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DEFINITION

GLOBALIZING THE INVARIANT MANIFOLD

Assume that f is a diffeomorphism f defined on a manifold M (which could be Rn) having a
saddle fixed point.
p has associated two local invariant manifolds, W s,u

N (p) contained in N, a neighbourhood
of the fixed point. Namely:

W s
N(p) = {x ∈ N : f n(x) ∈ N, n ≥ 0}, W u

N(p) = {x ∈ N : f−n(x) ∈ N, n ≥ 0}.

In fact one can prove that

W s
N(p) = {x ∈ N : lim

n→∞
f n(x) = p}, W u

N(p) = {x ∈ N : lim
n→∞

f−n(x) = p}.

We define now the stable and unstable set, W s,u(p) (sometimes we call them global stable
and unstable manifold):

W s(p) = {x ∈ M : lim
n→∞

f n(x) = p}, W u(p) = {x ∈ M : lim
n→∞

f−n(x) = p}.

Besides these sets are

W s(p) =
⋃
n≥0

f−n(W s
N(p)

)
, W u(p) =

⋃
n≥0

f n(W u
N(p)

)
.

When the global stable and unstable manifold are considered one can encountered really
crazy behaviours. One of them is produced by the homoclinic transversal points.
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DEFINITION

HOMOCLINIC TRANSVERSAL INTERSECTION

HOMOCLINIC POINTS

Let f be a diffeomorphism having a fixed point p of saddle type. Consider
W u,s(p) the global unstable and stable sets.
Every point q such that q ∈ W u(p) ∩ W s(p) is said to be homoclinic. If the
intersection is transversal, we say that q is a transversal homoclinic point.

In the figure, q1, q2 are transversal homoclinic
points. Notice that f m(qi ) are homoclinic points.

In the figure, q3, f (q3), · · · are homoclinic
tangencies.

I.B. HOMOCLINIC POINTS QQMDS 4 / 19



HOMOCLINIC POINTS IN THE SMALE’S HORSESHOE

HOMOCLINIC POINTS IN THE SMALE’S HORSESHOE

PROPOSITION

The Smale’s horseshoe has two hyperbolic fixed points of saddle type p0 ∈ P0 and p1 ∈ P1.
They have stable and unstable sets (not local):

W u(pi ) =
{

x : lim
n→∞

∥f−n(x)− pi∥ = 0
}
, W s(pi ) =

{
x : lim

n→∞
∥f n(x)− pi∥ = 0

}
.

If pi = V i
∞ ∩ H i

∞, then

W s(pi ) =
⋃
n≥0

f̃ n(V i
∞), W u(pi ) =

⋃
n≥0

f n(V i
∞).

In addition W s(pi ) and W u(pi ) have infinitely many transversal intersection on Q.

Remark:

We will think that the Smale’s we are dealing with is in fact the extension g to S2 which is
an invertible map.

Recall that, besides the sterographic projection, g|D is f and g−1
|D′ is f̃ .

So when we write f−1 we really means f̃ .
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HOMOCLINIC POINTS IN THE SMALE’S HORSESHOE

PROOF OF TRANSVERSAL HOMOCLINIC INTERSECTIONS

Let σ0 = {· · · 0 · 0 · · · } and σ1 = {· · · 1 · 1 · · · }. Then

p0 = ϕ−1(σ0), p1 = ϕ−1(σ1)

are fixed points. Notice that f n(p0) ∈ P0 and f n(p1) ∈ P1 for all n ∈ Z.

In addition, both are saddle type provided Df (pi ) has eigenvalues 1/a, a with a < 1.

We focus in p1 = ϕ−1(σ1). We first look for W s,u(p1) ∩ Λ. Clearly
W s(p1) ∩ Λ = ϕ−1(W s(σ1)) and

W s(σ1) = {σ : lim
n→∞

d(βn(σ), σ1) = 0}.

Compute

dn(σ) = d(βn(σ), σ1) =
∞∑

k=−∞

|σn+k − 1|
2|k| =

∞∑
k=−∞

|σk − 1|
2|k−n| .

We have that dn(σ) → 0 as n → ∞ if and only if σk = 1 for k ≥ n0. Then

W s(p1) ∩ Λ = ϕ−1(W s(σ1)) = ϕ−1({σ ∈ Σ : ∃n0 ∈ Z such thatσn = 1, ∀n ≥ n0}
)
.

I.B. HOMOCLINIC POINTS QQMDS 6 / 19



HOMOCLINIC POINTS IN THE SMALE’S HORSESHOE

CONTINUATION OF THE PROOF (I)

We claim that f n(q) ∈ P1, ∀n ≥ 0 ⇐⇒ q ∈ V 1
∞ =⇒ q ∈ W s(p1).

Where

p1 = V 1
∞ ∩ H1

∞.

This proves the ⇐=
implication.

We first observe that, σ1 = ϕ(p1) satisfies

σ1
n = 1, n ≥ 0 ⇐⇒ φ(V 1

∞)n = 1, n ≥ 0 ⇐⇒ f n(V 1
∞) ∈ P1.

Assume now that f n(q) ∈ P1 for all n ≥ 0. Let V∞ be such
that q ∈ V∞. That means that σ = ϕ(q) satisfies

σn = 1, n ≥ 0 ⇐⇒ φ(V∞)n = 1, n ≥ 0 ⇐⇒ f n(V∞) ∈ P1.

Take q̃ = V∞ ∩ H̃∞ ∈ V∞ ∩ Λ and q̄ = V 1
∞ ∩ H̃∞ ⊂ Λ.

Since ϕ(q̃) = ϕ(q̄), q̄, q̃ ∈ Λ and ϕ|Λ is an homeomorphism q̃ = q̄.
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HOMOCLINIC POINTS IN THE SMALE’S HORSESHOE

CONTINUATION OF THE PROOF (II)
Let now q be such that f n(q) ∈ P1 for n ≥ n0 ≥ 0. Then q0 = f n0 (q) ∈ V 1

∞ satisfies
f n(q0) ∈ P1 for all n ≥ 0 and thus q0 ∈ W s(p1) which implies that q ∈ W s(p1):

lim
n→∞

∥f n(q)− p1∥ = lim
n→∞

∥f n−n0 (q0)− p1∥ = 0.

Then W s(p1) =
⋃
n≥0

f̃ n(V 1
∞). The same for W u(p1) and W s,u(p0).

W s(p1) ∩ W u(p1) ∩ Q contains the corresponding points to

W s(σ1) ∩ W u(σ1) = {σ ∈ Σ : ∃n± such that σn = 1 if n ≤ n−, n ≥ n+}

which is obviously a countable infinite set.

Since f̃ n(V 1
∞) ∩ Q and f n(H1

∞) ∩ Q are 2n vertical,
respectively horizontal, segments, the intersection
has to be transversal.

Both f̃ (V 1
∞), f (H1

∞) has a horseshoe shape.
Therefore what we have is, in fact, the figure:
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SMALE-BIRKHOFF HOMOCLINIC THEOREM

THE λ-LEMMA. A CLASSICAL RESULT

THEOREM

Let f : M → M be a diffeomorphism
with a hyperbolic fixed point p. Take
q ∈ W s(p) and nu = dim Eu(p).
Assume that B,D are two C1

embedded discs of dimension nu in M
such that

B ⊂ W u(p)

q ∈ D and D ∩ W s(p) is
transversal:
TqD + TqW s(p) = TqM.

Then for any ε > 0, ∃n0 ≥ 0 such that
for all n ≥ n0,

∥Bn − B∥C1 < ε, Bn ⊂ f n(D).
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SMALE-BIRKHOFF HOMOCLINIC THEOREM

KUPKA-SMALE DIFFEOMORPHISMS

KUPKA-SMALE DIFFEOMORPHISMS

Let M be a compact two dimensional manifold. The subset K(M) of Diff1 (M)
having all their fixed points hyperbolic and having all intersections between
stable and unstable transversal is residual.
Every diffeomorphism belonging to K(M) is refereed as a Kupka-Smale
diffeomorphism.

The key idea is that

f ∈ K(M) having a transversal homoclinic point =⇒ f|Λ is conjugated to β.

Recall that:

Residual is the countable intersection of open and dense sets.

β : Σ → Σ is the right Bernoulli’s shift:

β(σ) = {· · ·σ−2 · σ−1σ0σ1 · · · }.

Λ is a Cantor set.
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SMALE-BIRKHOFF HOMOCLINIC THEOREM

SMALE-BIRKHOFF THEOREM

THEOREM

Let f ∈ K(M) be having a transverse homoclinic point q of a periodic
hyperbolic point p of f , namely a fixed point of f m.
Then there exists Λ = Λ ⊂ Ω(f ) a Cantor set such that

f m(Λ) = Λ, f m
|Λ is topollogically conjugated to β : Σ → Σ.

q, f (q), · · · , f n(q) are transversal
homoclinic points.

lim
n→∞

f n(q) = p and lim
n→∞

f−n(q) = p.

The disc D included in W u(p) is
transversal to W s(p). Therefore by λ-
lemma has to accumulate to W u(p).

We obtain then the homoclinic tangle in
the figure which recall the structure of the
transversal intersection in the Smale’s
horseshoe.
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SMALE-BIRKHOFF HOMOCLINIC THEOREM

ANOTHER ARGUMENT

Another way to prove the existence of Horseshoes when an homoclinic
transversal point occurs is

Let p be a saddle point
and q ∈ W s(p) ∩ W u(p)
be an homoclinic
transversal point.

Take A a neighbourhood
of the saddle point p.

Let n,m ≥ 0 be such that q ∈ f n(A) and q ∈ f−m(A).

Take f̄ = f n+m a diffeomorphism. We have that f̄ is a Smale’s horseshoe
type map taking B = f−m(A) as the square Q.
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SOME EXAMPLES OF CHAOTIC DYNAMICS

THE HENON MAP

We consider the Henon map f : R2 → R2 given by:

f (x , y) =
(

x cosα− y sinα+ x2 sinα

x sinα+ y cosα− x2 cosα

)

We draw the phase portrait: the
curves resulting of applying the
Henon map several times.
There is no dynamical sense in
them.

We have taken α = 0.4.

Observe that we have an
evident chain of periodic orbits
of period 6.

But also have other chains of
large period.

Every island is surrounded by
something similar to a
heteroclinic connection.
However....
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SOME EXAMPLES OF CHAOTIC DYNAMICS

CHAOS IN THE HENON MAP

When we magnify the pictures we encounter

There are homoclinic transversal points.

Islands of all the periods.

Summarizing chaos.
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HYPERBOLIC SETS

DEFINITION

Since the maps with transversal homoclinic points, have associated horseshoes, they
posses Cantor invariant sets.
Can we provide some structure to these invariant sets?.

HYPERBOLIC SETS

Let f : U ⊂ Rn → U be a diffeomorphism having an invariant set S. We say that S is hyperbolic if
for any x ∈ S, there exists a decomposition of the form

TxS ⊕ Es
x ⊕ Eu

x = Rn

where TxS is the tangent space of S at x , satisfying that

if v ∈ Es
x , then Df n(x)v ∈ Es

f n(x) and

∥Df n(x)v∥ ≤ Cµn∥v∥,

if v ∈ Eu
x , then Df−n(x)v ∈ Eu

f−n(x) and

∥Df n(x)v∥ ≥ cµ−n∥v∥,

the subspaces Es
x ,E

u
x depend on x continuously.
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HYPERBOLIC SETS

REMARKS

The definition of hyperbolic set can be extended to
diffeomorphism defined on M a compact manifold.
To do so, it is necessary to use adequate charts to extend the
definition of differential.
The invariant set Λ of the horseshoe map is an hyperbolic set.
In the cat map f : T2 → T2, in the torus, with lift f (x) = Ax

A =

(
1 1
1 2

)
the full T2 has also a hyperbolic structure. In fact in this case, the
stable and unstable sets are constants.
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HYPERBOLIC SETS

NON WANDERING HYPERBOLIC SETS

THEOREM

Let f : U ⊂ Rn → Rn be a diffeomorphism having a hyperbolic non-wandering compact set Ω.
If the periodic orbits are dense in Ω, then

Ω = Ω1 ∪ · · · ∪ Ωn, Ωi , basic sets, Ωi ∩ Ωj = ∅

with Ω1, · · · ,Ωn closed, invariant and containing a dense orbit.

A COMMENT

If f : M → M with M a compact manifold with boundary, the same is true and moreover,

M =
n⋃

i=1

in(Ωi ) with in(Ωi ) =
{

x ∈ U : lim
m→∞

dist (f m(x),Ωi ) = 0
}

The diffeomorphisms having a hyperbolic non-wandering set with the periodic orbits dense
in Ω, are called Axiom-A diffeomorphisms.
If a non-wandering set contains only finitely many hyperbolic fixed points or periodic orbits,
is Axiom-A.
On the contrary, when a non-wandering set has a dense orbit and the periodic orbits are
dense in it, is called a chaotic set.
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HYPERBOLIC SETS

STRANGE ATTRACTORS

A DEFINITION

There is a lot of discussion about the definition of strange attractor.
One possibility is to say that a strange attractor is an attracting chaotic set.
Notice that such a definition can be applied in both, vector fields and diffeomorphims.

One of the most popular are:

Consider the Lorenz equation
ẋ = 10(y − x)
ẏ = x(28 − z)− y

ż = xy −
8
3

z.

It comes from a model for fluid flow of the
atmosphere.

The Henon map

f (x , y) =
(

y − ax2 + 1
bx

)
for some values of a, b. Concretely we take the
classical ones a = 1.4, b = 0.3.
The Henon map is an approximation of a
Poincaré map of the Lorenz equation.
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HYPERBOLIC SETS

THE PICTURES

Atractor for the Henon map Lorenz’s attractor
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