HYPERBOLIC NON-LINEAR FIXED POINTS

I. Baldomá

QQMDS, 2022

I.B.

HYPERBOLIC POINTS

QQMDS 1 / 53

< ロ > < 同 > < 回 > < 回 >

nac

- INTRODUCTION
- Preliminary definitions
- The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 3 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
- BLOW-UP TECNIQUES

- INTRODUCTION
- Preliminary definitions
- The fixed point theorem
- HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3) INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 3 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

- INTRODUCTION
- Preliminary definitions
- The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 3 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

- INTRODUCTION
- Preliminary definitions
- The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

- INTRODUCTION
- Preliminary definitions
- The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
- BLOW-UP TECNIQUES

- INTRODUCTION
- Preliminary definitions
- The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

- INTRODUCTION
- Preliminary definitions
- The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

INTRODUCTION

Preliminary definitions

- The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

QQMDS 3 / 53

INTRODUCTION

- Dynamical systems are defined on manifolds *M*.
- We are now interested in what happen around an equilibrium point, namely a point x_∗ ∈ M such that

$$x_* = f(x_*), \qquad X(x_*) = 0$$

either if we are dealing with maps, f, or vector fields, X.

• Since we can use only one chart to study the behaviour of the system in a (*small*) neighbourhood of the equilibrium point, we can assume that:

$$\mathbf{f}, \mathbf{X}: \mathbf{U} \subset \mathbb{R}^n \to \mathbb{R}^n.$$

The question is

When the linear part is dominant?

THE LINEAR APPROXIMATION

Around an equilibrium point x_* , by Taylor's theorem

$$f(x) \sim f(x_*) + Df(x_*)(x - x_*) = x_* + Df(x_*)(x - x_*).$$

Then,

$$f(x) - x_* \sim \big[Df(x*) \big] (x - x*).$$

It is close to linear homogeneous. Linear systems are *easy*.

Recall that $x_{n+1} = Ax_n$ has explicit solutions

$$x_n = A^n x_0$$

and the same happen for flows $\dot{x} = Ax$:

$$x(t)=e^{At}x_0.$$

イロト イポト イヨト イヨト 二日

LINEARISED PART

We define the **linearised part** around an isolated equilibrium point x_* of a dynamical system as:

If we have $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$, a map If we have $X: U \subset \mathbb{R}^n \to \mathbb{R}^n$, a vector field

 $\bar{x} = x_* + Df(x_*)(x - x_*).$ $\dot{x} = DX(x_*)(x - x_*).$

THE QUESTION IS:

When can we relate the qualitative behaviour of the dynamical systems

$$\bar{x} = f(x)$$
 or $\dot{x} = X(x)$

with their **linearised parts** around an equilibrium point x_* ?

Recall that:

$$Df(x_*) = (\partial_{x_j}f_i(x_*))_{i,j}, \qquad x = (x_1, \cdots, x_n), \ f = (f_1, \cdots, f_n).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

NON DOMINANT LINEAR PART

Eigenvalues $\pm i$. Consider the system

$$\dot{x} = y + \alpha x (x^2 + y^2) (1 - (x^2 + y^2)), \qquad \dot{y} = -x + \alpha y (x^2 + y^2) (1 - (x^2 + y^2))$$

which in polar coordinates is $\dot{r} = \alpha r^3 (1 - r^2)$, $\dot{\theta} = -1$. Linear part $\alpha = 0$.

HYPERBOLIC EQUILIBRIUM POINTS

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism and $X: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a vector field.

• An equilibrium point $x_* = f(x_*)$ of *f* is hyperbolic if

 $Df(x_*)$ has no eigenvalue with modulus 1.

• An equilibrium point $X(x_*) = 0$ of X is hyperbolic if

 $DX(x_*)$ has no eigenvalue with real part equal to 0.

• The stable, E^{s} , and unstable, E^{u} , linear subsets of f are the maximal invariant by $Df(x_{*})$ subspaces such that

Spec($Df(x_*)|_{E^s}$) $\subset \{\lambda \in \mathbb{C} : |\lambda| < 1\},$ Spec($Df(x_*)|_{E^u}$) $\subset \{\lambda \in \mathbb{C} : |\lambda| > 1\}.$

• The stable, E^s , and unstable, E^u , linear subsets of X are the maximal invariant by $DX(x_*)$ subspaces such that

$$\begin{split} & \text{Spec}(DX(x_*)_{|E^s}) \subset \{\lambda \in \mathbb{C} \ : \ \text{re} \ \lambda < 0\}, \\ & \text{Spec}(DX(x_*)_{|E^u}) \subset \{\lambda \in \mathbb{C} \ : \ \text{re} \ \lambda > 0\}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

CLOSED HYPERBOLIC CURVES

Let γ be a closed orbit of a vector field.
 The Poincaré map P : Σ → Σ has p = γ ∩ Σ as a fixed point.
 We say that γ is hyperbolic if p is a fixed hyperbolic point of P.

• If γ is a closed curve of a map.... we will see the definition another day!

RECALLING CONJUGACY

DEFINITION

We say that two maps $f: W \subset \mathbb{R}^n \to U$, $g: V \subset \mathbb{R}^n \to \mathbb{R}^n$ are topologically conjugate if there exists an homeomorphism $h: U \to V$ such that

$$h \circ f = g \circ h.$$

We say that two flows $\varphi_t : W \subset \mathbb{R}^n \to U$, $\psi_t : V \subset \mathbb{R}^n \to \mathbb{R}^n$ are topologically conjugate if there exists an homeomorphism $h : U \to V$ such that

$$h \circ \varphi_t = \psi_t \circ h, \qquad \forall t \in \mathbb{R}.$$

The flows φ_t, ψ_t are topologically equivalent if $h(\varphi_t(x)) = \psi_{\tau(t,x)}(h(x))$.

In particular

- If x_* is a fixed point of f (resp. φ_t), $h(x_*)$ is a fixed point of g (resp. ψ_t).
- The image of the periodic orbits of *f* (resp. φ_t) by *h* are also periodic orbits of *g* (resp. ψ_t).

I.B.

CONJUGACY OF LINEAR MAPS

Let $X : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a linear map, X(x) = Ax. We define the stability index as

 $n_s = \text{card}\{\lambda : \text{ eigenvalues of } A \text{ with re } \lambda < 0\}, \quad n_u = n - n_s.$

On a neighbourhood of the origin, the flow of X is topollogically conjugated to the flow of

$$\dot{\xi_s} = -\xi_s, \qquad \dot{\xi_u} = \xi_u, \qquad \xi_s \in \mathbb{R}^{n_s}, \, \xi_u \in \mathbb{R}^{n_u}.$$

1

INTRODUCTION

- Preliminary definitions
- The fixed point theorem
- 2) HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

NORMED SPACES

DEFINITION (NORMED SPACE)

A normed space, *E*, is a vector space on $K = \mathbb{R}, \mathbb{C}$, equipped with a norm. A norm is a map $\|\cdot\| : E \to [0, +\infty)$ with the properties

• ||x|| = 0 if and only if x = 0,

• for all
$$\lambda \in K$$
, $\|\lambda x\| = |\lambda| \|x\|$,

• for all $x, y \in E$, $||x + y|| \le ||x|| + ||y||$

For instance

• $E = \mathbb{R}^n$, with norms $||x||_{\infty} = \sup_i |x_i|, ||x||_2 = \sqrt{|x_1|^2 + \cdots + |x_n|^2}$.

• The space of the continuous funtions:

$$E = C^0([a, b], \mathbb{R}^n) = \{f : [a, b] \to \mathbb{R}^n : f \text{ is continuous}\}$$

with the norm $||f||_{\infty} = \sup_{x \in [a,b]} ||f(x)||$.

BANACH SPACES

Let $(E, \|\cdot\|)$ be a normed space and $(x_n)_{n \in \mathbb{N}} \subset E$ a sequence. We say that the sequence $(x_n)_{n \in \mathbb{N}} \subset E$ is a Cauchy's sequence if

 $\forall \varepsilon > 0, \ \exists n_0, \ \text{such that if} \ n, m \ge n_0, \ \|x_n - x_m\| < \varepsilon.$

We say that the sequence $(x_n)_{n \in \mathbb{N}} \subset E$ is convergent if there exists $x_* \in E$ such that

 $\forall \varepsilon > 0, \ \exists n_0, \ \text{such that if} \ n \ge n_0, \ \|x_n - x_*\| < \varepsilon.$

DEFINITION (BANACH SPACE)

We say that a normed space, $(E, \|\cdot\|)$ is a Banach space if it is complete, that is if every Cauchy's sequence is convergent.

The normed space $C^0([a, b], \mathbb{R}^n)$ with the norm $\|\cdot\|_{\infty}$ is a Banach space.

I.B.

THE FIXED POINT THEOREM

This result try to answer to the question:

Are there solutions of x = F(x)?.

THEOREM

Let $(E, \|\cdot\|)$ be a Banach space, $X \subset E$ a closed subset and $F: X \to X$ satisfying that there exists a constant $L \in [0, 1)$ such that

$$\forall x, y \in X, \quad \|F(x) - F(y)\| \leq L\|x - y\|.$$

Then there exists a unique $x_* \in X$ satisfying

- $x_* = F(x_*)$. (We say that x_* is a fixed point)
- For all $x \in X$:

$$\|F^n(x)-x_*\|\leq \frac{L^n}{1-L}\|F(x)-x\|\Longrightarrow \lim_{n\to\infty}F^n(x)=x_*.$$

PROOF OF THE FIXED POINT THEOREM

If $x_*^1, x_*^2 \in X$ are two different fixed points of *F*, then

$$\|x_*^1 - x_*^2\| = \|F(x_*^1) - F(x_*^2)\| \le L\|x_*^1 - x_*^2\| < \|x_*^1 - x_*^2\|$$

which is a contradiction. The uniqueness is proven. Let $x \in X$. Consider $x_n = F^n(x) = F(x_{n-1})$ with $x_0 = x$. On the one hand, for $n \ge m$

$$||x_n - x_m|| = ||F(x_{n-1}) - F(x_n)|| \le L||x_{n-1} - x_{m-1}|| \le L^m ||x_{n-m} - x_0||.$$

On the other hand

$$\begin{aligned} \|x_n - x_m\| &\leq \|x_n - x_{n-1}\| + \|x_{n-1} - x_{n-2}\| + \dots + \|x_{m+1} - x_m\| \\ &\leq L^{n-1} \|x_1 - x_0\| + L^{n-2} \|x_1 - x_0\| + \dots + L^m \|x_1 - x_0\| \leq \frac{L^m}{1 - L} \|x_1 - x_0\|. \end{aligned}$$

Then $(x_n) \subset X$ is a Cauchy's sequence and, since *E* is complete, is convergent to $x_* \in E$. we deduce that $x_* \in X$, because *X* is a closed subset.

• Since $x_n = F(x_{n-1})$ with F continuous, taking $n \to \infty$ we prove that x_* is a fixed point.

• In addition, taking $n \to \infty$ from the above inequality, we get the second statement.

- - INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem

HARTMAN'S THEOREM

The results

- Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

QQMDS 17 / 53

HARTMAN'S THEOREM FOR MAPS

THEOREM

Let $U \subset \mathbb{R}^n$ be an open set. Consider $f : U \subset \mathbb{R}^n \to \mathbb{R}^n$ a diffeomorphism having a hyperbolic fixed point x_* . There exists a neighbourhood $N \subset U$ of x_* and a neighbourhood $N' \subset \mathbb{R}^n$ containing the origin such that

 $f_{|N|}$ is topologically conjugate to $Df(x_*)_{|N'|}$

HARTMAN'S THEOREM FOR FLOWS

THEOREM

Let $U \subset \mathbb{R}^n$ be open. Consider a C^1 vector field $X : U \subset \mathbb{R}^n \to \mathbb{R}^n$ having x_* a hyperbolic fixed point. Let $\varphi_t : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be its flow. There exists a neighbourhood $N \subset U$ of x_* on which

 φ_t is topologically conjugate to the linear flow $exp(DX(x_*)t)x$

As a consequence we have that:

CLASSIFICATION OF HYPERBOLIC POINTS

On the same conditions of Hartman's theorem, let

 $n_s = \text{card}\{\lambda : \text{ eigenvalues of } DX(x_*) \text{ with re } \lambda < 0\}, \quad n_u = n - n_s.$

On a neighbourhood of x_* , φ_t is topologically conjugated to the flow of

$$\dot{\xi}_s = -\xi_s, \qquad \dot{\xi}_u = \xi_u, \qquad \xi_s \in \mathbb{R}^{n_s}, \, \xi_u \in \mathbb{R}^{n_u}.$$

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem

HARTMAN'S THEOREM

- The results
- Idea of the proof for maps
- INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

HARTMAN'S THEOREM, GLOBAL VERSION

THEOREM

Let L be a linear hyperbolic map $L : \mathbb{R}^n \to \mathbb{R}^n$. Then, there exists $\varepsilon > 0$ such that for any $\Delta f, \Delta g : \mathbb{R}^n \to \mathbb{R}^n$ Lipschitz functions with

 $lip \Delta f$, $lip \Delta g < \varepsilon$

the maps $L + \Delta f$ and $L + \Delta g$ are topologically conjugated on \mathbb{R}^n . The conjugation homeomorphism h satisfies that h - Id is bounded on \mathbb{R}^n

We can prove Hartmans's theorem from this one by:

- Take $L = Df(x_*)$ and perform the change $y = x x_*$. We get $\tilde{f}(y) = Ly + \tilde{f}_1(y)$ with $\tilde{f}_1(y) = o(y)$.
- For any $\varepsilon > 0$, there exists δ such that if $||y|| < 2\delta$, then lip $\tilde{f}_1 < \varepsilon$
- We can extend \tilde{f} into \mathbb{R}^n by means of a regular bump function φ .

$$\hat{f}: \mathbb{R}^n \to \mathbb{R}^n$$
 defined by

$$\hat{f}(y) = \left\{ egin{array}{cc} ilde{f}(y) arphi(y), & |y| < 2\delta \ 0 & |y| \ge 2\delta \ \end{array}
ight.$$

I.B.

IDEA OF THE PROOF OF THE GLOBAL VERSION (I)

• Write the conjugation h = Id + u. It has to satisfy

$$(L + \Delta f) \circ (\mathrm{Id} + u) = (\mathrm{Id} + u) \circ (L + \Delta g).$$

This equation is equivalent to

$$\mathcal{F}(u) := Lu - u \circ (L + \Delta g) = -\Delta f \circ (\mathrm{Id} + u) + \Delta g. \tag{1}$$

- If ε is small enough, L + Δg is a homeomorphism. Using this fact, prove that F is a linear homeomorphism. Let F⁻¹ its inverse
- Write equation (1) as a fixed point equation :

$$u = \mathcal{G}(u) := \mathcal{F}^{-1}(-\Delta f \circ (\mathrm{Id} + u) + \Delta g).$$

Prove that

$$E = \left\{ f : \mathbb{R}^n \to \mathbb{R}^n : \text{ continuous and } \|f\|_{\infty} = \sup_{x \in \mathbb{R}^n} \|f(x)\| < \infty \right\}.$$

is a Banach space

I.B.

QQMDS 22 / 53

< ロ > < 同 > < 回 > < 回 >

IDEA OF THE PROOF OF THE GLOBAL VERSION (II)

• If $\varepsilon > 0$ is small enough, $\mathcal{G} : E \to E$ satisfies the hypotheses of the fixed point theorem. Indeed:

 $\|\mathcal{G}(u_1) - \mathcal{G}(u_2)\| \le \|\mathcal{F}^{-1}\| \|\Delta f \circ (\mathrm{Id} + u_1) - \Delta f \circ (\mathrm{Id} + u_2)\| \le \|\mathcal{F}^{-1}\| \|\mathrm{ip}\,\Delta f\| \|u_1 - u_2\|.$

Since $\|\mathcal{F}^{-1}\| \lim \Delta f < \|\mathcal{F}^{-1}\| \varepsilon < 1$ we are done.

• Then there exists an unique $u \in E$ such that h = Id + u satisfies

$$(L + \Delta f) \circ h = h \circ (L + \Delta g).$$

• It remains to see that *h* is an homeomorphism. Changing Δf and Δg in the above equation, there exists $\bar{h} = Id + \bar{u}$ such that

$$(L + \Delta g) \circ \overline{h} = \overline{h} \circ (L + \Delta f).$$

Then

$$h \circ \overline{h} \circ (L + \Delta f) = h \circ (L + \Delta g) \circ \overline{h} = (L + \Delta f) \circ h \circ \overline{h}.$$

That is, $h \circ \bar{h}$ is a conjugation between $L + \Delta f$ itself. By uniqueness, $h \circ \bar{h} = Id$. Using similar arguments, we prove $\bar{h} \circ h = Id$.

I.B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
 - INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

PRELIMINARIES

Recall that by Hartman's theorem we have that:

FIRST APPROACH

The invariant sets W^u , W^s are the corresponding ones to E^u , E^s . How can we characterize W^u , W^s without using Hartman's theorem?

・ロット (雪) (日) (日) (日)

Dynamical System

Linearised System

For linear maps, by means of a linear change of coordinates, $f(\xi^s, \xi^u) = (A^s \xi^s, A^u \xi^u)$ with

$$\|A^s\| < 1, \qquad \|(A^u)^{-1}\| < 1$$

then $E^{s} = \{\xi^{u} = 0\}, E^{u} = \{\xi^{s} = 0\}$. Notice that,

$$\lim_{m\to\infty} f^m(\xi^s,0)=0, \qquad \lim_{m\to-\infty} f^m(0,\xi^u)=0.$$

Although we can also characterize $E^{s,u}$ as, given *B* a neighbourhood of the origin:

$$E^{s} = \{x : f^{m}(x) \in B, \forall m \ge 0\}, \qquad E^{u} = \{x : f^{m}(x) \in B, \forall m \le 0\}.$$

DEFINITION

INVARIANT MANIFOLDS FOR GENERAL MAPS

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism with a hyperbolic fixed point x_* . For any neighborhood $N \subset U$ of x_* we define the local stable invariant set

$$W^s_N(x_*) = \{x \in \mathbb{R}^n : f^m(x) \in N, \ \forall m \ge 0\} = \bigcap_{m \in \mathbb{N}} f^{-m}(N)$$

and the local unstable invariant set

$$W^u_N(x_*) = \{x \in \mathbb{R}^n : f^{-m}(x) \in N, \ \forall m \ge 0\} = \bigcap_{m \in \mathbb{N}} f^m(N).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
 - INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4 INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

INVARIANT MANIFOLDS FOR HYPERBOLIC POINTS

THEOREM

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism C^r , $r \ge 1$, with an hyperbolic fixed point at $x_* \in U$. Let E^s , E^u be the stable and unstable subspaces of $Df(x_*)$. Then, on a sufficiently small ball $N \subset U$ of x_* , $W_N^{s,u}(x_*)$ are C^r invariant manifolds satisfying that

 $\dim W^s_N(x_*) = \dim E^s, \qquad \dim W^u_N(x_*) = \dim E^u$

and they are tangent to the linear subspaces E^{s,u} respectively.

In fact,

• There exist $\gamma^s : N^s \to E^u, \gamma^u : N^u \to E^s, C^r$ such that

graph
$$\gamma^{s,u} = W_N^{s,u}(x_*).$$

• γ^s is tangent at x_* to E^s and γ^u is tangent at x_* to E^u .

(ロ) (同) (三) (三) (三) (○) (○)

REMARKS (I)

FIRST REMARK

$$x \in W^s_N(x_*) \Longrightarrow \lim_{m \to \infty} f^m(x) = x_*, \qquad x \in W^u_N(x_*) \Longrightarrow \lim_{m \to -\infty} f^m(x) = x_*.$$

Indeed, by Hartman's theorem, if $L\xi = Df(x*)\xi$

$$h \circ L = f \circ h, \Longrightarrow f^m = h \circ L^m \circ h^{-1}, \quad m \in \mathbb{Z}.$$

Let $B = h^{-1}(N)$ be a neighbourhood of the origin. We have that

$$E_B^s = \bigcap_{m \in \mathbb{N}} L^{-m}(B) = \{\xi_u = 0, \xi \in B\}.$$

Moreover,

$$W_N^s(x_*) = \bigcap_{n \in \mathbb{N}} f^{-m}(N) = \bigcap_{m \in \mathbb{N}} h \circ L^m(h^{-1}(N)) = h(E_B^s)$$

and recall that

$$\xi\in E^s_B\Longleftrightarrow \lim_{m\to\infty}L^m\xi=0.$$

Take now $x \in W_N^s(x_*)$, and let ξ be such that $h(\xi) = x$. Then

$$\lim_{m\to\infty} f^m(x) = \lim_{m\to\infty} f^m(h(\xi)) = \lim_{m\to\infty} h(L^m\xi) = h(0) = x_*.$$

The analogous argument for the unstable manifold.

I.B.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

REMARKS (II)

UNIQUENESS RESULT (AGAIN AS A CONSEQUENCE OF HARTMAN'S THEOREM)

If $x \in N$ sufficiently small neighbourhood of x_* , then $W_N^s(x_*) = \operatorname{graph} \gamma^s$. With the Hartman theorem we can only prove that γ^s is continuous.

Indeed, let h = Id + u be the homeomorphism such that $h \circ L = f \circ h$, with $L = Df(x_*)$. We first notice that, changing coordinates if necessary, we can write $x = (x^s, x^u), \xi = (\xi^s, \xi^u), h = (h^s, h^u), u = (u^s, u^u)$ with

$$E^s = \{\xi^u = 0\}, \qquad E^u = \{\xi^s = 0\}, \qquad L = \begin{pmatrix} L^s & 0\\ 0 & L^u \end{pmatrix}.$$

We define the homeomorphism

$$\bar{h}^{s}(\xi^{s}) := h^{s}(\xi^{s}, 0) = \xi^{s} + u^{s}(\xi^{s}, 0)$$

and we recall that $W_N^s(x_*) = h(E_B^s) = \{h(\xi^s, 0)\}_{\xi \in B}$. Then, if $x = (x^s, x^u) \in W_N^s(x_*)$, it satisfies $x = h(\xi_s, 0)$ and

$$x^{s} = h^{s}(\xi^{s}, 0) = \overline{h}^{s}(\xi^{s}) \Longrightarrow \xi^{s} = (\overline{h}^{s})^{-1}(x_{s}).$$

Therefore

$$x^{u} = h^{u}(\xi^{s}, 0) = h^{u}((\bar{h}^{s})^{-1}(x_{s}), 0) =: \gamma^{s}(x_{s}).$$

(ロ) (同) (三) (三) (三) (○) (○)

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps

INVARIANT MANIFOLDS FOR MAPS

- Definition
- The result

The parameterization method

- INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

QQMDS 31 / 53

STRATEGY TO FIND STABLE INVARIANT MANIFOLDS

P.M. was created by Cabré, de la Llave and Fontich

The graph transform method, which is the classical one, is a particular case. It consists on searching a function γ^s such that, if $\pi_{u,s}$ is the projection on $x_{u,s}$:

 $\pi_{u}f(x,\gamma^{s}(x_{s}))=\gamma^{s}(\pi_{s}f(x_{s},\gamma^{s}(x_{s})).$

The Parameterization Method (P.M.), search the invariant manifold parameterized instead as a graph. That is to say,

 $W_N^s(x_*) = \{K(t)\}_t$

Then, the invariance condition is that f(K(t)) = K(t') or written in a better way

$$f(K(t)) = K(R(t)).$$

(ロ) (同) (三) (三) (三) (○) (○)

HOW DOES THE PARAMETERIZATION METHOD WORK?

- Decompose $\mathbb{R}^n = \mathbb{R}^{n_s} \times \mathbb{R}^{n_u}$ being $x \in \mathbb{R}^{n_s}$ the *stable* directions and $y \in \mathbb{R}^{n_u}$ the *unstable* directions.
- Perform a change of variables to ensure that x_{*} = 0 and the stable invariant manifold is tangent to y = 0.
- Find K, R solving the invariance condition $f \circ K = K \circ R$, where

 $K: V \subset \mathbb{R}^{n_s} \to \mathbb{R}^n, \qquad R: V \subset \mathbb{R}^{n_s} \to N,$

and $0 \in N$. To do so,

• A posteriori result. Assuming

$$f \circ K^{\leq}(x) - K^{\leq} \circ R(x) = \mathcal{O}(||x||^{\ell}), \ \ell >> 1.$$

and using the fixed point theorem, it is proven the existence of $K^>$ belonging to an appropriate Banach space and satisfying

$$f \circ (\mathbf{K}^{\leq} + \mathbf{K}^{>}) - (\mathbf{K}^{\leq} + \mathbf{K}^{>}) \circ \mathbf{R} = \mathbf{0}.$$

An approximation result. An algorithm to compute K[≤] and R is provided.

I.B.

QQMDS 33 / 53

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5 PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

DEFINITION

INVARIANT MANIFOLDS FOR FLOWS

Let $X : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a vector field with an equilibrium point x_* . We call its flow φ_t . For any neighborhood $N \subset U$ of x_* we define the local stable invariant set

$$W_N^s(x_*) = \{x \in \mathbb{R}^m : \varphi_t(x) \in N, \forall t \ge 0\} = \bigcap_{t \ge 0} \varphi_{-t}(N)$$

and the local unstable invariant set

$$W^{u}_{N}(x_{*}) = \{x \in \mathbb{R}^{m} : \varphi_{-t}(x) \in N, \forall t \geq 0\} = \bigcap_{t \geq 0} \varphi_{t}(N).$$

As before we have that

$$x \in W^s_N(x_*) \Longrightarrow \lim_{t \to +\infty} \varphi_t(x) = x_*, \qquad x \in W^u_N(x_*) \Longrightarrow \lim_{t \to -\infty} \varphi_t(x) = x_*.$$

QQMDS 35 / 53

イロト イポト イヨト イヨト 二日

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- 5) PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
- BLOW-UP TECNIQUES

THE RESULT (THE SAME AS FOR MAPS)

THEOREM

Let $X : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a C^r , $r \ge 1$, vector field having a hyperbolic equilibrium point at $x_* \in U$. Let E^s , E^u be the stable and unstable subspaces of $DX(x_*)$. Then, on a sufficiently small ball $N \subset U$ of x_* , $W_N^{s,u}(x_*)$ are C^r invariant manifolds satisfying that

 $\dim W^s_N(x_*) = \dim E^s, \qquad \dim W^u_N(x_*) = \dim E^u$

and that they are tangent to the linear subspaces E^{s,u} respectively.

In fact, the same for maps happens:

• There exist $\gamma^s : N^s \to E^u, \gamma^u : N^u \to E^s, C^r$ such that

graph
$$\gamma^{s,u} = W_N^{s,u}(x_*).$$

• γ^s is tangent at x_* to E^s and γ^u is tangent at x_* to E^u .

I.B.

THE PARAMETERIZATION METHOD FOR FLOWS

The idea is the same as for maps. We search the invariant set as the image of a suitable parameterization:

 $W^s_N = \{K(s)\}_s.$

To find it we have to solve what is called the invariance equation. Let us to explain how we can obtain it:

Since we ask K(s) to be invariant:

$$\varphi_t(K(s)) = K(s'), \quad \text{for some } s'.$$

• It is possible to find a new flow ψ such that $s' = \psi_t(s)$?. In this case

$$\varphi_t(K(s)) = K(\psi_t(s)). \tag{2}$$

- Instead to use this invariance equation we try to work with vector fields which are qualitatively easier to find than flows. We call Y the vector field associated to ψ_t.
- Differentiating with respect to *t* equation (2):

$$X(\varphi_t(K(s)) = DK(\psi_t(s))Y(\psi_t(s)).$$

• And evaluating to t = 0 we obtain the infinitesimal version

X(K(s)) = DK(s)Y(s).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4) INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
 - BLOW-UP TECNIQUES

QQMDS 39 / 53

THE APPROXIMATED MANIFOLD (I)

We clarify these ideas with a simple example.

Consider the map

$$f(x,y) = \left(\begin{array}{c} \lambda x + x^2 + y^2 \\ \mu y + x^2 \end{array}\right), \qquad (x,y) \in \mathbb{R}^2, \ |\lambda| < 1, |\mu| > 1.$$

Since the linear part is

$$A = \left(egin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array}
ight),$$

it is clear that $E^s = \{y = 0\}$ and $E^u = \{x = 0\}$.

• The idea is to find K^{\leq} and *R* two polynomials satisfying

$$f \circ K^{\leq}(t) - K^{\leq}(R(t)) = \mathcal{O}(t^N).$$

- On the one hand, the origin is a fixed point, then K(0) = (0, 0). On the other hand, the stable manifold is tangent to E^s , then $\partial_t K(0) = (1, 0)$.
- Write

$$K^{\leq}(t) = \left(\sum_{k=1}^{N} a_k t^k, \sum_{k=2}^{N} b_k t^k\right), \qquad R(t) = \sum_{l=1}^{N} r_l t^l, \qquad a_1 = 1.$$

THE APPROXIMATED MANIFOLD (II)

What we need is:

$$\lambda \sum_{k=1}^{N} a_{k} t^{k} + \left(\sum_{k=1}^{N} a_{k} t^{k} \right)^{2} + \left(\sum_{k=2}^{N} b_{k} t^{k} \right)^{2} = \sum_{k=1}^{N} a_{k} \left(\sum_{l=1}^{N} r_{l} t^{l} \right)^{k}$$
$$\mu \sum_{k=1}^{N} b_{k} t^{k} + \left(\sum_{k=1}^{N} a_{k} t^{k} \right)^{2} = \sum_{k=2}^{N} b_{k} \left(\sum_{l=1}^{N} r_{l} t^{l} \right)^{k}.$$

• Let do it only the first terms. For instance, if we look at the terms of order O(t):

$$\lambda a_1 = a_1 r_1 \Longrightarrow r_1 = \lambda$$
 (recall $a_1 = 1$).

The terms of order $\mathcal{O}(t^2)$ are

$$\lambda a_2 + a_1^2 = a_1 r_2 + a_2 r_1^2$$
$$\mu b_2 + a_1^2 = b_2 r_1^2.$$

We have freedom. We can choose, for instance $r_2 = 0$ and

$$(\mu - \lambda^2)b_2 = -1, \qquad (\lambda - \lambda^2)a_2 = -1.$$

• Iteratively, we can encounter $r_l = 0$ and

$$(\mu - \lambda^2)b_k = \text{known}, \qquad (\lambda - \lambda^2)a_k = \text{known}.$$

200

- INTRODUCTION
 - Preliminary definitions
 - The fixed point theorem
- 2 HARTMAN'S THEOREM
 - The results
 - Idea of the proof for maps
- 3 INVARIANT MANIFOLDS FOR MAPS
 - Definition
 - The result
 - The parameterization method
- 4) INVARIANT MANIFOLDS FOR FLOWS
 - Definition
 - The result
- PARAMETERIZATION METHOD, HOW IT WORKS?
 - Approximated manifold
 - The true manifold
 - THE CENTER MANIFOLD
- BLOW-UP TECNIQUES

THE PROBLEM AS A FIXED POINT EQUATION

• We have now an approximated solution

$$f \circ K^{\leq} - K^{\leq} \circ R = \mathcal{O}(t^N), \qquad R(t) = \lambda t.$$
 (3)

• We look for δK such that $K = K^{\leq} + \delta K$ satisfies

$$f \circ (K^{\leq} + \delta K) = (K^{\leq} + \delta K) \circ R.$$

Call $\tilde{f} = f - A = (x^2 + y^2, x^2)$.

We have then

$$AK^{\leq} + A\delta K + \tilde{f}(K^{\leq} + \delta K) = K^{\leq} \circ R + \delta K \circ R.$$

Reorganizing and using (3)

$$A\delta K - \delta K \circ R = \mathcal{O}(t^N) - \tilde{f}(K^{\leq} + \delta K) + \tilde{f}(K^{\leq}).$$

• The following linear operator is invertible at some Banach space:

 $\mathcal{L}\delta K = A\delta K - \delta K \circ R$

The fixed point equation we have to deal with is

$$\delta K = \mathcal{F} \delta K = \mathcal{L}^{-1} \left(\mathcal{O}(t^N) - \tilde{f}(K^{\leq} + \delta K) + \tilde{f}(K^{\leq}) \right).$$

It is checked that the conditions of the fixed point theorem are satisfied.

200

EXISTENCE RESULT FOR FLOWS

THEOREM

Let $X : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a C^r , $r \ge 1$ vector field. Assume that X has an equilibrium point x_* . We call $A = DX(x_*)$, $E^{c,u,s}$ the linear subspaces satisfying

 $Spec A_{|E^c} \subset \{Re \lambda = 0\}, \qquad Spec A_{|E^u} \subset \{Re \lambda > 0\}, \qquad Spec A_{|E^s} \subset \{Re \lambda < 0\}$

and $n_{c,s,u} = dim(E^{c,u,s})$.

Then, there exists a sufficiently small ball $N \subset U$ of x_* , such that

 There exists a locally invariant C^r manifold W^c_N such that x_{*} ∈ W^c_N, dim W^c_N = dim E^c and it is tangent to E^c at x_{*}.

 There exist unique locally invariant C^r manifolds W^{u,s}_N such that x_∗ ∈ W^{u,s}_N, dim W^{u,s}_N = dim E^{u,s} and it is tangent to E^{u,s} at x_∗.

• If $r = \infty$, W_N^c is C^k for all k and $W_N^{u,s}$ are C^∞ .

In fact it happens that there exists $\gamma^c : N^c \to E^u \times E^s$ such that

graph
$$\gamma^c = W_N^c$$
.

Analogously for $W_N^{u,s}$.

I.B.

▲口▶▲御▶▲臣▶▲臣▶ 臣 のへで

COMMENTS (I)

• Center manifold is not unique. Indeed, take $\dot{x} = ax^2$, $\dot{y} = y$. Then $y = e^{-\frac{1}{ax}}C$ and (0,0) is an equilibrium point with $DX(0) = \text{diag}\{0,1\}$ and $E^c = [(1,0)]$. Any solution with initial point $x_0 > 0$ and y = 0 are tangent to E^c at 0 so that $W^c = \{x > 0\} \cup \{y = 0\}$.

• Dynamics on the W_N^c is unknown without extra hypotheses. It can be attracting, repelling, as a center and almost any behaviour. Indeed, consider

$$\dot{x} = x^2 - \mu^2, \qquad \dot{y} = y + x^2 - \mu^2, \qquad \dot{\mu} = 0.$$

The center manifold of (0, 0, 0), W^c , is tangent to $\{y = 0\}$. For $\mu \neq 0$, the equilibrium points $P^{\pm}_{\mu_0} = (\pm \mu_0, 0, \mu_0)$ are not hyperbolic being $E^c = [(1, 0, \pm 1)]$. Restricting the dynamics to $\mu = \mu_0$, $P^+_{\mu_0}$ is an unstable node and $P^-_{\mu_0}$ is a saddle when $\mu_0 > 0$.

• We can only guarantee finite differentiability. That is, when the vector field is C^{∞} , the center manifold is C^k for any order k, but the differentiability domain can (and usually does) depend on k.

System
$$\dot{x} = x^3$$
, $\dot{y} = 2y - 2x^2$

• The origin is a non hyperbolic equilibrium point with linear part

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array}\right).$$

The center manifolds is tangent to $E^c = [(1,0)]$ at (0,0).

- If the center manifold was analytic, then it would have a convergent Taylor expansion.
- Write the center manifold $y = h(x) = \sum_{i>2} a_i x^i$.

• The invariance condition, $\dot{y} = h'(x)\dot{x}$ is $2h(x) - 2x^2 = h'(x)x^3$:

$$2\sum_{i\geq 2}a_{i}x^{i}-2x^{2}=x^{3}\sum_{i\geq 2}ia_{i}x^{i-1}=\sum_{i\geq 4}(i-2)a_{i-2}x^{i}$$

• Equating same order terms, $a_2 = 1$, $a_3 = 0$ and for $j \ge 4$:

$$2a_j=(j-2)a_{j-2} \Longleftrightarrow a_{2j}=ja_{2j-2}, \quad a_{2j+1}=0.$$

• However, $a_{2j} = j!$ which does not give a convergent series.

I.B.

The system $\dot{x} = \mu x - x^3$, $\dot{y} = y + x^4$, $\dot{\mu} = 0$

• The (0,0,0) has an associated center manifold with *formal expansion*:

$$y = h(x, \mu) = \sum_{i \ge 2, j \ge 0} b_{i,j} x^i \mu^j = \sum_{i \ge 2} a_i(\mu) x^i.$$

• The invariance equation is $(\mu x - x^3)\partial_x h(x, \mu) = h(x, \mu) + x^4$:

$$(\mu x - x^3) \sum_{i \ge 2} i a_i(\mu) x^{i-1} = \sum_{i \ge 2} a_i(\mu) x^i + x^4$$

or in other words:

$$2\mu a_2(\mu)x^2 + 3\mu a_3(\mu)x^3 + \sum_{j\geq 4} (j\mu a_j(\mu) - (j-2)a_{j-2}(\mu))x^j = \sum_{i\geq 2} a_i(\mu)x^i + x^4.$$

• Equating terms of the same order in x^j , we have that $a_2(\mu) = a_3(\mu) = 0$

$$4\mu a_4(\mu) = a_4(\mu) + 1$$
, $a_5(\mu) = 0$, $j\mu a_j(\mu) - (j-2)a_{j-2}(\mu) = a_j(\mu)$.

That is:

$$a_4(\mu) = -\frac{1}{1-4\mu}, \quad a_{2j}(\mu) = -(2j-2)\frac{a_{2j-2}(\mu)}{1-2j\mu}, \quad a_{2j+1}(\mu) = 0.$$

• As a conclusion, the center manifold is C^5 if $\mu < 1/4$, C^7 if $\mu < 1/6$ and, in general, C^{2j+1} if $\mu < 1/(2j)$.

Again system $\dot{x} = x^2 - \mu^2$, $\dot{y} = y + x^2 - \mu^2$, $\dot{\mu} = 0$

The set {x = μ, y = 0} ⊂ W^c = graph*h*, since it is invariant and tangent to {y = 0}.
Consider the Taylor expansion of *h* at x = μ:

$$y(x) = g(x) = \sum_{j=1}^{k} a_j(\mu)(x-\mu)^j + o((x-\mu)^k), \qquad g(\mu) = 0$$

• We have that $\dot{y} = g'(x)\dot{x}$, that is:

$$\sum_{j=1}^{k} a_{j}(\mu)(x-\mu)^{j} + x^{2} - \mu^{2} = (x^{2} - \mu^{2}) \left(\sum_{j=1}^{k} j a_{j}(\mu_{0})(x-\mu)^{j-1} \right) + o((x-\mu)^{k}).$$

• Skip the dependence of a_j on μ and write $x^2 - \mu^2 = (x - \mu)(2\mu + x - \mu)$:

$$\sum_{i=1}^{k} a_{i}(x-\mu)^{j} + (x-\mu)^{2} + 2\mu(x-\mu) = \sum_{j=1}^{k} 2\mu j a_{j}(x-\mu_{0})^{j} + \sum_{j=2}^{k} (j-1)a_{j-1}(x-\mu)^{j}.$$

• Same order terms are equal, so that $a_1 + 2\mu = 2\mu a_1$, $a_2 + 1 = 4\mu a_2 + a_1$ and for $j \ge 3$:

$$a_j = 2\mu j a_j + (j-1)a_{j-1} \Longleftrightarrow a_j = \frac{(j-1)a_{j-1}}{1-2\mu j}.$$

• When
$$\mu = \frac{1}{2m}$$
, W^c is C^{m-1} but it is not C^m .

EQUIVALENCE RESULT

RESTRICTED DYNAMICS IN AN INVARIANT SET

Take X(x, y) a vector field, $\dot{x} = X_1(x, y)$, $\dot{y} = X_2(x, y)$. On any invariant set $\{y = f(x)\}$, one can consider the *restricted dynamics*:

$$\dot{x} = X_1(x, f(x)), \qquad X = (X_1, X_2).$$

We emphasize that the *y*-variable is induced by the dynamics on *x*: $\dot{y} = f'(x)\dot{x}$.

THEOREM

Let X be a C^r , $r \ge 1$ vector field with $W_N^{c,u,s}$ the local invariant manifolds associated to a fixed point with $E^{c,u,s}$ the corresponding subspaces. We write $x = (x_c, x_s, x_u)$ with $(x_c, 0, 0) \in E^c$, $(0, x_s, 0) \in E^s$ and $(0, 0, x_u) \in E^u$. We call $\tilde{X}_c = X_{|W_N^c}$, the restriction to X to W_N^c . Then X is topologically conjugated to

$$\dot{x}_c = \tilde{X}_c(x_c), \qquad \dot{x}_s = -x_s, \qquad \dot{x}_u = x_u.$$

- Since $E^c \oplus E^s \oplus E^u = \mathbb{R}^n$, we indeed can decompose $x = (x_c, x_s, x_u)$.
- W_N^c can be expressed as the graph of $(x_s, x_u) = \gamma^c(x_c)$.
- With these coordinates, $X = (X_c, X_s, X_u)$ and then $\tilde{X}_c(x_c) = X_c(x_c, \gamma^c(x_c))$.
- This result allows to classify non hyperbolic equilibrium points.

System $\dot{x} = x + ay^2$, $\dot{y} = xy$

- The origin is an equilibrium point with $E^c = [(0, 1)]$.
- The case a = 0 gives x = 0 as an equilibrium points line and $y = Ke^x$ the general solution. We assume then $a \neq 0$.
- We compute the Taylor expansion of the center manifold $x = h(y) = cy^2 + \cdots$. Recall that we already know that it is C^k for any k.
- The invariance equation is $cy^2 + ay^2 + \cdots = y(cy^2 + \cdots)(2cy + \cdots)$ and then $c_2 + a = 0$.
- As a consequence $W^c = \{x = -ay^2 + \cdots\}$ and the restricted dynamics is $\dot{y} = -ay^3 + \cdots$
- Then if *a* < 0 the origin is a degenerated node and when *a* > 0, the origin is a degenerated saddle.

THE RESULT FOR MAPS

THEOREM

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a C^r , $r \ge 1$ diffeomorphism. Assume that f has an equilibrium point x_* which can be assumed to be 0. We call A = Df(0), $E^{c,u,s}$ the linear subspaces satisfying

 $\textit{Spec } A_{|E^c} \subset \{|\lambda| = 1\}, \qquad \textit{Spec } A_{|E^u} \subset \{|\lambda| > 1\}, \qquad \textit{Spec } A_{|E^s} \subset \{|\lambda| < 1\}$

and $n_{c,s,u} = \dim(E^{c,u,s})$. Then there exists a C^r function, defined in a neighbourhood $V \subset \mathbb{R}^{n_c}$ of 0, namely, $\gamma^c : V \to \mathbb{R}^{n_u} \times \mathbb{R}^{n_s}$ satisfying:

- $\gamma^{c}(0) = 0$ and graph γ^{c} is tangent to E^{c} at 0.
- graph $\gamma^c \cap U$ is locally invariant, i.e. if $(x_c, \gamma^c(x_c)), f(x_c, \gamma^c(x_c)) \in U$, then $f(x_c, \gamma^c(x_c)) \in graph \gamma^c$.

graph γ^c is called W_{loc}^c , the center manifold.

We also have $W_{loc}^{u,s}$ satisfying the same properties as the ones enunciated in the stable and unstable invariant manifolds theorem.

Same comments as for the flow case.

POLAR BLOW UP

- Perform *singular* change of variables which expand (make bigger) the non hyperbolic fixed point into a curve with a number of singularities.
- Analize the singularities by using the Harman's theorem.
- Then we go back to the original variables to interpret the analysis.

POLAR BLOW UP

Assume that $X : U \subset \mathbb{R}^2$ can be written in polar coordinates as

$$\dot{r} = r^{k+1} R(r, \theta), \qquad \dot{\theta} = r^k \Theta(r, \theta).$$

The phase curves of the above system as the same as the ones in

$$\dot{r} = rR(r,\theta), \qquad \dot{\theta} = \Theta(r,\theta)$$

Notice that the origin (x, y) = 0 goes to r = 0 and that $(r, \theta) \in [0, \infty) \times \mathbb{S}^1$.

I.B.

QQMDS 52 / 53

AN EXAMPLE

• Consider
$$\dot{x} = x^2 - 2xy$$
, $\dot{y} = y^2 - 2xy$.

- In polar coordinates $r = r^2 R(r, \theta)$, $\theta = r\Theta(r, \theta)$.
- Consider $\dot{r} = rR(r, \theta)$, $\dot{\theta} = \Theta(r, \theta)$. This system has singularities at r = 0 and $\theta = 0, \pi/4, \pi/2, 3\pi/2, 5\pi/4.$

We have that:

Contracting to r = 0۹

《口》《聞》 《臣》 《臣》

HYPERBOLIC POINTS

QOMDS 53/53

nan