HOMOCLINIC POINTS

I. Baldomá

QQMDS, 2022

HOMOCLINIC POINTS

DQC

1/19

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QQMDS

I.B.

Description of the second s

SMALE-BIRKHOFF HOMOCLINIC THEOREM

Some examples of chaotic dynamics

5 Hyperbolic sets

DEFINITION

GLOBALIZING THE INVARIANT MANIFOLD

- Assume that *f* is a diffeomorphism *f* defined on a manifold *M* (which could be ℝⁿ) having a saddle fixed point.
- *p* has associated two local invariant manifolds, $W_N^{s,u}(p)$ contained in *N*, a neighbourhood of the fixed point. Namely:

$$W^{s}_{N}(p) = \{x \in N : f^{n}(x) \in N, n \ge 0\}, \qquad W^{u}_{N}(p) = \{x \in N : f^{-n}(x) \in N, n \ge 0\}.$$

In fact one can prove that

$$W_N^s(p) = \{x \in N : \lim_{n \to \infty} f^n(x) = p\}, \qquad W_N^u(p) = \{x \in N : \lim_{n \to \infty} f^{-n}(x) = p\}.$$

• We define now the stable and unstable set, $W^{s,v}(p)$ (sometimes we call them global stable and unstable manifold):

$$W^{s}(p) = \{x \in M : \lim_{n \to \infty} f^{n}(x) = p\}, \qquad W^{u}(p) = \{x \in M : \lim_{n \to \infty} f^{-n}(x) = p\}.$$

• Besides these sets are

$$W^{s}(p) = \bigcup_{n \geq 0} f^{-n}(W^{s}_{\mathbb{N}}(p)), \qquad W^{u}(p) = \bigcup_{n \geq 0} f^{n}(W^{u}_{\mathbb{N}}(p)).$$

 When the global stable and unstable manifold are considered one can encountered really crazy behaviours. One of them is produced by the homoclinic transversal points.

I.B.	HOMOCLINIC POINTS	QQMDS	3/19

HOMOCLINIC TRANSVERSAL INTERSECTION

HOMOCLINIC POINTS

Let *f* be a diffeomorphism having a fixed point *p* of saddle type. Consider $W^{u,s}(p)$ the global unstable and stable sets.

Every point q such that $q \in W^u(p) \cap W^s(p)$ is said to be homoclinic. If the intersection is transversal, we say that q is a transversal homoclinic point.

In the figure, q_1 , q_2 are transversal homoclinic points. Notice that $f^m(q_i)$ are homoclinic points.

In the figure, $q_3, f(q_3), \cdots$ are homoclinic tangencies.

< ロ > < 同 > < 回 > < 回 > < 回 > <

OOMDS

I.B.

HOMOCLINIC POINTS IN THE SMALE'S HORSESHOE

PROPOSITION

The Smale's horseshoe has two hyperbolic fixed points of saddle type $p_0 \in P_0$ and $p_1 \in P_1$. They have stable and unstable sets (not local):

 $W^{u}(p_{i}) = \{x : \lim_{n \to \infty} \|f^{-n}(x) - p_{i}\| = 0\}, \qquad W^{s}(p_{i}) = \{x : \lim_{n \to \infty} \|f^{n}(x) - p_{i}\| = 0\}.$

If $p_i = V^i_{\infty} \cap H^i_{\infty}$, then

$$W^{s}(p_{i}) = \bigcup_{n\geq 0} \tilde{f}^{n}(V_{\infty}^{i}), \qquad W^{u}(p_{i}) = \bigcup_{n\geq 0} f^{n}(V_{\infty}^{i}).$$

In addition $W^{s}(p_{i})$ and $W^{u}(p_{i})$ have infinitely many transversal intersection on Q.

Remark:

- We will think that the Smale's we are dealing with is in fact the extension g to S² which is an invertible map.
- Recall that, besides the sterographic projection, $g_{|D}$ is *f* and $g_{|D'}^{-1}$ is \tilde{f} .
- So when we write f^{-1} we really means \tilde{f} .

I.B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

PROOF OF TRANSVERSAL HOMOCLINIC INTERSECTIONS

• Let
$$\sigma^0 = \{\cdots 0 \cdot 0 \cdots\}$$
 and $\sigma^1 = \{\cdots 1 \cdot 1 \cdots\}$. Then

$$p_0 = \phi^{-1}(\sigma^0), \qquad p_1 = \phi^{-1}(\sigma^1)$$

are fixed points. Notice that $f^n(p_0) \in P_0$ and $f^n(p_1) \in P_1$ for all $n \in \mathbb{Z}$.

- In addition, both are saddle type provided $Df(p_i)$ has eigenvalues 1/a, a with a < 1.
- We focus in $p_1 = \phi^{-1}(\sigma^1)$. We first look for $W^{s,u}(p_1) \cap \Lambda$. Clearly $W^s(p_1) \cap \Lambda = \phi^{-1}(W^s(\sigma^1))$ and

$$W^{s}(\sigma^{1}) = \{ \sigma : \lim_{n \to \infty} d(\beta^{n}(\sigma), \sigma^{1}) = 0 \}.$$

Compute

$$d_n(\sigma) = d(\beta^n(\sigma), \sigma^1) = \sum_{k=-\infty}^{\infty} \frac{|\sigma_{n+k}-1|}{2^{|k|}} = \sum_{k=-\infty}^{\infty} \frac{|\sigma_k-1|}{2^{|k-n|}}.$$

We have that $d_n(\sigma) \to 0$ as $n \to \infty$ if and only if $\sigma_k = 1$ for $k \ge n_0$. Then

$$W^{s}(p_{1}) \cap \Lambda = \phi^{-1}(W^{s}(\sigma^{1})) = \phi^{-1}(\{\sigma \in \Sigma : \exists n_{0} \in \mathbb{Z} \text{ such that } \sigma_{n} = 1, \forall n \geq n_{0}\}).$$

・ロット (雪) (日) (日) (日)

CONTINUATION OF THE PROOF (I)

• We first observe that, $\sigma^1 = \phi(p_1)$ satisfies

$$\sigma_n^1 = 1, \ n \ge 0 \Longleftrightarrow \varphi(V_\infty^1)_n = 1, \ n \ge 0 \Longleftrightarrow f^n(V_\infty^1) \in P_1.$$

Assume now that fⁿ(q) ∈ P₁ for all n ≥ 0. Let V_∞ be such that q ∈ V_∞. That means that σ = φ(q) satisfies

$$\sigma_n = 1, \ n \ge 0 \Longleftrightarrow \varphi(V_\infty)_n = 1, \ n \ge 0 \Longleftrightarrow f^n(V_\infty) \in P_1.$$

- Take $\tilde{q} = V_{\infty} \cap \widetilde{H}_{\infty} \in V_{\infty} \cap \Lambda$ and $\bar{q} = V_{\infty}^{1} \cap \widetilde{H}_{\infty} \subset \Lambda$.
- Since $\phi(\tilde{q}) = \phi(\bar{q}), \, \bar{q}, \, \tilde{q} \in \Lambda$ and $\phi_{|\Lambda}$ is an homeomorphism $\tilde{q} = \bar{q}$.

Where

< □ ▶ < 同

$$p_1=V_\infty^1\cap H_\infty^1.$$

This proves the \Leftarrow implication.

QOMDS

CONTINUATION OF THE PROOF (II)

• Let now q be such that $f^n(q) \in P_1$ for $n \ge n_0 \ge 0$. Then $q_0 = f^{n_0}(q) \in V_{\infty}^1$ satisfies $f^n(q_0) \in P_1$ for all $n \ge 0$ and thus $q_0 \in W^s(p_1)$ which implies that $q \in W^s(p_1)$:

$$\lim_{n\to\infty} \|f^n(q) - p_1\| = \lim_{n\to\infty} \|f^{n-n_0}(q_0) - p_1\| = 0.$$

- Then $W^s(p_1) = \bigcup_{n \ge 0} \tilde{f}^n(V_\infty^1)$. The same for $W^u(p_1)$ and $W^{s,u}(p_0)$.
- $W^{s}(p_{1}) \cap W^{u}(p_{1}) \cap Q$ contains the corresponding points to

 $W^{s}(\sigma_{1}) \cap W^{u}(\sigma_{1}) = \{ \sigma \in \Sigma : \exists n_{\pm} \text{ such that } \sigma_{n} = 1 \text{ if } n \leq n_{-}, n \geq n_{+} \}$

which is obviously a countable infinite set.

- Since $\tilde{f}^n(V_{\infty}^1) \cap Q$ and $f^n(H_{\infty}^1) \cap Q$ are 2^n vertical, respectively horizontal, segments, the intersection has to be transversal.
- Both $\tilde{f}(V_{\infty}^{1}), f(H_{\infty}^{1})$ has a horseshoe shape. Therefore what we have is, in fact, the figure:

nan

The λ -lemma. A classical result

THEOREM

Let $f : M \to M$ be a diffeomorphism with a hyperbolic fixed point p. Take $q \in W^{s}(p)$ and $n^{u} = \dim E^{u}(p)$. Assume that B, D are two C^{1} embedded discs of dimension n^{u} in Msuch that

- *B* ⊂ *W^u*(*p*)
- $q \in D$ and $D \cap W^{s}(p)$ is transversal: $T_{q}D + T_{q}W^{s}(p) = T_{q}M.$

Then for any $\varepsilon > 0$, $\exists n_0 \ge 0$ such that for all $n \ge n_0$,

 $\|B_n - B\|_{\mathcal{C}_1} < \varepsilon, \qquad B_n \subset f^n(D).$

< A

OOMDS

KUPKA-SMALE DIFFEOMORPHISMS

KUPKA-SMALE DIFFEOMORPHISMS

Let *M* be a compact two dimensional manifold. The subset $\mathcal{K}(M)$ of Diff¹ (*M*) having all their fixed points hyperbolic and having all intersections between stable and unstable transversal is residual. Every diffeomorphism belonging to $\mathcal{K}(M)$ is referred as a Kupka-Smale diffeomorphism.

The key idea is that

$f \in \mathcal{K}(M)$ having a transversal homoclinic point $\Longrightarrow f_{|\Lambda}$ is conjugated to β .

Recall that:

- Residual is the countable intersection of open and dense sets.
- $\beta : \Sigma \to \Sigma$ is the right Bernoulli's shift:

$$\beta(\sigma) = \{\cdots \sigma_{-2} \cdot \sigma_{-1} \sigma_0 \sigma_1 \cdots \}.$$

A is a Cantor set.

I.B.

イロト イポト イヨト イヨト 二日

SMALE-BIRKHOFF THEOREM

THEOREM

Let $f \in \mathcal{K}(M)$ be having a transverse homoclinic point q of a periodic hyperbolic point p of f, namely a fixed point of f^m . Then there exists $\Lambda = \overline{\Lambda} \subset \Omega(f)$ a Cantor set such that

 $f^m(\Lambda) = \Lambda,$ $f^m_{|\Lambda}$ is topollogically conjugated to $\beta : \Sigma \to \Sigma.$

- *q*, *f*(*q*), · · · , *f*^{*n*}(*q*) are transversal homoclinic points.
- $\lim_{n\to\infty} f^n(q) = p$ and $\lim_{n\to\infty} f^{-n}(q) = p$.
- The disc D included in W^u(p) is transversal to W^s(p). Therefore by λlemma has to accumulate to W^u(p).
- We obtain then the homoclinic tangle in the figure which recall the structure of the transversal intersection in the Smale's horseshoe.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

ANOTHER ARGUMENT

Another way to prove the existence of Horseshoes when an homoclinic transversal point occurs is

- Let p be a saddle point and q ∈ W^s(p) ∩ W^u(p) be an homoclinic transversal point.
- Take *A* a neighbourhood of the saddle point *p*.

- Let $n, m \ge 0$ be such that $q \in f^n(A)$ and $q \in f^{-m}(A)$.
- Take $\overline{f} = f^{n+m}$ a diffeomorphism. We have that \overline{f} is a Smale's horseshoe type map taking $B = f^{-m}(A)$ as the square Q.

QQMDS 12/19

< ロ > < 同 > < 回 > < 回 >

THE HENON MAP

We consider the Henon map $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by:

$$f(x, y) = \begin{pmatrix} x \cos \alpha - y \sin \alpha + x^2 \sin \alpha \\ x \sin \alpha + y \cos \alpha - x^2 \cos \alpha \end{pmatrix}$$

- We draw the phase portrait: the curves resulting of applying the Henon map several times. There is no dynamical sense in them.
- We have taken $\alpha = 0.4$.
- Observe that we have an evident chain of periodic orbits of period 6.
- But also have other chains of large period.
- Every island is surrounded by something similar to a heteroclinic connection. However....

HOMOCLINIC POINTS

CHAOS IN THE HENON MAP

When we magnify the pictures we encounter

• There are homoclinic transversal points.

< 口 > < 回 > < 回 > < 回 > .

OOMDS

- Islands of all the periods.
- Summarizing chaos.

I.B.

DEFINITION

- Since the maps with transversal homoclinic points, have associated horseshoes, they
 posses Cantor invariant sets.
- Can we provide some structure to these invariant sets?.

HYPERBOLIC SETS

Let $f: U \subset \mathbb{R}^n \to U$ be a diffeomorphism having an invariant set S. We say that S is hyperbolic if for any $x \in S$, there exists a decomposition of the form

$$T_x \mathcal{S} \oplus E_x^s \oplus E_x^u = \mathbb{R}^n$$

where $T_x S$ is the tangent space of S at x, satisfying that

• if
$$v \in E_x^s$$
, then $Df^n(x)v \in E_{f^n(x)}^s$ and

 $\|Df^n(x)v\|\leq C\mu^n\|v\|,$

• if
$$v \in E_x^u$$
, then $Df^{-n}(x)v \in E_{f^{-n}(x)}^u$ and

$$\|Df^n(x)v\| \ge c\mu^{-n}\|v\|,$$

• the subspaces E_x^s , E_x^u depend on x continuously.

I.B.

REMARKS

- The definition of hyperbolic set can be extended to diffeomorphism defined on *M* a compact manifold.
- To do so, it is necessary to use adequate charts to extend the definition of differential.
- The invariant set Λ of the horseshoe map is an hyperbolic set.
- In the cat map $f : \mathbb{T}^2 \to \mathbb{T}^2$, in the torus, with lift $\overline{f}(x) = Ax$

$$A = \left(egin{array}{cc} 1 & 1 \ 1 & 2 \end{array}
ight)$$

the full \mathbb{T}^2 has also a hyperbolic structure. In fact in this case, the stable and unstable sets are constants.

I.B.

QOMDS

NON WANDERING HYPERBOLIC SETS

THEOREM

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism having a hyperbolic non-wandering compact set Ω . If the periodic orbits are dense in Ω , then

 $\Omega = \Omega_1 \cup \cdots \cup \Omega_n$, Ω_i , basic sets, $\Omega_i \cap \Omega_i = \emptyset$

with $\Omega_1, \dots, \Omega_n$ closed, invariant and containing a dense orbit.

A COMMENT

If $f: M \to M$ with M a compact manifold with boundary, the same is true and moreover,

$$M = \bigcup_{i=1}^{n} \operatorname{in}(\Omega_i) \quad \text{with in}(\Omega_i) = \left\{ x \in U : \lim_{m \to \infty} \operatorname{dist}(f^m(x), \Omega_i) = 0 \right\}$$

- The diffeomorphisms having a hyperbolic non-wandering set with the periodic orbits dense in Ω, are called Axiom-A diffeomorphisms.
- If a non-wandering set contains only finitely many hyperbolic fixed points or periodic orbits, is Axiom-A.
- On the contrary, when a non-wandering set has a dense orbit and the periodic orbits are dense in it, is called a chaotic set.

I.B.

HOMOCLINIC POINTS

QQMDS 17/19

STRANGE ATTRACTORS

A DEFINITION

There is a lot of discussion about the definition of strange attractor. One possibility is to say that a strange attractor is an attracting chaotic set. Notice that such a definition can be applied in both, vector fields and diffeomorphims.

One of the most popular are:

Consider the Lorenz equation

The Henon map

$$\begin{cases} \dot{x} = 10(y - x) \\ \dot{y} = x(28 - z) - y \\ \dot{z} = xy - \frac{8}{3}z. \end{cases}$$

It comes from a model for fluid flow of the atmosphere.

$$f(x,y) = \left(\begin{array}{c} y - ax^2 + 1\\ bx \end{array}\right)$$

for some values of *a*, *b*. Concretely we take the classical ones a = 1.4, b = 0.3. The Henon map is an approximation of a Poincaré map of the Lorenz equation.

・ロト ・ 同ト ・ ヨト ・ ヨト

QQMDS

THE PICTURES

Atractor for the Henon map

Lorenz's attractor

I.B.

HOMOCLINIC POINTS

QQMDS 1