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GENERAL CONCEPTS PRELIMINARY DEFINITIONS

FAMILIES OF DYNAMICAL SYSTEMS

FAMILIES OF VECTOR FIELDS

A family of dynamical systems are either a vector field or a diffeomorphism
depending on parameters. Namely, X , f : U × Λ ⊂ Rn × Rm → Rn, with U × Λ
an open set, belonging to Cr (U × Λ).
We call µ ∈ Λ the parameter, which has m components.

The goal of the bifurcation theory is to study how the qualitative
behaviour changes with respect to the parameters.

As when we study the structural stable property, we can focus on either
the global behaviour or the local behaviour around some invariant object.

Notice that, in the previous lesson, we have encountered different
behaviours by means of the splitting of separatrices in one degrees of
freedom Hamiltonians.
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GENERAL CONCEPTS PRELIMINARY DEFINITIONS

FAMILIES WE HAVE ALREADY STUDIED

The Lorenz equation
ẋ = 10(y − x)
ẏ = ρx − y − µxz

ż = −
8
3

z + µxy .

When ρ ∈ R, µ = 0, the system is linear.

When ρ = 28, µ = 1, the system has a chaotic attractor.

When ρ < 24.74, µ = 1 the system has three fixed points,
two of them attractors.

The splitting of separatrices of hamiltonian
systems:

H(x , y , t) = H0(x , y) + µH1(x , y , t , µ).

A lot of examples such that when µ = 0,
the system has a homoclinic separatrix.

When µ ̸= 0 the separatrix splits and
appear transversal homoclinic points.

As a consequence, the system for µ ̸= 0
is chaotic meanwhile for µ = 0 the system
is integrable

POINCARÉ SAYS

Bifurcations like torches enlighten the way from simple systems to
complicated ones.

What does mean bifurcations?
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GENERAL CONCEPTS PRELIMINARY DEFINITIONS

BIFURCATIONS OF DYNAMICAL SYSTEMS

BIFURCATIONS

We say that the family X (x , µ) (or f (x , µ)) has a bifurcation at µ = µ∗ if for any
V ⊂ Λ neighborhood of µ∗ there exists µ ∈ V such that X (x , µ) (or f (x , µ)))
exhibits a different qualitative behaviour as X (x , µ∗). That is:

Vector fields: X (x , µ) and X (x , µ∗) are not topologically equivalent;

Diffeomorphism: f (x , µ) and f (x , µ∗) are not topologically conjugated.

Notice that

A family can not have a bifurcation at µ = µ∗ if the system when µ = µ∗
is structurally stable.

We focus on the local behaviour and moreover only in the simplest
scenario: around a fixed point, which has to be non hyperbolic.

Remember that if a fixed point is hyperbolic, the system is locally
structurally stable.
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GENERAL CONCEPTS PRELIMINARY DEFINITIONS

BIFURCATIONS ASSOCIATED TO FIXED POINTS

For µ = µ∗, assume that the system has a non hyperbolic fixed point x∗.
We are interested in studying the local behaviour of the family. That is, the behaviour for
(x , µ) as close as we want of (x∗, µ∗).
The bifurcation parameter and the fixed point can be assumed to be (x∗, µ∗) = (0, 0).
The concept of local family is then introduced as a family defined in a neighbourhood of
(x , µ) = (0, 0).
The concept of local bifurcation is introduced as well: it is a bifurcation of a local family.
Namely, the systems exhibit different local qualitative behaviours.

FROM NOW ON ...

We only consider the family defined in a neighbourhood N of (x , µ) ∼ (0, 0). For instance,

ẋ = µx − x2 − µx3,

has three fixed points

x1 = 0, x2 =
−1 +

√
1 + 4µ2

2µ
, x3 =

−1 −
√

1 + 4µ2

2µ

but only x1, x2 are close to 0. Therefore x3 would be discarded of our analysis.
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GENERAL CONCEPTS ELEMENTARY BIFURCATIONS IN REAL VECTOR FIELDS

SADDLE-NODE BIFURCATION

Consider the following family around µ, x ∼ 0

ẋ = X (x , µ), X (x , µ) = µ− x2, µ, x ∈ R

If µ < 0, there are not fixed points.

If µ = 0, x = 0 is the unique fixed point. It
is non hyperbolic and is neither attractor
nor repeller.

If µ > 0, there are two fixed points
x± = ±√

µ. In addition, x+ is an attractor
and x− is a repeller.

For any µ the phase space (for x) is R.

In the figure, is represented the phase
portrait.

We say that we have a bifurcation at
µ = 0.
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GENERAL CONCEPTS ELEMENTARY BIFURCATIONS IN REAL VECTOR FIELDS

PITCHFORK BIFURCATION

Consider the family

ẋ = µx − x3, µ, x ∼ 0

The point x = 0 is always a fixed point.

If µ < 0, x = 0 is the unique fixed point
and it is an attractor.

If µ = 0 x = 0 is the unique fixed point
and it is an attractor.

If µ > 0, x = 0 is a repeller.

If µ > 0, there are two more fixed points
x± = ±√

µ. Both are attractor.

For any µ the phase space (for x) is R.

In the figure, is represented the phase
portrait.

We say that we have a bifurcation at
µ = 0.
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GENERAL CONCEPTS ELEMENTARY BIFURCATIONS IN REAL VECTOR FIELDS

TRANSCRITICAL BIFURCATION

Consider the family

ẋ = µx − x2, µ, x ∼ 0

The points x = 0 and x = µ are always
fixed points.

If µ < 0, x = 0 is an attractor and x = µ
is a repeller.

If µ = 0 x = 0 is the unique fixed point
and it is neither attractor nor repeller.

If µ > 0, x = 0 is a repeller and x = µ is
an attractor.

For any µ the phase space (for x) is R.

In the figure, is represented the phase
portrait.

We say that we have a bifurcation at
µ = 0.
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GENERAL CONCEPTS FURTHER DEFINITIONS

UNFOLDINGS

Let X0(x) (or f0(x)) be a dynamical system having a non-hyperbolic
singularity at x = 0. We say that X0 (or f0) has a singularity at x = 0 or
(shorter) we say that X0 (or f0(x)) is a singularity. For instance take
X0(x) = −x2.

UNFOLDINGS

An unfolding of X0 (or f0) is a local family X , f : N ⊂ Rn × Rm → Rn such that
X (x ,0) = X0(x) (or f (x ,0) = f0(x)) and it has a bifurcation at (x , µ) = (0,0).
Sometimes we will write Xµ(x) = X (x , µ) (fµ(x) = f (x , µ)).

For instance if X0(x) = −x2, Xµ(x) = (−1 + µ)x2 is not an unfolding.
However, Xµ(x) = µ− x2 is an unfolding as well as Yµ(x) = µx − x2.
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GENERAL CONCEPTS FURTHER DEFINITIONS

EQUIVALENT AND INDUCED FAMILIES

Let Y , g : N ⊂ Rn × Rk → Rn and X , f : N ⊂ Rn × Rm → Rn be unfoldings of X0, f0
respectively.

EQUIVALENT FAMILIES

X ,Y (or f , g) are said to be equivalent if m = k and for any µ small enough, Xµ,Yµ (fµ, gµ) are
topologically equivalent (topologically conjugated) by means of a continuous map h(x , µ).

For instance the families X(x , µ) = µx − x2 and Y (y , µ) =
µ2

4
− y2 are equivalent.

Indeed, consider y = h(x , µ) = x −
µ

2
then

ẏ = ẋ = µx − x2 = µ
(

y +
µ

2

)
−

(
y +

µ

2

)2
=

µ2

4
− y2.

INDUCED FAMILIES

We say that X (f ) is induced by Y (g) if X(x , µ) = Y (x , φ(µ)) (f (x , µ) = g(x , φ(µ)) with
φ : V ⊂ Rm → Rk a continuous map.

The family Y (y , µ) =
µ2

4
− y2 is induced by Z (z, ν) = ν − z2 by the map φ(ν) = ν2/4.
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GENERAL CONCEPTS FURTHER DEFINITIONS

VERSAL UNFOLDINGS

VERSAL UNFOLDINGS

We say that the family X(x , µ) (f (x , µ)) is a versal unfolding of the singularity X0 (f0) if every
unfolding of Y (y , ν) (g(x , µ)) of X0 (f0) is equivalent to an induced by X (f ) family. That is, there
exists φ such that X(x , φ(ν)) (f (x , φ(ν))) is equivalent to Y (y , ν) (g(x , ν)).

X(x , ν) = ν − x2 is a versal unfolding of X0(x) = −x2.
We can prove the result above by using the Malgrange preparation theorem:

THEOREM

Let U × Λ ⊂ R× Rm be an open neighbourhood of the origin and F : U × Λ → R be a C∞

function. Assume that

F (x , 0) = xk g(x), g(0) ̸= 0, with g ∈ C∞(U).

Then there exists q(x , µ) a C∞ function at (0, 0) and functions s0(µ), · · · , sk−1(µ) which are
C∞ at µ = 0 such that

q(x , µ)F (x , µ) = xk +

k−1∑
i=0

si (µ)x i , si (0) = 0.
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GENERAL CONCEPTS FURTHER DEFINITIONS

X (x , ν) = ν − x2, VERSAL UNFOLDING OF X0(x) = −x2

Take Y (y , µ), µ ∈ Rm an unfolding of X0 (Y (y , 0) = −y2). By Malgrange preparation
theorem:

Y (y , µ) =
1

q(y , µ)
(y2 + s0(µ) + s1(µ)y) =⇒ −q(y , 0)y2 = y2 + s0(0) + s1(0)y

Since s0(0) = s1(0) = 0 and q is C∞, q(0, 0) = −1 and therefore, q(y , µ) < 0.
As a consequence the family Y (x , µ) is topologically equivalent (and the homeomorphism
is the identitly) to

Ỹ (y , µ) = −y2 − s0(µ)− s1(µ)y .

Since

Ỹ (y , µ) = −s0(µ) +
s1(µ)

2

4
−

(
y +

s1(µ)

2

)2
,

taking

x = y +
s1(µ)

2
, φ(µ) = −s0(µ) +

s1(µ)
2

4
,

we conclude that Ỹ (y , µ) is equivalent to X(x , φ(µ)) and as a consequence, X(x , ν) is a
versal unfolding.
Notice that also X̂(x , η) = η0 + η1x − x2 is a versal unfolding of X0, but X has less
parameters!

Do exercise 164,165
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GENERAL CONCEPTS FURTHER DEFINITIONS

WHAT ABOUT UNFOLDINGS OF X0(x) = −xk ?
Let Y (y , µ) µ ∈ Rm an unfolding of X0(x) = −xk . Using the Malgrange preparation
theorem

Y (y , µ) =
1

q(y , µ)
(yk + s0(µ) + · · ·+ sk−1(µ)yk−1) =⇒ q(0, 0) = −1.

Therefore, Y is equivalent to Y (y , µ) = −yk − s0(µ)− · · · − sk−1(µ)yk−1, which is
induced by

Ỹ (y , η) = −yk + η0 + η1y + · · ·+ ηk−1yk−1, ηi = −si (µ).

Performing the change of variables

y = x +
ηk−1

k

we obtain that Ỹ is equivalent to

X̂(x , η) =− xk + η0 + f0(η1, · · · , ηk−1) + x [η1 + f0(η2, · · · , ηk−1)] + · · ·

+ xk−2[ηk−2 + fk−2(ηk−1)]

for some C∞ functions fi (which can be explicitly computed).
Take νi = ηi + fi (ηi+1, · · · , ηk−1).
We conclude that X(x , ν) = −xk + ν0 + · · ·+ νk−2xk−2 is a versal unfolding of X0.
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GENERAL CONCEPTS FURTHER DEFINITIONS

THE UNFOLDINGS X (x , η) = η1x + η2x2 − x3

X(x , η)

The local family X(x , η) is a versal unfolding of the singularity X0(x) = −x3.

We need to check that if Y (y , µ) is a versal unfolding of X0, it is equivalent to an induced
by X family.
As we have seen, Y is equivalent to a family induced by

Ŷ (y , ν) = −y3 + ν0 + ν1y .

Write ν = (ν0, ν1). Since Ŷ is a odd polynomial, it has at least one real zero α(ν) which
depends continuously on ν at ν = 0 . Then

Ŷ (y , ν) = −(y − α(ν))(y2 + α(ν)y − ν1 + α2(ν))

and x = y − α(ν) gives

X̂(x , ν) = −x(x2 + 3α(ν)x + 3α2(ν)− ν1)

The family X̂ is induced by X(x , η) taking

η1 = −3α(ν)2 + ν1, η2 = −3α(ν)
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GENERAL CONCEPTS FURTHER DEFINITIONS

BIFURCATION DIAGRAM OF X (x , η) = η1x + η2x2 − x3

Four regions in the
parameter space
(η1, η2).

Their phase portrait in
black located at each
region.

Curves in yellow and
blue are

η2 =
√

−4η1,

η2 = −
√

−4η1.

The phase portrait in
the boundaries are the
ones of the same
color.
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GENERAL CONCEPTS FURTHER DEFINITIONS

MINI VERSAL UNFOLDINGS (I)

DEFINITION

If a versal unfolding has the minimum number of parameters we say that it is a mini versal
unfolding.

A mini versal unfolding of X0(x) = −xk has to have k − 1 parameters.

In fact, X(x , ν) = −xk + ν0 + · · ·+ νk−2xk−2 is a mini versal unfolding of X0.

Indeed, by Malgrange preparation theorem, if Y (y , µ), µ ∈ Rm is a versal unfolding of X0 is
equivalent to

Y (y , µ) = −yk + sk−1(µ)yk−1 + · · ·+ s1(µ)y + s0(µ)

and, in fact, it is equivalent to

X̂(z, µ) = −zk + ŝk−2(µ)zk−2 + · · ·+ ŝ1(µ)z + ŝ0(µ), y = z +
sk−1(µ)

k
.

We need to assure that

∀(ν0, · · · , νk−2) ∼ 0, ∃µ such that (ν0, · · · , νk−2) = (ŝ0(µ), ŝ1(µ), · · · , ŝk−2(µ)).

For that reason, we need µ ∈ Rk−1.
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS

INTRODUCTION

We study the versal unfoldings of the planar singularities X0 such that

X0(0) = 0, detDX0(0) = 0.

Assume that DX0(0) is in Jordan form.
The first case is that, for λ ̸= 0:

DX0(0) =
(

λ 0
0 0

)
, Saddle-Node singularity.

The second is two conjugated complex eigenvalues:

DX0(0) =
(

0 −β
β 0

)
, Hopf singularity.

The third is two eigenvalues 0 but DX0(0) ̸= 0:

DX0(0) =
(

0 1
0 0

)
, cusp singularity.

The last (non studied) one is DX0(0) = 0.

CODIMENSION NOTION

We say that the singularity has codimension ℓ if a mini versal unfolding of it has ℓ independent
parameters.
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE SADDLE-NODE SINGULARITY

THE SADDLE-NODE SINGULARITY

Let X0(x , y) be a singularity

X0(x , y) =
(

λx
0

)
+O(∥(x , y)∥2).

The normal form is (we use the same notation)

X0(x , y) =
(

x(λ+ ay)
by2

)
+O(∥(x , y)∥3).

The general case is when b ̸= 0. That is, this is the less degenerated case.

PROPOSITION

If b ̸= 0, the local family

X(x , y , ν) =
(

x(λ+ ay)
ν + by2

)
+O(∥(x , y)∥3)

is a versal unfolding of the saddle-node singularity X0. The O(∥(x , y)∥3) terms does not depend
on ν.
As a consequence, the saddle-node singularity has codimension 1.
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE SADDLE-NODE SINGULARITY

VERSAL UNFOLDINGS OF THE SADDLE-NODE

SINGULARITY (I)
Sketch of the proof

Let Y (z, µ), z ∈ R2 be an unfolding of the saddle-node singularity. Consider the vector field

ż = Y (z, µ), µ̇ = 0.

After normal form procedure, we have that Y (z, 0) =
(
z1(λ+ az2), bz2

2 ) +O(∥z∥3).
Clearly, (z, µ) = (0, 0) is a non-hyperbolic fixed point.
The central manifold of (z, µ) = (0, 0) is two dimensional and can be expressed as the
graph of z1 = h(z2, µ).
Write Y (z, µ) = (Y1(z, µ),Y2(z, µ)). The central manifold theorem assures that it is
topologically equivalent to

żh = λzh, żc = Z (ζ, µ) := Y2(h(zc , µ), zc , µ), µ̇ = 0.

Z (ζ, µ) is an unfolding of ζ̇ = bζ2. In addition ζ̇ = η + bζ2 is a versal unfolding of the
singularity ζ̇ = bζ2 (the proof is the same as the one for ζ̇ = −ζ2).
We then conclude that Y (z, µ) is equivalent to an induced by

X̂(x , y , η) = (λx , η + by2), η = φ(µ) ∈ R

family.
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE SADDLE-NODE SINGULARITY

VERSAL UNFOLDINGS OF THE SADDLE-NODE

SINGULARITY (II)
Let X(x , y , ν) be the family

X(x , y , ν) = X0(x , y) + (0, ν)⊤ =
(
X 1

0 (x , y),X
2
0 (x , y)

)
+ (0, ν)⊤.

We also have that X(x , y , ν) is equivalent to an induced by X̂(x , y , η) family. Let φ̂(ν) = η.
Recall that the topological equivalent is a transitive equivalence relation, but to prove the
result we need to check that φ̂ is invertible and then ν = φ̂−1(φ(µ)) will be the
transformation between the parameters we need.
There is a topological equivalence between X and

X̃(x , y , ν) =
(
λx , ν + X 2

0 (h(y , ν), ν)
)
.

After we apply the results for the one dimensional case to assure that ν + X 2
0 (h(y , ν), ν) is

equivalent to an induced by η + bξ2 family. To do so, using the Malgrange preparation
theorem

ν+X 2
0 (h(y , ν), ν) = q(y , ν)(y2+s0(ν)+s1(ν)y), q(y , ν) = b+νO(∥(y , ν)∥), s1(0) = 0.

Evaluating at y = 0, ν + X 2
0 (h(0, ν), ν) = q(0, ν)s0(ν) and we conclude that

s0(ν) = b−1ν +O(ν2).

Finally recall that φ̂(ν) = −s0(ν) +O(s1(ν)
2) = −b−1ν +O(ν2).
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE SADDLE-NODE SINGULARITY

THE BIFURCATION DIAGRAM. ANALYSIS

Assume that b < 0 and (renaming −b by b), consider the unfolding X(x , y , ν) defined by

ẋ = xλ+ axy , ẏ = ν − by2, b > 0.

For any ν, x = 0 is invariant and the dynamics on it is given by the (known) vector field
ẏ = ν − by2 (see the saddle-node bifurcation diagram for unidimensional vector fields).
When ν < 0, the system has no fixed points.
When ν = 0, the system has only one fixed point at (0, 0).

When ν > 0, the system has only two fixed points at p− =

(
0,−

√
ν

b

)
, p+ =

(
0,

√
ν

b

)
.

We have that

DX(p−) =

 λ− a
√

ν

b
0

0 2b
√

ν

b

 , DX(p+) =

 λ+ a
√

ν

b
0

0 −2b
√

ν

b

 .

When λ > 0, p− is a repeller node and p+ is a saddle. Conversely, when λ < 0, p− is a
saddle and p+ is an attractor node.
For any ν, x = 0 is the stable (unstable) manifold of p+ (p−) when λ > 0 (λ < 0).

I.B. LOCAL BIFURCATIONS QQMDS 26 / 41



LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE SADDLE-NODE SINGULARITY

THE BIFURCATION DIAGRAM. DRAWING

To do this diagram, we have taken λ > 0.

There is no qualitative difference between this diagram and the one corresponding to a
local family with O(∥(x , y , µ)∥3).
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE SADDLE-NODE SINGULARITY

UNFOLDING A SADDLE-NODE SINGULARITY

The Taylor expansion of X(x , y , µ) is (after translation and linear change of coordinates):

X(x , y , µ) =


λx+

m∑
j=1

ajµj +
m∑

j=1

µj (bj x + cj y) + d1x2 + d2xy + d3y2

m∑
j=1

αjµj +
m∑

j=1

µj (βj x + γj y) + δ1x2 + δ2xy + δ3y2

+ R(x , y , µ),

with R(x , y , µ) = O(∥µ∥2) +O(∥(µ, x , y)∥3).
We call X2(x , y , µ) the up to order 2 terms of the local family X(x , y , µ)

PROPOSITION

If δ3 ̸= 0 and αj ̸= 0 for some j = 1, · · · ,m, the local family X(x , y , µ) is equivalent to an induced
by

X̂(x , y , ν) =
(

x(λ+ ay)
ν + by2

)
family with a = 0.
In addition, the local family X2(x , y , µ) is differentiably conjugated to a one induced by the X̂
family, by allowing a ̸= 0.

Do exercise 175 for the proof
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE HOPF BIFURCATION

THE HOPF SINGULARITY

Let X0(x , y) be a singularity

X0(x , y) =
(

−βy
βx

)
+O(∥(x , y)∥2).

The normal form is (we use the same notation)

X0(x , y) =
(

−βy
βx

)
+ (x2 + y2)

{
a
(

x
y

)
+ b

(
−y
x

)}
+O(∥(x , y)∥5).

The general case is when β > 0 and a ̸= 0.

PROPOSITION

If β, a ̸= 0, the local family

X(x , y , ν) =
(

νx − βy
νy + βx

)
+ (x2 + y2)

{
a
(

x
y

)
+ b

(
−y
x

)}
+O(∥(x , y)∥5).

is a versal unfolding of the Hopf singularity. The O(∥(x , y)∥5) terms does not depend on ν.
As a consequence, the Hopf singularity has codimension 1.

The proof is difficult!
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THE BIFURCATION DIAGRAM. ANALYSIS

Assume that a < 0 and consider the unfolding X(x , y , ν) defined by

ẋ = νx − βy + (x2 + y2)(ax − by), ẏ = νy + βx + (x2 + y2)(ay + bx), a < 0

which in polar coordinates is

ṙ = r(ν + ar2), θ̇ = β + br2.

For any ν, the system has one fixed point at (0, 0) (recall that r ∼ 0). In addition

DX(0, 0, ν) =
(

ν −β
β ν

)
.

Then, if ν > 0, the origin is a repeller focus and if ν < 0, the origin is an attractor focus.
When ν = 0, ṙ = ar3 < 0, θ̇ = β + br2 > 0. Then the origin is an attractor degenerated
focus, in particular a non hyperbolic fixed point.
When ν > 0, the local family has a periodic orbit placed at the circumference of radius
rν =

√
ν/|a|. If ν ≤ 0 there is no periodic orbits.

Again take ν > 0. Notice that ṙ = r(ν + ar2) satisfies

ṙ > 0 if 0 ≤ r <

√
ν

|a|
, ṙ < 0 if r >

√
ν

|a|

Then we conclude that the periodic orbit is attracting.
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THE BIFURCATION DIAGRAM
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE HOPF BIFURCATION

UNFOLDING A HOPF SINGULARITY

THEOREM

Let Y (x , µ), x ∈ R2, µ ∈ R1. Assume that Y (0, µ) = 0 for all µ and that the eigenvalues
λ1(µ), λ2(µ) of DY (0, µ) are pure imaginary for some value of µ = µ∗. Assume in addition that

d
dµ

Reλ1(µ)|µ=µ∗ > 0.

The origin (x = 0) is an asymptotically stable fixed point when µ = µ∗.

Then
1 µ = µ∗ is a bifurcation point.
2 The origin is a stable focus when µ < µ∗.
3 The origin is a unstable focus surrounded by a stable limit cycle when µ > µ∗.

Remarks

Since we are working with local families, the values of µ are close to µ∗.

If the local family Z (x , η) has as parameter η ∈ Rm, we can consider

Y (x , µ) = Z (x , η∗1 , · · · , η
∗
i , µ, η

∗
i+2, · · · , η

∗
m), η∗j given.
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE HOPF BIFURCATION

MORE REMARKS

The fact that
d

dµ
Reλ1(µ)|µ=µ∗ > 0 assures the change of stability of the origin.

A sufficient condition for the origin to be asymptotically stable is a < 0, but it turns out to be
non-necessary. For instance, the family written in polar coordinates as:

ṙ = r(ν + âr4), θ̇ = β + br2

satisfies the conditions but the corresponding a = 0 (the coefficient of r2 in ṙ ).

To prove that the origin is asymptotically stable, is the most difficult hypothesis. One can
use either Lyapunov functions or perform the normal form procedure to compute a and
check if a < 0 or not.

This coefficient a can be computed by means of the third derivatives of the local families at
(x , µ) = (0, µ∗) (see the course book or Guckenheimer and Holmes Nonlinear
Oscillations, Dynamical Systems and Bifurcations of vector fields, page 152...)

To prove the result, use the normal form theorem and the central manifold theorem.
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS THE HOPF BIFURCATION

A DIFFERENT POINT OF VIEW

THEOREM

Let ẋ = X(x , µ), x ∈ Rn, µ ∈ R1 has an equilibrium at (0, 0). Assume that

The central part of DX(0, 0) is a simple pair of pure imaginary eigenvalues.

Let x(µ) be the equilibrium X(x(µ), µ) arising from 0 by using the implicit function theorem.
Denote by λ(µ), λ(µ) the imaginary eigenvalues of DX(x(µ), µ). Assume

d
dµ

Reλ(µ)|µ=0 = d ̸= 0.

Then, by using differentiable changes of variables, the Taylor expansion of order 3 of X(x , µ) is
given by (in polar coordinates)

ṙ = r(dµ+ ar2), θ̇ = β + cµ+ br2.

If a ̸= 0, there is a surface of periodic solutions in the center manifold. If a < 0 these periodic
orbits are stable, while if a > 0, the periodic orbits are repelling.

Hint of the proof. Use the normal form theorem and the central manifold theorem.
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS CUSP BIFURCATION OR BOGDANOV TAKENS BIFURCATION

OUTLINE

1 GENERAL CONCEPTS
Preliminary definitions
Elementary bifurcations in real vector fields
Further definitions

2 LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS
The Saddle-Node singularity
The Hopf bifurcation
Cusp bifurcation or Bogdanov Takens bifurcation
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LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS CUSP BIFURCATION OR BOGDANOV TAKENS BIFURCATION

THE CUSP SINGULARITY

Let X0(x , y) be a singularity of the form

X0(x , y) =
(

y
0

)
+O(∥(x , y)∥2).

The normal form is (we use the same notation)

X0(x , y) =
(

y + ax2

bx2

)
+O(∥(x , y)∥3).

The general case is when a, b ̸= 0. That is, this is the less degenerated case.

PROPOSITION

If a, b ̸= 0, the local family

X(x , y , ν) =
(

y + ν2x + ax2

ν1 + bx2

)
+O(∥(x , y)∥3)

is a versal unfolding of the cusp singularity.
As a consequence, the cusp singularity has codimension 2.

The proof is difficult!
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SOME REMARKS

Recall that the normal form of the singularity X0(x , y) is not unique.
In fact, the most part of the work with this singularity is due to Bogdanov who use another
alternative normal form.
He prove that any two-parameter unfolding of a cusp singularity is equivalent to an induced
by:

ẋ = y , ẏ = η1 + η2x + x2 ± xy .

unfolding.
However we will do the analysis of the cusp bifurcation by taking the family

X2(x , y , ν) =
(

y + ν2x + ax2

ν1 + bx2

)
.

That is the terms up to order two of X .
In addition we take a < 0 and b > 0.
Note that scaling variables (u, v) = (bx , by) and renaming the parameter η1 = bν1 and
the constant α = −a/b > 0, the system becomes

X2(u, v , η) =
(

v + η2u − αu2

η1 + u2

)
.

That is b = 1.
As usual rename u, v , α and η by x , y , a and ν.

I.B. LOCAL BIFURCATIONS QQMDS 38 / 41



LOCAL BIFURCATIONS FOR PLANAR VECTOR FIELDS CUSP BIFURCATION OR BOGDANOV TAKENS BIFURCATION

THE BIFURCATION DIAGRAM (I)

There are no fixed point if ν1 > 0.

When ν1 = 0, there is only one fixed point
(0, 0).

When ν1 < 0, there are two fixed points

p± =
(
x±, (−ν2+ax±)x±

)
, x± = ±

√
|ν1|.

For ν1 < 0, the linearized system

A± := DX2(p±, ν) =

(
ν2 − 2ax± 1

2x± 0

)
has eigenvalues

λ1 =
trA± +

√
(trA±)2 − 4 detA±

2
, λ2 =

trA± −
√

(trA±)2 − 4 detA±

2
.

Since detA+ = −2x+ < 0, x+ is always a saddle.
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THE BIFURCATION DIAGRAM (II)

The character of x− changes. The eigenvalues are

λ1,2 =
ν2 + 2a

√
|ν1| ±

√
(ν2 + 2a

√
|ν1|)2 − 8

√
|ν1|

2
.

Consider the curves

F = {(ν2 + 2a
√

|ν1|)2 = 8
√

|ν1|},

H = {ν2 + 2a
√

|ν1| = 0}

Then if (ν2 + 2a
√

|ν1|)2 ≥ 8
√

|ν1|, x− is an
attractor or repelling node depending on the sign of
ν2 + 2a

√
|ν1|.

For any ν2 ̸= 0 constant, the system has a saddle-node bifurcation at (x , y , ν1) = (0, 0, 0).

If (ν2 + 2a
√

|ν1|)2 < 8
√

|ν1|, x− is a focus.

If (ν1, ν2) ∈ H, the eigenvalues are λ1,2 = ±i
√

2|ν1|1/4.

One can check that crossing transversally H one has a Hopf bifurcation.
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THE BIFURCATION DIAGRAM (III)

Taking values of ν in different regions we get
different qualitative behaviours.

The blue line is not a bifurcation line!

Look the homoclinic connection that appears when
the curve C is crossing!

x− attracting focus crossing the Hopf

bifurcation

on the homoclinic

connection
x− repelling focus
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