 \cup Q_1$ .
- Let H<sub>∞</sub> ⊂ Λ<sub>−</sub>. f<sup>−n</sup>(H<sub>∞</sub>) is an horizontal segment of width a<sup>n</sup> belonging to one of the horizontal rectangles, Q<sub>0</sub> or Q<sub>1</sub>.

・ロト ・ 戸 ト ・ ヨ ト ・ 日 ト

QOMDS

୬ < (~ 32/43

3

### A FINAL COMMENT

Consider now the extension  $g : \mathbb{S}^2 \to \mathbb{S}^2$  of *f*. Define the sets:

Called the inset and outset of  $\Lambda$ . Do as a exercise (see exercise 131):

- The set  $\Lambda_+$  is invariant by g,
- The set  $\Lambda_{-}$  is invariant by  $g^{-1}$ ,
- The inset of  $\Lambda$  on Q is in  $(\Lambda) = \Lambda_+$ ,
- The outset of  $\Lambda$  on Q is  $out(\Lambda) = \Lambda_{-}$ .

**Hint:** Use the behaviour of f and  $\tilde{f}$  on vertical and horizontal segments respectively.

**QOMDS** 

- INTRODUCTION
- **2** CANTOR'S SETS
- 3 Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
- 4 THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

#### PRELIMINARIES

Recall  $\Lambda = \Lambda_+ \cap \Lambda_-$ , with

$$\Lambda_+=\Gamma\times[0,1],\;\Lambda_-=[0,1]\times\Gamma$$

being  $\Gamma$  a Cantor set.





 $\tilde{f}$  acting on vertical rectangles. The same for f but with horizontal rectangles.

#### Horseshoe on segments belonging to $\Lambda_+ \cup \Lambda_-$

- Recall that  $f(\Lambda_+) \subset \Lambda_+ \subset P_0 \cup P_1$  and  $f^{-1}(\Lambda_-) \subset \Lambda_- \subset Q_0 \cup Q_1$ .
- $f^n(V_\infty) \in P_0 \cup P_1$  and  $f^{-n}(H_\infty) \in Q_0 \cup Q_1$ .

I.B.

#### SMALE'S HORSESHOE

QQMDS

35/43

- INTRODUCTION
- 2 CANTOR'S SETS
- **3** Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
- 4 THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

#### **BISEQUENCE AND SEGMENTS**

Sequence  $\sigma^+ = \varphi(V_\infty)$  for any  $V_\infty$ , vertical segment

for 
$$n \ge 0$$
  $\sigma_n^+ = \begin{cases} 1 & f^n(V_\infty) \in P_1 \\ 0 & f^n(V_\infty) \in P_0 \end{cases}$ 

Sequence  $\sigma^- = \psi(H_\infty)$  for any  $H_\infty$ , horizontal segment

for 
$$n \ge 1$$
  $\sigma_{-n}^{-} = \begin{cases} 1 & \tilde{f}^{n-1}(H_{\infty}) = f^{-n+1}(H_{\infty}) \in Q_{1} \\ 0 & \tilde{f}^{n-1}(H_{\infty}) = f^{-n+1}(H_{\infty}) \in Q_{0} \end{cases}$ 

However, because  $f^{-1}(Q_0) = P_0$  and  $f^{-1}(Q_1) = P_1$  we can write the last assignment by

for 
$$n \ge 1$$
  $\sigma_{-n}^{-} = \begin{cases} 1 & \tilde{f}^n(H_{\infty}) = f^{-n}(H_{\infty}) \in P_1 \\ 0 & \tilde{f}^n(H_{\infty}) = f^{-n}(H_{\infty}) \in P_0 \end{cases}$ 

### BISEQUENCE AND THE CANTOR SET

Let *q* be a point in  $\Lambda$ . It is clear that there exist two (and only two)  $H_{\infty}$ ,  $V_{\infty}$  such that

$$q = H_{\infty} \cap V_{\infty}$$



#### DEFINITION

For any  $q \in H_{\infty} \cap V_{\infty} \subset \Lambda$ , we define  $\sigma = \phi(q) \in \Sigma$  as

$$\sigma_n = egin{cases} 1 & f^n(q) \in \mathcal{P}_1 \ 0 & f^n(q) \in \mathcal{P}_0 \end{cases} \quad \iff \quad f^n(q) \in \mathcal{P}_{\sigma_n}.$$

The function  $\phi$  is well defined and  $\phi(q) = \{\psi(H_{\infty}) \cdot \varphi(V_{\infty})\}.$ 

I.B.

OOMDS

38/43

<ロ> <同> <同> < 同> < 同>

# f and $\tilde{f}$ acting on rectangles



#### AN IMPORTANT PROPERTY

Let  $q = V_{\infty} \cap H_{\infty} \in \Lambda$  and  $\sigma = \phi(q)$ . Take  $N \in \mathbb{N}$  and the square *S* of  $\tilde{\Lambda}^N$  such that  $q \in S$ . Then  $p \in S$  if and only if  $f^n(p) \in P_{\sigma_n}$ , for  $-N + 1 \leq -n \leq N$  (or  $-N \leq n \leq N - 1$ ).

Prove the above result: a piece of exercise 139.

I.B.

QOMDS

39/43

- INTRODUCTION
- 2 CANTOR'S SETS
- **3** Symbolic Dynamics
  - The space of sequences
  - Bernoulli's shift
- 4 THE CANONICAL EXAMPLE
  - Definition of the map
  - Straightforward conclusions
- 5 THE CANTOR SET IN THE HORSESHOE MAP
  - Preliminaries
  - A result
- 6 CONJUGATION WITH THE SHIFT
  - Survey
  - Symbolic dynamics and horseshoes
  - The conjugacy with the shift

#### THE CONJUGACY

#### **THEOREM**

The map  $\phi : \Lambda \to \Sigma$  defined by

$$\sigma = \phi(q) \quad \iff \quad f^n(q) \in \mathcal{P}_{\sigma_n}$$

is an homeomorphism satisfying

$$\beta \circ \phi = \phi \circ f_{|\Lambda}.$$

#### Then $f_{|\Lambda}$ and $\beta$ are topologically conjugated.

#### Proof:

We first see that β ∘ φ = φ ∘ f<sub>|Λ</sub>. Indeed, take q ∈ Λ and σ = φ(q) ∈ Σ. We have that f<sup>k</sup>(q) ∈ P<sub>σk</sub> for all k ∈ Z. Moreover:

$$au = \phi(f(q)) \Longleftrightarrow f^n(f(q)) \in P_{\tau_n}$$

Therefore, since  $f^{n+1}(q) \in P_{\sigma_{n+1}}$  and  $\phi$  is well defined:

$$\sigma_{n+1} = \tau_n \iff \tau = \beta(\sigma) = \beta \circ \phi(q).$$

#### CONTINUATION OF THE PROOF

$$\Sigma^{N} = \{ (\cdots 0 \, \sigma_{-N} \cdots \sigma_{-1} \cdot \sigma_{0} \cdots \sigma_{N-1} \, 0 \cdots ), \ \sigma_{n} \in \{0, 1\} \}$$

as 
$$\sigma^N = \phi^N(S)$$
 defined by  $p \in S$  if and only if  $f^n(p) \in P_{\sigma_n^N}$ .  
 $\phi^N$  is injective and card  $\Sigma^N = 2^{2N}$ . Then  $\phi^N$  is bijective

• 
$$\Sigma = \bigcup_{N=0}^{\infty} \Sigma^N$$
 and  $\Lambda = \bigcap_{N=0}^{\infty} \tilde{\Lambda}^N$  implies  $\phi$  bijective. Indeed, if  $q \in \Lambda$ , then  $\forall N, q \in S^N \subset \tilde{\Lambda}^N$  and  $q = \lim_{N \to \infty} S^N$ . Let  $\sigma^N = \phi^N(S^N)$ . Then  $\phi(q) = \lim_N \sigma^N$ . Now the proof is straightforward.

# If d(φ(p), φ(q)) < 2<sup>-N</sup>, then φ(p)<sub>n</sub> = φ(q)<sub>n</sub> for −N ≤ n ≤ N. This means that p, q ∈ S the same square in Λ<sup>N</sup> and then

$$\|p-q\|_{\infty} \leq a^N$$

and the continuity is proven because a < 1.

• The continuity of  $\phi^{-1}$  follows from the fact that  $\Sigma$  is a compact set and  $\phi$  is a bijection.



## CHAOS ON THE SMALE'S HORSESHOE

#### COROLLARY

- $\textit{f}_{|\Lambda}$  is chaotic. In fact  $\textit{f}_{|\Lambda}$  has
  - Countable infinitely many hyperbolic periodic orbits of arbitrarily large period.
  - Uncountable infinitely many non periodic orbits.

#### • A dense orbit

- Since f<sub>|Λ</sub> is conjugated to the shift β : Σ → Σ, the result holds *almost* true. It only remains to check that the periodic orbits are hyperbolic.
- Let  $f^m(p) = p, p \in \Lambda$  a periodic point. It is clear that  $p \in P_0 \cup P_1$ . Assume for instance that  $p \in P_1$ . Then, for any  $(x, y) \in P_1$  in a neighbourhood of p,

$$f(x,y)=\left(\frac{x}{a},ay\right).$$

Therefore  $Df^m(p) = \text{diag}(1/a^m, a^m)$  which is a hyperbolic matrix.

(ロ) (同) (三) (三) (三) (○) (○)