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SET UP

SET UP

@ To decide if two invariant manifolds intersect is in general a difficult
question.

@ Even if we are in the easiest case: planar systems.

@ However there are some cases where we can perform explicit
computations.

@ The framework is planar vector fields periodically perturbed:
z=F(2)+eG(z,t) (1)
where F: UCR2 - R?, G: U xR x (—gg,50) — R and
G(z,t+ T,e) = G(z,t,¢).

@ When ¢ = 0, we call (1) unperturbed system.

@ We denote the flow by:
o(t b, Z,€).
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THE UNPERTURBED SYSTEM HYPOTHESES

HYPOTHESES

@ The unperturbed system (¢ = 0) has a saddle fixed point py.

@ Assume that
W*(po) N W¥(pp) # 0.

@ That means that a branch of the stable
manifold coincide with a branch of the
unstable one. Indeed, if

Branches of W"(pg)

Qo € W*(po) N W¥(po)

then, since W*(po), W"(po) are invariant:

\

|

/
#(£:0, G0, 0) < W¥(po) N W*(pp). —

Because of dim W“*(pg) = 1, the uniqueness of the solutions of the
Cauchy problem implies that WY(pp) and W*(po) have to have
coincident branches. We call one of them T".
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THE UNPERTURBED SYSTEM

CLASSICAL EXAMPLES

EXAMPLES

Po

The fish: H(x,y) = Tl

It has two fixed points py = (0, 0) (saddle) and
p1 = (1,0) (center).

2 X2 x4

Duffing’s equation: H(x,y) =

It has three fixed points pg = (
p+ = (£1,0) (center).

|

4
,0) (saddle) and

o

The stable and unstable manifolds of py are included in the energy level H(x, y) = 0:

2x
=+xy/1 - —.
y X 3

The coincident branches are for x > 0.
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Here we have two coincident branches, one for
x > 0 and the other for x < 0.

QQMDS 7/32



THE UNPERTURBED SYSTEM EXAMPLES

MORE EXAMPLES

And finally the pendulum:

2
H(x,y) = y? + 1 — cos x, (mod 1).

Defined on S' x R, it has two fixed
points, pp = 7 (saddle) and
pi = (0,0) (center).

Both sides x = 7 are x = —7 are
. identify. Recall that the phase space is
; ‘ i the cylinder.

=T ll ™

The stable and unstable manifolds of py are on the energy level H(x, y) = 2. So they are
y =£v/2(1 + cos x), X € (—m, 7).
Notice that we have one branch when + sign is considered and the other one with — sign.

L.B. POINCARE-MELNIKOV METHOD QQMDS 8/32



THE UNPERTURBED SYSTEM EXAMPLES

HAMILTONIAN SYSTEMS WITH ONE DEGREES OF
FREEDOM

@ Consider a mechanical Hamiltonian dynamical system:
y? . .
H(x,y) = ?JrV(X), = x=y, y=-V(x).

We call X the associated vector field.

@ Assume that it has saddle fixed point py = (xg, 0), namely V’(xp) = 0 and V'(x) < 0.
Indeed, notice that:

DX(po) = ( —V’(’)(xo) g) ) . has real eigenvalues X = ++/— V" (xp).
@ Assume that there exists a non equilibrium point x; # X such that

V(x1) = V(x), V(x) < V(xp), for x € Xg, Xq.

@ Then the stable and unstable manifolds have at least one coincident branch I', belonging to
the energy level H(x, y) = H(po):

Fcfy=+v2(Vixo) - V(x),  xex, X}
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THE UNPERTURBED SYSTEM EXAMPLES

PARAMETERIZATION OF SEPARATRIX

SEPATRIX

We call separatrix to any coincident branch I' of the stable and unstable
invariant manifold.

We emphasize that, in the planar case, the sepatrix is always a solution, for
instance ¢(t; 0, qo, 0) being qo € I', namely

M= {p(t;0,q,0), t € R}.

We call v(t) := ¢(t; 0, qo, 0) a parameterization of the separatrix.

@ In the general (non hamiltonian) case, we can not provide an explicit formula for vo(t).

@ In the hamiltonian case, we have more information. Indeed, let gy = (X«, ¥x) € I with
¥« > 0. Then since y = X, we have that

t x du
= 2(Vixe) = V() = BV v
x = /2(V(xo) V(X))=>/O ds /X 2(V(x) — V(u))

and from this equation maybe we can find x as a function of .
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THE UNPERTURBED SYSTEM EXAMPLES

EXAMPLES OF PARAMETERIZATION

@ The parameterization of the pendulum was already computed
A(t) = (xo(), %(1)),  xo(t) = darctan(e’) — .
@ The fish. We have to solve
£+ C / o og| V1 8%
= —_— = log | ——
x,/1—§x ‘/1—%x+1

@ Since the point (3/2,0) belongs to the separatrix we impose that the equality above is
satisfied for t = 0 and x = 3/2 (why can we do that?) . That implies that C = 0.

@ Easy computations
171/1fgx 1+q/1fgx
3 3

Since x > 0, we can skip the absolute values.

@ Again easy computations
A/1— gx: Ftanh (é)
3 YA 3 1
X(t) == |:1 — tanh (7)1| =———.
2 2 2 cosh? (é)
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THE PERTURBED SYSTEM

SUSPENSIONS

@ We consider the suspension:
z=F(2)+eG(z,0,¢), 6=1. 2
The flow of (2), ¢(t; z,0,¢), ¥(0; z,0,¢) = (z,0) satisfies the relations

w(t' Z, 67 6) = (@(t—"_ 0; 9727 6)7t+ 0)7 90(1" t0727€) = Tl'z’lﬂ(t - t0;27 t078)'

@ The phase space for our system is then R? x S'. 0 =2m

@ When e = 0, the saddle point py is now the periodic orbit
1o = {po} x S' and the homoclinic connection I is now the cylinder, in
fact a torus, I x S'. r

What does happen when ¢ # 07. o

@ The fixed point is transformed into a hyperbolic T- periodic orbit
ne(t) = O(e). This is because the system for e = 0 is locally
structurally stable.

@ The W53(n.) and WY(n.) generically have transversal intersections for =0
e #0:
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THE PERTURBED SYSTEM

THE POINCARE MAP

0 =27 0 =2m

W#(n.)

\\

=0
e=0 WY (ne) splits W9 (n.) splits The intersection

POINCARE MAP

We can reduce the problem to a planar problem by means of the Poincaré map:

0=0

0=0

P2 (2) = mz9(T; 2,60, €) = (T + 60 60, 2, )

defined on
P2 Tg) = Toy = Tgps7,  Top = {(2,6) € RZ x R/(TZ) : 6 = 6y} 7

(= = PANS
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THE PERTURBED SYSTEM

BEHAVIOUR OF THE POINCARE MAP

The situation when P? is considered:
@ It has z? a saddle point such that
PU2l) = o(T+6:0,28,e) =20, ||zZ —poll = O(e).

@ We have that
Zg = 59(9; 0, ng 5)

so that, the periodic orbit 7c () = (t; 0, 22, ).

1 %es

@ We can always assume, if we need, that n. = 0 by performing the change of variables

v==z-n(t), V=FW)+eG(v,te), Gv,t+T,e)= G(v,te).

@ Notice that
(P2)"(2) = ¢(nT +6,6,2,¢).

Indeed, it is a consequence from
w(tito, z,e) = p(t+ Tito+ T,2,¢)

and
@(t’ t1 ’ QO(t1 ) t07 275)’ 6) = gO(t, tO: Z,E).
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THE PERTURBED SYSTEM

MORE ABOUT THE POINCARE MAP

@ |In this case
Ws(ne) = | We(29), W(n.) = |J wU(2d).
0ER 6€R

Indeed, we assume that n. = 0. If g € W3(n.) then
0= lim 7%y(t;q,0,e) = lim o(t+6;0,q,¢).
t— oo t— oo
In particular the same happens for t = nT. Otherwise, let g € W5(z?) and t > 0. Let
nT <t<(n+1)T. Then, writting
F(z,t,e) = F(2) + £G(z, t,¢)

we have that

t —
ll(t+6:0,2,€)ll < [lp(nT 4 6: 6,2, €] +/ IF(ep(s+6:6,2,€))l ds
nT

t
< llplnT +6:0, 2.0 + L [ lp(s+6:0,2.0)] o5
nT

@ Using Gronwall’s lemma (Exercise: find the lemma and prove it)

lp(t+ 60,2, )l| < llp(nT +6;0,2,¢)[[ &'~ < |lp(nT + 6,0, 2,¢) | &

and we are done.
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MELNIKOV FUNCTION AND THE DISTANCE THE DISTANCE BETWEEN THE INVARIANT MANIFOLDS
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MELNIKOV FUNCTION AND THE DISTANCE THE DISTANCE BETWEEN THE INVARIANT MANIFOLDS
THE DISTANCE BETWEEN THE INVARIANT MANIFOLDS

@ As a consequence,
WS(2%) = WS(n-) N T, WY(z8) = WY(n:) N Zg.

@ Therefore, we only need to compute the distance between W¥(z%) and WS(z?) on the
global section ¥.

@ First we have to define what we mean for distance!.

@ Take qp a point of the separatrix and ~, the parameterization such that 74(0) = qo.
@ Let L be the line such that qy € L, inside of Xy
and ortogonal to the separatrix at gp:

L=qo+ (F(q)*",  (F(q))" C Zo.

@ Let g?%, ¥ be the closest points to qq
belonging to WS(zf) nLand WY(z%)nL
respectively.

@ We want to compute,

0,u

0,s
9e

- qg
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MELNIKOV FUNCTION AND THE DISTANCE THE DISTANCE BETWEEN THE INVARIANT MANIFOLDS

THE FORMULA FOR THE DISTANCE

@ Since
2", g% € L=qo + (F(q0))*
it is convenient to write
1
———(— F2(q0); F1(q))-
I F (o)l ( )

@ ltis not difficult to check that, denoting Q(u, v) = det(u, v),

_ Flao) ou_ o
ds(a)‘“(||F(qo)u"’E % )

IMPORTANT REMARKS

@ The points g7, 7% are well defined if € is small enough. This is due to the differentiability
of the invariant manifolds with respect to . (Why?).

@ The function d-(6) depends on € and, obviously, in general cannot be computed.
@ However, we know, using Taylor’s theorem, that

qg,u - qg’s =d:(9)

d-(0) = £0:0:(0) =0 + O(%).
@ The Melnikov integral, gives a formula for 6Ed5(0)|520.
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MELNIKOV FUNCTION AND THE DISTANCE THE MELNIKOV FUNCTION
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MELNIKOV FUNCTION AND THE DISTANCE THE MELNIKOV FUNCTION
THE MELNIKOV FUNCTION
PROPOSITION
The distance d-(0) between WS(2%) and WY(z?) is expressed as:

M(6)
[IF(qo)l

d-(0) =« + O(e?)

being M(6) the Melnikov function:

M(9) = /7 = o <_ /0 t trDF(wo(s))ds) Q(F(10(1)), G(ro(t). t + 6, 0)) d.

Remarks:

@ The Melnikov function does not depend on ¢.
@ Remember that ~ satisfies v¢(0) = qo-
@ When the system is Hamiltonian,

o0
M(0) = | {Ho. H}(ro(0),t+0.0)
where {Hp, Hy} is the Poisson’s bracket:
{Ho, H1} = 0xHodyHy — 8y HyOxHs .
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MELNIKOV FUNCTION AND THE DISTANCE THE MELNIKOV FUNCTION

EXISTENCE OF TRANSVERSAL HOMOCLINIC POINTS

THEOREM

lnethe previous conditions, let W$!(2%) be the stable and unstable manifold of the Poincaré map
PZ. Then

@ IfM(6p) = 0 and M'(6y) # O (a simple zero), then there exists e, > 0 such that for any
le| < ex, W3(28) and WY (2?) intersect transversally.
@ If M(6y) # O, then there exists e.. > 0 such that for any |e| < e., W$(2?) and WY(z?) do
not intersect transversally close to qq.
Remarks

@ The proof of this result is straightforward from the previous proposition. Indeed, it is a

consequence of the differentiability with respect to parameters and the implicit function
theorem.

@ Notice that, since all the Poincaré maps are topologically conjugated, if there exists a
simple zero of M(6), then for every 6 € [0, T], the Poincaré map P? has transversal
homoclinic intersections. However they are not always close to qp.

@ As a consequence, W5(n.) and WY(n.) intersect transversally along a homoclinic
solution.
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SUMMARIZING

{a2“Yoep0, 7>
and in black the straight line

{a%°Yoco,m
{q} x [0, T].
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

THE EXAMPLE

Consider the one and a half degrees of freedom hamiltonian:

2 x2 8
H(x,y,t) = CRETY +§+€(smt+xcost).

The homoclinic orbit can be parameterizated by o (t) = (xo(t), Yo(t)),

3 1 3 sinh(t/2)
Xo(t - H=—-—27 0) = (3/2,0).
0= im0 iy O =620
In this case
© sinh(t/2)
t) cos(t + 0) dt = / t+6)dt
/ Yo(t) cos( 2/ cosh3 (t/2) cos( )
:gc059/ Mcostdt—gsinﬁf Msintdt
2 oo cosh®(t/2) 2 —oo cosh®(t/2)
= —— sm6/ sinh(t/2) sin t dt
oo cosh3 (t/2)
since M cos t is an odd function.
cosh®(t/2)
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EVALUATING THE MELNIKOV FUNCTION (1)

@ We perform the change t = 2z and we obtain

/ 5|nh3(1‘/2 smtdt:/ smhsz sinwz dz
2/ o cosh (t/2)

— oo cosh® z
with w = 2. Notice also that, by parts:

i 1
j=-% 72coswzdz.
2 J_oo cosh® z

@ We notice that the function

1
f(z) = 2 coswz

has poles of order 2 at z = iig + 27ki, k € Z. Write a = 7/2.
@ Recall that, one can compute the Laurent expansion as

ta+ Y alz-iaf, z~ia

= - +
z-ia@ ' (z-ia) Z

@ The residue theory states that, if v is a path having in its interior only one pole, for instance
im/2:

/f(z) dz =27i = lim /f(z) az = 2mi
2l ¥

— o0
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EVALUATING THE MELNIKOV FUNCTION (II)

Y3(s) = —s +im, s € [~ R, R] |ir
Q@ Y= VywVyaVy v4(s) = =R +i(m — s), - 72(8) = R+is, 5 € [0,]
s [0,7] )
Y(s) =s, s € [-R,R|
"R R

@ Recall that cosh it = cos u and sinh iu = jsin u and

cosh(u + V) = cosh U cosh v + sinh usin v,
@ Note that

I|m / f(z)dz = / f(z) dz, RIi_}m f(z)dz = RIi_}m / f(z)dz=0

2 74

sinh(u + V) = sinh ucosh v + cosh usinh v.

R
1
lim / f(z)dz = — lim 271:05(«1( S+ im)ds
R— oo R—oo J_g cosh ( S+ )
1

=— lim — [costcosh wm + isinwsSsinh wﬂ'] ds
R—oco J_R cosh® s

R

. 1 o
= —coshwm lim ———— cosws = — cosh w7r/ f(z) dz,
R—oo J_R cosh“ s
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EVALUATING THE MELNIKOV FUNCTION (III)

@ We have then:

27 = [1 — cosh wﬂ']/ f(z)dz = / coswz dz = 2ml

oo cosh 1 — coshwm

@ |t remains to compute , the residue of f at a = 7/2. We have that
cosh z = cosh (Ig) + sinh (I%) (z — Ig) + cosh (/g) (z — ig)z +0 (z — i%)s
:l(z—l—) +O(z—ig)3

and
s . K T TN 2
CcoswZ = cos (le) + wsin (w/E) (z — 15) + O (z — IE)
@ Then
coswz  cos (wil) +wsin (wid) (z—i%) + O (z—i%)?
2, . T
cosh® z (z—- /5)2 (1 +0(z- /5)2)
Therefore
,_,-h(ﬁ):/‘” 1 v —ar S (@3) h(w2)
= wlsin w2 - coshzz COos w = 7'(‘1 ~ coshwn — &7cosec w2
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EXISTENCE OF TRANSVERSAL HOMOCLINIC POINTS
@ As a consequence
M(0) = 6sin6 /70:0 m:? coswZ dz = 6mcosech <wg> sin 6

@ Notice that the Melnikov function, M(6) has simple zeroes at 6 = km, k € Z.
@ Recall that the distance between the invariant manifolds is given by:
M)

_ 2y _ 4 2
d-(0) = EHF(QO)H +0(e%) = 35M(9)+(9(z—: ).

@ The implicit function theorem around 6 = k, says that, there exists X and a C' function
eF : (=K, MY 5 R, ©F(0) =6y,

such that,
d.(©%(e)) = 0.

@ That is the system has transversal homoclinic intersections.
@ Do exercise 161.
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MELNIKOV FUNCTION AND THE DISTANCE HEURISTIC IDEAS OF THE PROOF
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MELNIKOV FUNCTION AND THE DISTANCE HEURISTIC IDEAS OF THE PROOF

IDEA OF THE PROOF (1)

The first thing we need to do is to obtain good expressions for W3 (1. ).
LEMMA

There exists ey > 0 small enough such that if || < g9, W*Y(n.) are

W (ne) = {v2"(t, 1)}

with v2Y(t, to) solutions of
2= F(2) +G(z,t,¢)

and

fo,
YUt 1) = p(ti o, g2 &) = yo(t — o) + eri(t, o) + O(?), t>1o
Vet o) = ot to, 2%, €) = vo(t — to) +erf(t, o) + O(e?),  t<1o

with O(e?) uniformly bounded with respect to t, t.
In addition, vf 'Y are solutions of

Z = DF(vo(t - o)) - 2+ G((t - 1), 1,0).
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MELNIKOV FUNCTION AND THE DISTANCE HEURISTIC IDEAS OF THE PROOF

IDEA OF THE PROOF (II)

@ Define the functions

AY(t,0) = Q(F(yo(t — 0)),%{(1,0)),
As(tv 6) = Q(F('Yo(t - 9))7718(1‘7 0))7
A(L,0) = AY(t,0) — AS(t,6).

@ We have that
q2Y — g2 = 7(6,0) —72(6,0) = £(+{(6,0) — 75 (6, 0)) + O(?).
@ Then, since Q is the determinant:
d:(0)[IF(qo)ll = Q(F(qo), g2 — q2°°) = eA(6,6) + O().
We have to study AYS.
@ Take 6 fix and compute % ="of AS. First

. d d
Ke(1,6) = @ (G FO(t = 00236 ) + 2 (Floolt - 0)), 55100 )

@ Use the differential equations that v and 'yf’” satisfy and the fact that
Q(Au, v) + Q(u, Av) = rAQ(u, v), for A € Moyo:
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MELNIKOV FUNCTION AND THE DISTANCE HEURISTIC IDEAS OF THE PROOF

IDEA OF THE PROOF (III)

@ One can conclude that
A3(t,0) = tr(DF (vo(t — 0))) A°(t,0) + Q(F(0(t = 0)), G(ro(t — 0), £, 0))
@ Now note that, since F(vo(t —0)) — 0as t — oco:

Jim AS(t,0) = lim Q(F(y0(t - 0)),%(t,0)) =0,

@ Assume that trDF(z) = 0, for instance if we are in the Hamiltonian case. Then,

t
AS(t,0) :/ Q(F(70(s — 6)), Glro(s — 6), 5,0)) ds.

e}

@ A similar computation for AY(t, ) and we obtain that
oo
£0.0)= [~ (Fn(t - ). Glolt — 0).1,0) ot

In fact A(t, ) is constant with respect to t.
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