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INTRODUCTION PRELIMINARY DEFINITIONS

INTRODUCTION

Dynamical systems are defined on manifolds M.

We are now interested in what happen around an equilibrium point,
namely a point x∗ ∈ M such that

x∗ = f (x∗), X (x∗) = 0

either if we are dealing with maps, f , or vector fields, X .

Since we can use only one chart to study the behaviour of the system in
a (small) neighbourhood of the equilibrium point, we can assume that:

f ,X : U ⊂ Rn → Rn.

The question is

When the linear part is dominant?
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INTRODUCTION PRELIMINARY DEFINITIONS

THE LINEAR APPROXIMATION

Around an equilibrium point x∗, by Taylor’s theorem

f (x) ∼ f (x∗) + Df (x∗)(x − x∗) = x∗ + Df (x∗)(x − x∗).

Then,
f (x)− x∗ ∼

[
Df (x∗)

]
(x − x∗).

It is close to linear homogeneous. Linear systems are easy.

Recall that xn+1 = Axn has explicit solutions

xn = Anx0

and the same happen for flows ẋ = Ax :

x(t) = eAtx0.
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INTRODUCTION PRELIMINARY DEFINITIONS

LINEARISED PART

We define the linearised part around an isolated equilibrium point x∗ of a
dynamical system as:

If we have f : U ⊂ Rn → Rn, a map

x̄ = x∗ + Df (x∗)(x − x∗).

If we have X : U ⊂ Rn → Rn, a vector field

ẋ = DX (x∗)(x − x∗).

THE QUESTION IS:
When can we relate the qualitative behaviour of the dynamical systems

x̄ = f (x) or ẋ = X (x)

with their linearised parts around an equilibrium point x∗.?

Recall that:

Df (x∗) =
(
∂xj fi(x∗)

)
i,j , x = (x1, · · · , xn), f = (f1, · · · , fn).
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INTRODUCTION PRELIMINARY DEFINITIONS

NON DOMINANT LINEAR PART

Eigenvalue 0. Take ẋ = αx2 + βx3. The linear part ẋ = 0 is not dominant:

Eigenvalues ±i . Consider the system

ẋ = y + αx(x2 + y2)(1− (x2 + y2)), ẏ = −x + αy(x2 + y2)(1− (x2 + y2))

which in polar coordinates is ṙ = αr3(1− r2), θ̇ = −1. Linear part α = 0.
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INTRODUCTION PRELIMINARY DEFINITIONS

HYPERBOLIC EQUILIBRIUM POINTS

Let f : U ⊂ Rn → Rn be a diffeomorphism and X : U ⊂ Rn → Rn be a vector field.

An equilibrium point x∗ = f (x∗) of f is hyperbolic if

Df (x∗) has no eigenvalue with modulus 1.

An equilibrium point X(x∗) = 0 of X is hyperbolic if

DX(x∗) has no eigenvalue with real part equal to 0.

The stable, Es , and unstable, Eu , linear subsets of f are the maximal invariant by Df (x∗)
subspaces such that

Spec(Df (x∗)|Es ) ⊂ {λ ∈ C : |λ| < 1},

Spec(Df (x∗)|Eu ) ⊂ {λ ∈ C : |λ| > 1}.

The stable, Es , and unstable, Eu , linear subsets of X are the maximal invariant by DX(x∗)
subspaces such that

Spec(DX(x∗)|Es ) ⊂ {λ ∈ C : reλ < 0},

Spec(DX(x∗)|Eu ) ⊂ {λ ∈ C : reλ > 0}.
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INTRODUCTION PRELIMINARY DEFINITIONS

CLOSED HYPERBOLIC CURVES

Let γ be a closed orbit of a vector field.
The Poincaré map P : Σ→ Σ has p = γ ∩ Σ as a fixed point.
We say that γ is hyperbolic if p is a fixed hyperbolic point of P.

If γ is a closed curve of a map.... we will see the definition another day!
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INTRODUCTION PRELIMINARY DEFINITIONS

RECALLING CONJUGACY

DEFINITION

We say that two maps f : W ⊂ Rn → U, g : V ⊂ Rn → Rn are topologically
conjugate if there exists an homeomorphism h : U → V such that

h ◦ f = g ◦ h.

We say that two flows ϕt : W ⊂ Rn → U, ψt : V ⊂ Rn → Rn are topologically
conjugate if there exists an homeomorphism h : U → V such that

h ◦ ϕt = ψt ◦ h, ∀t ∈ R.

The flows ϕt , ψt are topologically equivalent if h(ϕt (x)) = ψτ(t,x)(h(x)).

In particular

If x∗ is a fixed point of f (resp. ϕt ), h(x∗) is a fixed point of g (resp. ψt ).

The image of the periodic orbits of f (resp. ϕt ) by h are also periodic
orbits of g (resp. ψt ).
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INTRODUCTION PRELIMINARY DEFINITIONS

CONJUGACY OF LINEAR MAPS

Let X : U ⊂ Rn → Rn be a linear map, X (x) = Ax . We define the stability
index as

ns = card{λ : eigenvalues of A with reλ < 0}, nu = n − ns.

On a neighbourhood of the origin, the flow of X is topollogically conjugated to
the flow of

ξ̇s = −ξs, ξ̇u = ξu, ξs ∈ Rns , ξu ∈ Rnu .

Are topologically conjugated to:
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INTRODUCTION THE FIXED POINT THEOREM

NORMED SPACES

DEFINITION (NORMED SPACE)
A normed space, E , is a vector space on K = R,C, equipped with a
norm. A norm is a map ‖ · ‖ : E → [0,+∞) with the properties

‖x‖ = 0 if and only if x = 0,
for all λ ∈ K , ‖λx‖ = |λ|‖x‖,
for all x , y ∈ E , ‖x + y‖ ≤ ‖x‖+ ‖y‖

For instance

E = Rn, with norms ‖x‖∞ = sup
i
|xi |, ‖x‖2 =

√
|x1|2 + · · ·+ |xn|2.

The space of the continuous funtions:

E = C0([a,b],Rn) = {f : [a,b]→ Rn : f is continuous}

with the norm ‖f‖∞ = sup
x∈[a,b]

‖f (x)‖.
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INTRODUCTION THE FIXED POINT THEOREM

BANACH SPACES

Let (E , ‖ · ‖) be a normed space and (xn)n∈N ⊂ E a sequence.
We say that the sequence (xn)n∈N ⊂ E is a Cauchy’s sequence if

∀ε > 0, ∃n0, such that if n,m ≥ n0, ‖xn − xm‖ < ε.

We say that the sequence (xn)n∈N ⊂ E is convergent if there exists
x∗ ∈ E such that

∀ε > 0, ∃n0, such that if n ≥ n0, ‖xn − x∗‖ < ε.

DEFINITION (BANACH SPACE)

We say that a normed space, (E , ‖ · ‖) is a Banach space if it is
complete, that is if every Cauchy’s sequence is convergent.

The normed space C0([a,b],Rn) with the norm ‖ · ‖∞ is a Banach
space.
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INTRODUCTION THE FIXED POINT THEOREM

THE FIXED POINT THEOREM

This result try to answer to the question:

Are there solutions of x = F (x)?.

THEOREM

Let (E , ‖ · ‖) be a Banach space, X ⊂ E a closed subset and
F : X → X satisfying that there exists a constant L ∈ [0,1) such that

∀x , y ∈ X , ‖F (x)− F (y)‖ ≤ L‖x − y‖.

Then there exists a unique x∗ ∈ X satisfying
x∗ = F (x∗). (We say that x∗ is a fixed point)
For all x ∈ X:

‖F n(x)− x∗‖ ≤
Ln

1− L
‖F (x)− x‖ =⇒ lim

n→∞
F n(x) = x∗.
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INTRODUCTION THE FIXED POINT THEOREM

PROOF OF THE FIXED POINT THEOREM

If x1
∗ , x

2
∗ ∈ X are two different fixed points of F , then

‖x1
∗ − x2

∗‖ = ‖F (x1
∗)− F (x2

∗)‖ ≤ L‖x1
∗ − x2

∗‖ < ‖x1
∗ − x2

∗‖

which is a contradiction. The uniqueness is proven.
Let x ∈ X . Consider xn = F n(x) = F (xn−1) with x0 = x . On the one hand, for n ≥ m

‖xn − xm‖ = ‖F (xn−1)− F (xn)‖ ≤ L‖xn−1 − xm−1‖ ≤ Lm‖xn−m − x0‖.

On the other hand

‖xn − xm‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − xn−2‖+ · · ·+ ‖xm+1 − xm‖

≤ Ln−1‖x1 − x0‖+ Ln−2‖x1 − x0‖+ · · ·+ Lm‖x1 − x0‖ ≤
Lm

1− L
‖x1 − x0‖.

Then (xn) ⊂ X is a Cauchy’s sequence and, since E is complete, is convergent to x∗ ∈ E . we
deduce that x∗ ∈ X , because X is a closed subset.

Since xn = F (xn−1) with F continuous, taking n→∞ we prove that x∗ is a fixed point.

In addition, taking n→∞ from the above inequality, we get the second statement.
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HARTMAN’S THEOREM THE RESULTS

HARTMAN’S THEOREM FOR MAPS

THEOREM

Let U ⊂ Rn be an open set. Consider f : U ⊂ Rn → Rn a
diffeomorphism having a hyperbolic fixed point x∗.
There exists a neighbourhood N ⊂ U of x∗ and a neighbourhood
N ′ ⊂ Rn containing the origin such that

f|N is topologically conjugate to Df (x∗)|N′
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HARTMAN’S THEOREM THE RESULTS

HARTMAN’S THEOREM FOR FLOWS

THEOREM

Let U ⊂ Rn be open. Consider a C1 vector field X : U ⊂ Rn → Rn

having x∗ a hyperbolic fixed point. Let ϕt : U ⊂ Rn → Rn be its flow.
There exists a neighbourhood N ⊂ U of x∗ on which

ϕt is topologically conjugate to the linear flow exp(DX (x∗)t)x

As a consequence we have that:

CLASSIFICATION OF HYPERBOLIC POINTS

On the same conditions of Hartman’s theorem, let

ns = card{λ : eigenvalues of DX (x∗) with reλ < 0}, nu = n − ns.

On a neighbourhood of x∗, ϕt is topologically conjugated to the flow of

ξ̇s = −ξs, ξ̇u = ξu, ξs ∈ Rns , ξu ∈ Rnu .
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HARTMAN’S THEOREM IDEA OF THE PROOF FOR MAPS

HARTMAN’S THEOREM, GLOBAL VERSION

THEOREM

Let L be a linear hyperbolic map L : Rn → Rn. Then, there exists ε > 0 such
that for any ∆f ,∆g : Rn → Rn Lipschitz functions with

lip ∆f , lip ∆g < ε

the maps L + ∆f and L + ∆g are topologically conjugated on Rn.
The conjugation homeomorphism h satisfies that h − Id is bounded on Rn

We can prove Hartmans’s theorem from this one by:
Take L = Df (x∗) and perform the change y = x − x∗. We get f̃ (y) = Ly + f̃1(y) with
f̃1(y) = o(y).

For any ε > 0, there exists δ such that if ‖y‖ < 2δ, then lip f̃1 < ε

We can extend f̃ into Rn by means of a regular bump function ϕ.

f̂ : Rn → Rn defined by

f̂ (y) =

{
f̃ (y)ϕ(y), |y | < 2δ
0 |y | ≥ 2δ
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HARTMAN’S THEOREM IDEA OF THE PROOF FOR MAPS

IDEA OF THE PROOF OF THE GLOBAL VERSION (I)

Write the conjugation h = Id + u. It has to satisfy

(L + ∆f ) ◦ (Id + u) = (Id + u) ◦ (L + ∆g).

This equation is equivalent to

F(u) := Lu − u ◦ (L + ∆g) = −∆f ◦ (Id + u) + ∆g. (1)

If ε is small enough, L + ∆g is a homeomorphism. Using this fact, prove that F is a linear
homeomorphism. Let F−1 its inverse
Write equation (1) as a fixed point equation :

u = G(u) := F−1(−∆f ◦ (Id + u) + ∆g).

Prove that

E =

{
f : Rn → Rn : continuous and ‖f‖∞ = sup

x∈Rn
‖f (x)‖ <∞

}
.

is a Banach space
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HARTMAN’S THEOREM IDEA OF THE PROOF FOR MAPS

IDEA OF THE PROOF OF THE GLOBAL VERSION (II)

If ε > 0 is small enough, G : E → E satisfies the hypotheses of the fixed point theorem.
Indeed:

‖G(u1)− G(u2)‖ ≤ ‖F−1‖‖∆f ◦ (Id + u1)−∆f ◦ (Id + u2)‖ ≤ ‖F−1‖lip ∆f‖u1 − u2‖.

Since ‖F−1‖lip ∆f < ‖F−1‖ε < 1 we are done.

Then there exists an unique u ∈ E such that h = Id + u satisfies

(L + ∆f ) ◦ h = h ◦ (L + ∆g).

It remains to see that h is an homeomorphism. Changing ∆f and ∆g in the above
equation, there exists h̄ = Id + ū such that

(L + ∆g) ◦ h̄ = h̄ ◦ (L + ∆f ).

Then
h ◦ h̄ ◦ (L + ∆f ) = h ◦ (L + ∆g) ◦ h̄ = (L + ∆f ) ◦ h ◦ h̄.

That is, h ◦ h̄ is a conjugation between L + ∆f itself. By uniqueness, h ◦ h̄ = Id.
Using similar arguments, we prove h̄ ◦ h = Id .
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INVARIANT MANIFOLDS FOR MAPS DEFINITION

PRELIMINARIES

Recall that by Hartman’s theorem we have that:

FIRST APPROACH

The invariant sets W u,W s are
the corresponding ones to
Eu,Es. How can we
characterize W u,W s without
using Hartman’s theorem?

For linear maps, by means of a linear change of coordinates, f (ξs, ξu) = (Asξs,Auξu) with

‖As‖ < 1, ‖(Au)−1‖ < 1

then Es = {ξu = 0}, Eu = {ξs = 0}. Notice that,

lim
m→∞

f m(ξs, 0) = 0, lim
m→−∞

f m(0, ξu) = 0.

Although we can also characterize Es,u as, given B a neighbourhood of the origin:

Es = {x : f m(x) ∈ B, ∀m ≥ 0}, Eu = {x : f m(x) ∈ B, ∀m ≤ 0}.
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INVARIANT MANIFOLDS FOR MAPS DEFINITION

DEFINITION

INVARIANT MANIFOLDS FOR GENERAL MAPS

Let f : U ⊂ Rn → Rn be a diffeomorphism with a hyperbolic fixed point x∗. For
any neighborhood N ⊂ U of x∗ we define the local stable invariant set

W s
N(x∗) = {x ∈ Rn : f m(x) ∈ N, ∀m ≥ 0} =

⋂
m∈N

f−m(N)

and the local unstable invariant set

W u
N(x∗) = {x ∈ Rn : f−m(x) ∈ N, ∀m ≥ 0} =

⋂
m∈N

f m(N).
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INVARIANT MANIFOLDS FOR MAPS THE RESULT

INVARIANT MANIFOLDS FOR HYPERBOLIC POINTS

THEOREM

Let f : U ⊂ Rn → Rn be a diffeomorphism Cr , r ≥ 1, with an hyperbolic fixed
point at x∗ ∈ U. Let Es,Eu be the stable and unstable subspaces of Df (x∗).
Then, on a sufficiently small ball N ⊂ U of x∗, W s,u

N (x∗) are Cr invariant
manifolds satisfying that

dim W s
N(x∗) = dim Es, dim W u

N(x∗) = dim Eu

and they are tangent to the linear subspaces Es,u respectively.

In fact,

There exist γs : Ns → Eu , γu : Nu → Es , Cr such that

graph γs,u = W s,u
N (x∗).

γs is tangent at x∗ to Es and γu is tangent at x∗ to Eu .
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INVARIANT MANIFOLDS FOR MAPS THE RESULT

REMARKS (I)

FIRST REMARK

x ∈ W s
N (x∗) =⇒ lim

m→∞
f m(x) = x∗, x ∈ W u

N (x∗) =⇒ lim
m→−∞

f m(x) = x∗.

Indeed, by Hartman’s theorem, if Lξ = Df (x∗)ξ

h ◦ L = f ◦ h,=⇒ f m = h ◦ Lm ◦ h−1, m ∈ Z.

Let B = h−1(N) be a neighbourhood of the origin. We have that

Es
B =

⋂
m∈N

L−m(B) = {ξu = 0, ξ ∈ B}.

Moreover,
W s

N (x∗) =
⋂
n∈N

f−m(N) =
⋂

m∈N
h ◦ Lm(h−1(N)) = h(Es

B)

and recall that
ξ ∈ Es

B ⇐⇒ lim
m→∞

Lmξ = 0.

Take now x ∈ W s
N (x∗), and let ξ be such that h(ξ) = x . Then

lim
m→∞

f m(x) = lim
m→∞

f m(h(ξ)) = lim
m→∞

h(Lmξ) = h(0) = x∗.

The analogous argument for the unstable manifold.
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INVARIANT MANIFOLDS FOR MAPS THE RESULT

REMARKS (II)

UNIQUENESS RESULT (AGAIN AS A CONSEQUENCE OF HARTMAN’S THEOREM)

If x ∈ N sufficiently small neighbourhood of x∗, then W s
N(x∗) = graph γs.

With the Hartman theorem we can only prove that γs is continuous.

Indeed, let h = Id + u be the homeomorphism such that h ◦ L = f ◦ h, with L = Df (x∗).
We first notice that, changing coordinates if necessary, we can write x = (xs, xu), ξ = (ξs, ξu),
h = (hs, hu), u = (us, uu) with

Es = {ξu = 0}, Eu = {ξs = 0}, L =

(
Ls 0
0 Lu

)
.

We define the homeomorphism

h̄s(ξs) := hs(ξs, 0) = ξs + us(ξs, 0)

and we recall that W s
N (x∗) = h

(
Es

B
)

= {h
(
ξs, 0)}ξ∈B . Then, if x = (xs, xu) ∈ W s

N (x∗), it satisfies
x = h(ξs, 0) and

xs = hs(ξs, 0) = h̄s(ξs) =⇒ ξs = (h̄s)−1(xs).

Therefore
xu = hu(ξs, 0) = hu((h̄s)−1(xs), 0) =: γs(xs).
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INVARIANT MANIFOLDS FOR MAPS THE PARAMETERIZATION METHOD

STRATEGY TO FIND STABLE INVARIANT MANIFOLDS

P.M. WAS CREATED BY CABRÉ, DE LA LLAVE AND
FONTICH

The graph transform method, which is the
classical one, is a particular case. It consists on
searching a function γs such that, if πu,s is the
projection on xu,s :

πu f (x , γs(xs)) = γs(πs f (xs, γ
s(xs)).

The Parameterization Method (P.M.), search the invariant manifold
parameterized instead as a graph. That is to say,

W s
N(x∗) = {K (t)}t

Then, the invariance condition is that f (K (t)) = K (t ′) or written in a better way

f (K (t)) = K (R(t)).
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INVARIANT MANIFOLDS FOR MAPS THE PARAMETERIZATION METHOD

HOW DOES THE PARAMETERIZATION METHOD WORK?

Decompose Rn = Rns × Rnu being x ∈ Rns the stable directions and
y ∈ Rnu the unstable directions.

Perform a change of variables to ensure that x∗ = 0 and the stable
invariant manifold is tangent to y = 0.

Find K , R solving the invariance condition f ◦ K = K ◦ R, where

K : V ⊂ Rns → Rn, R : V ⊂ Rns → N,

and 0 ∈ N. To do so,
A posteriori result . Assuming

f ◦ K≤(x)− K≤ ◦ R(x) = O(‖x‖`), ` >> 1.

and using the fixed point theorem, it is proven the existence of K>

belonging to an appropriate Banach space and satisfying

f ◦ (K≤ + K>)− (K≤ + K>) ◦ R = 0.

An approximation result . An algorithm to compute K≤ and R is
provided.
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INVARIANT MANIFOLDS FOR FLOWS DEFINITION

DEFINITION

INVARIANT MANIFOLDS FOR FLOWS

Let X : U ⊂ Rn → Rn be a vector field with an equilibrium point x∗. We call its
flow ϕt . For any neighborhood N ⊂ U of x∗ we define the local stable
invariant set

W s
N(x∗) = {x ∈ Rm : ϕt (x) ∈ N, ∀t ≥ 0} =

⋂
t≥0

ϕ−t (N)

and the local unstable invariant set

W u
N(x∗) = {x ∈ Rm : ϕ−t (x) ∈ N, ∀t ≥ 0} =

⋂
t≥0

ϕt (N).

As before we have that

x ∈W s
N(x∗) =⇒ lim

t→+∞
ϕt (x) = x∗, x ∈W u

N(x∗) =⇒ lim
t→−∞

ϕt (x) = x∗.
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INVARIANT MANIFOLDS FOR FLOWS THE RESULT

THE RESULT (THE SAME AS FOR MAPS)

THEOREM

Let X : U ⊂ Rn → Rn be a Cr , r ≥ 1, vector field having a hyperbolic
equilibrium point at x∗ ∈ U. Let Es,Eu be the stable and unstable subspaces
of DX (x∗).
Then, on a sufficiently small ball N ⊂ U of x∗, W s,u

N (x∗) are Cr invariant
manifolds satisfying that

dim W s
N(x∗) = dim Es, dim W u

N(x∗) = dim Eu

and that they are tangent to the linear subspaces Es,u respectively.

In fact, the same for maps happens:

There exist γs : Ns → Eu , γu : Nu → Es , Cr such that

graph γs,u = W s,u
N (x∗).

γs is tangent at x∗ to Es and γu is tangent at x∗ to Eu .
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INVARIANT MANIFOLDS FOR FLOWS THE RESULT

THE PARAMETERIZATION METHOD FOR FLOWS

The idea is the same as for maps. We search the invariant set as the image of a suitable
parameterization:

W s
N = {K (s)}s.

To find it we have to solve what is called the invariance equation. Let us to explain how we can
obtain it:

Since we ask K (s) to be invariant:

ϕt (K (s)) = K (s′), for some s′.

It is possible to find a new flow ψ such that s′ = ψt (s)?. In this case

ϕt (K (s)) = K (ψt (s)). (2)

Instead to use this invariance equation we try to work with vector fields which are
qualitatively easier to find than flows. We call Y the vector field associated to ψt .
Differentiating with respect to t equation (2):

X(ϕt (K (s)) = DK (ψt (s))Y (ψt (s)).

And evaluating to t = 0 we obtain the infinitesimal version

X(K (s)) = DK (s)Y (s).
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PARAMETERIZATION METHOD, HOW IT WORKS? APPROXIMATED MANIFOLD

THE APPROXIMATED MANIFOLD (I)
We clarify these ideas with a simple example.

Consider the map

f (x , y) =

(
λx + x2 + y2

µy + x2

)
, (x , y) ∈ R2, |λ| < 1, |µ| > 1.

Since the linear part is

A =

(
λ 0
0 µ

)
,

it is clear that Es = {y = 0} and Eu = {x = 0}.
The idea is to find K≤ and R two polynomials satisfying

f ◦ K≤(t)− K≤(R(t)) = O(tN ).

On the one hand, the origin is a fixed point, then K (0) = (0, 0). On the other hand, the
stable manifold is tangent to Es , then ∂t K (0) = (1, 0).
Write

K≤(t) =

( N∑
k=1

ak tk ,
N∑

k=2

bk tk

)
, R(t) =

N∑
l=1

rl t l , a1 = 1.
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PARAMETERIZATION METHOD, HOW IT WORKS? APPROXIMATED MANIFOLD

THE APPROXIMATED MANIFOLD (II)

What we need is:

λ
N∑

k=1

ak tk +

( N∑
k=1

ak tk

)2

+

( N∑
k=2

bk tk

)2

=
N∑

k=1

ak

( N∑
l=1

rl t l

)k

µ
N∑

k=1

bk tk +

( N∑
k=1

ak tk

)2

=
N∑

k=2

bk

( N∑
l=1

rl t l

)k

.

Let do it only the first terms. For instance, if we look at the terms of order O(t):

λa1 = a1r1 =⇒ r1 = λ (recall a1 = 1).

The terms of order O(t2) are

λa2 + a2
1 = a1r2 + a2r2

1

µb2 + a2
1 = b2r2

1 .

We have freedom. We can choose, for instance r2 = 0 and

(µ− λ2)b2 = −1, (λ− λ2)a2 = −1.

Iteratively, we can encounter rl = 0 and

(µ− λ2)bk = known , (λ− λ2)ak = known .
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PARAMETERIZATION METHOD, HOW IT WORKS? THE TRUE MANIFOLD

THE PROBLEM AS A FIXED POINT EQUATION

We have now an approximated solution

f ◦ K≤ − K≤ ◦ R = O(tN ), R(t) = λt . (3)

We look for δK such that K = K≤ + δK satisfies

f ◦ (K≤ + δK ) = (K≤ + δK ) ◦ R.

Call f̃ = f − A = (x2 + y2, x2).
We have then

AK≤ + A δK + f̃ (K≤ + δK ) = K≤ ◦ R + δK ◦ R.

Reorganizing and using (3)

A δK − δK ◦ R = O(tN )− f̃ (K≤ + δK ) + f̃ (K≤).

The following linear operator is invertible at some Banach space:

LδK = A δK − δK ◦ R

The fixed point equation we have to deal with is

δK = FδK = L−1
(
O(tN )− f̃ (K≤ + δK ) + f̃ (K≤)

)
.

It is checked that the conditions of the fixed point theorem are satisfied.

I.B. HYPERBOLIC POINTS QQMDS 43 / 53



THE CENTER MANIFOLD

EXISTENCE RESULT FOR FLOWS

THEOREM

Let X : U ⊂ Rn → Rn be a Cr , r ≥ 1 vector field. Assume that X has an equilibrium point x∗. We
call A = DX(x∗), Ec,u,s the linear subspaces satisfying

Spec A|Ec ⊂ {Reλ = 0}, Spec A|Eu ⊂ {Reλ > 0}, Spec A|Es ⊂ {Reλ < 0}

and nc,s,u = dim(Ec,u,s).
Then, there exists a sufficiently small ball N ⊂ U of x∗, such that

There exists a locally invariant Cr manifold W c
N such that x∗ ∈ W c

N , dim W c
N = dim Ec and

it is tangent to Ec at x∗.

There exist unique locally invariant Cr manifolds W u,s
N such that x∗ ∈ W u,s

N ,
dim W u,s

N = dim Eu,s and it is tangent to Eu,s at x∗.

If r =∞, W c
N is Ck for all k and W u,s

N are C∞.

In fact it happens that there exists γc : Nc → Eu × Es such that

graph γc = W c
N .

Analogously for W u,s
N .
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THE CENTER MANIFOLD

COMMENTS (I)

Center manifold is not unique. Indeed, take
ẋ = ax2, ẏ = y . Then y = e−

1
ax C and (0, 0) is an

equilibrium point with DX(0) = diag{0, 1} and
Ec = [(1, 0)].
Any solution with initial point x0 > 0 and y = 0 are
tangent to Ec at 0 so that W c = {x > 0}∪ {y = 0}.

Dynamics on the W c
N is unknown without extra hypotheses. It can be attracting, repelling,

as a center and almost any behaviour. Indeed, consider

ẋ = x2 − µ2, ẏ = y + x2 − µ2, µ̇ = 0.

The center manifold of (0, 0, 0), W c , is tangent to {y = 0}. For µ 6= 0, the equilibrium
points P±µ0

= (±µ0, 0, µ0) are not hyperbolic being Ec = [(1, 0,±1)].
Restricting the dynamics to µ = µ0, P+

µ0
is an unstable node and P−µ0

is a saddle when
µ0 > 0.
We can only guarantee finite differentiability. That is, when the vector field is C∞, the
center manifold is Ck for any order k , but the differentiability domain can (and usually
does) depend on k .
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THE CENTER MANIFOLD

SYSTEM ẋ = x3, ẏ = 2y − 2x2

The origin is a non hyperbolic equilibrium point with linear part(
0 0
0 2

)
.

The center manifolds is tangent to Ec = [(1, 0)] at (0, 0).
If the center manifold was analytic, then it would have a convergent Taylor expansion.

Write the center manifold y = h(x) =
∑
i≥2

ai x i .

The invariance condition, ẏ = h′(x)ẋ is 2h(x)− 2x2 = h′(x)x3:

2
∑
i≥2

ai x i − 2x2 = x3
∑
i≥2

iai x i−1 =
∑
i≥4

(i − 2)ai−2x i

Equating same order terms, a2 = 1, a3 = 0 and for j ≥ 4:

2aj = (j − 2)aj−2 ⇐⇒ a2j = ja2j−2, a2j+1 = 0.

However, a2j = j! which does not give a convergent series.
As a conclusion the center manifold is not analytic, but C∞.
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THE CENTER MANIFOLD

THE SYSTEM ẋ = µx − x3, ẏ = y + x4, µ̇ = 0
The (0, 0, 0) has an associated center manifold with formal expansion:

y = h(x , µ) =
∑

i≥2,j≥0

bi,j x iµj =
∑
i≥2

ai (µ)x i .

The invariance equation is (µx − x3)∂x h(x , µ) = h(x , µ) + x4:

(µx − x3)
∑
i≥2

iai (µ)x i−1 =
∑
i≥2

ai (µ)x i + x4

or in other words:

2µa2(µ)x2 + 3µa3(µ)x3 +
∑
j≥4

(jµaj (µ)− (j − 2)aj−2(µ))x j =
∑
i≥2

ai (µ)x i + x4.

Equating terms of the same order in x j , we have that a2(µ) = a3(µ) = 0

4µa4(µ) = a4(µ) + 1, a5(µ) = 0, jµaj (µ)− (j − 2)aj−2(µ) = aj (µ).

That is:

a4(µ) = −
1

1− 4µ
, a2j (µ) = −(2j − 2)

a2j−2(µ)

1− 2jµ
, a2j+1(µ) = 0.

As a conclusion, the center manifold is C5 if µ < 1/4, C7 if µ < 1/6 and, in general, C2j+1

if µ < 1/(2j).
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THE CENTER MANIFOLD

AGAIN SYSTEM ẋ = x2 − µ2, ẏ = y + x2 − µ2, µ̇ = 0
The set {x = µ, y = 0} ⊂ W c = graphh, since it is invariant and tangent to {y = 0}.
Consider the Taylor expansion of h at x = µ:

y(x) = g(x) =
k∑

j=1

aj (µ)(x − µ)j + o((x − µ)k ), g(µ) = 0.

We have that ẏ = g′(x)ẋ , that is:

k∑
j=1

aj (µ)(x − µ)j + x2 − µ2 = (x2 − µ2)

 k∑
j=1

jaj (µ0)(x − µ)j−1

+ o((x − µ)k ).

Skip the dependence of aj on µ and write x2 − µ2 = (x − µ)(2µ+ x − µ):

k∑
j=1

aj (x − µ)j + (x − µ)2 + 2µ(x − µ) =
k∑

j=1

2µjaj (x − µ0)j +
k∑

j=2

(j − 1)aj−1(x − µ)j .

Same order terms are equal, so that a1 + 2µ = 2µa1, a2 + 1 = 4µa2 + a1 and for j ≥ 3:

aj = 2µjaj + (j − 1)aj−1 ⇐⇒ aj =
(j − 1)aj−1

1− 2µj
.

When µ =
1

2m
, W c is Cm−1 but it is not Cm.
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THE CENTER MANIFOLD

EQUIVALENCE RESULT

RESTRICTED DYNAMICS IN AN INVARIANT SET

Take X(x , y) a vector field, ẋ = X1(x , y), ẏ = X2(x , y). On any invariant set {y = f (x)}, one can
consider the restricted dynamics:

ẋ = X1(x , f (x)), X = (X1,X2).

We emphasize that the y -variable is induced by the dynamics on x : ẏ = f ′(x)ẋ .

THEOREM

Let X be a Cr , r ≥ 1 vector field with W c,u,s
N the local invariant manifolds associated to a fixed

point with Ec,u,s the corresponding subspaces. We write x = (xc , xs, xu) with (xc , 0, 0) ∈ Ec ,
(0, xs, 0) ∈ Es and (0, 0, xu) ∈ Eu . We call X̃c = X|W c

N
, the restriction to X to W c

N . Then X is
topologically conjugated to

ẋc = X̃c(xc), ẋs = −xs, ẋu = xu .

Since Ec ⊕ Es ⊕ Eu = Rn, we indeed can decompose x = (xc , xs, xu).
W c

N can be expressed as the graph of (xs, xu) = γc(xc).
With these coordinates, X = (Xc ,Xs,Xu) and then X̃c(xc) = Xc(xc , γ

c(xc)).
This result allows to classify non hyperbolic equilibrium points.
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THE CENTER MANIFOLD

SYSTEM ẋ = x + ay2 , ẏ = xy

The origin is an equilibrium point with Ec = [(0, 1)].

The case a = 0 gives x = 0 as an equilibrium points line and y = Kex the general
solution. We assume then a 6= 0.

We compute the Taylor expansion of the center manifold x = h(y) = cy2 + · · · . Recall that
we already know that it is Ck for any k .

The invariance equation is cy2 + ay2 + · · · = y(cy2 + · · · )(2cy + · · · ) and then c2 + a = 0.

As a consequence W c = {x = −ay2 + · · · } and the restricted dynamics is
ẏ = −ay3 + · · ·
Then if a < 0 the origin is a degenerated node and when a > 0, the origin is a
degenerated saddle.
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THE CENTER MANIFOLD

THE RESULT FOR MAPS

THEOREM

Let f : U ⊂ Rn → Rn be a Cr , r ≥ 1 diffeomorphism. Assume that f has an equilibrium point x∗
which can be assumed to be 0. We call A = Df (0), Ec,u,s the linear subspaces satisfying

Spec A|Ec ⊂ {|λ| = 1}, Spec A|Eu ⊂ {|λ| > 1}, Spec A|Es ⊂ {|λ| < 1}

and nc,s,u = dim(Ec,u,s).
Then there exists a Cr funcion, defined in a neighbourhood V ⊂ Rnc of 0, namely,
γc : V → Rnu × Rns satisfying:

γc(0) = 0 and graph γc is tangent to Ec at 0.

graph γc ∩ U is locally invariant, i.e. if (xc , γ
c(xc)), f (xc , γ

c(xc)) ∈ U, then
f (xc , γ

c(xc)) ∈ graph γc .

graph γc is called W c
loc, the center manifold.

We also have W u,s
loc satisfying the same properties as the ones enunciated in the stable and

unstable invariant manifolds theorem.

Same comments as for the flow case.
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BLOW-UP TECNIQUES

POLAR BLOW UP

Perform singular change of variables which expand (make bigger) the non hyperbolic fixed
point into a curve with a number of singularities.

Analize the singularities by using the Harman’s theorem.

Then we go back to the original variables to interpret the analysis.

POLAR BLOW UP

Assume that X : U ⊂ R2 can be written in polar coordinates as

ṙ = rk+1R(r , θ), θ̇ = r k Θ(r , θ).

The phase curves of the above system as the same as the ones in

ṙ = rR(r , θ), θ̇ = Θ(r , θ)

Notice that the origin (x , y) = 0 goes to r = 0 and that (r , θ) ∈ [0,∞)× S1.
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BLOW-UP TECNIQUES

AN EXAMPLE

Consider ẋ = x2 − 2xy , ẏ = y2 − 2xy .
In polar coordinates ṙ = r2R(r , θ), θ̇ = rΘ(r , θ).
Consider ṙ = rR(r , θ) , θ̇ = Θ(r , θ). This system has singularities at r = 0 and
θ = 0, π/4, π/2, 3π/2, 5π/4.

We have that:

Contracting to r = 0
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