
Breakdown of homoclinic orbits to L3: Nonvanishing of the

Stokes constant
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4Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran
Via, 585, 08007 Barcelona, Spain
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Abstract

The Restricted Planar Circular 3-Body Problem models the motion of a body of
negligible mass under the gravitational influence of two massive bodies, called the
primaries, which perform circular orbits coplanar with that of the massless body. In
rotating coordinates, it can be modelled by a two degrees of freedom Hamiltonian
system, which has five critical points called the Lagrange points. Among them, the
point L3 is a saddle-center which is collinear with the primaries and beyond the
largest of the two. The papers [BGG22, BGG23] provide an asymptotic formula for
the distance between the one dimensional stable and unstable manifolds of L3 in a
transverse section for small values of the mass ratio 0 < µ ≪ 1. This distance is
exponentially small with respect to µ and its first order depends on what is usually
called a Stokes constant. The non-vanishing of this constant implies that the distance
between the invariant manifolds at the section is not zero. In this paper, we prove
that the Stokes constant is non-zero. The proof is computer assisted.
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1 Introduction and main result

The Restricted Circular 3-Body Problem models the motion of a body of negligible mass
under the gravitational influence of two massive bodies, called the primaries, which
perform a circular motion. If one also assumes that the massless body moves on the
same plane as the primaries one has the Restricted Planar Circular 3-Body Problem
(RPC3BP).

Let us name the two primaries S (star) and P (planet) and normalize their masses
so that mS = 1 − µ and mP = µ, with µ ∈

(
0, 12
]
. In a rotating coordinate system,

the positions of the primaries can be fixed at qS = (µ, 0) and qP = (µ − 1, 0). Then,
the position and momenta of the third body, (q, p) ∈ R2 × R2, are governed by the
Hamiltonian system associated to the autonomous Hamiltonian

H(q, p;µ) =
||p||2

2
− qt
Å

0 1
−1 0

ã
p− (1 − µ)

||q − (µ, 0)||
− µ

||q − (µ− 1, 0)||
. (1.1)

For µ > 0, it is a well known fact that (1.1) has five critical points, usually called
Lagrange points (see Figure 1). The three collinear Lagrange points, L1, L2 and L3,
are of center-saddle type whereas, for small µ, the triangular ones, L4 and L5, are of
center-center type (see, for instance, [Sze67]).
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Figure 1: Projection onto the q-plane of the Lagrange equilibrium points for the RPC3BP on
rotating coordinates.

The invariant manifolds of the (unstable) Lagrange points are of fundamental im-
portance for understanding the dynamics of the RPC3BP. In particular, those of the
point L3 (more precisely its center-stable and center-unstable invariant manifolds) act as
boundaries of effective stability of the stability domains around L4 and L5 (see [GJMS01,
SSST13]). They also allow to create transfer orbits from the small primary to L3 in the
RPC3BP (see [HTL07, TFR+10]) or between primaries in the Bicircular 4-Body Problem
(see [JN20, JN21]).

In understanding how the invariant manifolds of L3 structure the global dynamics,
it is fundamental to know whether they coincide or not. The purpose of the papers
[BGG22, BGG23] and the present one is to prove that these invariant manifolds do not
coincide the first time they hit a suitable transverse section. This is the content of the
Theorems 1.1 and 1.2 below.

The manifolds W u(L3) and W s(L3) lie in the so called 1 : 1 mean motion resonance
and have two branches each. One pair, which we denote by W u,+(L3) and W s,+(L3),
circumvents L5 whereas the other circumvents L4 and it is denoted as W u,−(L3) and
W s,−(L3), see Figure 2. These branches are symmetric with respect to

Ψ(q, p) = (q1,−q2,−p1, p2).

Thus, to compute the distance between the manifolds, one can restrict the study to
the first ones, W u,+(L3) and W s,+(L3). We measure this distance in symplectic polar
coordinates, defined as

q = r

Å
cos θ
sin θ

ã
, p = R

Å
cos θ
sin θ

ã
− G

r

Å
sin θ

− cos θ

ã
,

where R is the radial linear momentum and G is the angular momentum.
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Figure 2: Projection onto the q-plane of the unstable (red) and stable (green) manifolds of L3,
for µ = 0.0028.

We consider as well the 3-dimensional section

Σ =
{

(r, θ,R,G) ∈ R× T× R2 : r > 1, θ =
π

2

}
and denote by (ru∗ ,

π
2 , R

u
∗ , G

u
∗) and (rs∗,

π
2 , R

s
∗, G

s
∗) the first crossing of the invariant man-

ifolds with this section (see Figure 2). The next theorem, proven in [BGG22, BGG23],
measures the distance between these points for 0 < µ ≪ 1.

Theorem 1.1. There exists µ0 > 0 such that, for µ ∈ (0, µ0),

∥(ru∗ , R
u
∗ , G

u
∗) − (rs∗, R

s
∗, G

s
∗)∥ =

3
√

4µ
1
3 e

− A√
µ

ï
|Θ| + O

Å
1

|logµ|

ãò
,

where

• The constant A > 0 is given by the real-valued integral

A =

∫ √
2−1
2

0

2

1 − x

…
x

3(x + 1)(1 − 4x− 4x2)
dx ≈ 0.177744. (1.2)

• The constant Θ ∈ C is the Stokes constant associated to the inner equation analyzed
in [BGG22, Theorem 2.7] (see also Theorem 2.2).

Theorem 1.1 provides a first order for the distance between the invariant manifolds
of L3, at the first crossing with Σ, provided the Stokes constant Θ is not zero. The main
result of the present paper is the following.
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Theorem 1.2. The constant Θ ∈ C introduced in Theorem 1.1 satisfies

Θ ̸= 0.

The proof of this theorem relies on recent techniques developed by some of the authors
in [BCGS23]. Note however, that the models considered in that paper are rather simple
unfoldings of the Hopf-zero singularity whereas here we deal with a Celestial Mechanics
model, which makes the analysis considerably more delicate.

The paper is organized as follows. In Section 2 we summarize the main steps to prove
Theorem 1.1, performed in the previous works [BGG22, BGG23], we present the inner
equation, which is independent on the small parameter µ, and, finally, we describe the
relation between the Stokes constant Θ and suitable solutions, Zu,s of the inner equation.
The (short) Section 3 is devoted to explain the strategy to prove Theorem 1.2 which
consists in two main steps: characterization of the complex domains where Zu,s are
defined (Theorem 3.1) and analysis of its difference (Theorem 3.2). Then, in Section 4,
relying on the approach developed in [BCGS23], we prove Theorem 3.1. In Section 5 we
give the proof of Theorem 3.2, which in part is computer assisted1.
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2 The invariant manifolds of L3 and the inner equation

Theorem 1.1 falls into what is usually called exponentially small splitting of separatrices.
That is, on the perturbative analysis of the distance between the stable and unstable

1The code for the computer assisted part of the proof is available on the personal web page of MJC.
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manifold of an invariant object when it is exponentially small. Its proof follows the
original approach proposed by Lazutkin in his seminal work on the Standard Map [Laz84,
Laz05]. Note that the papers [BGG22, BGG23] are the first ones where such approach
has been implemented in a Celestial Mechanics model. We refer to [BGG22] for a detailed
list of references on the exponentially small splitting of separatrices phenomenon.

Let us summarize the main steps of this proof and explain where the Stokes constant
arises.

Note first that, in the limit problem H in (1.1) with µ = 0, the five Lagrange
point and the associated invariant manifolds “collapse” into the circle of (degenerate)
critical points ∥q∥ = 1 and p = (p1, p2) = (−q2, q1). Therefore, to analyze the invariant
manifolds, it is convenient to perform a singular change of coordinates to obtain a “new
first order” Hamiltonian which has a saddle-center equilibrium point with stable and
unstable manifolds that coincide along a separatrix. This change of coordinates boils
down to a suitable (singular with respect to µ) scaling of the classical Poincaré planar
elements (see [MO17]). These coordinates are explained in full detail in [BGG22].

In these coordinates, the proof of Theorem 1.1 relies on the following steps.

A. We perform the aformentioned change of coordinates which captures the slow-fast
dynamics of the system. The new Hamiltonian becomes a (fast) oscillator weakly
coupled to a 1-degree of freedom Hamiltonian with a saddle point and a separatrix
associated to it.

B. We analyze the analytical continuation of a time-parametrization of the separatrix.
In particular, we obtain its maximal strip of analyticity, which is given by |Im t| < A
where A is the constant introduced in (1.2). We also describe the character and
location of the complex singularities at the boundaries of this region.

C. We derive the inner equation, which gives the first order of the original system
close to the singularities of the separatrix described in Step B. This equation is
independent of the perturbative parameter µ.

D. We study two special solutions of the inner equation which are approximations
of the perturbed invariant manifolds near the singularities. Moreover, we provide
an asymptotic formula for the difference between these two solutions of the inner
equation. This difference is given in terms of the Stokes constant Θ introduced in
Theorem 1.1.

E. We prove the existence of the analytic continuation of suitable parametrizations of
W u,+(L3) and W s,+(L3) in appropriate complex domains (and as graphs). These
domains contain a segment of the real line and intersect a neighborhood sufficiently
close to the singularities of the separatrix.

F. By using complex matching techniques, we compare the solutions of the inner
equation with the graph parametrizations of the perturbed invariant manifolds.
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G. Finally, we prove that the dominant term of the difference between manifolds
is given by the term obtained from the difference of the solutions of the inner
equation.

Steps A, B, C and D are performed in [BGG22] whereas the Steps E, F and G are
performed in [BGG23]. In particular, [BGG22] showed that the constant Θ ∈ C exists
but no proof of its non-vanishing is provided.

To prove that the Stokes constant Θ is not zero, we have to perform a deeper analysis
of the two special solutions of the inner equation mentioned in Step D. To this end, we
first introduce the so-called inner Hamiltonian, the computation of which (Step C) is
explained in full detail in [BGG22], given by

H(U,W,X, Y ) = W + XY + K(U,W,X, Y ), (2.1)

with

K(U,W,X, Y ) = −3

4
U

2
3W 2 − 1

3U
2
3

Ç
1√

1 + J (U,W,X, Y )
− 1

å
(2.2)

and

J (U,W,X, Y ) =
4W 2

9U
2
3

− 16W

27U
4
3

+
16

81U2
+

4(X + Y )

9U

Å
W − 2

3U
2
3

ã
− 4i(X − Y )

3U
2
3

− X2 + Y 2

3U
4
3

+
10XY

9U
4
3

,

(2.3)

and the symplectic form
Ω = dU ∧ dW + idX ∧ dY.

Let us now summarize the main features of the analysis of the inner equation per-
formed previously in [BGG22] (see Theorem 2.2 below). Following the approach pre-
sented in [BS08] (see also [Bal06]), we look for two suitable solutions of the Hamiltonian
system associated to H, analyzing their orbits as graphs over U . That is, we do not
analyze the trajectories of H directly. To this end, we introduce Z = (W,X, Y ) and the
matrix

A =

Ñ
0 0 0
0 i 0
0 0 −i

é
.

With this notation, the equation associated to the Hamiltonian H can be written as®
U̇ = 1 + g(U,Z),

Ż = AZ + f(U,Z),
(2.4)

where f = (−∂UK, i∂Y K,−i∂XK)T and g = ∂WK. Therefore, to look for solutions of
this equation parametrized as graphs with respect to U , we search functions

Z⋄(U) =
(
W ⋄(U), X⋄(U), Y ⋄(U)

)T
, for ⋄ = u, s,
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Du
κ

γ

ρ(κ, γ) = κ
cos γ

κ
ReU

ImU

Figure 3: The inner domain, Du
κ, for the unstable case (see (2.8)).

satisfying the invariance condition given by (2.4), that is

∂UZ
⋄ = AZ⋄ + R[Z⋄], for ⋄ = u, s, (2.5)

where

R[φ](U) =
f(U,φ) − g(U,φ)Aφ

1 + g(U,φ)
. (2.6)

The special solutions Z⋄ we are interested in, satisfy the asymptotic conditions

lim
ReU→−∞

Zu(U) = 0, lim
ReU→+∞

Zs(U) = 0. (2.7)

In fact, for a fixed γ ∈
(
0, π2

)
, we look for functions Zu and Zs satisfying (2.5), (2.7) and

defined in the domains

Du
κ =

ß
U ∈ C : |ImU | ≥ tan γ ReU +

κ

cos γ
, ReU ≤ 0

™
, Ds

κ = −Du
κ, (2.8)

respectively, for some κ > 0 big enough (see Figure 3).
As a consequence, the difference ∆Z = Zu − Zs can be analyzed in the overlapping

domain
Eκ = {U ∈ C : ImU ≤ −ρ(κ, γ), ReU = 0} ,

where
ρ(κ, γ) =

κ

cos γ
. (2.9)

Remark 2.1. The domains used in [BGG22] are bigger than the ones consider in the
present work and they have an open overlapping domain. We have chosen these smaller
domains, Du

κ and Ds
κ. The resason is that, on the one hand, we will see that it is enough

to analyze the difference Zu−Zs on Eκ = Du
κ∩Ds

κ (contained in the imaginary axis) and,
on the other, to restrict the analysis to smaller domains, makes the explicit computation
of all the constants that appear in our analysis easier.
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The following result is proven in [BGG22].

Theorem 2.2. There exist κ0, b1, b2 > 0 such that for any κ ≥ κ0, equation (2.5) has
analytic solutions Z⋄(U) = (W ⋄(U), X⋄(U), Y ⋄(U))T , for U ∈ D⋄

κ, ⋄ = u, s, satisfying

|U
8
3W ⋄(U)| ≤ b1, |U

4
3X⋄(U)| ≤ b2, |U

4
3Y ⋄(U)| ≤ b2.

In addition, there exist Θ ∈ C and b3 > 0 independent of κ, and a function χ =
(χ1, χ2, χ3)

T such that

∆Z(U) = Zu(U) − Zs(U) = Θe−iU
(

(0, 0, 1)T + χ(U)
)

(2.10)

and, for U ∈ Eκ,

|U
7
3χ1(U)| ≤ b3, |U2χ2(U)| ≤ b3, |Uχ3(U)| ≤ b3.

Moreover, Θ ̸= 0 if and only if ∆Z ̸= 0.

Remark 2.3. In the paper [BGG22], the authors compute numerically the constant Θ
which is approximately Θ ≈ 1.63. To compute it, it suffices to take into account that
Θ = limImU→−∞ ∆Y (U)eiU . Then, we consider

Θρ = |∆Y (−iρ)| eρ,

which, for ρ big enough, satisfies Θρ ≈ |Θ|.
Notice that, as we already claimed in Remark 2.1, we only need to analyze the dif-

ference on Eκ, contained in the imaginary axis.

Theorem 2.2 is proven in [BGG22] in two steps. First, for ⋄ = u, s, one proves the
existence of the functions Z⋄ in domains D⋄

κ with κ large enough. This is achieved
through a fixed point argument of Perron type. Once the existence of the two functions
in a common domain is proved, one looks for an equation for its difference that is used
to derive the asymptotic formula (2.10).

Next section specify the concrete steps for proving Theorem 1.2.

3 Strategy to prove the main result

To prove Theorem 1.2, we follow the strategy developed in [BCGS23] to prove that the
Stokes constant associated to unfoldings of the Hopf-zero singularity does not vanish.
However, note that in [BCGS23] the strategy is tested on rather “simple” unfoldings of
the singularity. On the contrary, in the present paper we deal with a given model of
Celestial Mechanics, which requires more accurate estimates.

The first step to prove Theorem 1.2 is to provide a more quantitative version of
Theorem 2.2. It provides a larger domain of definition of the functions Z⋄ given by
Theorem 2.2 and relies on carrying out a more detailed analysis of the two solutions Z⋄

for ⋄ = u, s.
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Theorem 3.1. The functions Z⋄(U) = (W ⋄(U), X⋄(U), Y ⋄(U))T , ⋄ = u, s, introduced
in Theorem 2.2 are defined in D⋄

κ∗ with (see (2.9))

κ∗ = 6.24, γ =
1

2
and ρ∗ = ρ(κ∗, γ) =

κ∗

cos γ
< ρ0 = 7.12. (3.1)

The proof of this theorem is deferred to Section 4. It follows the approach developed
in [BCGS23] for the inner equation associated to the Hopf-zero singularity.

The second step we perform to prove Theorem 1.2 is to analyze the difference ∆Z
(see (2.10)). This is provided by the next theorem, whose proof is computer assisted
and is deferred to Section 5.

Theorem 3.2. The function ∆Z(U) = Zu(U) − Zs(U) introduced in (2.10) satisfies

∆Z(−iρ) ̸= 0, (3.2)

for a ρ > ρ0, where ρ0 is the constant introduced in (3.1).

By Theorem 2.2, ∆Z(−iρ) ̸= 0 implies that

Θ ̸= 0

and this completes the proof of Theorem 1.2.

4 The domain of the solutions of the inner equation

The proof of Theorem 3.1 relies on a fixed point argument, and follows the same lines as
the proof of the first part of Theorem 2.2 in [BGG22]. The main difference between the
two proofs is that now we need explicit estimates for the fixed point argument. Moreover,
they have to be rather accurate so that we obtain the κ∗ given by Theorem 3.1. Note
that a larger κ∗ would lead to a larger ρ∗ and ρ0 (see (3.1)), which would make harder
to prove Theorem 3.2, since the difference ∆Z is exponentially small with respect to ρ0.

We denote the components of all the functions and operators by a numerical sub-
index f = (f1, f2, f3)

T , unless stated otherwise. Moreover, we deal only with the analysis
for Zu. The analysis for Zs is analogous and leads to exactly the same estimates.

4.1 The fixed point equation and the functional setting

The invariance equation (2.5) can be written as LZu = R[Zu] where L is the linear
operator

Lφ = (∂U −A)φ.

To construct a fixed point equation from (2.5), we consider the following left inverse
operator of L,

G[φ](U) =

Ç∫ 0

−∞
φ1(s + U)ds,

∫ 0

−∞
e−isφ2(s + U)ds,

∫ 0

−∞
eisφ3(s + U)ds

åT

, (4.1)

10



(see Lemma 4.4 below). We look for a fixed point of the operator

F = G ◦ R, (4.2)

in a suitable Banach space.
Given ν ∈ R and κ > 0, we define the norm

∥φ∥ν = sup
U∈Du

κ

|Uνφ(U)| ,

where the domain Du
κ is given in (2.8), and we introduce the Banach space

X u
ν = {φ : Du

κ → C : φ analytic, ∥φ∥ν < +∞} . (4.3)

A solution of Zu = F [Zu] belonging to X u
η × X u

ν × X u
ν with η, ν > 0 satisfies equa-

tion (2.5) and the asymptotic condition (2.7). Then, to prove Theorem 3.1, we look for
a fixed point of the operator F in the Banach space

X u
× = X u

8
3

×X u
4
3

×X u
4
3

, (4.4)

endowed with the norm

∥φ∥× = max
¶
∥φ1∥ 8

3
, ∥φ2∥ 4

3
, ∥φ3∥ 4

3

©
. (4.5)

Theorem 3.1 is a direct consequence of the following proposition.

Proposition 4.1. For any κ ≥ κ∗ where κ∗ is the constant introduced in (3.1), the fixed
point equation Zu = F [Zu] has a solution Zu ∈ X u

×.

We devote the rest of this section to prove Proposition 4.1. Note that our goal is to
compute explicit estimates throughout the proof to obtain a “not too large” κ∗.

Let us explain the main steps of the proof, which are carried out in the forthcoming
sections.

• In Section 4.2, we provide properties of the Banach spaces introduced in (4.3) and
give explicit bounds for the norm of the linear operator G in (4.1).

• In Section 4.3, we give estimates for F [0].

• In Section 4.4, we provide estimates for the derivatives of R (see (2.6)) in a suitable
domain.

• In Section 4.5, we provide explicit expressions for the Lipschitz constant of the
operator F in a suitable region of the Banach space (4.4). Finally, we prove that
the Lipschitz constant is smaller than 1, and therefore F is contractive and has a
unique fixed point.

11



To have accurate estimates in these steps, we rely on explicit formulae for the non-
linear operator R in (2.6) and its first and second derivatives. They are given in Ap-
pendix A.

Note that in [BGG22], we were not able to prove that F is contractive. Instead,
we considered a slightly modified operator which had the same fixed points as F and a
smaller Lipschitz constant. Since the estimates in the present paper are more accurate,
we are able to prove that the original operator F is contractive.

4.2 Banach space properties and the integral operator

Throughout this and the forthcoming sections we use without mentioning the following
remark and lemma.

Remark 4.2. Let U ∈ Du
κ, then |U | ≥ κ.

Next lemma, proven in [Bal06], gives some properties of the Banach spaces X u
η in-

troduced in (4.3).

Lemma 4.3. Let κ > 0 and ν, η ∈ R. The following statements hold:

1. If ν > η, then X u
ν ⊂ X u

η and ∥φ∥η ≤ κη−ν∥φ∥ν .

2. If φ ∈ X u
ν and ζ ∈ X u

η , then the product φζ ∈ X u
ν+η and ∥φζ∥ν+η ≤ ∥φ∥ν∥ζ∥η.

Now we provide estimates for the integral operator introduced in (4.1).

Lemma 4.4. Consider the linear operator G[φ] = (G1[φ1],G2[φ2],G3[φ3])
T as defined

in (4.1) and fix η > 1, ν > 0 and κ ≥ 1. Then, G : X u
η × X u

ν × X u
ν → X u

η−1 × X u
ν × X u

ν

is a continuous linear operator and is a left-inverse of L.
Moreover,

1. For j = 1, 2, 3 and η > 1, the linear operator Gj : X u
η → X u

η−1 is continuous and
satisfies that, for φ ∈ X u

η ,

∥Gj [φ]∥η−1 ≤ Gη∥φ∥η, Gη =

√
π Γ
Ä
η−1
2

ä
2Γ
(η
2

) .

2. For j = 2, 3 and ν > 0, the linear operator Gj : X u
ν → X u

ν is continuous and, for
all 0 < σ ≤ γ (see (2.8)) and φ ∈ X u

ν , satisfies that

∥Gj [φ]∥ν ≤ ∥φ∥ν
sinσ(cosσ)ν

.

The proof of this lemma follows the same lines of the proof of [BCGS23, Lemma 2.1].
We first state the following lemma.

12



Lemma 4.5. Let η > 1. Then,∫ 0

−∞

ds

(1 + s2)
η
2

≤
√
π Γ
Ä
η−1
2

ä
2Γ
(η
2

) .

Proof. Considering the change of coordinates s = tanx,∫ 0

−∞

ds

(1 + s2)
η
2

≤
∫ 0

−π
2

dx

(1 + tan(x)2)
η
2 cos2(x)

=

∫ π
2

0
cosη−2(x)dx.

To complete the proof of the lemma, it only remains to recall that∫ π
2

0
cosη−2(x)dx =

1

2
B

Å
η − 1

2
,

1

2

ã
=

√
π Γ
Ä
η−1
2

ä
2Γ
(η
2

) ,

where B is the classical beta function.

Proof of Lemma 4.4. To prove the first item of the lemma, we consider η > 1 and
φ ∈ X u

η . Then, for j = 1, 2, 3 and U ∈ Du
κ, one has that

|Gj [φ](U)| ≤ ∥φ∥uη
∫ 0

−∞

dS

|s + U |η
.

Moreover, for s ∈ (−∞, 0], one has that |s + U |2 ≥ s2 + |U |2. Then, by Lemma 4.5,

|Gj [φ](U)| ≤
∫ 0

−∞

∥φ∥uη
(s2 + |U |2)

η
2

ds =
∥φ∥uη
|U |η−1

∫ 0

−∞

ds

(1 + s2)
η
2

≤
∥φ∥uη
|U |η−1

√
π Γ
Ä
η−1
2

ä
2Γ
(η
2

) .

Next, we prove the second item. By the geometry of Du
κ and using the Cauchy’s

theorem, we can change the path of integration in the integral (4.1) to teiσ, t ∈ (−∞, 0],
with 0 ≤ σ ≤ γ. Then, for ν > 0 and φ ∈ X u

ν ,

G2[φ](U) =

∫ 0

−∞
e−it cosσet sinσφ(U + teiσ)eiσdt.

Notice that U + teiσ ∈ Du
κ. Then, the function f(t) = |U + teiσ| has a minimum at

t∗ = − |U | cos(argU − σ) and f(t∗) = |U sin(argU − σ)|. Notice that, since argU ∈
[π2 ,

3π
2 ] and t∗ is negative only if argU ∈ [π2 ,

π
2 + σ], one has that

|U + teiσ| ≥ |U | sin
(π

2
− σ

)
= |U | cosσ.

Therefore,

|G2[φ](U)| ≤ ∥φ∥uν
|U | (cosσ)ν

∫ 0

−∞
et sinσdt =

∥φ∥uν
|U | sinσ(cosσ)ν

.

The norm for G3[φ] can be treated in the same way changing the integration path to
te−iσ.
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4.3 Estimates for F(0)

The next proposition gives estimates for F(0).

Proposition 4.6. Fix κ ≥ 1. Then, the operator F in (4.2) satisfies

∥F1[0]∥ 8
3
≤ α0(κ), ∥Fj [0]∥ 4

3
≤ β0(κ), j = 2, 3

and

∥F [0]∥× = max{α0(κ), β0(κ)},

where α0(κ) and β0(κ) are decreasing functions satisfying that

α0(κ) =
8

243
+

32
√
π Γ(73)

729 Γ(176 )

1

κ2

Å
16

81(2 − ζ0(κ))
+

ζ3(κ)

8 − ζ2(κ)
+

16

81κ2
ζ3(κ)

16 − ζ4(κ)

ã
,

β0(κ) =
2

9
+

14
√
π Γ(23)

81 Γ(76)
+

Ç√
π Γ(76)

9 Γ(53)

1

κ
+

2
√
π Γ(53)

81Γ(136 )

1

κ2

å
ζ1(κ)

2 − ζ0(κ)
,

with

ζ0(κ) =
16

81κ2

Ç
1 + 3

…
1 +

16

81κ2

å
, ζ1(κ) =

16

81

Ç
1 + 3

…
1 +

16

81κ2

å
,

ζ2(κ) =
16

81κ2

Ç
6

…
1 +

16

81κ2
+ 8 +

128

81κ2

å
,

ζ3(κ) =
16

81

Ñ
3

2
»

1 − 16
81κ2

+ 6

…
1 +

16

81κ2
+ 6 +

128

81κ2

é
,

ζ4(κ) =
32

81κ2

Ç
10 +

256

81κ2
+

29

37κ4
+

…
1 +

16

81κ2

Å
12 +

368

81κ2
+

297

38κ4

ãå
.

We devote the rest of the section to prove Proposition 4.6. We first provide estimates
for R[0].

Lemma 4.7. Let the operator R be as defined in (2.6). Then,

R1[0](U) =
26

36U
11
3

(
1 + R0

1(U)
)
,

R2[0](U) =

Å
− 2

9U
4
3

− 4i

81U
7
3

ã (
1 + R0

2,3(U)
)
,

R3[0](U) =

Å
− 2

9U
4
3

+
4i

81U
7
3

ã (
1 + R0

2,3(U)
)
,
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where

R0
1(U) =

3

4

Ç
2

3
√

1 + J0(1 +
√

1 + J0)
+

1

(1 + J0)
3
2

åÇ
2(1 + J0)

3
2

2(1 + J0)
3
2 − J0

å
− 1,

R0
2,3(U) =

2

2(1 + J0)
3
2 − J0

− 1,

with J0(U) = 16
81U2 .

Proof. By the expression of R in (2.6), one sees that

R[0](U) =

Å −∂UK(U, 0)

1 + ∂WK(U, 0)
,

i∂Y K(U, 0)

1 + ∂WK(U, 0)
,

−i∂XK(U, 0)

1 + ∂WK(U, 0)

ã
. (4.6)

Notice that, by the definition of J in (2.3), one has that J0(U) := J (U, 0) = 16
81U2 .

Moreover, using the formulae in Appendix A for function J , one sees that

∂UJ (U, 0) = − 32

81U3
, ∂WJ (U, 0) = − 16

27U
4
3

,

∂XJ (U, 0) = − 4i

3U
2
3

− 8

27U
5
3

, ∂Y J (U, 0) =
4i

3U
2
3

− 8

27U
5
3

.

In the same way, using the formulae in Appendix A, one obtains that

∂UK(U, 0) = − 25

36U
11
3

1√
1 + J0(1 +

√
1 + J0)

− 24

35U
11
3

1

(1 + J0)
3
2

,

= − 24

35U
11
3

Ç
2

3
√

1 + J0(1 +
√

1 + J0)
+

1

(1 + J0)
3
2

å
,

∂WK(U, 0) = − 8

81U2

1

(1 + J0)
3
2

= − J0

2(1 + J0)
3
2

,

∂XK(U, 0) =

Å
− 2i

9U
4
3

− 4

81U
7
3

ã
1

(1 + J0)
3
2

,

∂Y K(U, 0) =

Å
2i

9U
4
3

− 4

81U
7
3

ã
1

(1 + J0)
3
2

.

Finally, applying these expressions to (4.6),

R1[0](U) =
24

35U
11
3

Ç
2

3
√

1 + J0(1 +
√

1 + J0)
+

1

(1 + J0)
3
2

åÇ
2(1 + J0)

3
2

2(1 + J0)
3
2 − J0

å
,

R2[0](U) =

Å
− 2

9U
4
3

− 4i

81U
7
3

ã
2

2(1 + J0)
3
2 − J0

,

R3[0](U) =

Å
− 2

9U
4
3

+
4i

81U
7
3

ã
2

2(1 + J0)
3
2 − J0

.
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Notice that, for |U | → ∞,

R0
1(U) = −13

16
J0 +

13

32
J 2
0 + O(J 3

0 ) = − 13

81U2
+

104

6561U4
+ O
Å

1

U6

ã
,

R0
2,3(U) = −J0 +

5

8
J 2
0 + O(J 3

0 ) = − 16

81U2
+

160

6561U4
+ O
Å

1

U6

ã
.

Next lemma provides explicit estimates for these functions in terms of the parameter κ.

Lemma 4.8. For κ ≥ 1 and U ∈ Du
κ (see (2.8)) one has that

∣∣R0
1(U)

∣∣ ≤ C0
1 (κ)

|U |2
,

∣∣R0
2,3(U)

∣∣ ≤ C0
2,3(κ)

|U |2
,

where C0
1 (κ) and C0

2,3(κ) are decreasing functions satisfying that

C0
2,3(κ) =

ζ1(κ)

2 − ζ0(κ)
, C0

1 (κ) =
ζ3(κ)

8 − ζ2(κ)
+

16

81(2 − ζ0(κ))
+

16

81κ2
ζ3(κ)

16 − ζ4(κ)
,

with

ζ0(κ) =
16

81κ2

Ç
3

…
1 +

16

81κ2
+ 1

å
, ζ1(κ) =

16

81

Ç
3

…
1 +

16

81κ2
+ 1

å
,

ζ2(κ) =
16

81κ2

Ç
6

…
1 +

16

81κ2
+ 8 +

128

81κ2

å
,

ζ3(κ) =
16

81

Ñ
3

2
»

1 − 16
81κ2

+ 6

…
1 +

16

81κ2
+ 6 +

128

81κ2

é
,

ζ4(κ) =
32

81κ2

Ç
10 +

256

81κ2
+

29

37κ4
+

…
1 +

16

81κ2

Å
12 +

368

81κ2
+

297

38κ4

ãå
.

Proof. First, we compute C0
2,3(κ). By Lemma 4.7,

R0
2,3(U) =

2 + J0 − 2(1 + J0)
3
2

2 +
¶

2(1 + J0)
3
2 − 2 − J0

© =
r1(J0)

2 + r0(J0)
.

Then, by the mean value theorem,

|r0(J0)| ≤ |J0| sup
σ∈[0,1]

∣∣∣3√1 + σJ0 − 1
∣∣∣ ≤ |J0|

(
3
»

1 + |J0| + 1
)
,

|r1(J0)| ≤ |J0| sup
σ∈[0,1]

∣∣∣1 − 3
√

1 + σJ0

∣∣∣ ≤ |J0|
(

1 + 3
»

1 + |J0|
)
.
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Since, U ∈ Du
κ, one has that |U | ≥ κ. Then, |J0(U)| ≤ 16

81κ2 and, as a result,

|r0(J0)| ≤
16

81κ2

(
3

Å
1 +

16

81κ2

ã 1
2

+ 1

)
= ζ0(κ),

∣∣r1(J0)U
2
∣∣ ≤ 16

81

(
3

Å
1 +

16

81κ2

ã 1
2

+ 1

)
= ζ1(κ).

Notice that ζ0(κ) and ζ1(κ) are decreasing functions for positive κ and ζ0(1) < 2. There-
fore, applying the triangular inequality, we denote

C0
2,3(κ) =

ζ1(κ)

2 − ζ0(κ)
,

which, by construction, is a decreasing function as well.
Analogously, we compute C0

1 (κ). By Lemma 4.7,

R0
1(U) =

3

4

Ç
2

3
√

1 + J0(1 +
√

1 + J0)
+

1

(1 + J0)
3
2

åÇ
2(1 + J0)

3
2

2(1 + J0)
3
2 − J0

å
− 1

=
3

4

Ç
2(1 + J0) + 3(1 +

√
1 + J0)

3(1 + J0)
3
2 (1 +

√
1 + J0)

åÇ
2(1 + J0)

3
2

2(1 + J0)
3
2 − J0

å
− 1

=
3

4

Ç
4

3
+

2(1 + J0) + 3(1 +
√

1 + J0) − 4(1 + J0)
3
2 (1 +

√
1 + J0)

3(1 + J0)
3
2 (1 +

√
1 + J0)

åÇ
1 +

2(1 + J0)
3
2 − 2(1 + J0)

3
2 + J0

2(1 + J0)
3
2 − J0

å
− 1

and

R0
1(U) =

Ç
1 +

1 + 3
√

1 + J0 − 4(1 + J0)
3
2 − 6J0 − 4J 2

0

4(1 + J0)
3
2 (1 +

√
1 + J0)

åÇ
1 +

J0

2(1 + J0)
3
2 − J0

å
− 1

=
1 + 3

√
1 + J0 − 4(1 + J0)

3
2 − 6J0 − 4J 2

0

4(1 + J0)
3
2 (1 +

√
1 + J0)

+
J0

2(1 + J0)
3
2 − J0

+ J0
1 + 3

√
1 + J0 − 4(1 + J0)

3
2 − 6J0 − 4J 2

0

4(1 + J0)
3
2 (1 +

√
1 + J0)

Ä
2(1 + J0)

3
2 − J0

ä
=

r3(J0)

8 + r2(J0)
+

J0

2 + r0(J0)
+ J0

r3(J0)

16 + r4(J0)
.

Then, the function

r2(J0) = 4(1 + J0)
3
2 (1 +

√
1 + J0) − 8 = 4(1 + J0)

3
2 − 4 + 8J0 + 4J 2

0 ,
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by the mean value theorem and taking into account that |J0(U)| ≤ 16
81κ2 , satisfies

|r2(J0)| ≤ |J0| sup
σ∈[0,1]

∣∣∣6√1 + σJ0 + 8 + 8σJ0

∣∣∣ ≤ |J0|
(

6
»

1 + |J0| + 8 + 8 |J0|
)
,

≤ 16

81κ2

Ç
6

…
1 +

16

81κ2
+ 8 +

128

81κ2

å
= ζ2(κ).

Notice that, |J0(U)| ≤ 16
81κ2 < 1 for κ ≥ 1. Then, the functions

r3(J0) = 1 + 3
√

1 + J0 − 4(1 + J0)
3
2 − 6J0 − 4J 2

0 ,

r4(J0) = 4(1 + J0)
3
2 (1 +

√
1 + J0)

Ä
2(1 + J0)

3
2 − J0

ä
− 16

= 4(−2 + 5J0 + 4J 2
0 + J 3

0 ) + 4(1 + J0)
3
2 (2 + 3J0 + 2J 2

0 ),

satisfy

|r3(J0)| ≤ |J0| sup
σ∈[0,1]

∣∣∣∣ 3

2
√

1 + σJ0
− 6
√

1 + σJ0 − 6 − 8σJ0

∣∣∣∣
≤ |J0|

Ç
3

2
√

1 − |J0|
+ 6
»

1 + |J0| + 6 + 8 |J0|
å
,

∣∣r3(J0)U
2
∣∣ ≤ 16

81

Ñ
3

2
»

1 − 16
81κ2

+ 6

…
1 +

16

81κ2
+ 6 +

128

81κ2

é
= ζ3(κ)

and

|r4(J0)| ≤ 4 |J0| sup
σ∈[0,1]

∣∣∣∣5 + 8σJ0 + 3σ2J 2
0 +

1

2

√
1 + σJ0(12 + 23σJ0 + 14σ2J 2

0 )

∣∣∣∣
≤ 2 |J0|

(
10 + 16 |J0| + 6 |J0|2 +

»
1 + |J0|

Ä
12 + 23 |J0| + 14 |J0|2

ä)
≤ 32

81κ2

Ç
10 +

256

81κ2
+

29

37κ4
+

…
1 +

16

81κ2

Å
12 +

368

81κ2
+

297

38κ4

ãå
= ζ4(κ).

Notice that ζ0(κ), ζ2(κ) and ζ4(κ) are decreasing functions for positive κ and one can
easily checked that ζ0(1) < 2, ζ2(1) < 8 and ζ4(1) < 16. Then, we denote

C0
1 (κ) =

ζ3(κ)

8 − ζ2(κ)
+

16

81

1

2 − ζ0(κ)
+

16

81κ2
ζ3(κ)

16 − ζ4(κ)
,

which, by construction, is a decreasing function for κ ≥ 1.

Proof of Proposition 4.6. Let us recall that F = G ◦ R. Then, by Lemmas 4.5, 4.7
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and 4.8, and proceeding as in the proof of Lemma 4.4,

|F1[0](U)| =

∣∣∣∣∣
∫ 0

−∞
R1[0](s + U)ds

∣∣∣∣∣ ≤ 26

36

∣∣∣∣∣
∫ 0

−∞

ds

(s + U)
11
3

∣∣∣∣∣+
26

36

∣∣∣∣∣
∫ 0

−∞

R1(s + U)

(s + U)
11
3

ds

∣∣∣∣∣
≤ 26

36

∣∣∣∣ 3

8U
8
3

∣∣∣∣+
26

36
C0
1 (κ)

∫ 0

−∞

ds

|s + U |
17
3

≤ 23

35 |U |
8
3

+
26

36
C0
1 (κ)

∫ 0

−∞

ds

(s2 + |U |2)
17
6

≤ 8

35 |U |
8
3

+
26C0

1 (κ)

36 |U |
14
3

∫ 0

−∞

ds

(1 + s2)
17
6

≤ 8

35 |U |
8
3

+
26C0

1 (κ)

36 |U |
14
3

√
π Γ(73)

2Γ(176 )
.

Then

∥F1[0]∥ 8
3
≤ 8

243
+

32
√
π Γ(73)

729 Γ(176 )

C0
1 (κ)

κ2
.

Following the same ideas, one has that

|F2[0](U)| =

∣∣∣∣∣
∫ 0

−∞
e−isR2[0](s + U)ds

∣∣∣∣∣
≤ 2

9

∣∣∣∣∣
∫ 0

−∞

e−is

(s + U)
4
3

ds

∣∣∣∣∣+
2

9

∣∣∣∣∣
∫ 0

−∞

e−isR2,3(s + U)

(s + U)
4
3

ds

∣∣∣∣∣+
4

81

∣∣∣∣∣
∫ 0

−∞

e−is(1 + R2,3(s + U))

(s + U)
7
3

ds

∣∣∣∣∣ .
Notice that the first integral in the inequality satisfies that∫ 0

−∞

e−is

(s + U)
4
3

ds = i

ñ
e−is

(s + U)
4
3

ôs=0

s=−∞
+

4i

3

∫ 0

−∞

e−is

(s + U)
7
3

ds

=
i

U
4
3

+
4i

3

∫ 0

−∞

e−is

(s + U)
7
3

ds.

Then, proceeding as in the proof of Lemma 4.4,

|F2[0](U)| ≤ 2

9 |U |
4
3

+
8

27

∫ 0

−∞

ds

|s + U |
7
3

+
2C0

2,3(κ)

9

∫ 0

−∞

ds

|s + U |
10
3

+
4

81

∫ 0

−∞

ds

|s + U |
7
3

+
4C0

2,3(κ)

81

∫ 0

−∞

ds

|s + U |
13
3

≤ 2

9 |U |
4
3

+
28

81 |U |
4
3

∫ 0

−∞

ds

(1 + s2)
7
6

+
2C0

2,3(κ)

9 |U |
7
3

∫ 0

−∞

ds

(1 + s2)
5
3

+
4C0

2,3(κ)

81 |U |
10
3

∫ 0

−∞

ds

(1 + s2)
13
6

=

Ç
2

9
+

14
√
π Γ(23)

81Γ(76)

å
1

|U |
4
3

+

√
π Γ(76)C0

2,3(κ)

9Γ(53)

1

|U |
7
3

+
2
√
π Γ(53)C0

2,3(κ)

81Γ(136 )

1

|U |
10
3

.
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Then

∥F2[0]∥ 4
3
≤ 2

9
+

14
√
π Γ(23)

81 Γ(76)
+

√
π Γ(76)C0

2,3(κ)

9 Γ(53)

1

κ
+

2
√
π Γ(53)C0

2,3(κ)

81Γ(136 )

1

κ2
.

An analogous result holds for F3[0].

4.4 Estimates for the derivatives of R

Let ϱ1, ϱ2 > 1 and denote

α(κ, ϱ1) = α0(κ)ϱ1, β(κ, ϱ2) = β0(κ)ϱ2,

where functions α0 and β0 as given in Proposition 4.6. Notice that, for κ ≥ 1, the
functions α(κ, ϱ1) and β(κ, ϱ2) are positive functions decreasing in κ and increasing in
ϱ1 and ϱ2, respectively.

Then, we consider the closed set defined by

Rκ(ϱ1, ϱ2) = {(W u, Xu, Y u) ∈ X u
× : ∥W u∥ 8

3
≤ α(κ, ϱ1), ∥Xu∥ 4

3
, ∥Y u∥ 4

3
≤ β(κ, ϱ2)},

where X u
× and ∥·∥× were defined in (4.4) and (4.5), respectively. The next two lemmas

give estimates for the functions J and K, introduced in (2.3) and (2.2) respectively, and
their derivatives for functions in the closed domain Rκ(ϱ1, ϱ2).

In the following, we omit the dependence of certain functions in ϱ1, ϱ2 and κ to
simplify notation.

Lemma 4.9. Let κ ≥ 1 and ϱ1, ϱ2 > 1 and define the functions

ξ0 =
16 + 216β

81
+

16β

27κ
+

16α + 48β2

27κ2
+

8αβ

9κ3
+

4α2

9κ4
,

ξ1 =
32 + 144β

81
+

80β

81κ
+

64α + 192β2

81κ2
+

8αβ

9κ3
+

8α2

27κ4
,

ξ2 =
16

27
+

8β

9κ
+

8α

9κ2
,

ξ3 =
4

3
+

8

27κ
+

16β

9κ2
+

4α

9κ3
,

ξ4 =
64

81
+

8β

9κ
+

16α

27κ2
,

ξ5 =
8

9
+

40

81κ
+

64β

27κ2
+

4α

9κ3
,

which are positive functions decreasing in κ and increasing in ϱ1 and ϱ2.
Then, for Zu ∈ Rκ(ϱ1, ϱ2), the following estimate for J (U,Zu) in (2.3) holds,

∥J (·, Zu)∥2 ≤ ξ0.
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Moreover, its first and second derivatives satisfy

∥∂UJ (·, Zu)∥3 ≤ ξ1, ∥∂WJ (·, Zu)∥ 4
3
≤ ξ2, ∥∂XJ (·, Zu)∥ 2

3
, ∥∂Y J (·, Zu)∥ 2

3
,≤ ξ3,

and

∥∂UWJ (·, Zu)∥ 7
3
≤ ξ4, ∥∂UXJ (·, Zu)∥ 5

3
, ∥∂UY J (·, Zu)∥ 5

3
≤ ξ5,

∥∂2
WJ (·, Zu)∥ 2

3
=

8

9
, ∥∂WXJ (·, Zu)∥1, ∥∂WY J (·, Zu)∥1 =

4

9
,

∥∂XY J (·, Zu)∥ 4
3

=
10

9
, ∥∂2

XJ (·, Zu)∥ 4
3
, ∥∂2

Y J (·, Zu)∥ 4
3

=
2

3
.

Proof. The estimate for J is a consequence of the following,

|J (U,Zu)| ≤ 4α2

9 |U |6
+

16α

27 |U |4
+

16

81 |U |2
+

8αβ

9 |U |5
+

16β

27 |U |3
+

8β

3 |U |2
+

2β2

3 |U |4
+

10β2

9 |U |4

=
1

|U |2

Å
16 + 216β

81
+

16β

27κ
+

16α + 48β2

27κ2
+

8αβ

9κ3
+

4α2

9κ4

ã
:=

ξ0

|U |2
.

The first derivatives can be bounded by

|∂UJ (U,Zu)| ≤ 8α2

27 |U |7
+

64α

81 |U |5
+

32

81 |U |3
+

8αβ

9 |U |6
+

80β

81 |U |4
+

16β

9 |U |3
+

8β2

9 |U |5
+

40β2

27 |U |5

=
1

|U |3

Å
32 + 144β

81
+

80β

81κ
+

64α + 192β2

81κ2
+

8αβ

9κ3
+

8α2

27κ4

ã
:=

ξ1

|U |3
,

|∂WJ (U,Zu)| ≤ 8α

9 |U |
10
3

+
16

27 |U |
4
3

+
8β

9 |U |
7
3

=
1

|U |
4
3

Å
16

27
+

8β

9κ
+

8α

9κ2

ã
:=

ξ2

|U |
4
3

,

|∂XJ (U,Zu)| ≤ 4α

9 |U |
11
3

+
8

27 |U |
5
3

+
4

3 |U |
2
3

+
2β

3 |U |
8
3

+
10β

9 |U |
8
3

=
1

|U |
2
3

Å
4

3
+

8

27κ
+

16β

9κ2
+

4α

9κ3

ã
:=

ξ3

|U |
2
3

,

|∂Y J (U,Zu)| ≤ ξ3

|U |
2
3

,

and the second derivatives by

|∂UWJ (U,Zu)| ≤ 16α

27 |U |
13
3

+
64

81 |U |
7
3

+
8β

9 |U |
10
3

=
1

|U |
7
3

Å
64

81
+

8β

9κ
+

16α

27κ2

ã
:=

ξ4

|U |
7
3

,

|∂UXJ (U,Zu)| ≤ 4α

9 |U |
14
3

+
40

81 |U |
8
3

+
8

9 |U |
5
3

+
8β

9 |U |
11
3

+
40β

27 |U |
11
3

=
1

|U |
5
3

Å
8

9
+

40

81κ
+

64β

27κ2
+

4α

9κ3

ã
:=

ξ5

|U |
5
3

,

|∂UY J (U,Zu)| ≤ ξ5

|U |
5
3

,
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∣∣∂2
WJ (U,Zu)

∣∣ =
8

9 |U |
2
3

, |∂WXJ (U,Zu)| =
4

9 |U |
, |∂WY J (U,Zu)| =

4

9 |U |
,

∣∣∂2
XJ (U,Zu)

∣∣ =
2

3 |U |
4
3

, |∂XY J (U,Zu)| =
10

9 |U |
4
3

,
∣∣∂2

Y J (U,Zu)
∣∣ =

2

3 |U |
4
3

.

Finally notice that, κ ≥ 1 and ϱ1, ϱ2 > 1, by Proposition 4.6, α(κ, ϱ1) = ϱ1α0(κ) and
β(κ, ϱ2) = ϱ2β0(κ) are positive functions decreasing in κ and increasing in ϱ1 and ϱ2.
Therefore, the auxiliary functions ξ0, .., ξ5 are as well.

Lemma 4.10. Let ϱ1 ∈ (1, 60), ϱ2 ∈ (1, 3) and κ ≥ 3. Then, for Zu ∈ Rκ(ϱ1, ϱ2), the
derivatives of the Hamiltonian K in (2.2) satisfy

∥∂UK(·, Zu)∥ 11
3
≤ η1, ∥∂WK(·, Zu)∥2 ≤ η2, ∥∂XK(·, Zu)∥ 4

3
, ∥∂Y K(·, Zu)∥ 4

3
≤ η3

and

∥∂UWK(·, Zu)∥3 ≤ η4, ∥∂UXK(·, Zu)∥ 7
3
, ∥∂UY K(·, Zu)∥ 7

3
≤ η5,

∥∂2
WK(·, Zu)∥− 2

3
≤ η6, ∥∂WXK(·, Zu)∥ 5

3
, ∥∂WY K(·, Zu)∥ 5

3
≤ η7,

∥∂XY K(·, Zu)∥2 ≤ η8, ∥∂2
XK(·, Zu)∥2, ∥∂2

Y K(·, Zu)∥2 ≤ η9,

where

η0 =

…
1 − ξ0

κ2
, η1 =

4ξ0

9η0(4 − ξ0η
−1
0 κ−2)

+
ξ1

6η30
+

α2

2κ2
,

η2 =
3α

2
+

ξ2
6η30

, η3 =
ξ3

6η30
,

η4 = α +
ξ2

9η30
+

ξ4
6η30

+
ξ1ξ2

4η50κ
2
, η5 =

ξ3
9η30

+
ξ5

6η30
+

ξ1ξ3
4η50κ

2
,

η6 =
3

2
+

4

27η30κ
2

+
ξ22

4η50κ
4
, η7 =

2

27η30
+

ξ2ξ3
4η50κ

,

η8 =
5

27η30
+

ξ23
4η50

, η9 =
1

9η30
+

ξ23
4η50

.

Moreover, for κ ≥ 3, ϱ1 ∈ (1, 60) and ϱ2 ∈ (1, 3), the functions η1, .., η9 are positive
functions decreasing in κ and increasing in ϱ1 and ϱ2.

Proof. Let us consider first lower bounds for 1 +J (U,Zu). By Lemma 4.9, one has that

|J (U,Zu)| ≤ ξ0
κ2

.

Notice that, by Proposition 4.6, α0(κ) and β0(κ) are decreasing for positive values of κ.
Therefore, α(κ, ϱ1) and β(κ, ϱ2) are decreasing for κ > 0 and increasing for ϱ1, ϱ2 > 0.
Then, by the definition of ξ0 in Lemma 4.9,

|J (U,Zu)| ≤ ξ0
κ2

∣∣∣∣∣
κ=3,ϱ1=60,ϱ2=3

< 1. (4.7)
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Therefore, by the triangular inequality,

|
»

1 + J (U,Zu)| ≥
»

1 − |J (U,Zu)| ≥
…

1 − ξ0
κ2

:= η0. (4.8)

Next, we consider lower bounds for the denominator 1 +
√

1 + J (U,Zu). Notice
that, by the mean value theorem and taking into account (4.7),

∣∣∣»1 + J (U,Zu) − 1
∣∣∣ ≤ |J (U,Zu)| sup

σ∈[0,1]

∣∣∣∣∣ 1

2
√

1 + σJ (U,Zu)

∣∣∣∣∣
≤ ξ0

2κ2
1√

1 − |J (U,Zu)|
≤ ξ0

2η0κ2
.

In addition, one can see that,

∣∣∣»1 + J (U,Zu) − 1
∣∣∣ ≤ ξ0

2η0κ2

∣∣∣∣∣
κ=3,ϱ1=60,ϱ2=3

< 2.

Then, by the triangular inequality,∣∣∣1 +
»

1 + J (U,Zu)
∣∣∣ ≥ 2 − ξ0

2η0κ2
. (4.9)

We estimate now the first derivatives of K. By the formulae in Appendix A, Lemma 4.9,
(4.8) and (4.9), one has that

|∂UK(U,Zu)| ≤ α2

2 |U |
17
3

+
2ξ0

9η0(2 − ξ02−1η−1
0 κ−2) |U |

11
3

+
ξ1

6η30 |U |
11
3

≤ 1

|U |
11
3

Ç
4ξ0

9η0(4 − ξ0η
−1
0 κ−2)

+
ξ1

6η30
+

α2

2κ2

å
:=

η1

|U |
11
3

and

|∂WK(U,Zu)| =
3α

2 |U |2
+

ξ2

6η30 |U |2
:=

η2

|U |2
,

|∂XK(U,Zu)| =
ξ3

|U |
4
3 6η30

:=
η3

|U |
4
3

,

|∂Y K(U,Zu)| ≤ η3

|U |
4
3

.

23



Finally, we consider estimates for the second derivatives of K,

|∂UWK(U,Zu)| ≤ α

|U |3
+

ξ2

9η30 |U |3
+

ξ4

6η30 |U |3
+

ξ1ξ2

4η50 |U |5

≤ 1

|U |3

Å
α +

ξ2
9η30

+
ξ4

6η30
+

ξ1ξ2
4η50κ

2

ã
:=

η4

|U |3
,

|∂UXK(U,Zu)| ≤ ξ3

9η30 |U |
7
3

+
ξ5

6η30 |U |
7
3

+
ξ1ξ3

4η50 |U |
13
3

≤ 1

|U |
7
3

Å
ξ3

9η30
+

ξ5
6η30

+
ξ1ξ3

4η50κ
2

ã
:=

η5

|U |
7
3

,

|∂UY K(U,Zu)| ≤ η5

|U |
7
3

and

∣∣∂2
WK(U,Zu)

∣∣ ≤ 3 |U |
2
3

2
+

4

27η30 |U |
4
3

+
ξ22

4η50 |U |
10
3

≤ |U |
2
3

Å
3

2
+

4

27η30κ
2

+
ξ22

4η50κ
4

ã
:= |U |

2
3 η6,

|∂WXK(U,Zu)| ≤ 2

27η30 |U |
5
3

+
ξ2ξ3

4η50 |U |
8
3

≤ 1

|U |
5
3

Å
2

27η30
+

ξ2ξ3
4η50κ

ã
:=

η7

|U |
5
3

,

|∂WY K(U,Zu)| ≤ η7

|U |
5
3

and

|∂XY K(U,Zu)| ≤ 5

27η30 |U |2
+

ξ23
4η50 |U |2

:=
η8

|U |2
,

∣∣∂2
XK(U,Zu)

∣∣ ≤ 1

9η30 |U |2
+

ξ23
4η50 |U |2

:=
η9

|U |2
,∣∣∂2

Y K(U,Zu)
∣∣ ≤ η9

|U |2
.

Since ξ0, · · · , ξ5 are decreasing functions for κ and increasing for ϱ, by construction one
can see that the functions η1, .., η9 are increasing for ϱ1 ∈ (1, 60) and ϱ2 ∈ (1, 3) and
decreasing for κ ≥ 3.

The two previous lemmas provide the necessary bounds to estimate the derivatives
of the function R.

24



Lemma 4.11. Assume ϱ1 ∈ (1, 60), ϱ2 ∈ (1, 3) and κ ≥ 3. Then, for Zu ∈ Rκ(ϱ1, ϱ2),
one has that

∥∂WR1[Z
u]∥3 ≤ ν1, ∥∂XR1[Z

u]∥ 7
3
≤ ν2, ∥∂Y R1[Z

u]∥ 7
3
≤ ν2,

∥∂WR2[Z
u]∥ 2

3
≤ ν3, ∥∂XR2[Z

u]∥2 ≤ ν4, ∥∂Y R2[Z
u]∥2 ≤ ν5,

∥∂WR3[Z
u]∥ 2

3
≤ ν3, ∥∂XR3[Z

u]∥2 ≤ ν5, ∥∂Y R3[Z
u]∥2 ≤ ν4,

where

ν0 =
(

1 − η2
κ2

)2
,

ν1 =
η4
ν0

+
η2η4
ν0κ2

+
η1η6
ν0

,

ν2 =
η5
ν0

+
η2η5
ν0κ2

+
η1η7
ν0κ3

,

ν3 =
η7
ν0κ

+
η2η7
ν0κ3

+
βη6
ν0

+
2βη2η6
ν0κ2

+
η3η6
ν0

,

ν4 =
η8
ν0

+
η2η8
ν0κ2

+
η2
ν0

+
η22
ν0κ2

+
βη7
ν0κ

+
2βη2η7
ν0κ3

+
η3η7
ν0κ

,

ν5 =
η9
ν0

+
η2η9
ν0κ2

+
βη7
ν0κ

+
2βη2η7
ν0κ3

+
η3η7
ν0κ

.

Moreover, for ϱ1 ∈ (1, 60), ϱ2 ∈ (1, 3) and κ ≥ 3, the functions ν1, .., ν5 are positive
functions decreasing in κ and increasing in ϱ1 and ϱ2.

Proof. Let us first look for a lower bound for the denominator 1 + ∂WK(U,Zu). Notice
that,

|∂WK(U,Zu)| ≤ η2
κ2

∣∣∣∣∣
κ=3,ϱ1=60,ϱ2=3

< 1.

Then, by the triangular inequality,

|1 + ∂WK(U,Zu)|2 ≥
(

1 − η2
κ2

)2
:= ν0.

We now analyze the derivatives of R1[Z
u]. Indeed, by the formulae in Appendix A, one
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has that

|∂WR1[Z
u](U)| ≤ η4

ν0 |U |3
+

η2η4

ν0 |U |5
+

η1η6

ν0 |U |3

≤ 1

|U |3

Å
η4
ν0

+
η2η4
ν0κ2

+
η1η6
ν0

ã
:=

ν1

|U |3
,

|∂XR1[Z
u](U)| ≤ η5

ν0 |U |
7
3

+
η2η5

ν0 |U |
13
3

+
η1η7

ν0 |U |
16
3

≤ 1

|U |
7
3

Å
η5
ν0

+
η2η5
ν0κ2

+
η1η7
ν0κ3

ã
:=

ν2

|U |
7
3

,

|∂Y R1[Z
u](U)| ≤ ν2

|U |
7
3

.

The derivatives of R2[Z
u] satisfy

|∂WR2[Z
u](U)| ≤ 1

ν0

(
η7

|U |
5
3

+
βη6

|U |
2
3

)Ç
1 +

η2

|U |2

å
+

1

ν0

(
η3

|U |
4
3

+
βη2

|U |
10
3

)
η6 |U |

2
3

≤ 1

|U |
2
3

Å
η7
ν0κ

+
η2η7
ν0κ3

+
βη6
ν0

+
2βη2η6
ν0κ2

+
η3η6
ν0

ã
:=

ν3

|U |
2
3

,

|∂XR2[Z
u](U)| ≤ 1

ν0

Ç
η8

|U |2
+

η2

|U |2
+

βη7

|U |3

åÇ
1 +

η2

|U |2

å
+

1

ν0

(
η3

|U |
4
3

+
βη2

|U |
10
3

)
η7

|U |
5
3

≤ 1

|U |2

Å
η8
ν0

+
η2η8
ν0κ2

+
η2
ν0

+
η22
ν0κ2

+
βη7
ν0κ

+
2βη2η7
ν0κ3

+
η3η7
ν0κ

ã
:=

ν4

|U |2
,

|∂Y R2[Z
u](U)| ≤ 1

ν0

Ç
η9

|U |2
+

βη7

|U |3

åÇ
1 +

η2

|U |2

å
+

1

ν0

(
η3

|U |
4
3

+
βη2

|U |
10
3

)
η7

|U |
5
3

≤ 1

|U |2

Å
η9
ν0

+
η2η9
ν0κ2

+
βη7
ν0κ

+
2βη2η7
ν0κ3

+
η3η7
ν0κ

ã
:=

ν5

|U |2
.

An analogous procedure leading to the same estimates holds for the derivatives of R3.
Finally, since η1, · · · , η9 are decreasing functions for κ and increasing for ϱ1 and ϱ2,

one can see that the functions ν1, · · · , ν5 are increasing for ϱ1 ∈ (1, 60) and ϱ2 ∈ (1, 3)
and decreasing for κ ≥ 3.

4.5 The Lipschitz constant of F

The next lemma gives estimates for the Lipschitz constant of the operator F in (4.2)
with respect to each variable.

Proposition 4.12. Assume γ ∈
Ä
0, arctan

√
3
2

ä
, κ ≥ 3, ϱ1 ∈ (1, 60), ϱ2 ∈ (1, 3). Then,
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for any Zu, Z̃u ∈ Rκ(ϱ1, ϱ2), one has that

∥F1[Z
u] −F1[Z̃

u]∥ 8
3
≤ ν̃1

κ2
∥W u − W̃ u∥ 8

3
+ ν̃2∥Xu − ‹Xu∥ 4

3
+ ν̃2∥Y u − ‹Y u∥ 4

3
,

∥F2[Z
u] −F2[Z̃

u]∥ 4
3
≤ ν̃3

κ2
∥W u − W̃ u∥ 8

3
+

ν̃4
κ2

∥Xu − ‹Xu∥ 4
3

+
ν̃5
κ2

∥Y u − ‹Y u∥ 4
3
,

∥F3[Z
u] −F3[Z̃

u]∥ 4
3
≤ ν̃3

κ2
∥W u − W̃ u∥ 8

3
+

ν̃5
κ2

∥Xu − ‹Xu∥ 4
3

+
ν̃4
κ2

∥Y u − ‹Y u∥ 4
3
,

where

ν̃i = νi

√
πΓ(43)

2Γ(116 )
, for i = 1, 2, ν̃j =

νj

sin γ(cos γ)
4
3

, for j = 3, 4, 5

and νj are the functions introduced in Lemma 4.11. Moreover, for κ ≥ 3, ϱ1 ∈ (1, 60)
and ϱ2 ∈ (1, 3), the functions ν̃i, i = 1 . . . 5, are positive functions decreasing in κ and
increasing in ϱ1 and ϱ2.

This implies that
∥F [Zu] −F [Z̃u]∥× ≤ L∥Zu − Z̃u∥×,

where

L = max

ß
ν̃1
κ2

+ 2ν̃2,
ν̃3 + ν̃4 + ν̃5

κ2

™
. (4.10)

Proof. To estimate the Lipschitz constant, we first estimate each component Rj [Z
u] −

Rj [Z̃
u] separately for j = 1, 2, 3. By the mean value theorem we have

Rj [Z
u] −Rj [Z̃

u] =

ñ∫ 1

0
DRj [sZ

u + (1 − s)Z̃u]ds

ô
(Zu − Z̃u).

Then, for j = 2, 3,

∥R1[Z
u] −R1[Z̃

u]∥ 11
3
≤ ∥W u − W̃ u∥ 8

3
sup

φ∈B(ϱ)
∥∂WR1[φ]∥1

+ ∥Xu − ‹Xu∥ 4
3

sup
φ∈B(ϱ)

∥∂XR1[φ]∥ 7
3

+ ∥Y u − ‹Y u∥ 4
3

sup
φ∈B(ϱ)

∥∂Y R1[φ]∥ 7
3
,

∥Rj [Z
u] −Rj [Z̃

u]∥ 4
3
≤ ∥W u − W̃ u∥ 8

3
sup

φ∈B(ϱ)
∥∂WRj [φ]∥− 4

3

+ ∥Xu − ‹Xu∥ 4
3

sup
φ∈B(ϱ)

∥∂XRj [φ]∥0 + ∥Y u − ‹Y u∥ 4
3

sup
φ∈B(ϱ)

∥∂Y Rj [φ]∥0.

Applying Lemma 4.11, we obtain

∥R1[Z
u] −R1[Z̃

u]∥ 11
3
≤ ν1

κ2
∥W u − W̃ u∥ 8

3
+ ν2∥Xu − ‹Xu∥ 4

3
+ ν2∥Y u − ‹Y u∥ 4

3
,

∥R2[Z
u] −R2[Z̃

u]∥ 4
3
≤ ν3

κ2
∥W u − W̃ u∥ 8

3
+

ν4
κ2

∥Xu − ‹Xu∥ 4
3

+
ν5
κ2

∥Y u − ‹Y u∥ 4
3
,

∥R3[Z
u] −R3[Z̃

u]∥ 4
3
≤ ν3

κ2
∥W u − W̃ u∥ 8

3
+

ν5
κ2

∥Xu − ‹Xu∥ 4
3

+
ν4
κ2

∥Y u − ‹Y u∥ 4
3
.
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Finally, applying Lemma 4.4, for all 0 < σ ≤ γ, we obtain the following estimates

∥F1[Z
u] −F1[Z̃

u]∥ 8
3
≤

√
πΓ(43)

2Γ(116 )

[ ν1
κ2

∥W u − W̃ u∥ 8
3

+ ν2∥Xu − ‹Xu∥ 4
3

+ ν2∥Y u − ‹Y u∥ 4
3

]
,

∥F2[Z
u] −F2[Z̃

u]∥ 4
3
≤ 1

sinσ(cosσ)
4
3

[ ν3
κ2

∥W u − W̃ u∥ 8
3

+
ν4
κ2

∥Xu − ‹Xu∥ 4
3

+
ν5
κ2

∥Y u − ‹Y u∥ 4
3

]
,

∥F3[Z
u] −F3[Z̃

u]∥ 4
3
≤ 1

sinσ(cosσ)
4
3

[ ν3
κ2

∥W u − W̃ u∥ 8
3

+
ν5
κ2

∥Xu − ‹Xu∥ 4
3

+
ν4
κ2

∥Y u − ‹Y u∥ 4
3

]
.

Let us notice that f(σ) = 1

sinσ(cosσ)
4
3

has a minimum at σ∗ = arctan(
√

3/2) and is

decreasing for σ ∈ (0, γ) since we are assuming that γ ∈ (0, arctan(
√

3/2)).
Then, defining

ν̃1 =

√
πΓ(43)

2Γ(116 )
ν1, ν̃2 =

√
πΓ(43)

2Γ(116 )
ν2,

ν̃3 = f(γ)ν3, ν̃4 = f(γ)ν4, ν̃5 = f(γ)ν5,

one has that

∥F1[Z
u] −F1[Z̃

u]∥ 8
3
≤ ν̃1

κ2
∥W u − W̃ u∥ 8

3
+ ν̃2∥Xu − ‹Xu∥ 4

3
+ ν̃2∥Y u − ‹Y u∥ 4

3
,

∥F2[Z
u] −F2[Z̃

u]∥ 4
3
≤ ν̃3

κ2
∥W u − W̃ u∥ 8

3
+

ν̃4
κ2

∥Xu − ‹Xu∥ 4
3

+
ν̃5
κ2

∥Y u − ‹Y u∥ 4
3
,

∥F3[Z
u] −F3[Z̃

u]∥ 4
3
≤ ν̃3

κ2
∥W u − W̃ u∥ 8

3
+

ν̃5
κ2

∥Xu − ‹Xu∥ 4
3

+
ν̃4
κ2

∥Y u − ‹Y u∥ 4
3
.

From now on, we emphasize that all the constants ξj , ηj , νj and ν̃j are in fact functions
of ϱ1, ϱ2, κ and γ. From now on we will write this dependence explicitly.

To apply Proposition 4.12 we first need to impose that F : Rκ(ϱ1, ϱ2) → Rκ(ϱ1, ϱ2)
is well defined.

Proposition 4.13. Assume ϱ1 ∈ (1, 60), ϱ2 ∈ (1, 3), κ ≥ 3, γ ∈ (0, arctan(
√
3
2 )) and

denote

g1(κ, ϱ1, ϱ2, γ) =

Å
ϱ1 − 1 − ν̃1(κ, ϱ1, ϱ2)

κ2
ϱ1

ã
α0(κ) − 2ν̃2(κ, ϱ1, ϱ2)ϱ2β0(κ),

g2(κ, ϱ1, ϱ2, γ) =

Å
ϱ2 − 1 − ν̃4(κ, ϱ1, ϱ2, γ) + ν̃5(κ, ϱ1, ϱ2, γ)

κ2
ϱ2

ã
β0(κ)

− ν̃3(κ, ϱ1, ϱ2, γ)

κ2
ϱ1α0(κ).

Then, F : Rκ(ϱ1, ϱ2) → Rκ(ϱ1, ϱ2) is well-defined provided

g1(κ, ϱ1, ϱ2, γ) ≥ 0 and g2(κ, ϱ1, ϱ2, γ) ≥ 0. (4.11)
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Proof. Let Zu ∈ Rκ(ϱ1, ϱ2). Then, by Propositions 4.6, 4.12 and for j = 2, 3,

∥F1[Z
u]∥ 8

3
≤ ∥F1[Z

u] −F1[0]∥ 8
3

+ ∥F1[0]∥ 8
3
≤
Å

1 +
ν̃1
κ2

ϱ1

ã
α0(κ) + 2ν̃2ϱ2β0(κ),

∥Fj [Z
u]∥ 4

3
≤ ∥Fj [Z

u] −Fj [0]∥ 4
3

+ ∥Fj [0]∥ 4
3
≤ ν̃3

κ2
ϱ1α0(κ) +

Å
1 +

ν̃4 + ν̃5
κ2

ϱ2

ã
β0(κ).

We need to impose that F [Zu] ∈ Rκ(ϱ1, ϱ2), which leads to the conditions

∥F1[Z
u]∥ 8

3
≤ ϱ1α0(κ) and ∥Fj [Z

u]∥ 4
3
≤ ϱ2β0(κ).

Remark 4.14. Let ϱ1 = 40, ϱ2 = 2 and γ = 0.5 and consider the functions g1 and g2
considered in Proposition 4.13. Then,

g1(6, 40, 2, 0.5) ≈ −0.0626, g2(6, 40, 2, 0.5) ≈ −0.0665,

g1(7, 40, 2, 0.5) ≈ 0.1613, g2(7, 40, 2, 0.5) ≈ 0.1836,

g1(8, 40, 2, 0.5) ≈ 0.2851, g2(8, 40, 2, 0.5) ≈ 0.3226.

Notice that we take ϱ1 = 20ϱ2. This ratio is considered because

lim
κ→+∞

β0(κ)

α0(κ)
=

243

8

Ç
2

9
+

14
√
π Γ(23)

81 Γ(76)

å
≈ 20.3323.

However, other ratios may be considered.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. The first step to prove the theorem is to choose suitable constant
so that we can apply Proposition 4.13.

Indeed, choosing κ = κ∗ = 6.24 (see (3.1)), γ = 0.5, ϱ1 = 20ϱ2 and ϱ2 = 1.9, one has
that (4.11) is satisfied. Indeed

g1(κ, ϱ1, ϱ2, γ) > 0.0371 and g2(κ, ϱ1, ϱ2, γ) > 0.0047.

These values are chosen to obtain a small value for ρ∗(κ∗, γ) (see (2.9)).
Moreover, the constant L in (4.10) satisfies

0 < L ≤ 0.93 < 1

and therefore, by Proposition 4.12, the operator F is contractive from Rκ(ϱ1, ϱ2) to
itself. Thus, it has a unique fixed point. This completes the proof of Theorem 3.1.
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5 Difference between the solutions of the inner equation

To prove Theorem 3.2, the first step is to provide for a good approximation of the
solution of the inner equation “close to infinity”. To this end, we define the domains

Du
κ,η = {U ∈ Du

κ : ReU ≤ −η} , Ds
κ,η = −Du

κ,η,

where Du
κ, Du

κ are the domains introduced in (2.8) and η > κ.
We provide an analogue of Theorem 3.1 in these smaller domains with large η. This

will provide lower values for the constants b1, b2.

Proposition 5.1. The functions Z⋄(U) = (W ⋄(U), X⋄(U), Y ⋄(U))T , ⋄ = u, s, intro-
duced in Theorem 2.2 are defined in D⋄

κ∗,η∗ for

κ∗ = 6.24, γ =
1

2
and η∗ = 1000.

In addition, they satisfy that, for U ∈ D⋄
κ∗,η∗,

|U
8
3W ⋄(U)| ≤ b̃1, |U

4
3X⋄(U)| ≤ b̃2, |U

4
3Y ⋄(U)| ≤ b̃2,

where
b̃1 ≤ 0.7, b̃2 ≤ 0.71.

The proof of this proposition follows exactly the same lines as the proof of Theo-
rem 3.1. Indeed, it is enough to point out that the only difference is that to prove the
theorem we strongly used that

dist(Du
κ, 0) ≥ κ,

whereas now
dist(Du

κ,η, 0) ≥ η.

Taking this fact into account, the proof goes through verbatim replacing κ by η in the
estimates.

To validate the condition (3.2) from Theorem 3.2 we use the bounds on Zu and Zs

from Proposition 5.1 which are valid in the domains Du
κ∗,η∗ and Ds

κ∗,η∗ , respectively, and
propagate them to the section {ReU = 0} by means of an interval arithmetic integrator,
and establish that the distance between them is non zero. Our tool of choice for this
task is the CAPD2 library [KMWZ21].

The CAPD integrator can work with vector fields defined in reals, so our first step
is to rewrite the vector field for the inner equation (2.4) in real form. The method for
doing so is to separate the real and imaginary parts of the equations. To achieve this
aim we consider two additional complex variables

A =
1√

1 + J (U,W,X, Y )
and B = U− 1

3 .

2http://capd.ii.uj.edu.pl
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With these variables we can introduce the following notation

H̃ (W,X, Y,A,B) = W + XY + K̃ (W,A,B)

and

K̃ (W,A,B) = −3

4

1

B2
W 2 − 1

3
B2 (A− 1) . (5.1)

Remark 5.2. Notice that, by introducing A and B, we have achieved that

H (U,W,X, Y ) = H̃ (W,X, Y,A(U,W,X, Y ), B(U)) .

with H as given in (2.1). In addition, H̃ is polynomial with the only exception of the
term involving B−2. This term will not present problems in the separation of the real
parts from the imaginary parts of the vector field in the coordinates (U,W,X, Y,A,B),
since it is easy to separate complex numbers z−2 and z−3 into their real and imaginary
parts.

We also write

J̃ (W,X, Y,B) =
4

9
W 2B2 − 16

27
WB4 +

16

81
B6 +

4

9
(X + Y )B3

Å
W − 2

3
B2

ã
− 4

3
i (X − Y )B2 − 1

3

(
X2 + Y 2

)
B4 +

10

9
XY B4.

Note that
J (U,W,X, Y ) = J̃ (W,X, Y,B(U)) ,

where J is given in (2.3)
To derive the formulae for the vector field with the two additional variables A and

B, we first observe that

∂A

∂x
= −1

2

1Ä
1 + J̃ (W,X, Y,B)

ä 3
2

∂J̃
∂x

(W,X, Y,B)

= −1

2
A3∂J̃

∂x
(W,X, Y,B) , for x ∈ {W,X, Y,B} ,

∂A

∂U
=

∂A

∂B
(W,X, Y,B)

∂B

∂U
(B), where

∂B

∂U
(B) = −1

3
B4.

(5.2)
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We can now write the ODE (2.4) in the new variables as

U̇ =
∂H
∂W

=
∂H̃
∂W

+
∂H̃
∂A

∂A

∂W
,

Ẇ = − ∂H
∂U

= −
Ç
∂H̃
∂B

∂B

∂U
+

∂H̃
∂A

∂A

∂U

å
,

Ẋ = i
∂H
∂Y

= i

Ç
∂H̃
∂Y

+
∂H̃
∂A

∂A

∂Y

å
, (5.3)

Ẏ = −i
∂H

∂X
= −i

Ç
∂H̃
∂X

+
∂H̃
∂A

∂A

∂X

å
,

Ȧ =
∂A

∂U
U̇ +

∂A

∂W
Ẇ +

∂A

∂X
Ẋ +

∂A

∂Y
Ẏ ,

Ḃ =
∂B

∂U
U̇.

Before we discuss expressing (5.3) as a vector field on reals, let us sidetrack to make
a useful comment. To do so, let us introduce a function S : C6 → C6 defined as

S (U,W,X, Y,A,B) :=
(
−Ū , W̄ ,−X̄,−Ȳ , Ā,−B̄

)
.

(In the above, for z ∈ C we use z̄ for the complex conjugate.) It turns out that (5.3)
has a time reversing symmetry with respect to S. This will be useful later on, and is
expressed in the following lemma and a resulting corollary.

Lemma 5.3. Let F : C6 → C6 stand for the right hand side of the vector field (5.3).
Then

S ◦ F = −F ◦ S.

Proof. The result follows from (lengthy but elementary) direct validation.

Corollary 5.4. The manifolds Zu = (W u, Xu, Y u) and Zs = (W s, Xs, Y s) are symmet-
ric in the following sense

W s
(
−Ū
)

= W u (U), Xs
(
−Ū
)

= −Xu (U), Y s
(
−Ū
)

= −Y u (U), for U ∈ Du
κ∗ .

Let us also observe that from (5.2) it follows that the right hand side of the vec-
tor field (5.3) do not depend on U , which means that we can consider only the five
coordinates W,X, Y,A,B obtaining an ODE in C5; instead of an ODE in C6.

The right hand side of (5.3) is ‘almost’ polynomial, with the exception of the terms
involving B−2 and B−3, (these terms come from K̃ and its derivatives, see (5.1)). Since
for a complex number z = a + ib we have explicit formulae for the real and imaginary
parts of z−2 and z−3, namely

z−2 = (a + ib)−2 = |z|−4 (a2 − b2 − i2ab
)
,

z−3 = (a + ib)−3 = |z|−6 (a (a2 − 3b2
)

+ ib
(
b2 − 3a2

))
,

(5.4)

32



-7.3

-7.25

-7.2

-7.15

-7.1

-7.05

-7

-2000 -1500 -1000 -500  0

im
(U
)

re(U)

-7.3

-7.25

-7.2

-7.15

-7.1

-7.05

-7

-40 -30 -20 -10  0

im
(U
)

re(U)

Figure 4: The bound on the domain on U within which our trajectory resides is depicted as
the black box. The red line is ImU = −ρ0. In blue we have a non-rigorous plot of the trajectory,
which is added to the figure as a point of reference.

we see that a computation of elementary sums and products of complex numbers, com-
bined with (5.4), leads to the separation of the real and complex parts on the right hand
side of (5.3).

Such computation is laborious. (Especially for the formula for Ȧ.) We have not
performed it by hand, but have used Wolfram Mathematica [Inc] to perform these ma-
nipulations. We emphasise that this does not require any sophisticated computations
apart from multiplying complex numbers and grouping the resulting terms into real and
complex parts. We treat the results returned by Wolfram Mathematica as reliable; in
fact more reliable than if they were performed by us by hand. We enclose a short Wol-
fram Mathematica script, together with our code, with which we have performed the
symbolic derivation of the separation of (5.3) into the real and complex parts3. We use
the resulting vector field for our CAPD interval arithmetic computations.

Our objective is to compute a bound on ∥∆Z (−iρ)∥ for some ρ satisfying that
ρ > ρ0 = 7.12. To do so, we first observe that by the S-symmetry of the system (see
Corollary 5.4) we have

∥∆Z (−iρ)∥ ≥ |Re (∆Y (−iρ))| = 2 |Re (Y u (−iρ))| . (5.5)

So, it is enough to show that
|Re (Y u (−iρ))| > 0, (5.6)

for some ρ > ρ0 = 7.12.
To compute a bound on Y u (−iρ) we proceed as follows. First, we choose an initial

point
U0 := −2000 − iρ0.

Then, from Proposition 5.1 we know that Zu (U0) is inside of the set

Zu (U0) ∈ Z0 :=
{

(W,X, Y ) : |W | ≤ b̃1 |U0|−
8
3 , |X| ≤ b̃2 |U0|−

4
3 , |Y | ≤ b̃2 |U0|−

4
3

}
.

3The code for the computer assisted part of the proof is available on the personal web page of MJC.
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Figure 5: A closeup of the crossing of the trajectory through the section {ReU = 0} projected
onto U on the left (compare with Figure 4), and onto coordinates (ReU,ReY on the right. In
black we have the interval arithmetic bounds. In green, we have singled out the bounds on the
trajectory for two disjoint time intervals, to demonstrate that it indeed does cross {ReU = 0}.
In blue we have a non-rigorous plot of the trajectory, which is added to the figure as a point of
reference.

Let us write Γ = {Γ(t)} for the trajectory starting from (U0, Z
u(U0)). Such trajectory is

contained in the unstable manifold. We have obtained a bound on Γ by integrating the
ODE (5.3) in interval arithmetic, with the initial condition chosen as the set Z0×A0×B0,
where

A0 :=

®
1√

1 + J (U0, Z)

∣∣∣∣Z ∈ Z0

´
and B0 :=

¶
U

−1/3
0

©
.

We make sure that the interval arithmetic bound on Γ is always in {ImU < ρ0} (see
Figure 4) and that it passes through4 {ReU = 0, ImU ∈ [−7.186,−7.18]} (see Figure 5,
left). We also obtain the following bound (see Figure 5, right)

ReπY (Γ ∩ {ReU = 0}) ∈ [−0.00075,−0.0005] ,

where πY denotes the projection into the Y coordinate, which means that

Re (Y u (−iρ)) ∈ [−0.00075,−0.0005] , for ρ ∈ [−7.186,−7.18].

This implies (5.6) and we thus obtain (5.5). This concludes the proof of Theorem 3.2.
The computer assisted computation took a minute on a standard laptop. The vast

majority of this time was spent to integrate in interval arithmetic from U0 to reach the
section {ReU = 0}. (Such integration requires to move along the flow for a time roughly
equal to 2000; equal to the distance between U0 and the section).

4In our computer program we have validated that we cross the section {ReU = 0} by using the
Bolzano type argument, which is visualised in Figure 5. The CAPD library does have a built in method
for obtaining bounds for a flow reaching a prescribed section, which is transverse to the flow [KWZ22],
but these have failed in the case of our problem. This is why we have obtained the bound for crossing
of {ReU = 0} without their use.
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A Explicit expressions for the remainder R
We devote this appendix to provide formulas for the derivatives of the function R intro-
duced in (2.6).

We denote Z = (W,X, Y ) and assume U ∈ Du
κ (see (2.8)). The function R is defined

as

R[Z](U) =

Ç
f1(U,Z)

1 + g(U,Z)
,

f̃2(U,Z)

1 + g(U,Z)
,

f̃3(U,Z)

1 + g(U,Z)

å
, (A.1)

where

f̃2(U,Z) = f2(U,Z) − iXg(U,Z), f̃3(U,Z) = f3(U,Z) + iY g(U,Z)

and

f = (−∂UK, i∂Y K,−i∂XK)T , g = ∂WK

and K is the Hamiltonian given in (2.2) in terms of the function J (see (2.3)).
To give formulas for the derivatives of R, we first compute the second derivatives of

J and K.

Formulae for J (U,Z). The function J given in (2.3) is defined as

J (U,Z) =
4W 2

9U
2
3

− 16W

27U
4
3

+
16

81U2
+

4(X + Y )

9U

Å
W − 2

3U
2
3

ã
− 4i(X − Y )

3U
2
3

− X2 + Y 2

3U
4
3

+
10XY

9U
4
3

.

Then, its first derivatives are given by

∂UJ (U,Z) = − 8W 2

27U
5
3

+
64W

81U
7
3

− 32

81U3
− 4(X + Y )W

9U2

+
40(X + Y )

81U
8
3

+
8i(X − Y )

9U
5
3

+
4(X2 + Y 2)

9U
7
3

− 40XY

27U
7
3

,

∂WJ (U,Z) =
8W

9U
2
3

− 16

27U
4
3

+
4(X + Y )

9U
,

∂XJ (U,Z) =
4W

9U
− 8

27U
5
3

− 4i

3U
2
3

− 2X

3U
4
3

+
10Y

9U
4
3

,

∂Y J (U,Z) =
4W

9U
− 8

27U
5
3

+
4i

3U
2
3

− 2Y

3U
4
3

+
10X

9U
4
3
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and the second derivatives are given by

∂UWJ (U,Z) = − 16W

27U
5
3

+
64

81U
7
3

− 4(X + Y )

9U2
,

∂UXJ (U,Z) = − 4W

9U2
+

40

81U
8
3

+
8i

9U
5
3

+
8X

9U
7
3

− 40Y

27U
7
3

,

∂UY J (U,Z) = − 4W

9U2
+

40

81U
8
3

− 8i

9U
5
3

+
8Y

9U
7
3

− 40X

27U
7
3

,

∂2
WJ (U,Z) =

8

9U
2
3

, ∂WXJ (U,Z) =
4

9U
, ∂WY J (U,Z) =

4

9U
,

∂2
XJ (U,Z) = − 2

3U
4
3

, ∂XY J (U,Z) =
10

9U
4
3

, ∂2
Y J (U,Z) = − 2

3U
4
3

.

Formulae for K The Hamiltonian K introduced in (2.2) is given by

K(U,Z) = −3

4
U

2
3W 2 − 1

3U
2
3

Ç
1√

1 + J (U,Z)
− 1

å
.

Then, its first derivatives are

∂UK(U,Z) = − W 2

2U
1
3

+
2

9U
5
3

Å
1√

1 + J
− 1

ã
+

1

6U
2
3

∂UJ
(1 + J )

3
2

,

= − W 2

2U
1
3

− 2

9U
5
3

J√
1 + J (1 +

√
1 + J )

+
1

6U
2
3

∂UJ
(1 + J )

3
2

,

∂WK(U,Z) = −3

2
U

2
3W +

1

6U
2
3

∂WJ
(1 + J )

3
2

,

∂XK(U,Z) =
1

6U
2
3

∂XJ
(1 + J )

3
2

,

∂Y K(U,Z) =
1

6U
2
3

∂Y J
(1 + J )

3
2
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and its second derivatives are

∂UWK(U,Z) = − W

U
1
3

− 1

9U
5
3

∂WJ
(1 + J )

3
2

+
1

6U
2
3

∂UWJ
(1 + J )

3
2

− 1

4U
2
3

∂UJ · ∂WJ
(1 + J )

5
2

,

∂UXK(U,Z) = − 1

9U
5
3

∂XJ
(1 + J )

3
2

+
1

6U
2
3

∂UXJ
(1 + J )

3
2

− 1

4U
2
3

∂UJ · ∂XJ
(1 + J )

5
2

,

∂UY K(U,Z) = − 1

9U
5
3

∂Y J
(1 + J )

3
2

+
1

6U
2
3

∂UY J
(1 + J )

3
2

− 1

4U
2
3

∂UJ · ∂Y J
(1 + J )

5
2

,

∂2
WK(U,Z) = −3

2
U

2
3 +

1

6U
2
3

∂2
WJ

(1 + J )
3
2

− 1

4U
2
3

(∂WJ )2

(1 + J )
5
2

,

∂WXK(U,Z) =
1

6U
2
3

∂WXJ
(1 + J )

3
2

− 1

4U
2
3

∂WJ · ∂XJ
(1 + J )

5
2

,

∂WY K(U,Z) =
1

6U
2
3

∂WY J
(1 + J )

3
2

− 1

4U
2
3

∂WJ · ∂Y J
(1 + J )

5
2

,

∂2
XK(U,Z) =

1

6U
2
3

∂2
XJ

(1 + J )
3
2

− 1

4U
2
3

(∂XJ )2

(1 + J )
5
2

,

∂XY K(U,Z) =
1

6U
2
3

∂XY J
(1 + J )

3
2

− 1

4U
2
3

∂XJ · ∂Y J
(1 + J )

5
2

,

∂2
Y K(U,Z) =

1

6U
2
3

∂2
Y J

(1 + J )
3
2

− 1

4U
2
3

(∂Y J )2

(1 + J )
5
2

.

Formulae for the derivatives of R By the expression of R = (R1,R2,R3) in (A.1),
one obtains

∂WR1[Z](U) = −
∂UWK(1 + ∂WK) − ∂UK · ∂2

WK
(1 + ∂WK)2

,

∂XR1[Z](U) = −∂UXK(1 + ∂WK) − ∂UK · ∂WXK
(1 + ∂WK)2

,

∂Y R1[Z](U) = −∂UY K(1 + ∂WK) − ∂UK · ∂WY K
(1 + ∂WK)2

.

Analogously, for R2 and R3

∂WR2[Z](U) = i
(∂WY K −X · ∂2

WK)(1 + ∂WK) − (∂Y K −X∂WK)∂2
WK

(1 + ∂WK)2
,

∂XR2[Z](U) = i
(∂XY K − ∂WK −X · ∂WXK)(1 + ∂WK) − (∂Y K −X∂WK)∂WXK

(1 + ∂WK)2
,

∂Y R2[Z](U) = i
(∂2

Y K −X · ∂WY K)(1 + ∂WK) − (∂Y K −X∂WK)∂WY K
(1 + ∂WK)2

,
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∂WR3[Z](U) = −i
(∂WXK − Y · ∂2

WK)(1 + ∂WK) − (∂XK − Y ∂WK)∂2
WK

(1 + ∂WK)2
,

∂XR3[Z](U) = −i
(∂2

XK − Y · ∂WXK)(1 + ∂WK) − (∂XK − Y ∂WK)∂WXK
(1 + ∂WK)2

,

∂Y R3[Z](U) = −i
(∂XY K − ∂WK − Y · ∂WY K)(1 + ∂WK) − (∂XK − Y ∂WK)∂WY K

(1 + ∂WK)2
.
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[BGG22] Inmaculada Baldomá, Mar Giralt, and Marcel Guardia. Breakdown of homoclinic
orbits to L3 in the RPC3BP (I). Complex singularities and the inner equation. Adv.
Math., 408:Paper No. 108562, 64, 2022.

[BGG23] I. Baldomá, M. Giralt, and M. Guardia. Breakdown of homoclinic orbits to L3 in
the RPC3BP (II). An asymptotic formula. Adv. Math., 430:Paper No. 109218, 72,
2023.
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