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SET UP

SET UP

To decide if two invariant manifolds intersect is in general a difficult
question.

Even if we are in the easiest case: planar systems.

However there are some cases where we can perform explicit
computations.

The framework is planar vector fields periodically perturbed:

ż = F (z) + εG(z, t , ε) (1)

where F : U ⊂ R2 → R2, G : U × R× (−ε0, ε0) → R2 and

G(z, t + T , ε) = G(z, t , ε).

When ε = 0, we call (1) unperturbed system.

We denote the flow by:
φ(t ; t0, z, ε).
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THE UNPERTURBED SYSTEM HYPOTHESES

HYPOTHESES

The unperturbed system (ε = 0) has a saddle fixed point p0.

Assume that
W s(p0) ∩ W u(p0) ̸= ∅.

That means that a branch of the stable
manifold coincide with a branch of the
unstable one. Indeed, if

q0 ∈ W s(p0) ∩ W u(p0)

then, since W s(p0),W u(p0) are invariant:

φ(t ;0,q0,0) ⊂ W s(p0) ∩ W u(p0).

- Because of dim W u,s(p0) = 1, the uniqueness of the solutions of the
Cauchy problem implies that W u(p0) and W s(p0) have to have
coincident branches. We call one of them Γ.
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THE UNPERTURBED SYSTEM EXAMPLES

CLASSICAL EXAMPLES

The fish: H(x , y) =
y2

2
−

x2

2
+

x3

3
.

It has two fixed points p0 = (0, 0) (saddle) and
p1 = (1, 0) (center).

Duffing’s equation: H(x , y) =
y2

2
−

x2

2
+

x4

4
.

It has three fixed points p0 = (0, 0) (saddle) and
p± = (±1, 0) (center).

The stable and unstable manifolds of p0 are included in the energy level H(x , y) = 0:

y = ±x

√
1 −

2x
3
.

The coincident branches are for x > 0.

y = ±x

√
1 −

x2

2
.

Here we have two coincident branches, one for
x > 0 and the other for x < 0.
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THE UNPERTURBED SYSTEM EXAMPLES

MORE EXAMPLES

And finally the pendulum:

H(x , y) =
y2

2
+ 1 − cos x , (mod 1).

Defined on S1 × R, it has two fixed
points, p0 = π (saddle) and
p1 = (0, 0) (center).

Both sides x = π are x = −π are
identify. Recall that the phase space is
the cylinder.

The stable and unstable manifolds of p0 are on the energy level H(x , y) = 2. So they are

y = ±
√

2(1 + cos x), x ∈ (−π, π).

Notice that we have one branch when + sign is considered and the other one with − sign.
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THE UNPERTURBED SYSTEM EXAMPLES

HAMILTONIAN SYSTEMS WITH ONE DEGREES OF

FREEDOM

Consider a mechanical Hamiltonian dynamical system:

H(x , y) =
y2

2
+ V (x), ⇐⇒ ẋ = y , ẏ = −V ′(x).

We call X the associated vector field.
Assume that it has saddle fixed point p0 = (x0, 0), namely V ′(x0) = 0 and V ′′(x0) < 0.
Indeed, notice that:

DX(p0) =

(
0 1

−V ′′(x0) 0

)
, has real eigenvalues λ = ±

√
−V ′′(x0).

Assume that there exists a non equilibrium point x1 ̸= x0 such that

V (x1) = V (x0), V (x) < V (x0), for x ∈ x0, x1.

Then the stable and unstable manifolds have at least one coincident branch Γ, belonging to
the energy level H(x , y) = H(p0):

Γ ⊂ {y = ±
√

2(V (x0)− V (x)), x ∈ x1, x0}.

I.B. POINCARÉ-MELNIKOV METHOD QQMDS 9 / 32



THE UNPERTURBED SYSTEM EXAMPLES

PARAMETERIZATION OF SEPARATRIX

SEPATRIX

We call separatrix to any coincident branch Γ of the stable and unstable
invariant manifold.
We emphasize that, in the planar case, the sepatrix is always a solution, for
instance φ(t ;0,q0,0) being q0 ∈ Γ, namely

Γ = {φ(t ;0,q0,0), t ∈ R}.

We call γ0(t) := φ(t ;0,q0,0) a parameterization of the separatrix.

In the general (non hamiltonian) case, we can not provide an explicit formula for γ0(t).

In the hamiltonian case, we have more information. Indeed, let q0 = (x∗, y∗) ∈ Γ with
y∗ ≥ 0. Then since y = ẋ , we have that

ẋ =
√

2(V (x0)− V (x)) =⇒
∫ t

0
ds =

∫ x

x∗

du√
2(V (x0)− V (u))

and from this equation maybe we can find x as a function of t .
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THE UNPERTURBED SYSTEM EXAMPLES

EXAMPLES OF PARAMETERIZATION

The parameterization of the pendulum was already computed

γ(t) = (x0(t), ẋ0(t)), x0(t) = 4arctan(et )− π.

The fish. We have to solve

±t + C =

∫
dx

x
√

1 − 2
3 x

= log

∣∣∣∣∣∣∣
√

1 − 2
3 x − 1√

1 − 2
3 x + 1

∣∣∣∣∣∣∣
Since the point (3/2, 0) belongs to the separatrix we impose that the equality above is
satisfied for t = 0 and x = 3/2 (why can we do that?) . That implies that C = 0.
Easy computations ∣∣∣∣∣1 −

√
1 −

2
3

x

∣∣∣∣∣ =
∣∣∣∣∣1 +

√
1 −

2
3

x

∣∣∣∣∣ e±t .

Since x > 0, we can skip the absolute values.
Again easy computations √

1 −
2
3

x = ∓ tanh

(
t
2

)
Finally

x0(t) =
3
2

[
1 − tanh2

(
t
2

)]
=

3
2

1

cosh2
(

t
2

) .
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THE PERTURBED SYSTEM

SUSPENSIONS

We consider the suspension:

ż = F (z) + εG(z, θ, ε), θ̇ = 1. (2)

The flow of (2), ψ(t ; z, θ, ε), ψ(0; z, θ, ε) = (z, θ) satisfies the relations

ψ(t ; z, θ, ε) =
(
φ(t + θ; θ, z, ε), t + θ

)
, φ(t ; t0, z, ε) = πzψ(t − t0; z, t0, ε).

The phase space for our system is then R2 × S1.

When ε = 0, the saddle point p0 is now the periodic orbit
η0 = {p0} × S1 and the homoclinic connection Γ is now the cylinder, in
fact a torus, Γ× S1.

What does happen when ε ̸= 0?.

The fixed point is transformed into a hyperbolic T - periodic orbit
ηε(t) = O(ε). This is because the system for ε = 0 is locally
structurally stable.

The W s(ηε) and W u(ηε) generically have transversal intersections for
ε ̸= 0:
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THE PERTURBED SYSTEM

THE POINCARÉ MAP

ε = 0 W u(ηε) splits W s(ηε) splits The intersection

POINCARÉ MAP

We can reduce the problem to a planar problem by means of the Poincaré map:

Pθ0
ε (z) = πzψ(T ; z, θ0, ε) = φ(T + θ0; θ0, z, ε)

defined on
Pθ0
ε : Σθ0 → Σθ0 = Σθ0+T , Σθ0 = {(z, θ) ∈ R2 × R/(TZ) : θ = θ0}
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THE PERTURBED SYSTEM

BEHAVIOUR OF THE POINCARÉ MAP

The situation when Pθ
ε is considered:

It has zθ
ε a saddle point such that

Pθ
ε (z

θ
ε ) = φ(T + θ; θ, zθ

ε , ε) = zθ
ε , ∥zθ

ε − p0∥ = O(ε).

We have that
zθ
ε = φ(θ; 0, z0

ε , ε)

so that, the periodic orbit ηε(t) = φ(t ; 0, z0
ε , ε).

We can always assume, if we need, that ηε ≡ 0 by performing the change of variables

v = z − ηε(t), v̇ = F (v) + εG̃(v , t , ε), G̃(v , t + T , ε) = G̃(v , t , ε).

Notice that
(Pθ

ε )
n(z) = φ(nT + θ, θ, z, ε).

Indeed, it is a consequence from

φ(t ; t0, z, ε) = φ(t + T ; t0 + T , z, ε)

and
φ(t ; t1, φ(t1, t0, z, ε), ε) = φ(t ; t0, z, ε).

I.B. POINCARÉ-MELNIKOV METHOD QQMDS 14 / 32



THE PERTURBED SYSTEM

MORE ABOUT THE POINCARÉ MAP

In this case
W s(ηε) =

⋃
θ∈R

W s(zθ
ε ), W u(ηε) =

⋃
θ∈R

W u(zθ
ε ).

Indeed, we assume that ηε ≡ 0. If q ∈ W s(ηε) then

0 = lim
t→∞

πzψ(t ; q, θ, ε) = lim
t→∞

φ(t + θ; θ, q, ε).

In particular the same happens for t = nT . Otherwise, let q ∈ W s(zθ
ε ) and t ≥ 0. Let

nT ≤ t ≤ (n + 1)T . Then, writting

F (z, t , ε) = F (z) + εG(z, t , ε)

we have that

∥φ(t + θ; θ, z, ε)∥ ≤ ∥φ(nT + θ; θ, z, ε)∥+

∫ t

nT
∥F (φ(s + θ; θ, z, ε))∥ ds

≤ ∥φ(nT + θ; θ, z, ε)∥+ L
∫ t

nT
∥φ(s + θ; θ, z, ε)∥ ds

Using Gronwall’s lemma (Exercise: find the lemma and prove it)

∥φ(t + θ; θ, z, ε)∥ ≤ ∥φ(nT + θ; θ, z, ε)∥eL(t−nT ) ≤ ∥φ(nT + θ; θ, z, ε)∥eLT

and we are done.
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MELNIKOV FUNCTION AND THE DISTANCE THE DISTANCE BETWEEN THE INVARIANT MANIFOLDS

THE DISTANCE BETWEEN THE INVARIANT MANIFOLDS

As a consequence,

W s(zθ
ε ) = W s(ηε) ∩ Σθ, W u(zθ

ε ) = W u(ηε) ∩ Σθ.

Therefore, we only need to compute the distance between W u(zθ
ε ) and W s(zθ

ε ) on the
global section Σθ .

First we have to define what we mean for distance!.

Take q0 a point of the separatrix and γ0 the parameterization such that γ0(0) = q0.
Let L be the line such that q0 ∈ L, inside of Σθ

and ortogonal to the separatrix at q0:

L = q0 + ⟨F (q0)⟩⊥, ⟨F (q0)⟩⊥ ⊂ Σθ.

Let qθ,s
ε , qθ,u

ε be the closest points to q0
belonging to W s(zθ

ε ) ∩ L and W u(zθ
ε ) ∩ L

respectively.

We want to compute,

qθ,u
ε − qθ,s

ε
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MELNIKOV FUNCTION AND THE DISTANCE THE DISTANCE BETWEEN THE INVARIANT MANIFOLDS

THE FORMULA FOR THE DISTANCE

Since
qθ,u
ε , qθ,s

ε ∈ L = q0 + ⟨F (q0)⟩⊥

it is convenient to write

qθ,u
ε − qθ,s

ε = dε(θ)
1

∥F (q0)∥
(
− F2(q0),F1(q0)

)
.

It is not difficult to check that, denoting Ω(u, v) = det(u, v),

dε(θ) = Ω

(
F (q0)

∥F (q0)∥
, qθ,u

ε − qθ,s
ε

)
.

IMPORTANT REMARKS

The points qθ,u
ε , qθ,s

ε are well defined if ε is small enough. This is due to the differentiability
of the invariant manifolds with respect to ε. (Why?).

The function dε(θ) depends on ε and, obviously, in general cannot be computed.

However, we know, using Taylor’s theorem, that

dε(θ) = ε∂εdε(θ)|ε=0 +O(ε2).

The Melnikov integral, gives a formula for ∂εdε(θ)|ε=0.
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MELNIKOV FUNCTION AND THE DISTANCE THE MELNIKOV FUNCTION

THE MELNIKOV FUNCTION

PROPOSITION

The distance dε(θ) between W s(zθ
ε ) and W u(zθ

ε ) is expressed as:

dε(θ) = ε
M(θ)

∥F (q0)∥
+O(ε2)

being M(θ) the Melnikov function:

M(θ) =

∫ ∞

−∞
exp

(
−

∫ t

0
trDF (γ0(s)) ds

)
Ω
(
F (γ0(t)),G(γ0(t), t + θ, 0)

)
dt .

Remarks:
The Melnikov function does not depend on ε.
Remember that γ0 satisfies γ0(0) = q0.
When the system is Hamiltonian,

M(θ) =

∫ ∞

−∞
{H0,H1}(γ0(t), t + θ, 0) dt

where {H0,H1} is the Poisson’s bracket:

{H0,H1} = ∂x H0∂y H1 − ∂y H0∂x H1.
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MELNIKOV FUNCTION AND THE DISTANCE THE MELNIKOV FUNCTION

EXISTENCE OF TRANSVERSAL HOMOCLINIC POINTS

THEOREM

In the previous conditions, let W s,u(zθ
ε ) be the stable and unstable manifold of the Poincaré map

Pθ
ε . Then

If M(θ0) = 0 and M′(θ0) ̸= 0 (a simple zero), then there exists ε∗ > 0 such that for any
|ε| ≤ ε∗, W s(zθ

ε ) and W u(zθ
ε ) intersect transversally.

If M(θ0) ̸= 0, then there exists ε∗ > 0 such that for any |ε| ≤ ε∗, W s(zθ
ε ) and W u(zθ

ε ) do
not intersect transversally close to q0.

Remarks

The proof of this result is straightforward from the previous proposition. Indeed, it is a
consequence of the differentiability with respect to parameters and the implicit function
theorem.

Notice that, since all the Poincaré maps are topologically conjugated, if there exists a
simple zero of M(θ), then for every θ ∈ [0,T ], the Poincaré map Pθ

ε has transversal
homoclinic intersections. However they are not always close to q0.

As a consequence, W s(ηε) and W u(ηε) intersect transversally along a homoclinic
solution.
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MELNIKOV FUNCTION AND THE DISTANCE THE MELNIKOV FUNCTION

SUMMARIZING

This picture shows a transversal homoclinic intersection. In red and blue, the curves

{qθ,u
ε }θ∈[0,T ], {qθ,s

ε }θ∈[0,T ]

and in black the straight line
{q0} × [0,T ].
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

THE EXAMPLE

Consider the one and a half degrees of freedom hamiltonian:

H(x , y , t) =
y2

2
−

x2

2
+

x3

3
+ ε(sin t + x cos t).

The homoclinic orbit can be parameterizated by γ0(t) = (x0(t), y0(t)),

x0(t) =
3
2

1
cosh2(t/2)

, y0(t) = −
3
2

sinh(t/2)
cosh3(t/2)

, γ0(0) = (3/2, 0).

In this case

M(θ) = −
∫ ∞

−∞
y0(t) cos(t + θ) dt =

3
2

∫ ∞

−∞

sinh(t/2)
cosh3(t/2)

cos(t + θ) dt

=
3
2
cos θ

∫ ∞

−∞

sinh(t/2)
cosh3(t/2)

cos t dt −
3
2
sin θ

∫ ∞

−∞

sinh(t/2)
cosh3(t/2)

sin t dt

= −
3
2
sin θ

∫ ∞

−∞

sinh(t/2)
cosh3(t/2)

sin t dt

since
sinh(t/2)
cosh3(t/2)

cos t is an odd function.
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EVALUATING THE MELNIKOV FUNCTION (I)
We perform the change t = 2z and we obtain

I :=
1
2

∫ ∞

−∞

sinh(t/2)
cosh3(t/2)

sin t dt =
∫ ∞

−∞

sinh z
cosh3 z

sinωz dz

with ω = 2. Notice also that, by parts:

I = −
ω

2

∫ ∞

−∞

1
cosh2 z

cosωz dz.

We notice that the function
f (z) =

1
cosh2 z

cosωz

has poles of order 2 at z = ±i
π

2
+ 2πki , k ∈ Z. Write a = π/2.

Recall that, one can compute the Laurent expansion as

f (z) =
a−2

(z − ia)2
+

a−1

(z − ia)
+ a0 +

∑
k≥1

ak (z − ia)k , z ∼ ia.

The residue theory states that, if γ is a path having in its interior only one pole, for instance
iπ/2: ∫

γ
f (z) dz = 2πia−1 =⇒ lim

R→∞

∫
γ

f (z) dz = 2πia−1
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EVALUATING THE MELNIKOV FUNCTION (II)

γ = γ1 ∨ γ2 ∨ γ3 ∨ γ4

Recall that cosh iu = cos u and sinh iu = i sin u and

cosh(u + v) = cosh u cosh v + sinh u sin v , sinh(u + v) = sinh u cosh v + cosh u sinh v .

Note that

lim
R→∞

∫
γ1

f (z) dz =

∫ ∞

−∞
f (z) dz, lim

R→∞

∫
γ2

f (z) dz = lim
R→∞

∫
γ4

f (z) dz = 0

lim
R→∞

∫
γ3

f (z) dz = − lim
R→∞

∫ R

−R

1
cosh2(−s + iπ)

cosω(−s + iπ) ds

= − lim
R→∞

∫ R

−R

1
cosh2 s

[
cosωs coshωπ + i sinωs sinhωπ

]
ds

= − coshωπ lim
R→∞

∫ R

−R

1
cosh2 s

cosωs = − coshωπ

∫ ∞

−∞
f (z) dz,
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EVALUATING THE MELNIKOV FUNCTION (III)
We have then:

2πia−1 = [1 − coshωπ]

∫ ∞

−∞
f (z) dz =⇒

∫ ∞

−∞

1
cosh2 z

cosωz dz =
2πia−1

1 − coshωπ

It remains to compute a−1, the residue of f at a = π/2. We have that

cosh z = cosh
(

i
π

2

)
+ sinh

(
i
π

2

)(
z − i

π

2

)
+ cosh

(
i
π

2

)(
z − i

π

2

)2
+O

(
z − i

π

2

)3

= i
(

z − i
π

2

)
+O

(
z − i

π

2

)3

and
cosωz = cos

(
ωi
π

2

)
+ ω sin

(
ωi
π

2

)(
z − i

π

2

)
+O

(
z − i

π

2

)2

Then
cosωz
cosh2 z

= −
cos

(
ωi π2

)
+ ω sin

(
ωi π2

) (
z − i π2

)
+O

(
z − i π2

)2(
z − i π2

)2
(

1 +O
(
z − i π2

)2
)

Therefore

a−1 = −ωi sinh
(
ω
π

2

)
=⇒

∫ ∞

−∞

1
cosh2 z

cosωz dz = 4π
sinh

(
ω π

2

)
1 − coshωπ

= 2πcosech
(
ω
π

2

)
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MELNIKOV FUNCTION AND THE DISTANCE EXPLICIT COMPUTATIONS. AN EXAMPLE

EXISTENCE OF TRANSVERSAL HOMOCLINIC POINTS

As a consequence

M(θ) = 6 sin θ

∫ ∞

−∞

1
cosh2 z

cosωz dz = 6πcosech
(
ω
π

2

)
sin θ

Notice that the Melnikov function, M(θ) has simple zeroes at θ = kπ, k ∈ Z.

Recall that the distance between the invariant manifolds is given by:

dε(θ) = ε
M(θ)

∥F (q0)∥
+O(ε2) =

4
3
εM(θ) +O(ε2).

The implicit function theorem around θk = kπ, says that, there exists εk and a C1 function

Θk : (−εk , εk ) → R, Θk (0) = θk ,

such that,
dε(Θ

k (ε)) = 0.

That is the system has transversal homoclinic intersections.

Do exercise 161.
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MELNIKOV FUNCTION AND THE DISTANCE HEURISTIC IDEAS OF THE PROOF

IDEA OF THE PROOF (I)

The first thing we need to do is to obtain good expressions for W s,u(ηε).

LEMMA

There exists ε0 > 0 small enough such that if |ε| < ε0, W s,u(ηε) are

W s,u(ηε) = {γs,u
ε (t , t0)}

with γs,u
ε (t , t0) solutions of

ż = F (z) + εG(z, t , ε)

and

γu
ε (t , t0) := φ(t ; t0, q

t0,u
ε , ε) = γ0(t − t0) + εγu

1 (t , t0) +O(ε2), t ≥ t0

γs
ε(t , t0) := φ(t ; t0, q

t0,s
ε , ε) = γ0(t − t0) + εγs

1(t , t0) +O(ε2), t ≤ t0

with O(ε2) uniformly bounded with respect to t , t0.
In addition, γs,u

1 are solutions of

ż = DF (γ0(t − t0)) · z + G(γ0(t − t0), t , 0). (3)

I.B. POINCARÉ-MELNIKOV METHOD QQMDS 30 / 32



MELNIKOV FUNCTION AND THE DISTANCE HEURISTIC IDEAS OF THE PROOF

IDEA OF THE PROOF (II)
Define the functions

∆u(t , θ) = Ω
(
F (γ0(t − θ)), γu

1 (t , θ)
)
,

∆s(t , θ) = Ω
(
F (γ0(t − θ)), γs

1(t , θ)
)
,

∆(t , θ) = ∆u(t , θ)−∆s(t , θ).

We have that

qθ,u
ε − qθ,s

ε = γu
ε (θ, θ)− γs

ε(θ, θ) = ε
(
γu

1 (θ, θ)− γs
1(θ, θ)

)
+O(ε2).

Then, since Ω is the determinant:

dε(θ)∥F (q0)∥ = Ω(F (q0), qθ,u
ε − qθ,s

ε ) = ε∆(θ, θ) +O(ε2).

We have to study ∆u,s .

Take θ fix and compute
d
dt

=˙of ∆s . First

∆̇s(t , θ) = Ω

(
d
dt

(F (γ0(t − θ))), γs
1(t , θ)

)
+Ω

(
F (γ0(t − θ)),

d
dt

(γs
1(t , θ))

)
.

Use the differential equations that γ0 and γs,u
1 satisfy and the fact that

Ω(Au, v) + Ω(u,Av) = trAΩ(u, v), for A ∈ M2×2:
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IDEA OF THE PROOF (III)

One can conclude that

∆̇s(t , θ) = tr
(
DF (γ0(t − θ))

)
∆s(t , θ) + Ω

(
F (γ0(t − θ)),G(γ0(t − θ), t , 0)

)
Now note that, since F (γ0(t − θ)) → 0 as t → ∞:

lim
t→∞

∆s(t , θ) = lim
t→∞

Ω
(
F (γ0(t − θ)), γs

1(t , θ)
)
= 0.

Assume that trDF (z) ≡ 0, for instance if we are in the Hamiltonian case. Then,

∆s(t , θ) =
∫ t

∞
Ω
(
F (γ0(s − θ)),G(γ0(s − θ), s, 0)

)
ds.

A similar computation for ∆u(t , θ) and we obtain that

∆(θ, θ) =

∫ ∞

−∞
Ω
(
F (γ0(t − θ)),G(γ0(t − θ), t , 0)

)
dt .

In fact ∆(t , θ) is constant with respect to t .

I.B. POINCARÉ-MELNIKOV METHOD QQMDS 32 / 32


	Set up
	The unperturbed system
	Hypotheses
	Examples

	The perturbed system
	Melnikov function and the distance
	The distance between the invariant manifolds
	The Melnikov function
	Explicit computations. An example
	Heuristic ideas of the proof


