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Avenue Denfert-Rochereau, 75014 Paris, France
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Abstract

The description of unstable motions in the Restricted Planar Circular 3-Body
Problem, modeling the dynamics of a Sun-Planet-Asteriod system, is one of the
fundamental problems in Celestial Mechanics. The goal of this paper is to analyze
homoclinic and instability phenomena at coorbital motions, that is when the negligible
mass Asteroid is at 1 : 1 mean motion resonance with the Planet (i.e. nearly equal
periods) and performs close to circular motions. Several bodies in our Solar system
belong to such regimes.

In this paper, we obtain the following results. First, we prove that, for a sequence
of ratios between the masses of the Planet and the Sun going to 0, there exist
a 2-round homoclinic orbit to the Lagrange point L3, i.e. homoclinic orbits that
approach the critical point twice. Second, we construct chaotic motions (hyperbolic
sets with symbolic dynamics) as a consequence of the existence of transverse homoclinic
orbits to Lyapunov periodic orbits associated to L3. Finally, we prove that the
RPC3BP possesses Newhouse domains by proving that the energy level unfolds
generically a quadratic homoclinic tangency to a periodic orbit.
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1 Introduction

One of the oldest questions in dynamical systems is to assert whether the Solar System is
stable. More precisely, consider the N body problem, that is the motion of N punctual
masses under Newtonian gravitational force in the planetary regime (one massive body,
the Sun, and N−1 light bodies, the planets). For this model, one would like to determine
whether the orbits of the planets stay close to ellipses over long time scales or undergo
strong deviations due to the mutual gravitational interaction between planets.

The Arnold-Herman-Féjoz Theorem ensures that there is a positive measure set
of stable motions lying on quasiperiodic invariant tori, see [Arn63, Rob95, F0́4, CP11].
However, the “gaps” left by the invariant tori in the phase space leave room for instability.
M. Herman, in his ICM lecture [Her98], referred to this problem as “the oldest problem
in dynamical systems” and, related to it, he posed the following conjecture. Consider
the N -body problem in space, with N ≥ 3 and assume that the center of mass is fixed
at the origin and that, on the energy surface of level e, the flow is C∞-reparametrized
such that the collisions now occur only in infinite time.

Conjecture 1.1. Is for every e the non-wandering set of the Hamiltonian flow of He

on H−1
e (0) nowhere dense in H−1

e (0)?

Note that this conjecture is not restricted to the planetary regime but is formulated
for any value of the masses of the bodies. This conjecture is nowadays wide open. Even
results proving unstable motions in Celestial Mechanics models are rather scarce. Most
of these results deal with nearly integrable settings, either the planetary regime or the
hierarchical regime (when bodies are increasingly separated) and are tipically of two
different types: chaotic motions (i.e. existence of Smale horsehoes) or Arnold diffusion
(see Section 1.4 for references).

One of the main sources of instabilities are resonances where, typically, hyperbolic
invariant objects with invariant manifolds appear. These invariant manifolds structure
the global dynamics and act as “highways” for the unstable motions. Among these
resonances, mean motion resonances play a fundamental role in the global dynamics
of the Solar System (see, for instance, [Mor02, FGKR16]). They appear when two (or
more) bodies have rationally dependent periods.

The aim of this article is to study instability phenomena and how (some) invariant
manifolds structure the global dynamics at the 1 : 1 mean motion resonance nearly
circular orbits. Such region of the phase space is usually called coorbital motions, since
two of the bodies, at short time scales, perform approximately the same circular orbit.
Many bodies in our Solar System (satellites, asteroids) belong to this region. We focus
on the simplest model where such dynamics arise, that is the Restricted Planar Circular
3-Body Problem (RPC3BP).

The Restricted Circular 3-Body Problem models the motion of a body of negligible
mass under the gravitational influence of two massive bodies, called the primaries, which
perform a circular motion. If one also assumes that the massless body moves on the same
plane as the primaries one has the RPC3BP.
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Figure 1: Projection onto the q-plane of the Lagrange equilibrium points for the RPC3BP on
rotating coordinates.

Let us name the two primaries S (star) and P (planet) and normalize their masses so
that mS = 1 − µ and mP = µ, with µ ∈

(
0, 12
]
. Choosing a suitable rotating coordinate

system, the positions of the primaries can be fixed at qS = (µ, 0) and qP = (µ − 1, 0)
and then, the position and momenta of the third body, (q, p) ∈ R2 × R2, are governed
by the Hamiltonian system associated to the two degrees of freedom Hamiltonian

h(q, p;µ) = h0(q, p) + µh1(q;µ) (1.1)

where

h0(q, p) =
||p||2

2
− qT

Å
0 1
−1 0

ã
p− 1

||q||
,

µh1(q;µ) =
1

||q||
− (1 − µ)

||q − (µ, 0)||
− µ

||q − (µ− 1, 0)||
.

(1.2)

This Hamiltonian is autonomous and the conservation of h corresponds to the preservation
of the classical Jacobi constant.

We analyze this model for µ > 0 small enough at coorbital motions. That is, when
the orbit of the third body is close to the orbit of the Planet. It is a well known fact
that (1.1) has five critical points, usually called Lagrange points, which, for µ > 0 small
enough, lie at the coorbital motions region, (see Figure 1). The three collinear Lagrange
points, L1, L2 and L3, are of center-saddle type whereas, for small µ, the triangular
ones, L4 and L5, are of center-center type (see, for instance, [Sze67]).

There is numerical evidence that the invariant manifolds of L3 play a fundamental
role in structuring the global dynamics at coorbital motions. Indeed, its center-stable
and center-unstable invariant manifolds act as boundaries of effective stability of the
stability domains around L4 and L5 (see [GJMS01, SSST13]). The invariant manifolds
of L3 are also relevant in creating transfer orbits from the small primary to L3 in the
RPC3BP (see [HTL07, TFR+10]) or between primaries in the Bicircular 4-Body Problem
(see [JN20, JN21]).

Over the past years, one of the main focus of the study of the dynamics “close”
to L3 and its invariant manifolds has been the so called “horseshoe-shaped orbits”,
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first analyzed in [Bro11], which are quasi-periodic orbits that encompass the critical
points L4, L3 and L5. The interest on these types of orbits arises when modeling
the motion of co-orbital satellites, the most famous being Saturn’s satellites Janus and
Epimetheus and near Earth asteroids. Recently, in [NPR20], the authors have proved
the existence of 2-dimensional elliptic invariant tori on which the trajectories mimic
the motions followed by Janus and Epimetheus (see also [CH03, BFPC13, CPY19], and
[DM81a, DM81b, LO01, BM05, BO06] for numerical studies).

The mentioned results deal with stable coorbital motions. On the contrary, the
purpose of this paper is to prove that unstable motions and homoclinic orbits coexist
with them. In particular,

1. We construct homoclinic orbits to L3 for a sequence of mass ratios µ tending to
zero. The papers [BGG22, BGG23, BCGG23] prove that the 1-dimensional stable
and unstable manifolds of L3 do not meet the first time they intersect a given
transverse section for µ small enough. However, we prove that, for the sequence
values of µ, they do meet the second time they hit the section (see Theorem B in
Section 1.1 below).

2. We prove the existence of Smale horseshoes, that is of hyperbolic invariant sets with
symbolic dynamics. This is a consequence of the existence of transverse homoclinic
orbits to certain Lyapunov periodic orbits which lie on the center manifold of L3.
See Theorem C in Section 1.2.

3. We construct Newhouse domains for the RPC3BP by showing that there exist a
Lyapunov periodic orbit around L3 with a quadratic homoclinic tangency which
unfolds generically with respect to the energy (see Theorem D). This leads to the
existence of hyperbolic sets with Hausdorff dimension arbitrarily close to maximal
and to the existence of an infinite number of elliptic islands (see Theorem E in
Section 1.3).

A key point to obtain these results is an asymptotic formula for the distance between
the 1-dimensional stable and unstable invariant manifolds of the point L3 (at a first
crossing with a suitable transverse section) for µ > 0 small enough which was proven by
the authors in [BGG22, BGG23, BCGG23] (see Theorem A below).

Together with the already mentioned KAM results provided in [NPR20], the results
presented in this paper show mixed dynamics at coorbital motions. In other words, the
coexistence of stable motions (KAM regime) and unstable motions. As far as the authors
know this is one of the first papers to build Newhouse domains in Celestial Mechanics
(see [GK12]). See Section 1.4 for a brief discussion on related previous results.

1.1 Homoclinic connections to L3

The critical point L3 and its eigenvalues satisfy that, as µ→ 0,

(q1, q2, p1, p2) = (dµ, 0, 0, dµ), with dµ = 1 +
5

12
µ+ O(µ3) (1.3)

5



SP
L3

L5

L4

Σ
W s,+(L3)

W u,+(L3)

W s,−(L3)

W u,−(L3)

Figure 2: Projection onto the q-plane of the unstable (red) and stable (green) manifolds of L3,
for µ = 0.0028.

and

Spec = {±√
µρeig(µ),±i ωeig(µ)} , with

{
ρeig(µ) =

»
21
8 + O(µ),

ωeig(µ) = 1 + 7
8µ+ O(µ2),

(1.4)

(see [Sze67]). Therefore, L3 possesses one-dimensional unstable and stable manifolds,
which we denote as W u(L3) and W s(L3). Notice that, due to the different size in the
eigenvalues, the system possesses two time scales which translates to rapidly rotating
dynamics coupled with a slow hyperbolic behavior around the critical point L3.

The manifolds W u(L3) and W s(L3) have two branches each. One pair, which we
denote by W u,+(L3) and W s,+(L3) circumvents L5 whereas the other circumvents L4

and it is denoted as W u,−(L3) and W s,−(L3), see Figure 2. Notice that the Hamiltonian
system associated to h in (1.1) is reversible with respect to the involution

Ψ(q, p) = (q1,−q2,−p1, p2). (1.5)

Therefore, by (1.3), L3 belongs to the symmetry axis given by Ψ and the + branches of
the invariant manifolds of L3 are symmetric to the − ones.

In the papers [BGG22, BGG23, BCGG23], the authors provide an asymptotic formula
for the distance between the 1-dimensional stable and unstable manifolds of L3 at a
transverse section. To present this formula, we introduce the classical symplectic polar
coordinates

q = r

Å
cos θ
sin θ

ã
, p = R

Å
cos θ
sin θ

ã
− G

r

Å
sin θ

− cos θ

ã
, (1.6)

where R is the radial linear momentum and G is the angular momentum. We consider
as well the 3-dimensional section

Σ =
{

(r, θ,R,G) ∈ R× T× R2 : r > 1, θ =
π

2

}
(1.7)
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and denote by (ru∗ ,
π
2 , R

u
∗ , G

u
∗) and (rs∗,

π
2 , R

s
∗, G

s
∗) the first crossing of the invariant manifolds

with this section (see Figure 2). The next theorem measures the distance between these
points for 0 < µ≪ 1.

Theorem A. (Distance between the unstable and stable manifolds of L3).
There exists µ0 > 0 such that, for µ ∈ (0, µ0),

∥(ru∗ , R
u
∗ , G

u
∗) − (rs∗, R

s
∗, G

s
∗)∥ =

3
√

4µ
1
3 e

− A√
µ

ï
|Θ| + O

Å
1

|logµ|

ãò
,

where the constant Θ ∈ C satisfies
Θ ̸= 0 (1.8)

and the constant A > 0 is given by the real-valued integral

A =

∫ √
2−1
2

0

2

1 − x

…
x

3(x+ 1)(1 − 4x− 4x2)
dx ≈ 0.177744. (1.9)

The asymptotic formula in the theorem is obtained in the papers [BGG22, BGG23].
Then, in [BCGG23], by means of a computer assisted proof, we show that the constant Θ
is not zero. The distance between the stable and unstable manifolds of L3 is exponentially
small with respect to

√
µ. This is due to the rapidly rotating dynamics of the system

(see (1.4)) and it is usually known as a beyond all orders phenomenon, since the difference
between the manifolds cannot be detected by expanding the manifolds in series of powers
of µ. Due to the symmetry in (1.5), an analogous result holds for the opposite branches.

The goal of this section is to analyze the existence of homoclinic orbits to L3. To
this end, let us introduce the following definition.

Definition 1.2. Let Γ(t) be an homoclinic orbit of (1.1) to the critical point L3 and Bµ

a ball centered at L3 of radius µ. Then, we say that Γ(t) is k-round if⋃
t∈R

Γ(t) \Bµ has k connected components.

Theorem A implies the following corollary.

Corollary A. (1-round homoclinic connections). There exists µ0 > 0 such that, for
µ ∈ (0, µ0), the Hamiltonian system associated to (1.1) does not have 1-round homoclinic
connections to L3.

This corollary does not prevent the existence of multi-round homoclinic orbits. Indeed,
E. Barrabés, J.M. Mondelo and M. Ollé in [BMO09] analyzed numerically the existence of
multi-round homoclinic connections to L3 in the RPC3BP and conjectured the existence
of 2-round homoclinic orbits for a sequence of mass ratios {µn}n∈N satisfying µn → 0 as
n→ ∞. The first result of this paper proves this conjecture.
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W s,+(L3) W u,+(L3)

W s,−(L3)W u,−(L3)

Figure 3: Projection onto the q-plane for examples of 2-round homoclinic connection to L3.
(Left) µ = 0.012144, (right) µ = 0.004192.

Theorem B. (2-round homoclinic connections). There exists a sequence {µn}n≥N0

with N0 big enough, of the form

µn =
A

nπρeig(0)

Å
1 + O

Å
1

log n

ãã
, for n≫ 1,

where ρeig(µ) is given in (1.4) and A > 0 is the constant introduced in (1.9), such that
the Hamiltonian system (1.1) has a 2-round homoclinic connection to the equilibrium
point L3. These homoclinic orbits coincide with W u,+(L3) and W s,−(L3).

This theorem is proven in Section 3. Using the same tools, one can obtain an
analogous result for the homoclinic connections between W u,−(L3) and W s,+(L3) (for a
possibly different sequence of mass ratios).

1.2 Coorbital chaotic motions

Next we study the existence of chaotic phenomena associated to L3 and its invariant
manifolds. The Lyapunov Center Theorem (see for instance [MO17]) ensures the existence
of a family of periodic orbits emanating from the saddle-center L3 which, close to the
equilibrium point, are hyperbolic. This family can be parametrized by the energy level
given by the Hamiltonian h in (1.1).

Proposition 1.3 (Lyapunov periodic orbits to L3). There exist µ0, ϱ0 > 0 small enough
such that, for µ ∈ (0, µ0), the Hamiltonian system with Hamiltonian (1.1) has a family
of hyperbolic periodic orbits

Π3 =
{
P3,ϱ periodic orbit : h(P3,ϱ) = ϱ2 + h(L3), ϱ ∈ (0, ϱ0)

}
,

which depend regularly on ϱ ∈ (0, ϱ0) and satisfy that dist(P3,ϱ, L3) → 0 as ϱ→ 0 in the
sense of Hausdorff distance.
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SP P3,ϱ

W s,+(P3,ϱ)

W u,+(P3,ϱ)

Figure 4: Projection onto the q-plane of the unstable (red) and stable (green) manifolds of the
Lyapunov periodic orbit P3,ϱ (blue), for µ = 0.003.

In Proposition 4.1 we state this result in a different set of coordinates and provide
estimates for the periodic orbits. Its proof can be found in Appendix A.

We denote by W u(P3,ϱ) and W s(P3,ϱ) the 2-dimensional unstable and stable invariant
manifolds of the Lyapunov periodic orbit P3,ϱ. Analogously to the L3 case, the invariant
manifolds have two branches each. We denote by W u,+(P3,ϱ) and W s,+(P3,ϱ) the ones
that circumvent L5 and, by W u,−(P3,ϱ) and W s,−(P3,ϱ), the ones that surround L4 (see
Figure 4). By the Smale-Birkhoff homoclinic Theorem (see [Sma67, KH95]), proving
the existence of transverse intersections between W u,+(P3,ϱ) and W s,+(P3,ϱ) implies the
existence of chaotic motions on a neighborhood of L3 and its invariant manifolds. More
specifically, we prove the following result, whose proof is deferred to Section 4.

Theorem C. (Chaotic motions). Let A > 0 and Θ ̸= 0 be the constants given in
Theorem A and ϱ0 be as in Proposition 1.3. Then, there exist µ0 > 0 and two functions
ϱmin, ϱmax : (0, µ0) → [0, ϱ0] of the form

ϱmin(µ) =
6
√

2

2
|Θ|µ

1
3 e

− A√
µ

ï
1 + O

Å
1

|logµ|

ãò
,

ϱmax(µ) =
6
√

2

2
|Θ|µ

1
3 e

− A√
µ

ï
2 + O

Å
1

|logµ|

ãò
,

such that, for µ ∈ (0, µ0) and ϱ ∈ (ϱmin(µ), ϱmax(µ)], the following statement hold.

1. The invariant manifolds W u,+(P3,ϱ) and W s,+(P3,ϱ) intersect transversally.

2. Consider the section Σ̂ϱ = Σ ∩
{
h = ϱ2 + h(L3)

}
with Σ as given in (1.7) and

the induced Poincaré map P : Σ̂ϱ → Σ̂ϱ. Then, there exists M > 0 such that
PM has an invariant set X , homeomorphic to ZN, such that PM |X is topologically
conjugated to the shift.
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Due to the symmetry in (1.5), an analogous result holds for the transverse intersections
of W u,−(P3,ϱ) and W s,−(P3,ϱ).

The chaotic motions induced by the Smale’s horseshoe maps provided in the previous
theorem lie in a tubular neighborhood around the invariant manifolds W u(L3) and

W s(L3) with the boundary at an energy level of the form h = h(L3) + O(µ
2
3 e

− 2A√
µ )

To prove Theorem C, we rely on the asymptotic formula given in by Theorem A.
Since W u(L3) and W s(L3) are exponentially close to each other with respect to

√
µ, the

energy levels where chaotic motions are found are also exponentially close to that of L3.
In addition, by restricting µ one can take ϱmax(µ) bigger (see Theorem 4.2 below).

Moreover, following the same ideas behind Theorem C, we prove that the Lyapunov
periodic orbit at the energy level h = ϱ2min(µ) + h(L3) possesses a quadratic homoclinic
tangency.

Theorem D. (Homoclinic tangencies). Denote by fϱ the flow of the Hamiltonian
system given in (1.1) restricted to the energy level h = ϱ2 + h(L3). Let ϱ0, µ0 > 0
and ϱmin(µ) : (0, µ0) → [0, ϱ0] be as given in Theorem C. Then, for a fixed µ ∈ (0, µ0)
and ϱ close to ϱmin(µ), the flow fϱ unfolds generically an homoclinic quadratic tangency
between W u,+(P3,ϱmin(µ)) and W s,+(P3,ϱmin(µ)).

To prove this result, we use the definition of generic unfolding of a quadratic homoclinic
tangency given in [Dua08] (see also Section 1.3 below). The existence of a quadratic
homoclinic quadratic tangency leads to the existence of Newhouse domains for the
RPC3BP. This is explained in the next section. As far as the authors know this is
one of the first constructions of Newhouse domains in Celestial Mechanics (see also
[GK12]).

1.3 Newhouse domains for the RPC3BP at coorbital motions

To describe the dynamics arising from the quadratic homoclinic tangencies provided in
Theorem D, we have to introduce several concepts. We follow the approach in [Dua08,
Gor12, BFPS22].

Consider a symplectic 2-dimensional manifold M . A hyperbolic basic set for a
Cr diffeomorphism f ∈ Diffr(M), r ≥ 4, is an invariant compact set Λ which is
transitive, hyperbolic and locally maximal (it is the maximal invariant set in one of
its neighborhoods U). All the points in Λ have stable and unstable manifolds, which
are injectively immersed submanifolds depending continuously on the base point. It
is a well known fact that hyperbolic basic sets are robust under C1 perturbations and
the dynamics of the perturbed set is equivalent to that of Λ. We call the perturbed
hyperbolic basic set the hyperbolic continuation of Λ.

Given two points x, y ∈ Λ, an intersection point of W s
x ∩W u

y is called a homoclinic
tangency if the corresponding intersection is not transverse.

We say that Λ is a wild basic set over an open set U ⊂ Diffr(M) containing f if, for
all maps g ∈ U ,

1. The hyperbolic continuation Λg is a hyperbolic basic set conjugated to Λ.
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2. There is at least one orbit of homoclinic tangencies of Λg.

The set U is usually called Newhouse region.
Assume that the symplectic diffeomorphism f has a hyperbolic saddle P . Its homoclinic

class H(P, f) is the closure of the union of the transverse homoclinic points to P . It is
well known that H(P, f) is a transitive invariant set. Moreover, H(P, f) is the smallest
closed invariant set which contains all the basic sets of f containing P .

Close to basic sets there will appear plenty of elliptic periodic points with a particular
structure. Let us also describe them. Consider an elliptic periodic point P of period N
of f . We say that P is generic if the two eigenvalues λ, λ−1 lie in the unit circle and
are not resonant up to order 3, that is |λ| = 1, λ2 ̸= 1, λ3 ̸= 1, and the first coefficient
of the Birkhoff Normal Form of fN at P is not zero. By KAM Theory, around such
points there exists an invariant set, with full Lebesgue density at P , which is a union of
invariant curves for fN , whose dynamics is conjugated to an irrational rotation of the
circle. This structure around P is usually called “elliptic isle”.

We want to analyze the Newhouse phenomenon and the existence of wild basic sets
for one parameter families of symplectic diffeomorphisms, that is a Cr-function (η, x) →
fη(x) defined on I ×M where I ⊂ R is an interval, such that fη ∈ Diffr(M) and it
is symplectic. We say that the family fη unfolds generically an orbit of homoclinic
quadratic tangencies at (η0, Q0) ∈ I ×M , associated to some hyperbolic periodic point
P if, denoting by Pη its hyperbolic continuation for the map fη,

1. The stable and unstable manifolds of P for fη0 , W s(P, fη0) and W u(P, fη0), have
a quadratic tangency at Q0.

2. If ℓ is any smooth curve transverse to W s(P, fη0) and W u(P, fη0) at Q0, then
the local intersections of W s(Pη, fη) and W u(Pη, fη) with ℓ cross each other with
relative non-zero velocity at (η0, Q0).

In [New70, Dua08, Gor12] it is proven the following.

Theorem 1.4. Fix 0 < ν ≪ 1. Let fη be a Cr one parameter family of symplectic
maps in Diffr(M), r ≥ 6. Let O be a hyperbolic periodic orbit and Γ an orbit of
homoclinic quadratic tangencies of f0 which unfolds generically at η = 0. Denote by
Oη the hyperbolic continuation of O and take any small neighborhood U of O∪Γ. Then,
there is sequence of Newhouse intervals ∆k converging to η = 0. Namely, for each
η ∈ ∆k, fη possesses a wild hyperbolic basic set Λk,η, which depends continuously on η
(with respect to the Hausdorff distance), such that Oη ⊂ Λk,η ⊂ U .

Moreover, for each k ≥ 1,

• For every η ∈ ∆k, the Hausdorff dimension of Λk,η satisfies

dimHΛk,η ≥ 2 − ν.

• Given any periodic point Pη ∈ Λk,η (in particular, Oη), there is a dense subset Dk ⊂
∆k such that for every η ∈ Dk, the periodic point Pη has an orbit of homoclinic
tangencies.

11



• There is a residual subset Rk ⊂ ∆k such that for every η ∈ Rk,

1. The homoclinic class H(Oη, fη) is accumulated by generic elliptic periodic
points of fη.

2. The homoclinic class H(Oη, fη) contains hyperbolic sets of Hausdorff dimension
arbitrarily close to 2. In particular dimHH(Pη, fη) = 2.

We apply this result to the quadratic homoclinic tangencies of the invariant manifolds
of the Lyapunov periodic orbit around L3 for the RPC3BP obtained in Theorem D. Since
the RPC3BP is autonomous, the energy is conserved. Then, it can be seen as a family
of 3-dimensional1 flows depending on two parameters: the mass ratio µ and the energy
h. We denote these flows by Φt

µ,h. Doing an abuse of language, in the next theorem, we
use the concepts defined above (basic set, homoclinic class, generic elliptic orbit, etc)
referred to flows instead of maps.

Theorem E. (Newhouse phenomenon for the RPC3BP). Fix 0 < ν ≪ 1 and
µ ∈ (0, µ0). Let P = P3,ϱmin(µ) be the Lyapunov periodic orbit of Φt

µ,h(µ) with h0(µ) =

ϱ2min(µ) + h(L3) obtained in Theorem D. Let Γ be the associated orbit of quadratic
homoclinic tangencies obtained in the same theorem. Take any small neighborhood U of
P ∪ Γ. Then,

• There exist h∗ > h0(µ) and a sequence of Newhouse intervals ∆k = ∆k(µ) ⊂
(h0(µ), h∗) converging to h0(µ). That is for each h ∈ ∆k, the flow Φt

µ,h possesses
a wild hyperbolic basic set Λk,h, which depends continuously on h (with respect to
the Hausdorff distance) such that Λk,h ⊂ U and Λk,h contains Ph, the hyperbolic
continuation of P .

• For every h ∈ ∆k, the Hausdorff dimension of Λk,h satisfies

dimHΛk,h ≥ 3 − ν.

• Given any periodic orbit Qh ∈ Λk,h (in particular, Ph), there is a dense subset
Dk ⊂ ∆k such that for every h ∈ Dk, Qh has an orbit of homoclinic tangencies.

• There is a residual subset Rk ⊂ ∆k such that for every h ∈ Rk,

1. The homoclinic class H(Ph,Φ
t
µ,h) is accumulated by generic elliptic periodic

orbits of Φt
µ,h.

2. The homoclinic class H(Ph,Φ
t
µ,h) contains hyperbolic sets of Hausdorff dimension

arbitrarily close to 3. In particular dimHH(Ph,Φ
t
µ,h) = 3.

This theorem is a consequence of Theorems D and 1.4. Note that one cannot define
a global Poincaré map in the energy levels considered. However, the proofs in [New70,
Dua08, Gor12] only rely on an induced map close to the periodic orbit. To construct
it, it is enough to consider a local transverse section to the periodic orbit and therefore
their proofs also apply to our setting.

1The energy level is not a manifold at the energy value of L3, however it defines (locally) a manifold
for energy levels close enough to that of the Lyapunov orbit with a quadratic homoclinic tangency.

12



1.4 State of the art

A fundamental problem in dynamical systems is to prove whether a given system has
chaotic dynamics. For many physically relevant models this is usually remarkably
difficult. This is the case of many Celestial Mechanics models, where most of the
known chaotic motions have been found in nearly integrable regimes where there is
an unperturbed problem which already presents some form of “hyperbolicity”. This is
the case in the vicinity of collision orbits (see for example [Moe89, BM06, Bol06, Moe07])
or close to parabolic orbits (which allows to construct chaotic/oscillatory motions),
see [Sit60, Ale76, LS80, Mos01, GMS16, GSMS17, GPSV21, GMPS22]. There are also
several results in regimes far from integrable which rely on computer assisted proofs
[Ari02, WZ03, Cap12, GZ19].

The problem tackled in this paper is radically different. Indeed, if one takes the limit
µ→ 0 in (1.1) one obtains the classical integrable Kepler problem in the elliptic regime,
where no hyperbolicity is present. Instead, the (weak) hyperbolicity is created by the
O(µ) perturbation. The bifurcation scenario we are dealing with is the so called 02iω
resonance or Hamiltonian Hopf-Zero bifurcation. Indeed, for µ > 0 the Hamiltonian
system given by h in (1.1) has a saddle-center equilibrium point at L3. However, for
µ = 0, the equilibrium point degenerates and the spectrum of its linear part consists in
a pair of purely imaginary and a double 0 eigenvalues, (see (1.4)).

Most of the studies in homoclinc phenomena around a saddle-center equilibrium are
focused on the non-degenerate case where all the eigenvalues have comparable size, see
[Ler91, MHO92, Rag97a, Rag97b, BRS03]. However, for close to resonance 02iω cases,
to the best of authors knowledge, the results are more rare. The generic unfolding of
the reversible 02iω resonance is considered in [Lom99, Lom00] where the author proves
the existence of transverse homoclinic connections for every periodic orbit exponentially
close to the origin and the breakdown of homoclinic orbits to the origin itself. In [JBL16],
the authors show the existence of homoclinic connections with several loops for every
periodic orbit close to the equilibrium point for a generic unfolding of a Hamiltonian
02iω resonance. Note that the unfolding of the 02iω resonance in the RPC3BP is highly
non-generic due to the strong degeneracies of its Keplerian approximation.

The work here presented shows the existence of homoclinic connections for both the
equilibrium point and periodic orbits (exponentially) close to the equilibrium point. In
the case of the (non-Hamiltonian) Hopf-zero singularity, we remark the strongly related
work [BIS20]. Also, in [GGSZ21], the authors use similar techniques to analyze breather
solutions for the nonlinear Klein-Gordon partial differential equation.
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2 Scaled Poincaré variables and previous results

Let us notice that, for the unperturbed problem h in (1.1) with µ = 0, the five Lagrange
point disappear into a circle of degenerate critical points. For this reason, in [BGG22], we
introduced a singular change of coordinates to obtain a new first order Hamiltonian which
has a saddle-center equilibrium point (close to L3) with stable and unstable manifolds
that coincide along a separatrix.

First, in Section 2.1, we introduce the main features of this change of coordinates and
its relation to L3. Then, in Section 2.2, we state Theorem 2.4, which is a reformulation
of Theorem A in the new set of coordinates.

2.1 A singular perturbation formulation of the problem

Applying a suitable singular change of coordinates, the Hamiltonian h can be written as
a perturbation of a pendulum-like Hamiltonian weakly coupled with a fast oscillator. We
summarize the most important properties of this set of coordinates, which was studied
in detail in [BGG22].

The Hamiltonian h expressed in the classical (rotating) Poincaré coordinates, ϕPoi :
(λ, L, η, ξ) → (q, p), defines a Hamiltonian system with respect to the symplectic form
dλ ∧ dL+ i dη ∧ dξ and the Hamiltonian

HPoi = HPoi
0 + µHPoi

1 , (2.1)

with

HPoi
0 (L, η, ξ) = − 1

2L2
− L+ ηξ and HPoi

1 = h1 ◦ ϕPoi. (2.2)

Moreover, the critical point L3 satisfies

λ = 0, (L, η, ξ) = (1, 0, 0) + O(µ) (2.3)

and the linearization of the vector field at this point has, at first order, an uncoupled
nilpotent and center blocks. Since ϕPoi is an implicit change of coordinates, there is no
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explicit expression for HPoi
1 . However, since HPoi

1 is analytic for |(L− 1, η, ξ)| ≪ 1, it is
possible to obtain series expansion in powers of (L− 1, η, ξ) (see [BGG22, Lemma 4.1])

In addition, since the original Hamiltonian h is reversible with respect to the involution
Ψ in (1.5), the Hamiltonian HPoi is reversible with respect to the involution

ΦPoi(λ, L, η, ξ) = (−λ, L, ξ, η). (2.4)

To capture the slow-fast dynamics of the system, we perform the singular symplectic
scaling

ϕδ : (λ,Λ, x, y) 7→ (λ, L, η, ξ), L = 1 + δ2Λ, η = δx, ξ = δy, (2.5)

and the time reparametrization t = δ−2t′, where

δ = µ
1
4 . (2.6)

Defining the potential

V (λ) = HPoi
1 (λ, 1, 0, 0; 0) = 1 − cosλ− 1√

2 + 2 cosλ
, (2.7)

the Hamiltonian system associated to HPoi, expressed in scaled coordinates, defines a
Hamiltonian system with respect to the symplectic form dλ ∧ dΛ + idx ∧ dy and the
Hamiltonian

H = Hp +Hosc +H1, (2.8)

where

Hp(λ,Λ) = −3

2
Λ2 + V (λ), Hosc(x, y; δ) =

xy

δ2
, (2.9)

H1(λ,Λ, x, y; δ) = HPoi
1 (λ, 1 + δ2Λ, δx, δy; δ4) − V (λ) +

1

δ4
Fp(δ2Λ), (2.10)

and

Fp(z) =

Å
− 1

2(1 + z)2
− (1 + z)

ã
+

3

2
+

3

2
z2 = O(z3). (2.11)

We introduce a suitable neighborhood where the coordinates (λ,Λ, x, y) are defined.
For c0 > 0 we define the domain

UR(c0, c1) =
{

(λ,Λ, x, x) ∈ R/2πZ× R× C2 : |π − λ| > c0, |(Λ, x)| < c1
}
. (2.12)

For technical reasons, we consider some of the objects of the system in an analytical
extension of the domain UR. In particular we use the domain

UC(c0, c1) =
{

(λ,Λ, x, y) ∈ C/2πZ× C3 : |π − Reλ| > c0, |(Imλ,Λ, x, y)| < c1
}
. (2.13)

The next proposition states some properties of the Hamiltonian H.
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Proposition 2.1. Fix c0, c1 > 0. Then, there exists δ0 = δ0(c0, c1) > 0 such that, for
δ ∈ (0, δ0), one has that

• The Hamiltonian H in (2.8) is real-analytic in the sense of H(λ,Λ, x, y; δ) =
H(λ,Λ, y, x; δ) in the domain UC(c0, c1).

• There exists b0 > 0 independent of δ such that, for (λ,Λ, x, y) ∈ UC(c0, c1), the
second derivatives of the Hamiltonian H1 given in (2.10) satisfy∣∣∂2λH1

∣∣ , |∂λxH1| , |∂λyH1| ≤ b0δ, |∂λΛH1| ,
∣∣∂2ΛH1

∣∣ ≤ b0δ
2,∣∣∂2xH1

∣∣ , |∂xyH1| ,
∣∣∂2yH1

∣∣ ≤ b0δ
2, |∂ΛxH1| |∂ΛyH1| ≤ b0δ

3.

Moreover2,

|∂α1,α2,α3H1| ≤ b0δ, with α1, α2, α3 ∈ {λ,Λ, x, y} .

Proof. The first statement follows from [BGG22, Theorem 2.1]. The second statement
is a consequence of [BGG23, Lemma A.3].

Remark 2.2. Consider M ⊆ C4 a symmetric subset with respect to R4. We say
that a function ζ = (ζλ, ζΛ, ζx, ζy) : M → UC(c0, c1) is real-analytic if, for m ∈ M ,

ζλ (m) = ζλ(m), ζΛ (m) = ζΛ(m), ζx (m) = ζy(m) and ζy (m) = ζx(m). Notice that, as
a consequence, ζ(m) ∈ UR(c0), for m ∈M ∩ R4.

Notice that, by (2.4), the Hamiltonian H is reversible with respect to the involution

Φ(λ,Λ, x, y) = (−λ,Λ, y, x), (2.14)

which has symmetry axis
S = {λ = 0, x = y} . (2.15)

In the next proposition, proven in [BGG22, Theorem 2.1], we obtain an expression and
suitable estimates for the equilibrium point L3.

Proposition 2.3. There exist δ0 > 0 and b1 > 0 such that, for δ ∈ (0, δ0), the critical
point L3 expressed in coordinates (λ,Λ, x, y) is of the form

L(δ) =
(
0, δ2LΛ(δ), δ3Lx(δ), δ3Ly(δ)

)T ∈ S, (2.16)

with |LΛ(δ)| , |Lx(δ)| , |Ly(δ)| ≤ b1 and S as given in (2.15).

The linearization of L(δ) is given byÜ
0 −3 0 0
−7

8 0 0 0
0 0 i

δ2
0

0 0 0 − i
δ2

ê
+ O(δ).

2One can obtain more precise estimates for the third derivatives ofH1. However, these rough estimates
are sufficient for the proofs of this paper.
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π2
3π0−2

3π
−π λ

Λ

Figure 5: Phase portrait of the system given by Hamiltonian Hp(λ,Λ) on (2.9). On blue the
two separatrices.

This analysis leads us to define a “new” first order for the Hamiltonian H in (2.8) as

H0(λ,Λ, x, y; δ) = Hp(λ,Λ) +Hosc(x, y; δ), (2.17)

and we refer to H0 as the unperturbed Hamiltonian and to H1 (see (2.10)) as the
perturbation.

Notice that the unperturbed Hamiltonian is uncoupled. In the (x, y)-plane, it displays
a fast oscillator of velocity 1

δ2
whereas, in the (λ,Λ)-plane, it has a saddle at (0, 0) with

two homoclinic connections or separatrices at the energy level Hp(λ,Λ) = −1
2 , (see

Figure 5). We define

λ0 = arccos

Å
1

2
−
√

2

ã
, (2.18)

which satisfies Hp(λ0, 0) = Hp(0, 0) = −1
2 and corresponds with the crossing point of

the right separatrix with the axis {Λ = 0}.

2.2 The invariant manifolds of L3

The unstable and stable manifolds of the critical point L(δ) for small values of δ, have
two branches, which are symmetric with respect to the involution (2.14) (see Figure 2).

For δ > 0, we denote by Wu(L) and Ws(L) the 1-dimensional unstable and stable
manifolds of L(δ). In addition, as done in Section 1, we consider each branch independently.
Let ψt be the flow given by the Hamiltonian H and e1 = (1, 0, 0, 0)T . We denote

Wu,+(L) =

ß
z ∈ Wu(L) : lim

t→−∞
⟨ψt(z), e1⟩ = 0+

™
, Ws,−(L) = Φ

(
Wu,+

)
,

Ws,+(L) =

ß
z ∈ Ws(L) : lim

t→+∞
⟨ψt(z), e1⟩ = 0+

™
, Wu,−(L) = Φ

(
Ws,+

)
,

the branches of W⋄(L), for ⋄ = u, s.
Next result, proven in [BGG23, Theorem 2.2], gives an asymptotic formula for the

distance between the first intersection of the one dimensional manifolds Wu,+(L) and
Ws,+(L) on a suitable section. In particular, Theorem A is a consequence of this result.
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Theorem 2.4. Fix an interval [λ1, λ2] ⊂ (0, λ0) with λ0 as given in (2.18). There
exists δ0 > 0 such that, for δ ∈ (0, δ0) and λ∗ ∈ [λ1, λ2], the invariant manifolds
Wu,+(L) and Ws,+(L) intersect the section {λ = λ∗,Λ > 0}. Denote by (λ∗,Λ

u
δ , x

u
δ , y

u
δ )

and (λ∗,Λ
s
δ, x

s
δ, y

s
δ) the first intersection points of the unstable and stable manifolds with

this section, respectively. They satisfy

yuδ − ysδ =
6
√

2 δ
1
3 e−

A
δ2

ï
Θ + O

Å
1

|log δ|

ãò
, xuδ − xsδ = yuδ − ysδ,

Λu
δ − Λs

δ = O
(
δ

4
3 e−

A
δ2

)
,

where A > 0 and Θ ∈ C \ {0} are the constants described in Theorem A.

To prove Theorem C and D, it will be convenient to analyze the distance between
the invariant manifolds in the “horizontal section”

Σ0 =
{

(λ,Λ, x, y) ∈ UR(c0, c1) : Λ = δ2LΛ(δ), H(λ,Λ, x, y) = H(L(δ))
}
, (2.19)

within the energy level of L(δ), where (x, y) define a system of coordinates. The following
corollary is a consequence of Theorem 2.4. It is proven in Appendix B.

Corollary 2.5. There exists δ0 > 0 such that, for every δ ∈ (0, δ0), the invariant
manifolds Wu,+(L) and Ws,+(L) intersect the section Σ0. Denote by (λuδ , δ

2LΛ, x
u
δ , y

u
δ )

and (λsδ, δ
2LΛ, x

s
δ, y

s
δ) the first intersection points of the unstable and stable manifolds,

respectively, with the section. Then, they satisfy

|xuδ − xsδ| = |yuδ − ysδ| =
6
√

2 δ
1
3 e−

A
δ2

ï
|Θ| + O

Å
1

|log δ|

ãò
.

3 2-round homoclinic orbits to L3: Proof of Theorem B

In this section we study the existence of 2-round homoclinic connections to the L(δ) (see
(2.16)) for certain values of the parameter δ and we prove Theorem B. We first restate

it referred to the Hamiltonian (2.8) (recall that δ = µ
1
4 , see (2.6)).

Theorem 3.1. There exist N0 > 0 and a sequence {δn}n≥N0 satisfying

δn =
8

…
8

21
4

…
A

nπ

Å
1 + O

Å
1

log n

ãã
, for n ≥ N0,

such that, for each n ≥ N0, there exist a 2-round homoclinic connection to the equilibrium
point L(δn) between Wu,+(L) and Ws,−(L).

The rest of this section is devoted to prove this theorem.
To prove Theorem 3.1, we take advantage of the fact that the Hamiltonian H is

reversible with respect to the axis S = {λ = 0, x = y} (see (2.15)). Therefore, by
symmetry, it is only necessary to see that there exists a sequence of δ such that Wu,+(L)
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λ

Λ

Ws,−(L)

Wu,−(L) Ws,+(L)

Wu,+(L)

{λ = λ∗,Λ > 0}

S

Figure 6: Projection into the (λ,Λ)-plane of the unstable and stable manifolds and its
intersections with the symmetry axis and section {λ = λ∗,Λ > 0}.

intersects the symmetry axis S, see Figure 6. To this end, we extend the manifold
Wu,+(L) from the section {λ = λ∗,Λ > 0}, studied in Theorem 2.4, to a neighborhood of
the critical point L(δ) and look for intersections with S. To study the invariant manifolds
near L(δ), we use a normal form result for Hamiltonian systems in a neighborhood of
a saddle-center critical point. Note that, the classical normal form result by Moser
in [Mos58] is not enough for our purposes. Indeed, we need to control that the radius
of convergence of the normal form does not goes to zero when δ → 0. For that reason,
we apply a more quantitative normal form obtained by T. Jézéquel, P. Bernard and
E. Lombardi in [JBL16].

3.1 Proof of Theorem 3.1

To prove Theorem 3.1, we first perform a detailed local analysis of the Hamiltonian
H in (2.8) close to the equilibrium point L(δ). In the next proposition we introduce
the normal form result given by T. Jézéquel, P. Bernard and E. Lombardi in [JBL16]
adapted to the Hamiltonian H. Then, in Proposition 3.3, we translate the results in
Theorem 2.4 and the symmetry axis S in (2.15) into the new set of coordinates provided
by the normal form.

Proposition 3.2. There exist δ0, ϱ0, c0, c1 > 0 and a family of analytic changes of
coordinates

Fδ : B(ϱ0) =
{
z ∈ R4 : |z| < ϱ0

}
→ UR(c0, c1)

(v1, w1, v2, w2) 7→ (λ,Λ, x, y),

defined for δ ∈ (0, δ0), with the following properties:

1. It is canonical with respect to the symplectic form dv1 ∧ dw1 + dv2 ∧ dw2.

2. Fδ(0) = L(δ).
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3. The Hamiltonian H (see (2.8)) in the new coordinates reads

H(v1, w1, v2, w2; δ) = H(Fδ(v1, w1, v2, w2); δ) −H(L(δ); δ)

= v1w1 +
α(δ)

2δ2
(
v22 + w2

2

)
+ R(v1w1, v

2
2 + w2

2; δ),

where α(δ) is a C1-function satisfying that α(δ) =
»

8
21 + O(δ4) and R satisfies∣∣R(v1w1, v

2
2 + w2

2; δ)
∣∣ ≤ C|(v1w1, v

2
2 + w2

2)|2,

for (v1, w1, v2, w2) ∈ B(ϱ0) and C > 0 a constant independent of δ.

The proof of this proposition, which is a consequence of the results in [JBL16], is
explained in Section 3.2. Observe that the equations associated to the Hamiltonian H
are of the form

v̇1 = v1
(
1 + ∂1R(v1w1, v

2
2 + w2

2; δ)
)

ẇ1 = −w1

(
1 + ∂1R(v1w1, v

2
2 + w2

2; δ)
)

v̇2 = w2

Å
α(δ)

δ2
+ 2∂2R(v1w1, v

2
2 + w2

2; δ)

ã
ẇ2 = −v2

Å
α(δ)

δ2
+ 2∂2R(v1w1, v

2
2 + w2

2; δ)

ã
.

(3.1)

Since this system has two conserved quantities, v1w1 and v22 + w2
2, its solutions are

v1(t) = v1(0)eν1t,

w1(t) = w1(0)e−ν1t,Å
v2(t)
w2(t)

ã
=

Å
cos ν2t sin ν2t
− sin ν2t cos ν2t

ãÅ
v2(0)
w2(0)

ã
,

(3.2)

where, for (v1(0), w1(0), v2(0), w2(0)) ∈ B(ϱ0),

ν1 = ν1(δ) = 1 + ∂1R
(
v1(0)w1(0), v22(0) + w2

2(0); δ
)
> 0,

ν2 = ν2(δ) =
α(δ)

δ2
+ 2∂2R

(
v1(0)w1(0), v22(0) + w2

2(0); δ
)
> 0.

(3.3)

Notice that the local unstable and stable manifolds are given by {w1 = v2 = w2 = 0}
and {v1 = v2 = w2 = 0}, respectively.

Proposition 3.3. Consider the constants ϱ0, δ0 given by Proposition 3.2. Then,

1. There exists λ∗ ∈ (0, λ0) and δ1 ∈ (0, δ0) such that, for any δ ∈ (0, δ1), the first
intersections zuδ (λ∗) and zsδ(λ∗) of the invariant manifolds Wu,+(L) and Ws,+(L)
with the section {λ = λ∗,Λ > 0} respectively (see Theorem 2.4), satisfy that

(vu1 , w
u
1 , v

u
2 , w

u
2) = Fδ (zuδ (λ∗(ϱ))) , (vs1, w

s
1, v

s
2, w

s
2) = Fδ (zsδ(λ∗(ϱ))) (3.4)
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F−1
δ (Wu,+(L))

F−1
δ (Ws,−(L))

SlocB(ϱ0)

(0, ϱ)

(vu1 , w
u
1)

v1

w1

Figure 7: Representation of the unstable and stable manifolds in local coordinates
(v1, w1, v2, w2) given in Propositions 3.2 and 3.3.

belong to the ball B(ϱ0).

Moreover, there exists ϱ ∈ (0, ϱ0) such that, for δ ∈ (0, δ1), these points can be
written as

vu1 = −
3
√

2

ϱ
δ−

4
3 e−

2A
δ2

ï
|Θ|2 + O

Å
1

|log δ|

ãò
, vs1 = 0,

wu
1 = ϱ+ O

(
δ

4
3 e−

A
δ2

)
, ws

1 = ϱ,

vu2 =
3
√

4
4

…
21

8
δ

1
3 e−

A
δ2

ï
Re Θ + O

Å
1

|log δ|

ãò
, vs2 = 0,

wu
2 =

3
√

4
4

…
21

8
δ

1
3 e−

A
δ2

ï
−Im Θ + O

Å
1

|log δ|

ãò
, ws

2 = 0.

2. Let S = {λ = 0, x = y} be the symmetry axis (2.15) of the Hamiltonian H. There
exist real-analytic functions Ψ1,Ψ2 : B(ϱ0) × (0, δ0) → R and a constant C > 0
such that the curve

Sloc =
{
v1 + w1 = Ψ1(v1, w1, v2, w2; δ), w2 = Ψ2(v1, w1, v2, w2; δ)

}
(3.5)

satisfies that Fδ(Sloc) ⊂ S and, for (v1, w1, v2, w2; δ) ∈ B(ϱ0) × (0, δ0),

(a) |Ψ1(v1, w1, v2, w2; δ)| ≤ Cδ |(v1, w1, v2, w2)| + C |(v1, w1)|2,
(b) |Ψ2(v1, w1, v2, w2; δ)| ≤ Cδ |(v1, w1, v2, w2)|.

This proposition is proven in Section 3.3.
From now on, we work in the set of local coordinates (v1, w1, v2, w2) ∈ B(ϱ0) given in

Proposition 3.2. Then, to prove Theorem 3.1, it remains to extend the unstable manifold
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from the point (vu1 , w
u
1 , v

u
2 , w

u
2) given in (3.4) and to analyze for which values of δ > 0 it

intersects with the symmetry curve Sloc given in (3.5), (see Figure 7).
To give an intuition of the proof of Theorem 3.1, in the next lemma, we consider the

intersection of the unstable manifold with a convenient “first order” of the symmetry
axis Sloc. From now on, we denote by C any positive constant independent of δ.

Lemma 3.4. Let Φu(t; δ) be the trajectory of the Hamiltonian system given by H in
Proposition 3.2 with initial condition (vu1 , w

u
1 , v

u
2 , w

u
2) as given in Proposition 3.3. Then,

there exist N0 > 0 and sequences {T̂n}n≥N0 and {δ̂n}n≥N0 such that, for n ≥ N0,

Φu(T̂n; δ̂n) ∈ {v1 + w1 = 0, w2 = 0} .

Moreover,

δ̂n =
8

…
8

21
4

…
A

nπ

Å
1 + O

Å
1

log n

ãã
, for n ≥ N0,

where A > 0 is the constant introduced in Theorem A.

Proof. Let (v1(t), w1(t), v2(t), w2(t)) be a trajectory of the Hamiltonian system given by
H. We want to find δ > 0 such that there exists T 0

δ > 0 satisfying

(v1(0), w1(0), v2(0), w2(0)) = (vu1 , w
u
1 , v

u
2 , w

u
2),(

v1(T
0
δ ), w1(T

0
δ ), v2(T

0
δ ), w2(T

0
δ )
)
∈ {v1 + w1 = 0, w2 = 0} .

In other words, using (3.2),

vu1e
ν1T 0

δ + wu
1e

−ν1T 0
δ = 0, (3.6)

cos(ν2T
0
δ )wu

2 − sin(ν2T
0
δ )vu2 = 0, (3.7)

where, by its definition in (3.3) and Proposition 3.3, one has that

ν1 = ν1(δ) = 1 + O
(
δ−

8
3 e−

4A
δ2

)
, ν2 = ν2(δ) =

1

δ2

…
8

21
+ O

(
δ2
)
. (3.8)

For any δ small enough, equation (3.6) has the solution

T 0
δ = − 1

2ν1
ln

Å
− vu1
wu
1

ã
=
A

δ2
+

2

3
log δ − log

Ä
6
√

2 |Θ| ϱ−1
ä

+ O
Å

1

|log δ|

ã
=
A

δ2
(
1 + O(δ2 |log δ|)

)
.

(3.9)

Next, we study equation (3.7). Let us denote θ = arg Θ. From Proposition 3.3,

vu2 =
3
√

4
4

…
21

8
δ

1
3 e−

A
δ2

ï
|Θ| cos θ + O

Å
1

|log δ|

ãò
wu
2 = − 3

√
4

4

…
21

8
δ

1
3 e−

A
δ2

ï
|Θ| sin θ + O

Å
1

|log δ|

ãò
.
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By Theorem A, one has that Θ ̸= 0. Then, (3.7) is equivalent to

cos(ν2T
0
δ ) sin θ + sin(ν2T

0
δ ) cos θ = sin

(
θ + ν2T

0
δ

)
= g0(δ),

where g0(δ) contains the higher order terms,

g0(δ) = − cos(ν2T
0
δ )

(
4

…
8

21

e
A
δ2 δ−

1
3

3
√

4 |Θ|
wu
2 + sin θ

)
− sin(ν2T

0
δ )

(
4

…
8

21

e
A
δ2 δ−

1
3

3
√

4 |Θ|
vu2 − cos θ

)
.

and satisfies g0(δ) = O(|log δ|−1). We deduce then that, for n ∈ Z,

ν2T
0
δ + θ = nπ − arcsin g0(δ).

Using the asymptotic expressions of ν2 = ν2(δ) and T 0
δ in (3.8) and (3.9), we have that

δ has to satisfy

A

δ4

…
8

21
(1 + g1(δ)) = πn,

where g1(δ) = O(δ2 |log δ|). Therefore, there exists N0 > 0 and a sequence {δ̂n}n≥N0 ⊂
(0, δ1) satisfying the previous equation and the asymptotic expression of the lemma.
Finally, one has that T̂n = T 0

δ for δ = δ̂n.

End of the proof of Theorem 3.1. We proceed analogously to the proof of Lemma 3.4.
Let us consider the expressions of (v1(t), w1(t), v2(t), w2(t)) given in (3.2) and Tδ > 0,
such that

(v1(0), w1(0), v2(0), w2(0)) = (vu1 , w
u
1 , v

u
2 , w

u
2),

(v1(Tδ), w1(Tδ), v2(Tδ), w2(Tδ)) ∈ Sloc,

with Sloc = {v1 + w1 = Ψ1, w2 = Ψ2} as given in Proposition 3.3.
First, we deal with the equation v1 + w1 = Ψ1. Then, Tδ must satisfy

v1(Tδ) + w1(Tδ) = Ψ1 (v1(Tδ), w1(Tδ), v2(Tδ), w2(Tδ)) . (3.10)

Let us denote τ = τ(δ) = Tδ − T 0
δ , with T 0

δ satisfying v1(T
0
δ ) + w1(T

0
δ ) = 0 (see

equations (3.6) and (3.9)). Then, by (3.2), τ has to satisfy

v1(T
0
δ )eν1τ + w1(T

0
δ )e−ν1τ = w1(T

0
δ )(e−ν1τ − eν1τ )

= Ψ1(v1(T
0
δ + τ), w1(T

0
δ + τ), v2(T

0
δ + τ), w2(T

0
δ + τ)).

Namely, τ(δ) = F [τ ](δ) with

F [τ ](δ) =
e−ν1τ − eν1τ + 2τν1

2ν1
−

Ψ1(v1(t), w1(t), v2(t), w2(t))|t=T 0
δ +τ

2ν1w1(T 0
δ )

.
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First we obtain estimates for F [0](δ). By Proposition 3.3 and (3.8),

|F [0](δ)| ≤
∣∣Ψ1(v1(T

0
δ ), w1(T

0
δ ), v2(T

0
δ ), w2(T

0
δ ))
∣∣

2
∣∣ν1w1(T 0

δ )
∣∣

≤ C
δ
∣∣(v(T 0

δ ), w(T 0
δ ))
∣∣+
∣∣(v1(T 0

δ ), w1(T
0
δ ))
∣∣2∣∣w1(T 0

δ )
∣∣ .

Let us recall that, by (3.9), we have an asymptotic expression for T 0
δ . Then, by (3.2),

(3.8) and Proposition 3.3,

w1(T
0
δ ) = wu

1e
−ν1T 0

δ =
6
√

2 |Θ| δ−
2
3 e−

A
δ2

ï
1 + O

Å
1

|log δ|

ãò
,

v2(T
0
δ ) = cos(ν2T

0
δ )vu2 + sin(ν2T

0
δ )wu

2 = O
(
δ

1
3 e−

A
δ2

)
,

w2(T
0
δ ) = − sin(ν2T

0
δ )vu2 + cos(ν2T

0
δ )wu

2 = O
(
δ

1
3 e−

A
δ2

)
.

(3.11)

Since v1(T
0
δ ) = −w1(T

0
δ ), one has that |F [0](δ)| ≤ Cδ. Next, we study the Lipschitz

constant of the operator F . Let us consider continuous functions τ0, τ1 : (0, δ0) → R
such that |τ0(δ)|, |τ1(δ)| ≤ Cδ and the function τσ = στ1 + (1−σ)τ0. Then, by the mean
value theorem,

|F [τ1](δ) − F [τ0](δ)| ≤ C |τ1(δ) − τ0(δ)| ·

sup
σ∈[0,1]

{
|τσ(δ)|2 + δ

2
3 e

A
δ2

∣∣∣DΨ1(v1, w1, v2, w2) · (v̇1, ẇ1, v̇2, ẇ2)
T
∣∣∣
t=T 0

δ +τσ(δ)

}
.

Since Ψ1 is a real-analytic function, by Proposition 3.3, one has |DΨ1| ≤ Cδ+C |(v1, w1)|.
Moreover, using (3.1), one can obtain estimates for the derivatives (v̇1, ẇ1, v̇2, ẇ2). Then,

|F [τ1](δ) − F [τ0](δ)| ≤ Cδ |τ1(δ) − τ0(δ)| .

This implies that, taking δ > 0 small enough, F is well defined and contractive. Hence,
F has a fixed point τ(δ) such that |τ(δ)| ≤ Cδ. Therefore, there exists Tδ satisfying
equation (3.10) such that

Tδ = T 0
δ + τ(δ) =

A

δ2
(1 + O(δ2 |log δ|)). (3.12)

Next, we study the equation w2 = Ψ2. One has that δ > 0 must satisfy

w2(Tδ) = Ψ2 (v(Tδ), w(Tδ)) . (3.13)

Theorem A implies that Θ ̸= 0. Then, by (3.2), δ has to satisfy

sin (θ + ν2Tδ) = “g0(δ),
24



where “g0(δ) = Ψ2 (v(Tδ), w(Tδ)) − cos(ν2Tδ)

(
4

…
8

21

e
A
δ2 δ−

1
3

3
√

4 |Θ|
wu
2 + sin θ

)

− sin(ν2Tδ)

(
4

…
8

21

e
A
δ2 δ−

1
3

3
√

4 |Θ|
vu2 − cos θ

)
.

Then, we deduce that, for n ∈ Z,

ν2Tδ + θ = nπ − arcsin (“g0(δ)) .
By Proposition 3.3 and using the asymptotic expressions in (3.11) and (3.12),

|“g0(δ)| ≤ Cδ |(v(Tδ), w(Tδ))| +
C

|log δ|
≤ Cδ

∣∣(v(T 0
δ ), w(T 0

δ ))
∣∣+

C

|log δ|
≤ C

|log δ|
.

Therefore, δ has to satisfy

A

δ4

…
8

21
(1 + “g1(δ)) = πn,

where “g1(δ) = O(δ2 |log δ|). Then, there exists N0 > 0 and a sequence {δn}n≥N0 ⊂ (0, δ0)
satisfying the statement of the Theorem and that

δn =
8

…
8

21
4

…
A

nπ

Å
1 + O

Å
1

log n

ãã
, for n ≥ N0.

3.2 A quantitative Moser normal form

To prove Proposition 3.2, we first introduce a series of affine changes of coordinates in
order to put the Hamiltonian H(λ,Λ, x, y; δ) in (2.8) in the form considered in [JBL16]
(see (3.14) below).

Lemma 3.5. Fix c0, c1 > 0. There exists δ0, ϱ̂0 > 0 and a family of affine transformations

ϕ̂δ : B(ϱ̂0) =
{
z ∈ R4 : |z| < ϱ̂0

}
→ UR(c0, c1)

(v̂1, ŵ1, v̂2, ŵ2) 7→ (λ,Λ, x, y),

defined for δ ∈ (0, δ0), with C1-functions of δ as coefficients such that the Hamiltonian
system given by H (see (2.8)) in the new coordinates and after a scaling in time is
Hamiltonian with respect to the canonical form and“H(v̂1, ŵ1, v̂2, ŵ2; δ) =H

Ä
ϕ̂δ(v̂1, ŵ1, v̂2, ŵ2); δ

ä
−H(L(δ); δ)

= v̂1ŵ1 +
α(δ)

2δ2
(
v̂22 + ŵ2

2

)
+ “K(v̂1, ŵ1)

+ δ“H1(v̂1, ŵ1, v̂2, ŵ2; δ),

(3.14)
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where α(δ) is a C1-function in δ satisfying α(δ) =
»

8
21 +O(δ4) and, for (v̂1, ŵ1, v̂2, ŵ2) ∈

B(ϱ̂0), there exists a constant C > 0 independent of δ such that

|“K(v̂1, ŵ1)| ≤ C |v̂1 + ŵ1|3 , |“H1(v̂1, ŵ1, v̂2, ŵ2; δ)| ≤ C |(v̂1, ŵ1, v̂2, ŵ2)|3 .

Moreover, the change of coordinates satisfies that ϕ̂δ(0) = L(δ) and

Dϕ̂0 =

à
2√
7

2√
7

0 0

− 1√
6

1√
6

0 0

0 0 4
»

2
21 i 4

»
2
21

0 0 4
»

2
21 −i 4

»
2
21 ,

í
, Dϕ̂−1

0 =

à√
7
4 −

√
3 0 0√

7
4

√
3 0 0

0 0 4
»

21
32

4
»

21
32

0 0 −i 4
»

21
32 i 4

»
21
32

í
.

Proof. The proof of this lemma relies on the approach and techniques of [JBL16].
For technical reasons and to be consistent with [JBL16], we consider the Poincaré
Hamiltonian HPoi(λ, L, η, ξ;µ) introduced in (2.1) instead of the scaled version H defined
in (2.8). Let us denote the point L3 in Poincaré coordinates (λ, L, η, ξ) as LPoi

3 =
(ϕPoi)−1(L3). Therefore, LPoi

3 is a saddle-center equilibrium point of the system given by
HPoi and, by (2.3), it satisfies that

λ = 0, (L, η, ξ) = (1, 0, 0) + O(µ) = (1, 0, 0) + O(δ4).

We perform several changes of coordinates.

1. Translation of the equilibrium point. Let ϕeq : (λ, L̃, η̃, ξ̃) → (λ, L, η, ξ) be the
translation such that ϕeq(0) = LPoi

3 . Then, the Hamiltonian system associated
to HPoi in the new coordinates defines a Hamiltonian system with respect to the
symplectic form dλ ∧ dL̃+ idη̃ ∧ dξ̃ and the Hamiltonian

Heq = HPoi ◦ ϕeq −HPoi(LPoi
3 ;µ).

Denoting z̃ = (λ, L̃, η̃, ξ̃), Heq(z̃;µ) can be written as

Heq(z̃;µ) = Heq
0 (z̃) +Req

2 (z̃;µ) +Req
3 (z̃;µ),

with

Heq
0 (z̃) =

1

2
D2HPoi(LPoi

3 ; 0)[z̃, z̃] = −3

2
L̃2 + η̃ξ̃,

Req
2 (z̃;µ) =

1

2
D2HPoi(LPoi

3 ;µ)[z̃, z̃] −Heq
0 (z̃) = O(µ |z̃|2),

Req
3 (z̃;µ) = (HPoi ◦ ϕeq)(z̃;µ) −Heq

0 (z̃) −Req
2 (z̃;µ) −HPoi(LPoi

3 ;µ)

= O(L̃3) + O(µ |z̃|3),

(3.15)

where we have used that L̃ = L−1+O(µ), η̃ = η+O(µ) and ξ̃ = ξ+O(µ). Notice
that as a result, for µ > 0, z̃ = 0 is a saddle-center point of the system given by
the Hamiltonian Heq(z̃;µ).
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2. Reduction of the terms of order 2. Following the strategy of the proof of [JBL16,
Theorem 1.3] in our setting, for µ ≥ 0, there exists a family ϕredµ : x = (xλ, xL, xη, xξ) 7→
z̃ = (λ, L̃, η̃, ξ̃) of real-analytic linear diffeomorphisms satisfying that Dϕred0 (0) =
Id and that

Hred(x;µ) = (Heq ◦ ϕredµ )(x;µ) = Heq
0 (x) +Rred

2 (x;µ) +Rred
3 (x;µ),

where Rred
2 (x;µ) is a real polynomial of degree 2 in x with C1-functions of µ as

coefficients and

Rred
2 (x;µ) = O(µ |x|2),

¶
Heq

0 ◦ J, Rred
2

©
= 0, Rred

3 (x;µ) = O(|x|3),

where J is the matrix associated to the symplectic form dxλ ∧ dxL + idxη ∧ dxξ.
The fact that

{
Heq

0 ◦ J, Rred
2

}
= 0 and that Rred

2 is a homogeneous polynomial
of degree 2 and O(µ|x|2) imply that there exist C1-functions σ1(µ), σ2(µ) = O(1)
such that

Rred
2 (xλ, xL, xη, xξ;µ) = µσ1(µ)

x2λ
2

+ µσ2(µ)xηxξ.

Since ϕredµ is linear and taking into account that Dϕred0 (0) = Id and the definition
of the potential V (λ) in (2.7), one has that

σ1(0) =
1

µ
∂2λH

Poi(LPoi
3 ;µ)

∣∣∣
µ=0

= ∂2λH
Poi
1 (0, 1, 0, 0; 0) = V ′′(0) =

7

8
. (3.16)

Therefore, by (3.15), one has that

Hred(x;µ) = −3

2
x2L + µσ1(µ)

x2λ
2

+ (1 + µσ2(µ))xηxξ +Rred
3 (x;µ).

In addition, since the terms of order 3 and higher of Heq are of the form O(L̃3) +
O(µ |x̃|3) (see (3.15)), one has that

Rred
3 (x;µ) = O(x3L) + O(µ |x|3).

3. Symplectic scaling. We rename the parameter δ = µ
1
4 (see (2.6)) and, similarly to

(2.5), we consider ϕsca : y = (yλ, yL, yη, yξ) 7→ x = (xλ, xL, xη, xξ) such that

xλ =
1√
σ1(δ4)

yλ, xL =
δ2√

3
yL, xη =

δ
4
√

3σ1(δ4)
yη, xξ =

δ
4
√

3σ1(δ4)
yξ,

and a scaling in time by a factor of δ2
√

3σ1(µ). The Hamiltonian system of
Hred expressed in these coordinates defines a system associated with the form
dyλ ∧ dyL + idyη ∧ dyξ and the Hamiltonian

Hsca(y; δ) =
1

2

(
y2λ − y2L

)
+ α(δ)

yηyξ
δ2

+Ksca(yλ) + δHsca
1 (y; δ), (3.17)
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where

α(δ) =
1 + δ4σ2(δ

4)√
3σ1(δ4)

=

…
8

21
+ O(δ4),

Ksca(yλ) =
1

δ4
Rred

3

Ç
yλ√
σ1(0)

, 0, 0, 0; 0

å
= O(y3λ),

δHsca
1 (y; δ) =

1

δ4
Rred

3

(
ϕsca(y); δ4

)
−Ksca(yλ) = O(δ |y|3),

where we have used Cauchy estimates to bound DRred
3 .

4. Diagonalization. Consider the symplectic change of coordinates ϕdiag : (v̂1, ŵ1, v̂2, ŵ2) 7→
y = (yλ, yL, yη, yξ) defined byÅ

yλ
yL

ã
=

1√
2

Å
1 1
−1 1

ãÅ
v̂1
ŵ1

ã
,

Å
yη
yξ

ã
=

1√
2

Å
1 i
1 −i

ãÅ
v̂2
ŵ2

ã
.

Then, the Hamiltonian system associated to (3.17) expressed in these coordinates
defines a Hamiltonian system with respect to the form dv̂1 ∧ dŵ1 + dv̂2 ∧ dŵ2 and
the Hamiltonian“H(v̂1, ŵ1, v̂2, ŵ2; δ) =v̂1ŵ1 +

α(δ)

2δ2
(
v̂22 + ŵ2

2

)
+ “K(v̂1, ŵ1)

+ δ“H1(v̂1, ŵ1, v̂2, ŵ2; δ),

(3.18)

where“K(v̂1, ŵ1) = Ksca

Å
v̂1 + ŵ1√

2

ã
= O

Ä
|v̂1 + ŵ1|3

ä
, “H1 = Hsca

1 ◦ ϕdiag.

Next proposition provides a normal form in a neighborhood of the saddle-center
equilibrium point. It is a direct consequence of [JBL16, Proposition C.1]. In order to

use this result, we introduce the artificial parameter ν > 0 and rewrite “H in (3.14) as“H(v̂1, ŵ1, v̂2, ŵ2; δ, ν) =v̂1ŵ1 +
α(δ)

2δ2
(
v̂22 + ŵ2

2

)
+K(v̂1, ŵ1)

+ ν“H1(v̂1, ŵ1, v̂2, ŵ2; δ).

(3.19)

Note that we are interested in the case ν = δ.

Proposition 3.6. There exist δ0, ϱ0 > 0 and a family of analytic canonical changes of
coordinates, defined for ν ∈ [0, δ0) and δ ∈ (0, δ0),“Fδ,ν = (φ1,ν , ψ1,ν , φ2,ν , ψ2,ν) : B(ϱ0) → B(ϱ̂0) ⊂ R4

(v1, w1, v2, w2) 7→ (v̂1, ŵ1, v̂2, ŵ2),
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such that the Hamiltonian “H in (3.19) in the new coordinates reads

H(v1, w1, v2, w2; δ, ν) = “H Ä“Fδ,ν(v1, w1, v2, w2); δ, ν
ä

= v1w1 +
α(δ)

2δ2
(
v22 + w2

2

)
+ R(v2w2, v

2
2 + w2

2)

where R satisfies that, for (v1, w1, v2, w2) ∈ B(ϱ0),∣∣R(v1w1, v
2
2 + w2

2; δ)
∣∣ ≤ C|(v1w1, v

2
2 + w2

2)|2,

for some C > 0 independent of δ and ν.
In addition, for all (v1, w1, v2, w2) ∈ B(ϱ0) and all (v̂1, ŵ1, v̂2, ŵ2) ∈ B(ϱ̂0), the

individual components of the change of coordinates satisfy

(1) |φ1,ν(v1, w1, v2, w2) − v1| ≤ C
¶
|(v1, w1)|2 + ν |(v1, w1, v2, w2)|2

©
,

|φ−1
1,ν(v̂1, ŵ1, v̂2, ŵ2) − v̂1| ≤ C

¶
|(v̂1, ŵ1)|2 + ν |(v̂1, ŵ1, v̂2, ŵ2)|2

©
,

(2) |ψ1,ν(v1, w1, v2, w2) − w1| ≤ C
¶
|(v1, w1)|2 + ν |(v1, w1, v2, w2)|2

©
,

|ψ−1
1,ν(v̂1, ŵ1, v̂2, ŵ2) − ŵ1| ≤ C

¶
|(v̂1, ŵ1)|2 + ν |(v̂1, ŵ1, v̂2, ŵ2)|2

©
,

(3) |φ2,ν(v1, w1, v2, w2) − v2| ≤ Cν |(v1, w1, v2, w2)|2,
|φ−1

2,ν(v̂1, ŵ1, v̂2, ŵ2) − v̂2| ≤ Cν |(v̂1, ŵ1, v̂2, ŵ2)|2,

(4) |ψ2,ν(v1, w1, v2, w2) − w2| ≤ Cν |(v1, w1, v2, w2)|2,
|ψ−1

2,ν(v̂1, ŵ1, v̂2, ŵ2) − ŵ2| ≤ Cν |(v̂1, ŵ1, v̂2, ŵ2)|2.

Proposition 3.2 is a direct consequence of Lemma 3.5 and Proposition 3.6.

3.3 The invariant manifolds in normal form variables

To prove Proposition 3.3, we translate the results in Theorem 2.4 (Statement 1) and
the axis of symmetry S (Statement 2) into the set of coordinates (v1, w1, v2, w2) given
in Proposition 3.2. Recall that in the proof of Proposition 3.2, we have used the
“intermediate” system of coordinates (v̂1, ŵ1, v̂2, ŵ2). We translate first the results via
the change of coordinates ϕ̂δ : (v̂1, ŵ1, v̂2, ŵ2) → (λ,Λ, x, y), given by Lemma 3.5. Then,

we apply the second change of coordinates “Fδ,ν : (v1, w1, v2, w2) → (v̂1, ŵ1, v̂2, ŵ2) with
ν = δ, given by Proposition 3.6.

Statement 1: Let λ∗ ∈ [λ1, λ2] ⊂ (0, λ0) to be chosen later and consider the section
Σ(λ∗) = {λ = λ∗,Λ > 0} . Let zuδ (λ∗) and zsδ(λ∗) be the first intersections of the invariant
manifolds Wu,+(L) and Ws,+(L) with the section Σ(λ∗), respectively.

Let us recall that, by Proposition 2.3, the critical point L(δ) in (λ,Λ, x, y) coordinates

is of the form L(δ) =
(
0, δ2LΛ(δ), δ3Lx(δ), δ3Ly(δ)

)T
, with LΛ,Lx,Ly = O(1). Then,
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applying the change of coordinates ϕ̂δ given in Lemma 3.5, there exist C1 functions
γ1, γ2 : (0, δ0) → R4 satisfying γ1, γ2 = O(1) such that

Σ̂(λ∗, δ) = ϕ̂δ (Σ(λ∗)) =
{
v̂1 + ŵ1 + δ⟨γ1(δ), (v̂1, ŵ1, v̂2, ŵ2)⟩ =

√
7
2 λ∗,

ŵ1 − v̂1 + δ⟨γ2(δ), (v̂1, ŵ1, v̂2, ŵ2)⟩ + δ2
√

6LΛ(δ) > 0
}
.

(3.20)

Notice that Σ̂(λ∗, 0) = {v̂1 + ŵ1 =
√
7
2 λ∗, ŵ1 > v̂1}. Moreover, we denote

(v̂u1 , ŵ
u
1 , v̂

u
2 , ŵ

u
2) = ϕ̂−1

δ (zuδ (λ∗)) ∈ Σ̂(λ∗, δ),

(v̂s1, ŵ
s
1, v̂

s
2, ŵ

s
2) = ϕ̂−1

δ (zsδ(λ∗)) ∈ Σ̂(λ∗, δ).

Since ϕ̂δ is an affine transformation, by Theorem 2.4 and Lemma 3.5, one has that

v̂u1 − v̂s1 =

ñÇ√
7

4
,−

√
3, 0, 0

å
+ O(δ)

ô
· (zuδ (λ∗) − zsδ(λ∗)) = O

(
δ

4
3 e−

A
δ2

)
,

ŵu
1 − ŵs

1 =

ñÇ√
7

4
,
√

3, 0, 0

å
+ O(δ)

ô
· (zuδ (λ∗) − zsδ(λ∗)) = O

(
δ

4
3 e−

A
δ2

)
,

v̂u2 − v̂s2 =

ñÇ
0, 0,

4

…
21

32
,

4

…
21

32

å
+ O(δ)

ô
· (zuδ (λ∗) − zsδ(λ∗))

=
3
√

4
4

…
21

8
δ

1
3 e−

A
δ2

ï
Re Θ + O

Å
1

|log δ|

ãò
,

ŵu
2 − ŵs

2 =

ñÇ
0, 0,−i 4

…
21

32
, i

4

…
21

32

å
+ O(δ)

ô
· (zuδ (λ∗) − zsδ(λ∗))

= − 3
√

4
4

…
21

8
δ

1
3 e−

A
δ2

ï
Im Θ + O

Å
1

|log δ|

ãò
.

(3.21)

Next, we consider the change of coordinates “Fδ,ν with ν = δ given in Proposition 3.6.
Let us denote

(vu1 , w
u
1 , v

u
2 , w

u
2) = “F−1

δ,δ (v̂u1 , ŵ
u
1 , v̂

u
2 , ŵ

u
2), (vs1, w

s
1, v

s
2, w

s
2) = “F−1

δ,δ (v̂s1, ŵ
s
1, v̂

s
2, ŵ

s
2). (3.22)

Since the local stable manifold is given by {v1 = v2 = w2 = 0} (see (3.2)), one has that
vs1 = vs2 = ws

2 = 0 and we call ϱ = ws
1, (see Figure 12). Taking into account that“Fδ,δ(0, ϱ, 0, 0) = (v̂s1, ŵ

s
1, v̂

s
2, ŵ

s
2) ∈ Σ̂(λ∗, δ) for λ ∈ [λ1, λ2], by (3.20), the value λ∗ must

satisfy

λ∗ =

…
7

4

î
v̂s1 + ŵs

1 + δ4⟨γ1(δ), “Fδ,δ(0, ϱ, 0, 0)⟩
ó
.

Then, using the notation “Fδ,δ = (φ1,δ, ψ1,δ, φ2,δ, ψ2,δ), by Proposition 3.6, one has that
for ϱ ∈ (0, ϱ0) and δ > 0 small enough,

λ∗ =

…
7

4
ϱ (1 + O(ϱ, δ)) .
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Then, it is clear that taking, for instance, ϱ = ϱ0/2, the corresponding λ∗ belongs to a
closed interval in (0, λ0) independent of δ.

Next, we consider the difference between (vu1 , w
u
1 , v

u
2 , w

u
2) and (vs1, w

s
1, v

s
2, w

s
2) = (0, ϱ, 0, 0).

By (3.22), one has that

wu
1 − ϱ = ψ−1

1,δ (v̂u1 , ŵ
u
1 , v̂

u
2 , ŵ

u
2) − ψ−1

1,δ (v̂s1, ŵ
s
1, v̂

s
2, ŵ

s
2),

vu2 = φ−1
2,δ(v̂

u
1 , ŵ

u
1 , v̂

u
2 , ŵ

u
2) − φ−1

2,δ(v̂
s
1, ŵ

s
1, v̂

s
2, ŵ

s
2),

wu
2 = ψ−1

2,δ (v̂u1 , ŵ
u
1 , v̂

u
2 , ŵ

u
2) − ψ−1

2,δ (v̂s1, ŵ
s
1, v̂

s
2, ŵ

s
2).

For wu
1 − ϱ, by the mean value theorem, Proposition 3.6 and (3.21), one obtains

|wu
1 − ϱ| ≤ C |v̂u1 − v̂s1| + C |ŵu

1 − ŵs
1| + Cδ |v̂u2 − v̂s2| + Cδ |ŵu

2 − ŵs
2| ≤ Cδ

4
3 e−

A
δ2 .

Analogously, for vu2 , one has that

|vu2 − (v̂u2 − v̂s2)| ≤ Cδ |(v̂u1 − v̂s1, ŵ
u
1 − ŵs

1, v̂
u
2 − v̂s2, ŵ

u
2 − ŵs

2)| ≤ Cδ
4
3 e−

A
δ2

and, by (3.21), one obtains the expression of the statement for vu2 . An analogous estimate
holds for wu

2 . Lastly, by the expression of Hamiltonian H in Proposition 3.6, one sees
that H(vu1 , w

u
1 , v

u
2 , w

u
2) = H(0, 0, 0, 0) = 0 and obtains the expression for vu1 .

Statement 2: Let us consider the symmetry axis S = {λ = 0, x = y} given in (2.15).
Notice that, by Proposition 2.3, one has that ϕ̂δ(0) = L(δ) ∈ S. Then, applying the
affine transformation ϕ̂δ given in Lemma 3.5, there exist functions γ3, γ4 : (0, δ0) → R
satisfying γ3, γ4 = O(1) such that

ϕ̂δ(S) =
{
v̂1 + ŵ1 + δ⟨γ3(δ), (v̂1, ŵ1, v̂2, ŵ2)⟩ = 0, ŵ2 + δ⟨γ4(δ), (v̂1, ŵ1, v̂2, ŵ2)⟩ = 0

}
.

Then, applying the change of coordinates “Fδ,δ, one has that

Sloc = {v1 + w1 = Ψ1(v1, w1, v2, w2; δ), w2 = Ψ2(v1, w1, v2, w2; δ)} ,

where

Ψ1 = (φ1,δ − v1) + (ψ1,δ − w1) + δ⟨γ3(δ),Fδ,δ⟩,
Ψ2 = (ψ2,δ − w2) + δ⟨γ4(δ),Fδ,δ⟩.

Then, Proposition 3.6 implies that for (v1, w1, v2, w2) ∈ B(ϱ0) and δ > 0 small enough,

|Ψ1(v1, w1, v2, w2; δ)| ≤ Cδ |(v1, w1, v2, w2)| + C |(v1, w1)|2 ,
|Ψ2(v1, w1, v2, w2; δ)| ≤ Cδ |(v1, w1, v2, w2)| .
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4 The invariant manifolds of the Lyapunov orbits: Proof
of Theorems C and D

The goal of this section is to prove Item 1 of Theorem C and Theorem D. First we
rephrase these results referred to the Hamiltonian (2.8) (recall that δ = µ

1
4 , see (2.6)).

We begin with the existence of the Lyapunov periodic orbits given by Proposition 1.3.
Note that the Lyapunov Center Theorem (see for instance [MO17]) ensures the existence
of a family of periodic orbits emanating from a saddle-center equilibrium point. In our
setting, this family corresponds to perturbed orbits of the fast oscillator, centered at
L(δ), and therefore the existence of the periodic orbits given by Proposition 1.3 is just a
consequence of this classical theorem. However, we need to “reprove” it to have estimates
for the periodic orbits.

First, we introduce the following notation. For d > 0, we denote

T = R/2πZ, Td = {τ ∈ C/2πZ : |Im τ | < d} . (4.1)

Proposition 4.1. Let d, c0, c1 > 0. There exist ρ0, δ0 > 0 such that, for δ ∈ (0, δ0), there
exists a family of periodic orbits {Pρ(τ ; δ) : τ ∈ Td}ρ∈[0,ρ0] , where Pρ : Td → UC(c0, c1)
are real-analytic functions satisfying that

H(Pρ(τ ; δ)) =
ρ2

δ2
+H(L(δ)).

Furthermore, there exist ωρ,δ > 0 and a constant b2 > 0, independent of ρ and δ,
such that the parametrization of the periodic orbit satisfies

τ̇ =
ωρ,δ

δ2
with |ωρ,δ − 1| ≤ b2δ

4.

In addition, the parametrization can be written as

Pρ(τ ; δ) = L(δ) + ρ ·
(
0, 0, e−iτ , eiτ

)T
+ δρ ·

(
λP,ΛP, xP, yP

)T
(τ), (4.2)

where |λP(τ)| , |ΛP(τ)| ≤ b2, and |xP(τ)| , |yP(τ)| ≤ b2δ
3.

The proof of this proposition can be found in Appendix A.
Let us denote by Wu(Pρ) and Ws(Pρ) the 2-dimensional unstable and stable manifolds

of the periodic orbit Pρ(·, δ). Analogously to the invariant manifolds of L(δ), we denote
each branch as W⋄,+(Pρ) and W⋄,−(Pρ) for ⋄ ∈ {u, s} (see Figure 4). To prove Theorem
C and D, we focus on the study of the “+” invariant manifolds. By symmetry, there
exist analogous results for the “−” invariant manifolds.

We look for intersections between Wu,+(Pρ) and Ws,+(Pρ) in the 2-dimensional
section

Σρ =

ß
(λ,Λ, x, y) ∈ UR(c0, c1) : Λ = δ2LΛ(δ), H(λ,Λ, x, y) =

ρ2

δ2
+H(L(δ))

™
, (4.3)
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Pρ

Wu,+(Pρ)

Ws,+(Pρ)

Σρ

∂Du
ρ

∂Ds
ρ

λ

Λ

ρ = 0

(xu, yu)

(xs, ys)

ρ ∈ (0, ρmin(δ))

∂Du
ρ

∂Ds
ρ

ρ = ρmin(δ)

∂Du
ρ

∂Ds
ρ

ρ ∈ [ρmin(δ), ρmax(δ)]

∂Du
ρ

∂Ds
ρ

Figure 8: Intersection of the manifolds Wu,+(Pρ) and Ws,+(Pρ) with section Σρ. The pictures
in the right show the different possibilities given in Corollary 2.5 and Theorem 4.2.

where L = (0, δ2LΛ, δ
3Lx, δ

3Ly)T as given in Proposition 2.3 and UR(c0, c1) is the domain
introduced in (2.12). Note that this definition is consistent with that of Σ0 in (2.19)
and that, by Proposition 4.1, the periodic orbit Pρ belongs to the energy level H =
ρ2

δ2
+H(L(δ)) where Σρ is included.
In the next result, we see that the 2-dimensional invariant manifolds Wu,+(Pρ) and

Ws,+(Pρ) intersect in the section Σρ for certain values of ρ (see Figure 8). Note that
the intersection of the invariant manifolds for ρ = 0 has been analyzed in Corollary 2.5.
Both Item 1 of Theorem C and Theorem D are a consequence of the following result.

Theorem 4.2. Let ρ0 and Pρ, for ρ ∈ [0, ρ0], be as given in Proposition 4.1. Then, the
following is satisfied.

• There exists δ0 > 0 such that, for every ρ ∈ [0, ρ0] and δ ∈ (0, δ0), the invariant
manifolds Wu,+(Pρ) and Ws,+(Pρ) intersect the section Σρ. The first intersection
is given by closed curves, which we denote by ∂Du

ρ and ∂Ds
ρ.

• Let R > 1. There exists δR > 0, satisfying limR→∞ δR = 0, and functions
ρmin, ρmax : (0, δR) → [0, ρ0] such that, for δ ∈ (0, δR) and ρ ∈ [ρmin(δ), ρmax(δ)],
the curves ∂Du

ρ and ∂Ds
ρ intersect. Moreover,

ρmin(δ) =
6
√

2

2
|Θ|δ

1
3 e−

A
δ2

ï
1 + O

Å
1

|log δ|

ãò
,

ρmax(δ) =
6
√

2

2
|Θ|δ

1
3 e−

A
δ2

ï
R+ O

Å
1

|log δ|

ãò
.

• For ρ ∈ (ρmin(δ), ρmax(δ)], the curves ∂Du
ρ and ∂Ds

ρ intersect transversally at least
twice.
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• For ρ = ρmin(δ), the curves ∂Du
ρ and ∂Ds

ρ have at least one quadratic tangency at
a point Q0 ∈ ∂Du

ρ ∩ ∂Ds
ρ.

• Fix δ ∈ (0, δ0) and let ζ be any smooth curve transverse to ∂Du
ρmin

and ∂Ds
ρmin

within Σρmin at Q0. Then, for ρ close to ρmin, the local intersections of ∂Du
ρ and

∂Ds
ρ with the curve ζ cross each other with relative non-zero velocity at (Q0, ρmin).

Theorem 4.2 implies in particular that, for small values of δ, there exist transverse
intersections between some unstable and stable manifolds of Lyapunov periodic orbits
of L(δ). By symmetry, an analogous result holds for Wu,−(L) and Ws,−(L). This proves
Item 1 of Theorem C.

Moreover, the last two statements of Theorem 4.2 imply the existence of a generic
unfolding of a quadratic tangency between Wu,+(Pρ) and Ws,+(Pρ) (we follow the
definition of generic unfolding given in [Dua08]). Indeed, denoting by fϱ to the flow of
h in (1.1) restricted to the energy level h = ϱ + h(L3), for δ ∈ (0, δ0), one has that fϱ
unfolds generically an homoclinic quadratic tangency. Finally, noticing that the energy

level H(λ,Λ, x, y; δ) = ρ2

δ2
+ H(L) corresponds to h(q, p;µ) =

√
µρ2 + h(L3) (see (2.6)

and (2.5)), one proves Theorem D.
The rest of this section is devoted to prove Theorem 4.2. First, in Section 4.1, we

sum up the results concerning the unperturbed separatrix of the Hamiltonian Hp in (2.9)
presented in [BGG22]. Next, in Section 4.2, we obtain and analyze parametrizations of
the unstable and stable manifolds of the Lyapunov periodic orbits given in Proposition
4.1. Last, in Section 4.3, we analyze the intersections between these manifolds to
complete the proof of Theorem 4.2.

Throughout this section and the following ones, we denote the components of all
the functions and operators by a numerical sub-index f = (f1, f2, f3, f4)

T , unless stated
otherwise. In addition, we denote the canonical basis of C4 by {ej}j=1..4.

4.1 The unperturbed separatrix

Let us consider the unperturbed Hamiltonian H0 as given in (2.17). Notice that the
plane {x = y = 0} is invariant for H0 and the dynamics on it is described by

Hp(λ,Λ) = −3

2
Λ2 + V (λ), V (λ) = 1 − cosλ− 1√

2 + 2 cosλ
,

(see (2.9)). The origin (λ,Λ) = (0, 0) is a saddle with two separatrices associated to it
(see Figure 5). In [BGG22], we studied their real-analytic time-parametrizations. The
following result summarizes Theorem 2.2 and Corollary 2.4 in [BGG22] and it establishes
a suitable domain for these parametrizations, which we denote as

σp(u) = (λp(u),Λp(u), 0, 0)T . (4.4)
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Reu

Imu

β

iA

ΠA,β

Figure 9: Representation of the domain ΠA,β in (4.5).

Proposition 4.3. Let λ0 > 0 be as given in (2.18). There exists 0 < β < π
2 such that

the time-parametrization (λp(u),Λp(u)) of the right separatrix (i.e, λp(u) ∈ (0, π)) of
Hp with (λp(0),Λp(0)) = (λ0, 0) extends analytically to

ΠA,β = {u ∈ C : |Imu| < tanβReu+A}∪
{u ∈ C : |Imu| < − tanβReu+A} ,

(4.5)

with A > 0 as given in (1.9), (see Figure 9). Moreover,

• There exists C > 0 such that, for |Reu| ≫ 1, |λp(u)| , |Λp(u)| ≤ Ce−
»

21
8
|Reu|.

• For u ∈ ΠA,β, λp(u) = π if and only if u = ±iA.

• For u ∈ ΠA,β, Λp(u) = 0 if and only if u = 0.

4.2 Existence of the perturbed invariant manifolds

We devote this section to obtain and analyze parametrizations of the 2-dimensional
branches of the manifolds Wu,+(Pρ) and Ws,+(Pρ), where {Pρ}ρ∈(0,ρ0] is the family
of periodic orbits given in Proposition 4.1. We find these parametrizations through
a Perron-like method. In particular, following the ideas in [BFGS12], we write the
perturbed manifolds as functions of (u, τ), where u parametrizes the unperturbed homoclinic
orbit σp(u) (see (4.4)) and τ parametrizes the Lyapunov periodic orbit Pρ(τ ; δ).

Let us define the following complex domains (see Figure 10),

Du =
{
u ∈ C : |Imu| < A

2 − tanβReu
}
, Ds = {u ∈ C : −u ∈ Du} . (4.6)

Then, for ⋄ ∈ {u, s}, we consider the parametrizations Z⋄(u, τ) satisfying that

{Z⋄(u, τ) : (u, τ) ∈ D⋄ × Td} ⊆ W⋄,+(Pρ).

Notice that, for the unperturbed problem, since σp(u) is a time-parametrization it
satisfies u̇ = 1. In addition, by Proposition 4.1, the dynamics in Pρ(τ ; δ) satisfy τ̇ =

ωρ,δ

δ2
.
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Figure 10: Representation of the domains Du and Ds in (4.6).

Therefore, we impose that the dynamics on the perturbed parametrizations Z⋄ are given
by

u̇ = 1, τ̇ =
ωρ,δ

δ2
.

Hence, the parametrizations satisfy

∂uZ
⋄(u, τ) +

ωρ,δ

δ2
∂τZ

⋄(u, τ) =

Å
J 0
0 iJ

ã
DH(Z⋄(u, τ); δ) with J =

Å
0 1
−1 0

ã
(4.7)

and the asymptotic conditions

lim
Reu→−∞

Zu(u, τ) = lim
Reu→+∞

Zs(u, τ) = Pρ(τ ; δ), for all τ ∈ Td. (4.8)

To prove their existence and behavior, we consider the decomposition

Z⋄(u, τ) = Pρ(τ ; δ) + σp(u) + Z⋄
1 (u, τ), (4.9)

with σp as given in (4.4). The proof of the following result is deferred to Section 4.4.

Proposition 4.4. Fix d > 0 and ⋄ ∈ {u, s}. Let ρ0 > 0 be the constant given in
Proposition 4.1. There exist c0, c1, δ0, b3 > 0 such that, for ρ ∈ [0, ρ0] and δ ∈ (0, δ0),
equation (4.7) together with the condition (4.8) has a unique real-analytic solution Z⋄ :
D⋄ × Td → UC(c0, c1) that can be decomposed as in (4.9) and satisfies

⟨Z⋄
1 (0, τ), e2⟩ = 0, for all τ ∈ Td.

In addition, for ν = 1
2

»
21
8 ,

|Z⋄
1 (u, τ)| ≤ b3δe

−ν|Reu|, for (u, τ) ∈ D⋄ × Td.

Notice that, by Proposition 4.1, when ρ = 0, P0(τ ; δ) ≡ L(δ) is a fixed point and
that, Wu,+(L) and Ws,+(L) are 1-dimensional invariant manifolds. Then, for ⋄ ∈ {u, s},
Proposition 4.4 provides parametrizations z⋄1 independent of τ satisfying

{z⋄(u) : u ∈ D⋄} ⊆ W⋄,+(L),
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that can be decomposed as

z⋄(u) = L + σp(u) + z⋄1(u). (4.10)

Corollary 4.5. Let ⋄ ∈ {u, s}. There exist c0, c1, δ0, b3 > 0 such that, for δ ∈ (0, δ0) and
ρ = 0, equation (4.7) together with the conditions (4.8) has a unique real-analytic solution
z⋄ : D⋄ → UC(c0, c1) that can be decomposed as in (4.10) and satisfies ⟨z⋄1(0), e2⟩ = 0.

In addition, for ν = 1
2

»
21
8 ,

|z⋄1(u)| ≤ b3δe
−ν|Reu|, for u ∈ D⋄.

Finally, for ⋄ ∈ {u, s}, we can measure how accurately the 1-dimensional manifolds
W⋄,+(L) approximate the 2-dimensional manifolds W⋄,+(Pρ).

Proposition 4.6. Fix d > 0 and ⋄ ∈ {u, s}. Let ρ0 be the constant in Proposition 4.1
and Z⋄

1 and z⋄1 be the parametrizations given in Proposition 4.4 and Corollary 4.5,
respectively. Then, there exists δ0 > 0 and a constant b4 > 0 such that, for ρ ∈ [0, ρ0]
and δ ∈ (0, δ0),

|Z⋄
1 (u, τ) − z⋄1(u)| ≤ b4δρ, for (u, τ) ∈ D⋄ × Td.

The proof of this proposition is postponed to Section 4.5.

4.3 End of the proof of Theorem 4.2

To prove the first statement of Theorem 4.2, in the next lemma we study the intersections
between the section Σρ (see (4.3)) and the unstable and stable manifolds of Pρ parametrized
by Zu and Zs, respectively.

Lemma 4.7. Fix ⋄ ∈ {u, s}. Let ρ0 and Pρ be as given in Proposition 4.1, Z⋄ be the
parametrization given in (4.9) and Proposition 4.4 and Σρ the section given in (4.3).
Then, there exists δ0 > 0 and a real-analytic function U⋄

ρ : Td → D⋄ such that, for
ρ ∈ [0, ρ0] and δ ∈ (0, δ0),

Z⋄(U⋄
ρ (τ), τ) ∈ Σρ, for τ ∈ T = R/2πZ.

Moreover, there exists C > 0 independent of ρ and δ such that, for τ ∈ Td,

U⋄
0 ≡ 0, |U⋄

ρ (τ)| ≤ Cδρ.

Proof. Since the parametrization Z⋄ is real-analytic (see Remark 2.2), one has that

Z⋄(u, τ) ∈ UR(c0, c1) for (u, τ) ∈ (D⋄ ∩ R) × T.

In addition, by Propositions 4.1 and 4.4, one has that

H(Z⋄(u, τ)) = H(Pρ(τ ; δ)) =
ρ2

δ2
+H(L(δ)), for (u, τ) ∈ (D⋄ ∩ R) × T.
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Therefore, it is only necessary to find a function U⋄
ρ (τ) satisfying that ⟨Z⋄(U⋄

ρ (τ), τ), e2⟩ =
δ2LΛ(δ) for all τ ∈ T. Then, by the decomposition (4.9) of Z⋄ and Proposition 4.1,

δρΛP(τ) + Λp(U⋄
ρ (τ)) + ⟨Z⋄

1 (U⋄
ρ (τ), τ), e2⟩ = 0.

By Proposition 4.3, one has that Λp(u) = Λ̇p(0)u + O(u2) with Λ̇p(0) = −V ′(λ0) ̸= 0.
Then, U⋄

ρ is a solution of the fixed point equation given by the operator

F [U⋄
ρ ](τ) = − 1

Λ̇p(0)

î
δρΛP(τ) +

Ä
Λp(U⋄

ρ (τ)) − Λ̇p(0)U⋄
ρ

ä
+ ⟨Z⋄

1 (U⋄
ρ (τ), τ), e2⟩

ó
.

Notice that, by Propositions 4.1 and 4.4,

|F [0](τ)| = δρ
|ΛP(τ)|
|Λ̇p(0)|

≤ Cδρ.

Moreover, for real-analytic functions U ,V : Td → D⋄ satisfying that |U| , |V| ≤ Cδρ and
applying the mean value theorem and Proposition 4.4, one can see that the operator F
satisfies that, if δ small enough,

|F [U ] − F [V]| ≤ C|U2 − V2| + |U − V| sup
s∈[0,1]

|⟨∂uZ⋄
1 (sU + (1 − s)V, τ), e2⟩|

≤ Cδρ |U − V| ≤ 1

2
|U − V| ,

where we have used that ⟨Z⋄
1 (0, τ), e2⟩ = 0. Hence, F has a fixed point U⋄

ρ satisfying
that

∣∣U⋄
ρ (τ)

∣∣ ≤ Cδρ, for τ ∈ Td.

The first statement of Theorem 4.2 is a direct consequence of Lemma 4.7. We denote
by ∂Du

ρ and ∂Ds
ρ the first intersection of the manifolds Wu,+(Pρ) and Ws,+(Pρ) with

the section Σρ, respectively, that can be parametrized as

∂D⋄
ρ =

{
Z⋄(U⋄

ρ (τ⋄), τ⋄) : τ⋄ ∈ T
}
⊂ Σρ ∩W⋄,+(Pρ), ⋄ ∈ {u, s} . (4.11)

In particular, the first intersection of the manifolds Wu,+(L) and Ws,+(L) with the
section Σ0 corresponds to the points ∂Du

0 = {zu(0)} and ∂Ds
0 = {zs(0)}.

To prove the rest of the statements, we study the difference between the parametrizations
of the curves considered in (4.11). Since Σρ ⊂ UR(c0, c1) (see (4.3)), for τu, τ s ∈ T one
has that

⟨Zu(Uu
ρ (τu), τu) − Zs(U s

ρ(τ s), τ s), e2⟩ = 0,

⟨Zu(Uu
ρ (τu), τu) − Zs(U s

ρ(τ s), τ s), e4⟩ = ⟨Zu(Uu
ρ (τu), τu) − Zs(U s

ρ(τ), τ s), e3⟩,

and ⟨Zu(Uu
ρ (τu), τu) − Zs(U s

ρ(τ s), τ s), e1⟩ can be recovered by the conservation of energy

H = ρ2

δ2
+H(L). Therefore, to analyze the intersections between ∂Ds

ρ and ∂Du
ρ , it suffices

to study the zeroes of the complex function

∆(τu, τ s, ρ, δ) := ⟨Zu(Uu
ρ (τu), τu) − Zs(U s

ρ(τ s), τ s), e4⟩.
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Let us recall that, by Proposition 4.6, the difference ∆(τu, τ s) is given at first order,
by the difference zu − zs. Therefore, using the decompositions (4.9) and (4.10), for
⋄ ∈ {u, s}, we write

Z⋄(U⋄(τ), τ) = Pρ(τ) + σp(U⋄(τ)) + z⋄1(U⋄(τ)) + (Z⋄
1 (U⋄(τ), τ) − z⋄1(U⋄(τ))) ,

where Z⋄
1 and z⋄1 are given in Proposition 4.4 and Corollary 4.5, respectively. Recall

that, σp = (λp,Λp, 0, 0) (see (4.4)) and, by Proposition 4.1, Pρ = L + ρ(0, 0, eiτ , e−iτ ) +
δρ(λP,ΛP, xP, yP). Therefore, for δ small enough, we look for (τu, τ s, ρ) such that

∆(τu, τ s, ρ, δ) = 0, (4.12)

where

∆(τu, τ s, ρ, δ) = ρ(e−iτu − e−iτ s) +
6
√

2 δ
1
3 e−

A
δ2 |Θ| eiθ +M(δ) +R(τu, τ s, δ, ρ),

with θ = arg ⟨zu1 (0) − zs1(0), e4⟩ and

M(δ) = ⟨zu1 (0) − zs1(0), e4⟩ − 6
√

2 δ
1
3 e−

A
δ2 |Θ| eiθ,

R(τu, τ s, δ, ρ) = ⟨Zu
1 (Uu

ρ (τu), τu) − zu1 (Uu
ρ (τu)), e4⟩ − ⟨Zs

1(U s
ρ(τ s), τ s) − zs1(U s

ρ(τ s)), e4⟩
+ ⟨zu1 (Uu

ρ (τu)) − zu1 (0), e4⟩ − ⟨zs1(U s
ρ(τ s)) − zs1(0), e4⟩

+ δρ(yP(τu) − yP(τ s)).

Notice that, by Corollary 2.5, Propositions 4.1 and 4.6 and Lemma 4.7,

M(δ) = O

(
δ

1
3 e−

A
δ2

|log δ|

)
, R(τu, τ s, δ, ρ) = O(δρ).

Since, by Theorem A, Θ ̸= 0, we can consider the auxiliary parameter r ∈ (0, r0],

r =
2e

A
δ2

6
√

2 δ
1
3 |Θ|

ρ, and r0 =
2e

A
δ2

6
√

2 δ
1
3 |Θ|

ρ0. (4.13)

Then, equation (4.12) is equivalent to

r(e−i(τu+θ) − e−i(τ s+θ)) + 2 + g(τu, τ s, r, δ) = 0, (4.14)

where

g(τu, τ s, r, δ) =
2e

A
δ2 e−iθ

6
√

2 δ
1
3 |Θ|

Ç
M(δ) +R

Ç
τu, τ s, δ,

6
√

2

2
δ

1
3 |Θ|e−

A
δ2 r

åå
= O

Å
1

|log δ|

ã
+ O (δr) .
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τu∗ (τ s, 0)

−θ−γ − θ γ − θ

π − γ − θ

π − θ

π + γ − θ

τ s

r∗(τ
s, 0)

−θ−γ − θ γ − θ

1

1
cos γ

τ s

Figure 11: Plot in τ s of functions τu∗ (τ s, 0) and r∗(τ s, 0) as given in Lemma 4.8.

By introducing G = (G1, G2) : T2 × [0, r0] × [0, δ0) → R2, as

G1(τ
u, τ s, r, δ) = r (cos(τu + θ) − cos(τ s + θ)) + 2 + Re g(τu, τ s, r, δ),

G2(τ
u, τ s, r, δ) = r (sin(τu + θ) − sin(τ s + θ)) + Im g(τu, τ s, r, δ),

(4.15)

equation (4.14) is equivalent to G(τu, τ s, r, δ) = (0, 0).
Next result characterizes the solutions of this equation (see also Figure 11). Note

that it would be reasonable to look for the zeros of G for a fixed r. This would give
the intersections between the invariant manifolds of a given periodic orbit. Instead, we
parameterize the zeros writing (τu, r) as functions of τ s. This makes the application of
the implicit function theorem easier and allows us to analyze at the same time transverse
intersections and quadratic tangencies.

Lemma 4.8. Fix γ ∈ (0, π2 ) and consider Iγ = [−θ − γ,−θ + γ]. There exists δγ
satisfying limγ→π/2 δγ = 0 and functions (τu∗ , r∗) : Iγ × (0, δγ) → T × R, such that
G(τu∗ (τ s, δ), τ s, r∗(τ

s, δ), δ) = (0, 0) and

τu∗ (τ s, δ) = π − τ s − 2θ + O
Å

1

|log δ|

ã
,

r∗(τ
s, δ) =

1

cos(τ s + θ)
+ O
Å

1

|log δ|

ã
.

Proof. For r ≥ 1 and δ = 0, the equation G(τu, τ s, r, 0) = (0, 0) has a family of solutions
given by

Sα =

ß
(τu, τ s, r, 0) =

Å
π − α− θ, α− θ,

1

cosα
, 0

ã™
, with α ∈ [−γ, γ] ⊂

(
−π

2
,
π

2

)
.

Therefore, for δ > 0, it only remains to find zeroes of the function G using the implicit
function theorem around every solution of this family.

The second statement of Theorem 4.2 is a consequence of this lemma. Indeed,
take R > 1 and γ = arccos( 1

R) ∈ (0, π2 ). Then, Lemma 4.8 implies that the equation
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(a) r = 1

π − θ

−θ

∂Ds
ρ

∂Du
ρ

(τu, τ s)
= (π − θ,−θ)

(b) r ∈ (1, R]

γ̂(r) = arccos(1r )

∂Ds
ρ

∂Du
ρ

τu = π − γ̂(r)− θ
τ s = γ̂(r)− θ

τ s = −γ̂(r)− θ
τu = π + γ̂(r)− θ

Figure 12: Representation of solutions of the equation (4.15) in function of the coordinate r.

G(τu, τ s, r, δ) = (0, 0) has at least one solution for r ∈ [rmin(δ), rmax(δ)] and δ ∈ (0, δγ),
with

rmin(δ) = 1 + O
Å

1

|log δ|

ã
, rmax(δ) = R+ O

Å
1

|log δ|

ã
.

Taking into account (4.13), we define

ρmin(δ) =
6
√

2

2
δ

1
3 e−

A
δ2 |Θ|rmin(δ), ρmax(δ) =

6
√

2

2
δ

1
3 e−

A
δ2 |Θ|rmax(δ),

and assume δ > 0 small enough such that ρmax(δ) < ρ0. Then, for ρ ∈ [ρmin(δ), ρmax(δ)],
the closed curves ∂Du

ρ and ∂Ds
ρ (see (4.11)) intersect at least once. See Figure 12 for a

representation of the case δ = 0.
Finally, we prove the third and fourth statement of Theorem 4.2. Let us denote the

solutions of equation G(τu, τ s, r, δ) = (0, 0) given in Lemma 4.8 as

P (τ s, δ) = (τu∗ (τ s, δ), τ s, r∗(τ
s, δ), δ)

and consider the function‹G(τ s, δ) = det

Å
∂G

∂(τu, τ s)
(P (τ s, δ))

ã
, (τ s, δ) ∈ Iγ × (0, δγ).

Then, the values such that ‹G ̸= 0 correspond to transverse intersections of the closed
curves ∂Du

ρ and ∂Ds
ρ. Likewise, the values such that ‹G = 0 and ∂τ s‹G ̸= 0 correspond to

quadratic tangencies.
To characterize the transverse intersections and the quadratic tangencies, we define

τ smin(δ), the value of τ s where r∗ reaches its minimum value rmin. Note that this
corresponds to a critical point, which, by Lemma 4.8, satisfies

τ smin(δ) = −θ + O
Å

1

|log δ|

ã
, rmin(δ) = r∗(τ

s
min(δ), δ), ∂τ sr∗(τ

s
min(δ), δ) = 0. (4.16)
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‹G(τ s, 0)

−θ−γ − θ γ − θ

0

τ s

Figure 13: Plot in τ s of function ‹G(τ s, 0) as given in (4.15).

Now we prove that that (τ smin(δ), δ) is a simple zero of ‹G and otherwise ‹G ̸= 0, for
τ s ̸= τ smin(δ). By the definition of function G in (4.15) and Lemma 4.8, for (τ s, δ) ∈
Iγ × (0, δγ), one has that‹G(τ s, δ) = 2 tan(τ s + θ) + O

Å
1

|log δ|

ã
, ∂τ s‹G(τ s, δ) =

2

cos2(τ s + θ)
+ O
Å

1

|log δ|

ã
,

(see Figure 13). Notice that, for δ small enough,

∂τ s‹G(τ s, δ) ≥ 2 + O
Å

1

|log δ|

ã
> 0.

Therefore, ‹G is a strictly increasing function in τ s and can only have one simple zero.
Moreover, this zero corresponds to τ s = τ smin(δ). Indeed, since G(P (τ smin(δ), δ)) = (0, 0)
and ∂τ sr∗(τ

s
min(δ), δ) = 0 (see (4.16)), taking the derivatives one has that

∂τ sG(P (τ smin(δ), δ)) + ∂τuG(P (τ smin(δ), δ))∂τ sτ
u
∗ (τ smin(δ), δ) = (0, 0),

and, as a result, the vectors ∂τ sG and ∂τuG at P (τ smin(δ), δ) are linearly dependent

and, therefore, ‹G(τ smin, δ) = 0. Hence, there exists at least one quadratic tangency at
r = rmin(δ) and at least two transverse intersection for each r ∈ (rmin(δ), rmax(δ)].

4.4 Proof of Proposition 4.4

From now on, we consider a fixed d > 0 and the corresponding complex torus Td (see
(4.1)). We also set ρ0 satisfying the conditions in Proposition 4.1 and ρ ∈ [0, ρ0]. To
avoid cumbersome notations, throughout the rest of the section, we omit the dependence
on the parameter δ unless necessary and denote by C any positive constant independent
of δ and ρ to state estimates. We only prove the results for the unstable manifold, the
proof for the stable manifold is analogous.

We look for parametrizations of the invariant manifold Wu,+(Pρ) of the form

Zu(u, τ) = Pρ(τ) + σp(u) + Zu
1 (u, τ), (u, τ) ∈ Du × Td,
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(see (4.9)) satisfying the equation (4.7) and the asymptotic condition given in (4.8).
Let us recall that we split the Hamiltonian H as H = Hp + Hosc + H1 (see (2.8)).

Since σp = (λp,Λp, 0, 0) is a solution of the unperturbed system Hp + Hosc, it satisfies
the invariance equation (4.7) for the unperturbed Hamiltonian (see Proposition 4.3).
By Proposition 4.1, Pρ also satisfies (4.7) (for the full Hamiltonian H). Then, the
parametrization Z⋄

1 satisfies

LρZ
u
1 = Rρ[Zu

1 ], (4.17)

where

Lρζ =
(
∂u +

ωρ,δ

δ2
∂τ −A(u)

)
ζ, A =

Ü
0 −3 0 0

−V ′′(λp(u)) 0 0 0
0 0 i

δ2
0

0 0 0 − i
δ2

ê
(4.18)

and

Rρ[ζ] =

Ü
∂ΛH1(Pρ + σp + ζ) − ∂ΛH1(Pρ)

−Tρ[ζ1] − ∂λH1(Pρ + σp + ζ) + ∂λH1(Pρ)
i∂yH1(Pρ + σp + ζ) − i∂yH1(Pρ)
−i∂xH1(Pρ + σp + ζ) + i∂xH1(Pρ)

ê
, (4.19)

with

Tρ[ζ1] = V ′(λp + Pρ,1 + ζ1) − V ′(λp) − V ′(Pρ,1) − V ′′(λp)ζ1. (4.20)

We solve equation (4.17) by means of a fixed point scheme on a suitable Banach
space. For α ≥ 0, we consider the Banach space

Yα =

®
ζ : Du × Td → C : ζ real-analytic, ∥ζ∥α := sup

(u,τ)∈Du×Td

∣∣e−αuζ(u, τ)
∣∣ < +∞

´
,

where Du is the domain introduced in (4.6). We also consider the product Banach space
Y4
α = Yα × ...× Yα endowed with the norm

∥ζ∥×α =

4∑
j=1

∥ζj∥α.

In the next lemma, we state some properties of these Banach spaces. We will use them
throughout the section.

Lemma 4.9. The following statements hold.

1. If α ≥ β ≥ 0, then Yα ⊆ Yβ. Moreover, for ζ ∈ Yα, ∥ζ∥β ≤ C∥ζ∥α.

2. If ζ ∈ Yα and η ∈ Yβ, then ζη ∈ Yα+β and ∥ζη∥α+β ≤ ∥ζ∥α∥η∥β.
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Next, we obtain and analyze a suitable right-inverse of the operator Lρ introduced
in (4.18). The first step is to construct a fundamental matrix for ζ̇ = A(u)ζ.

Lemma 4.10. Fix u0 ∈ R \ {0} and consider the linear differential equation ζ̇ = A(u)ζ,
with A as given in (4.18). Then, a real-analytic fundamental matrix of this equation is

Φ(u) =

á
3fΦ(u) 3gΦ(u) 0 0

−ḟΦ(u) −ġΦ(u) 0 0

0 0 e
i
δ2

u 0

0 0 0 e−
i
δ2

u

ë
,

with

fΦ(u) =
1

3ξ(0)

Ç
ξ(u) − ξ̇(0)

Λp(0)
Λ̇p(u)

å
, gΦ(u) = −Λp(u)

Λp(0)
, ξ(u) = Λp(u)

∫ u

u0

dv

Λ2
p(v)

,

where, in the last integral, we consider an integration path in Du given by the straight
line if u ∈ C \ R and by a path avoiding u = 0 when u ∈ R.

Moreover, Φ(u) satisfies that det Φ(u) = 1, Φ(0) = Id and that there exists a constant

C > 0 such that, denoting ν = 1
2

»
21
8 ,

∥gΦ∥2ν ≤ C, ∥ġΦ∥2ν ≤ C, ∥fΦ∥−2ν ≤ C, ∥ḟΦ∥−2ν ≤ C.

Proof. Let us recall that, by Proposition 4.3, the time-parametrization of the separatrix
satisfies that λ̇p(u) = −3Λp(u) and Λ̇p(u) = −V ′(λp(u)), for u ∈ ΠA,β. Then, a
fundamental matrix of the equation ζ̇ = A(u)ζ is given by

ϕ(u) =

á
3ξ(u) 3Λp(u) 0 0

−ξ̇(u) −Λ̇p(u) 0 0

0 0 e
i
δ2

u 0

0 0 0 e−
i
δ2

u

ë
.

We stress that ξ is real-analytic in Du ⊂ ΠA,β. Indeed, one has that u = 0 is the only
zero of Λp(u) (see Proposition 4.3), that Λ̇p(0) = −V ′(λp(0)) ̸= 0 and Λ̈p(0) = 0. Thus,
Λp(u) = Λ̇p(0)u+O(u3). That implies that the integral appearing on ξ does not depend
on the path of integration since its residue is zero. As a consequence, ξ(u) ∈ R for
u ∈ R. In addition, since ξ(0) = −Λ̇−1

p (0) ̸= 0, we can perform a linear transformation
to ϕ(u) to obtain the fundamental matrix Φ(u) satisfying Φ(0) = Id and det Φ(u) = 1.
Lastly, recalling that, by Proposition 4.3, ∥λp∥2ν ≤ C and ∥Λp∥2ν ≤ C, we obtain the
corresponding estimates for fΦ and gΦ.

We use this matrix Φ to construct a right-inverse of the operator Lρ in (4.18). For
ζ ∈ Y4

ν , we consider the operator

Gρ[ζ](u, τ) =

4∑
j=1

Gρ,j [ζ](u, τ)ej, (4.21)
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given byÇ
Gρ,1[ζ](u, τ)

Gρ,2[ζ](u, τ)

å
=

Ç
3fΦ(u) 3gΦ(u)

−ḟΦ(u) −ġΦ(u)

åá ∫ 0

−∞
I1[ζ1, ζ2]

(
u+ t, τ +

ωρ,δ

δ2
t
)
dt∫ 0

−u
I2[ζ1, ζ2]

(
u+ t, τ +

ωρ,δ

δ2
t
)
dt

ë
and

Gρ,3[ζ](u, τ) =

∫ 0

−∞
e−

i
δ2

tζ3

(
u+ t, τ +

ωρ,δ

δ2
t
)
dt,

Gρ,4[ζ](u, τ) =

∫ 0

−∞
e

i
δ2

tζ4

(
u+ t, τ +

ωρ,δ

δ2
t
)
dt,

where

I1[ζ1, ζ2](u, τ) = −ġΦ(u)ζ1(u, τ) − 3gΦ(u)ζ2(u, τ),

I2[ζ1, ζ2](u, τ) = ḟΦ(u)ζ1(u, τ) + 3fΦ(u)ζ2(u, τ).

Lemma 4.11. For ρ ∈ [0, ρ0] and δ ∈ (0, 1), the operator Gρ : Y4
ν → Y4

ν is well defined
and is a right-inverse of the operator Lρ given in (4.18). Moreover, Gρ,2[ζ](0, ·) ≡ 0 and
there exists a constant C > 0 independent of ρ and δ such that

∥Gρ[ζ]∥×ν ≤ C∥ζ∥×ν .

In addition, if ∂τζ ≡ 0, one has that Gρ[ζ] = Gρ̃[ζ] for ρ, ρ̃ ∈ [0, ρ0].

Proof. The fact that Gρ is a right inverse of Lρ is straightforward. We show how to
obtain estimates for Gρ,1. The estimates for Gρ,2, Gρ,3 and Gρ,4 are analogous.

Let ζ1, ζ2 ∈ Yν . By the estimates in Lemma 4.10, for (u, τ) ∈ Du × Td one has

|I1[ζ1, ζ2](u, τ)| ≤ C|e3νu| (∥ζ1∥ν + ∥ζ2∥ν) ,

|I2[ζ1, ζ2](u, τ)| ≤ C|e−νu| (∥ζ1∥ν + ∥ζ2∥ν) .

Then,

∣∣Gρ,1(u, τ)e−νu
∣∣ ≤C

∣∣e−3νu
∣∣ ∣∣∣∣∣
∫ 0

−∞
I1[ζ1, ζ2]

(
u+ t, τ +

ωρ,δ

δ2
t
)
dt

∣∣∣∣∣
+ C |eνu|

∣∣∣∣∣
∫ 0

−u
I2[ζ1, ζ2]

(
u+ t, τ +

ωρ,δ

δ2
t
)
dt

∣∣∣∣∣
≤C (∥ζ1∥ν + ∥ζ2∥ν) .
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We introduce the fixed point operator

Fρ = Gρ ◦ Rρ, (4.22)

with Rρ and Gρ as given in (4.19) and (4.21), respectively. Then, equation (4.17) can be
expressed as Zu

1 = Fρ[Zu
1 ].

Proving Proposition 4.4 is equivalent to prove the following result.

Proposition 4.12. Let ρ0 > 0 be the constant given in Proposition 4.1. There exist
δ0 > 0 and b3 > 0 such that, for ρ ∈ [0, ρ0] and δ ∈ (0, δ0), the equation Zu

1 = F [Zu
1 ] has

a unique solution Zu
1 ∈ Y4

ν satisfying

∥Zu
1 ∥×ν ≤ b3δ.

Proof. For ς > 0, let us consider B(ς) =
{
ζ ∈ Y4

ν : ∥ζ∥×ν ≤ ς
}
. We will check that

Fρ : B(ς) → B(ς) is a contraction for a suitable ς.
We first claim that there exist δ0 > 0 such that, for ρ ∈ [0, ρ0] and δ ∈ (0, δ0),

∥Rρ[ζ]∥×ν ≤ Cδ, ∥∂jRρ[ζ]∥×0 ≤ Cδ, (4.23)

for ζ ∈ B(ςδ) and j = 1, .., 4. Indeed, we obtain the estimates for Rρ,2[ζ], the other cases
are proven analogously. For the derivatives it is enough to apply Cauchy estimates.

We recall the definitions

σp = (λp,Λp, 0, 0)T ,

Pρ = (0, δ2LΛ, δ
3Lx, δ

3Ly)T + ρ(0, 0, eiτ , e−iτ )T + δρ
(
λP,ΛP, xP, yP

)T
,

Rρ,2[ζ] = −∂λH1(Pρ + σp + ζ) + ∂λH1(Pρ) − Tρ[ζ1],

Tρ[ζ1] = V ′(λp + δρλP + ζ1) − V ′(λp) − V ′(δρλP) − V ′′(λp)ζ1,

(4.24)

where V is the potential given in (2.7). Then, by the mean value theorem,

Rρ,2[ζ](u, τ) = −
∫ 1

0
D∂λH1(sσp(u) + sζ(u, τ) + Pρ(τ))ds (σp(u) + ζ(u, τ))

− ζ1(u, τ)
[
V ′′(λp(u) + δρλP(τ)) − V ′′′(λp(u))

]
+ O (ζ1(u, τ))2

− δρλP(τ)λp(u)V ′′′(0) + O (δρλP(τ)λp(u))2 .

From Proposition 4.1 and Proposition 4.3, one easily checks that

∥sσp + sζ + Pρ∥×0 ≤ C, for s ∈ [0, 1].

Thus, applying the estimates in Proposition 2.1 and using that λp,Λp ∈ Y2ν ,

∥Rρ,2[ζ]∥ν ≤Cδ∥λp + ζ1∥ν + Cδ2∥Λp + ζ2∥ν + Cδ∥ζ3∥ν + Cδ∥ζ4∥ν
+ C∥ζ1∥ν + Cδρ∥λp∥ν ≤ Cδ,

which proves (4.23).
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As a consequence of (4.23) and using Lemma 4.11, there exists a constant b3 > 0
such that

∥Fρ[0]∥×ν ≤ C∥Rρ[0]∥×ν ≤ 1

2
b3δ. (4.25)

In addition, for ζ, ζ̃ ∈ B(b3δ) and by the mean value theorem,

Rρ[ζ] −Rρ[ζ̃] =

ñ∫ 1

0
DRρ[sζ + (1 − s)ζ̃]ds

ô
(ζ − ζ̃).

Then, from Lemma 4.11 and the estimates in (4.23), we deduce that

∥Fρ[ζ] −Fρ[ζ̃]∥×ν ≤ C∥Rρ[ζ] −Rρ[ζ̃]∥×ν

≤ sup
s∈[0,1]

4∑
k=1

∥∂kRρ[sζ + (1 − s)ζ̃]∥0∥ζk − ζ̃k∥ν ≤ Cδ∥ζ − ζ̃∥×ν .
(4.26)

This implies that, taking δ small enough, ∥Fρ[ζ] −Fρ[ζ̃]∥×ν ≤ 1
2∥ζ − ζ̃∥×ν and, therefore,

Fρ : B(b3δ) → B(b3δ) is well defined and contractive. Hence, Fρ has a fixed point
Zu
1 ∈ B(b3δ).

Proposition 4.12 completes the proof of Proposition 4.4. Note that, since Gρ,2[ζ](0, ·) ≡
0 (see (4.21)) and Fρ = Gρ ◦ Rρ, the solution obtained in Proposition 4.12 satisfies

⟨Z⋄
1 (0, τ), e2⟩ = 0, for all τ ∈ Td.

4.5 Proof of Proposition 4.6

To prove Proposition 4.6, let us consider the parametrizations Zu
1 (u, τ) and zu1 (u) given

in Proposition 4.4 and Corollary 4.5, respectively.
Let us recall that, by Proposition 4.12, Zu

1 satisfies Zu
1 = (Gρ ◦ Rρ)[Zu

1 ] and, as a
result, zu1 = (G0 ◦R0)[z

u
1 ]. By Lemma 4.11, since zu1 does not depend on τ , one has that

zu1 = Gρ ◦ R0[z
u
1 ], for any ρ ∈ [0, ρ0]. (4.27)

Then, by Proposition 4.12,

Zu
1 − zu1 = Fρ[Zu

1 ] − Gρ ◦ R0[z
u
1 ]

= Fρ[Zu
1 ] −Fρ[zu1 ] + Gρ (Rρ[zu1 ] −R0[z

u
1 ]) ,

(4.28)

where we recall that Fρ = Gρ ◦ Rρ (see (4.22)).
Let us consider the constant b3 as given in Proposition 4.4. It is clear that,

Zu
1 , z

u
1 ∈ B(b3δ) :=

{
ζ ∈ Y4

ν : ∥ζ∥×ν ≤ b3δ
}
.
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Since Fρ is contractive with Lipschitz constant Lip(Fρ) ≤ Cδ (see (4.26)), for δ small
enough, one has that

∥Fρ[Zu
1 ] −Fρ[zu1 ]∥×ν ≤ Cδ∥Zu

1 − zu1∥×ν ≤ 1

2
∥Zu

1 − zu1∥×ν .

Thus, by (4.28) and Lemma 4.11,

∥Zu
1 − zu1∥×ν ≤ 1

2
∥Zu

1 − zu1∥×ν + C∥Rρ[zu1 ] −R0[z
u
1 ]∥×ν , (4.29)

We claim that, for ρ ∈ [0, ρ0] and δ > 0 small enough,

∥Rρ[zu1 ] −R0[z
u
1 ]∥×ν ≤ Cδρ. (4.30)

Indeed, first we consider estimates for Rρ,1 as given in (4.19). One has that

Rρ,1[z
u
1 ] −R0,1[z

u
1 ] =

(
∂ΛH1(σp + Pρ + zu1 ) − ∂ΛH1(Pρ)

)
−
(
∂ΛH1(σp + P0 + zu1 ) − ∂ΛH1(P0)

)
.

Denoting Ps = (1 − s)P0 + sPρ, by the mean value theorem,

Rρ,1[z
u
1 ] −R0,1[z

u
1 ] = (Pρ −P0)

T

ñ∫
[0,1]2

D2∂ΛH1(r(σp + zu1 ) + Ps)drds

ô
(σp + zu1 ) .

Then, using Lemma 4.9 and for (α1, α2, α3, α4) = (λ,Λ, x, y), one sees that

∥Rρ,1[z
u
1 ] −R0,1[z

u
1 ]∥ν ≤

4∑
j=1

4∑
k=1

sup
s∈[0,1]

sup
r∈[0,1]

∥∂αjαkΛH1(r(σp + zu1 ) + Ps)∥0

· ∥σp + zu1∥×ν ∥Pρ −P0∥×0 .

Notice that, Proposition 4.1 implies that ∥Pρ − P0∥×0 ≤ Cρ and Proposition 4.3 and
Corollary 4.5 imply that ∥σp + zu1∥×ν ≤ C. These estimates and those of Proposition 2.1,
which bound ∥∂αjαkΛH1∥0, imply that

∥Rρ,1[z
u
1 ] −R0,1[z

u
1 ]∥ν ≤ Cδρ.

Analogously, it can be seen that

∥Rρ,2[z
u
1 ] −R0,2[z

u
1 ]∥ν ≤ Cδρ+ ∥Tρ[zu1 ] − T0[z

u
1 ]∥ν ,

∥Rρ,3[z
u
1 ] −R0,3[z

u
1 ]∥ν ≤ Cδρ,

∥Rρ,4[z
u
1 ] −R0,4[z

u
1 ]∥ν ≤ Cδρ,

with Tρ defined in (4.20). Therefore, it only remains to analyze Tρ[zu1 ] − T0[z
u
1 ]. Indeed,

applying the mean value theorem one sees that

Tρ[zu1 ] − T0[z
u
1 ] = V ′(λp + Pρ,1 + zu1 ) − V ′(Pρ,1) − V ′(λp + zu1 ) + V ′(0)

= Pρ,1 (λp + zu1 )

∫
[0,1]2

V ′′′(sλp + rPρ,1 + szu1 )drds.

Then, since λp ∈ Y2ν and taking into account that Pρ,1(τ) = δρλP(τ) with ∥λP∥0 ≤ C
(see Proposition 4.1), one has that ∥Tρ[zu1 ]−T0[z

u
1 ]∥ν ≤ Cδρ. This proves (4.30) and, by

(4.29), Proposition 4.6 holds.
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A Lyapunov periodic orbits

In this appendix we prove Proposition 4.1. Let us recall that, by Proposition 2.3, the
equilibrium point L3 in the coordinates (λ,Λ, x, y) (see (2.5)), is given by

L(δ) =
(
0, δ2LΛ(δ), δ3Lx(δ), δ3Ly(δ)

)T
,

with |LΛ(δ)| , |Lx(δ)| |Ly(δ)| ≤ b1 for δ > 0 small enough. Using that one can write H as
H = H0 +H1, we have that

∂λH1(L(δ); δ) = 0, ∂ΛH1(L(δ); δ) = 3δ2LΛ(δ),

∂xH1(L(δ); δ) = −δLy(δ), ∂yH1(L(δ); δ) = −δLx(δ).
(A.1)

In addition, one can easily check that

H(L(δ); δ) = −1

2
− 3

2
δ4L2

Λ(δ) + δ4Lx(δ)Ly(δ) +H1(L(δ); δ). (A.2)

For ρ > 0, we consider a polar symplectic change of coordinates ϕLya : (λ, J, φ, I) →
(λ,Λ, x, y) given by

Λ = J + δ2LΛ(δ), x =
√
ρ2 + Ie−iφ + δ3Lx(δ), y =

√
ρ2 + Ieiφ + δ3Ly(δ). (A.3)

The Hamiltonian H expressed in the coordinates (λ, J, φ, I) becomes HLya = H ◦ ϕLya,
given by

HLya(λ, J, φ, I; ρ, δ) = − 3

2
J2 + V (λ) +

ρ2 + I

δ2
+H1(ϕLya(λ, J, φ, I); δ) − 3δ2JLΛ

+ δ
√
ρ2 + I

(
e−iφLy + eiφLx

)
− 3

2
δ4LΛ + δ4LxLy,

which, using (A.1) and (A.2), can be rewritten as

HLya(λ, J, φ, I; ρ, δ) = − 3

2
J2 + V (λ) +

1

2
+

I

δ2
+H1(ϕLya(λ, J, φ, I); δ)

−H1(L; δ) −DH1(L; δ) · (ϕLya(λ, J, φ, I) − L)T

+
ρ2

δ2
+H(L; δ).

(A.4)

We are interested in proving the existence of a periodic orbit in the energy level

HLya = ρ2

δ2
+H(L; δ). To this end, in the following lemma, we first obtain an expression

of I in terms of the other coordinates. Let us denote by B(ς) = {z ∈ C : |z| < ς}, the
open ball of radius ς.

Lemma A.1. Fix d, ςλ, ςJ , ρ0 > 0. There exists δ0 > 0 such that, for all ρ ∈ (0, ρ0] and
δ ∈ (0, δ0), there exists a function

Îρ,δ : B(δρςλ) ×B(δρςJ) × Td → C,
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such that HLya(λ, J, φ, Îρ,δ(λ, J, φ); ρ, δ) = ρ2

δ2
+H(L; δ).

Moreover, there exists a constant C > 0 independent of ρ and δ such that

|Îρ,δ(λ, J, φ; δ)| ≤ Cδ4ρ2, |∂λÎρ,δ(λ, J, φ; δ)| ≤ Cδ3ρ,

|∂J Îρ,δ(λ, J, φ; δ)| ≤ Cδ3ρ, |∂φÎρ,δ(λ, J, φ; δ)| ≤ Cδ4ρ2.

Proof. One has that the function Îρ,δ must satisfy the equation Îρ,δ = F [Îρ,δ] with

F [I](λ, J, φ) = δ2HLya(λ, J, φ, I; ρ, δ) − I − ρ2 − δ2H(L; δ)

= δ2
ï

3

2
J2 + V (λ) +

1

2
+H1(ϕLya(λ, J, φ, I); δ)

−H1(L; δ) −DH1(L; δ) · (ϕLya(λ, J, φ, I) − L)T
ò
.

Let (λ, J, φ) ∈ B(δρςλ)×B(δρςJ)×Td. Then, using the estimates ofD2H1 in Proposition 2.1,
one has that

|F [0](λ, J, φ)| ≤ Cδ2ρ2.

In addition, for functions ι1, ι2 : B(δρςλ)×B(δρςJ)×Td → C such that |ι1(λ, J, φ)| , |ι2(λ, J, φ)| ≤
Cδ2ρ2, by the estimates of the third derivatives of H1 in Proposition 2.1 and the mean
value theorem, one has that

|F [ι1](λ, J, φ) − F [ι2](λ, J, φ)| ≤ Cδ3ρ |ι1(λ, J, φ) − ι2(λ, J, φ)| ≤ Cδ30ρ0 |ι1(λ, J, φ) − ι2(λ, J, φ)| .

Then, taking δ0 small enough and applying the fixed point theorem, one obtains the
existence of the function Îρ,δ and its corresponding bounds. The bounds for the derivatives

of Îρ,δ are a direct consequence of Cauchy estimates.

By Lemma A.1, the Hamiltonian system on the energy level HLya = ρ2

δ2
+H(L; δ) is

of the form

λ̇ = −3J + f1(λ, J, φ), J̇ = −7

8
λ+ f2(λ, J, φ), φ̇ =

1

δ2
+ g(λ, J, φ), (A.5)

where, denoting Îρ,δ = Îρ,δ(λ, J, φ) and using the expression of HLya in (A.4) and that
V ′′(0) = −7

8 ,

f1(λ, J, φ) = ∂ΛH1

Ä
ϕLya(λ, J, φ, Îρ,δ); δ

ä
− ∂ΛH1(L(δ); δ),

f2(λ, J, φ) = −V ′(λ) + V ′′(0)λ− ∂λH1

Ä
ϕLya(λ, J, φ, Îρ,δ); δ

ä
+ ∂λH1(L(δ); δ),

g(λ, J, φ) =
e−iφ

2
»
ρ2 + Îρ,δ

Ä
∂xH1

Ä
ϕLya(λ, J, φ, Îρ,δ); δ

ä
− ∂xH1(L(δ); δ)

ä
+

eiφ

2
»
ρ2 + Îρ,δ

Ä
∂yH1

Ä
ϕLya(λ, J, φ, Îρ,δ); δ

ä
− ∂yH1(L(δ); δ)

ä
.

(A.6)
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We look for the periodic orbit of the system (A.5) as a graph over φ provided φ̇ ̸= 0
(which will be true on the periodic orbits). In other words, we look for periodic functions

w = (wλ, wJ) : Td → C2, w = w(φ),

satisfying the invariance equation Lw = R[w], with

Lw = (∂φ − δ2A)w, A =

Å
0 −3
−7

8 0

ã
,

R[w](φ) = δ2
ÅAw + f(wλ(φ), wJ(φ), φ)

1 + δ2g(wλ(φ), wJ(φ), φ)
−Aw

ã
where f = (f1, f2).

(A.7)

Let us consider the Banach space

Z =

®
h : Td → C : h analytic, ∥h∥ := sup

φ∈Td

|h(φ)| < +∞
´
,

and the space Z2 endowed with the product norm ∥h∥× = ∥h1∥ + ∥h2∥.

Proposition A.2. There exist ρ0, δ0, b6 > 0 such that, for ρ ∈ (0, ρ0] and δ ∈ (0, δ0),
there exists a solution of Lw = R[w] belonging to Z2 and satisfying

∥w∥× ≤ b6δρ.

To prove Proposition A.2 we first study the right-inverse of the operator L = ∂φ−δ2A
in Z2. First, notice that

A = PDP−1 where D =

Å
ν 0
0 −ν

ã
, P =

Å
3 3
−ν ν

ã
, ν =

…
21

8
.

Lemma A.3. The operator G : Z2 → Z2 defined as

G[h](φ) =Peφδ2D(e−2πδ2D − Id)−1

∫ 2π

0
e−θδ2DP−1h(θ)dθ

+ Peφδ2D
∫ φ

0
e−θδ2DP−1h(θ)dθ,

(A.8)

is a right-inverse of the operator L given in (A.7). In addition, there exists C > 0 such
that, for δ ∈ (0, 1),

∥G[h]∥× ≤ C

δ2
∥h∥×, for h ∈ Z2.

Proof. If w is a solution of L[w] = h, it must exist K0 ∈ R2 such that

w(φ) = Peφδ2D
ï
K0 +

∫ φ

0
e−θδ2DP−1h(θ)dθ

ò
.

Then, imposing that w is 2π-periodic, one obtains (A.8). The estimates for the operator
are straightforward taking into account that

∥(e−2πδ2D − Id)−1∥ ≤ (1 − ∥e−2πδ2D − Id∥)−1 ≤ C

δ2
.
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For ς > 0, we denote B(ς) =
{
h ∈ Z2 : ∥h∥× ≤ ς

}
.

Lemma A.4. Fix constants ρ0, ς > 0. Then, there exist δ0, C > 0 such that, for
ρ ∈ (0, ρ0], δ ∈ (0, δ0) and h ∈ B(ςδρ), the function R in (A.7) satisfies

∥R1[h]∥ ≤ Cδ5ρ, ∥R2[h]∥ ≤ Cδ3ρ

and

∥∂1R1[h]∥ ≤ Cδ4, ∥∂2R1[h]∥ ≤ Cδ4, ∥∂1R2[h]∥ ≤ Cδ3, ∥∂2R2[h]∥ ≤ Cδ4.

Proof. Let h = (h1, h2) ∈ B(ςδρ) and φ ∈ Td. For s ∈ [0, 1], we denote

zs(φ) = s ϕLya
Ä
h1(φ), h2(φ), φ, Îρ,δ(h(φ))

ä
+ (1 − s)L(δ).

We notice that, by the definition in (A.3) of ϕLya,

z1(φ) − z0(φ) =
(
h1(φ), h2(φ),

»
ρ2 + Îρ,δ(h(φ))e−iφ,

»
ρ2 + Îρ,δ(h(φ))eiφ

)T
.

We recall that f1 = ∂ΛH1(ϕLya) − ∂ΛH1(L) (see (A.6)) and then, by the mean value
theorem and the estimates in Proposition 2.1 and Lemma A.1,

|f1(h(φ), φ)| ≤ sup
s∈[0,1]

{
|∂ΛλH1 (zs(φ))| |h1(φ)| +

∣∣∂2ΛH1 (zs(φ))
∣∣ |h2(φ)|

+
(
|∂ΛxH1 (zs(φ))| + |∂ΛyH1 (zs(φ))|

)
|ρ2 + Îρ,δ(h(φ))|

1
2

}
≤ Cδ3ρ.

(A.9)

Analogously,

|f2(h(φ), φ)| ≤ Cδρ, |g(h(φ), φ)| ≤ Cδ2. (A.10)

To obtain estimates for the derivatives of f1, f2 and g, note that

∂λf1(h(φ), φ) = ∂λΛH1

(
z1(φ)

)
+

∂λÎρ,δ

2
»
ρ2 + Îρ,δ

[
e−iφ∂ΛxH1

(
z1(φ)

)
+ eiφ∂ΛyH1

(
z1(φ)

)]
,

∂Jf1(h(φ), φ) = ∂2ΛH1

(
z1(φ)

)
+

∂J Îρ,δ

2
»
ρ2 + Îρ,δ

[
e−iφ∂ΛxH1

(
z1(φ)

)
+ eiφ∂ΛyH1

(
z1(φ)

)]
,

where Îρ,δ = Îρ,δ(h(φ)). Then, using the estimates in Proposition 2.1 and Lemma A.1,

|∂λf1(h(φ), φ)| ≤ Cδ2, |∂Jf1(h(φ), φ)| ≤ Cδ2. (A.11)

Analogously,
|∂λf2(h(φ), φ)| ≤ Cδ, |∂Jf2(h(φ), φ)| ≤ Cδ2,

|∂λg(h(φ), φ)| ≤ Cδ

ρ
, |∂Jg(h(φ), φ)| ≤ Cδ3

ρ
.

(A.12)

Finally, joining the just obtained bounds with the definition of the operator R in (A.7),
we obtain the statement of the lemma.
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Proof of Proposition A.2. A fixed point of w = F [w] with F = G ◦ R is a periodic
solution of Lw = R[w]. By Lemmas A.3 and A.4, there exists b6 > 0 such that

∥F [0]∥× ≤ C

δ2
(∥R1[0]∥ + ∥R2[0]∥) ≤ b6

2
δρ. (A.13)

Moreover, for h, ĥ ∈ B(b6δρ), by the mean value theorem,

∥R[h] −R[ĥ]∥× ≤ sup
s∈[0,1]

ï
∥DR[(1 − s)h+ sĥ](h− ĥ)∥×

ò
.

Thus, by Lemmas A.3 and A.4,

∥F [h] −F [ĥ]∥× ≤ C

δ2
∥R[h] −R[ĥ]∥× ≤ Cδ∥h− ĥ∥×. (A.14)

Then, if δ is small enough, the operator F : B(b6δρ) → B(b6δρ) is well defined and
contractive and, as a consequence, it has a fixed point w ∈ B(b6δρ).

End of the proof of Proposition 4.1. Let w(φ) = (wλ(φ), wJ(φ)) be the solution of Lw =
R[w] given by Proposition A.2 and introduce wI(φ) = Îρ,δ(w(φ), φ) as given in Lemma
A.1. Then, the curve (wλ(φ), wJ(φ), φ, wI(φ)) is a graph parametrization of the Lyapunov

periodic solution in the energy level HLya = ρ2

δ2
+ H(L). However, φ̇ = ∂tφ = 1

δ2
+

g(w(φ), φ). Then, to complete the proof of Proposition 4.1, we look for a reparametrization
φ = φ̂(τ) and a constant ωρ,δ such that τ̇ =

ωρ,δ

δ2
. Moreover, we impose φ(t)|t=0 = 0 and

therefore φ̂(2π) = 2π. Then, φ̂ must satisfy that

∂τ φ̂ =
1 + δ2g(w(φ̂), φ̂)

ωρ,δ
and φ̂(2π) = 2π.

Notice that, by (A.10) and for δ small enough, one has that ∂τ φ̂ ̸= 0. Then, its inverse
τ ≡ τ̂(φ) satisfies that

∂φτ̂ =
ωρ,δ

1 + δ2g(w(φ), φ)
and τ̂(2π) = 2π.

These conditions give definitions for the function τ̂(φ) and the constant ωρ,δ,

τ̂(φ) = ωρ,δ

∫ φ

0

dη

1 + δ2g(w(η), η)
and ωρ,δ =

2π∫ 2π
0

dφ
1+δ2g(w(φ),φ)

.

We notice that τ̂(φ+ 2π) = 2π + τ̂(φ). By the estimate for g in (A.10), we obtain

|ωρ,δ − 1| ≤ Cδ4, |τ̂(φ) − φ| ≤ Cδ4, |φ̂(τ) − τ | ≤ Cδ4. (A.15)

Then, for τ ∈ Td, the curve

Pρ(τ ; δ) = ϕLya
(
wλ(φ̂(τ)), wJ(φ̂(τ)), φ̂(τ), wI(φ̂(τ))

)
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is a real-analytic and 2π-periodic solution of the Hamiltonian system given by the

Hamiltonian H in (2.8) and it belongs to the energy level H = ρ2

δ2
+H(L). In addition,

the functions in (4.2) are given by

λP(τ) =
wλ(φ̂(τ))

δρ
, xP(τ) =

√
ρ2 + wI(φ̂(τ))e−iφ̂(τ) − ρe−iτ

δρ
,

ΛP(τ) =
wJ(φ̂(τ))

δρ
, yP(τ) =

√
ρ2 + wI(φ̂(τ))eiφ̂(τ) − ρeiτ

δρ
,

and, by Lemma A.1, Proposition A.2 and (A.15), satisfy that |λP(τ)| , |ΛP(τ)| ≤ C and
|xP(τ)| , |yP(τ)| ≤ Cδ3.

B Difference between the invariant manifolds of L3 on Σ0

In this appendix we prove Corollary 2.5, relying on the results in Sections 4.2 and 4.4. Let
us consider the real-analytic time parametrizations zu and zs of the unstable and stable
manifolds Wu,+(L) and Ws,+(L) defined in Corollary 4.5. Notice that, for u ∈ Du ∩Ds

(see (4.6)), they satisfy∣∣zu(u) − σp(u) − δ2LΛ

∣∣ ≤ Cδ,
∣∣zs(u) − σp(u) − δ2LΛ

∣∣ ≤ Cδ, (B.1)

where σp = (λp,Λp, 0, 0)T is given in (4.4). Moreover, zu(0), zs(0) ∈
{

Λ = δ2LΛ

}
and,

since zu and zs satisfy equation (4.7) and are independent of τ , for z⋄ = (λ⋄,Λ⋄, x⋄, y⋄),
⋄ = u, s, one has that

dλ⋄

du
= −3Λ⋄ + ∂ΛH1(z

u; δ),
dx⋄

du
=

i

δ2
x⋄ + i∂yH1(z

u; δ)

dΛ⋄

du
= −V ′(λ⋄) − ∂λH1(z

u; δ),
dy⋄

du
= − i

δ2
y⋄ − i∂xH1(z

u; δ).

(B.2)

Fix λ∗ ∈
(
2π
3 , λ0

)
, (see (2.18)). By Proposition 4.3, there exists u∗ > 0 such that

λ∗ = λp(u∗). Therefore, by (B.1) and for δ > 0 small enough, there exist T u, T s =
u∗ + O(δ) such that zu(T u), zs(T s) ∈ {λ = λ∗,Λ > 0} . Moreover, by Theorem 2.4,

zu(T u) − zs(T s) =
6
√

2δ
1
3 e−

A
δ2

î(
0, 0,Θ,Θ

)T
+ Oδ

ó
, (B.3)

where Oδ = (0,O(δ),O(|log δ|−1),O(|log δ|−1))T .
To prove Corollary 2.5, we deduce the difference zu(0) − zs(0) from (B.3). To this

end, we define ∆(u) = zu(u) − zs(u), for u ∈ [0, T u]. It is clear that, by (B.2), the
function ∆(u) satisfies the linear equation

d

du
∆(u) = (M0(u) +M1(u))∆(u),
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with

M0(u) =

Ü
0 −3 0 0

−V ′′(λp(u)) 0 0 0
0 0 i

δ2
0

0 0 0 − i
δ2

ê
,

M1(u) =

Ü
0 0 0 0

m(u) 0 0 0
0 0 0 0
0 0 0 0

ê
+

∫ 1

0
JD2H1 (ςzu(u) + (1 − ς)zs(u)) dς,

m(u) = V ′′(λp(u)) −
∫ 1

0
V ′′ (ςλu(u) + (1 − ς)λs(u)) dς,

where J is the symplectic matrix associated with the form dλ∧dλ+ idx∧dy. Moreover,
from Proposition 2.1 and Corollary 4.5, we deduce that |M1(u)| ≤ Cδ, for u ∈ [0, T u].
Let Φ(u) be the fundamental matrix of the differential equation d

duΦ(u) = M0(u)Φ(u)
given in Lemma 4.10, which satisfies Φ(0) = Id. Then,

∆(u) = Φ(u)

ï
Φ−1(T u)∆(T u) +

∫ u

Tu

Φ−1(σ)M1(σ)∆(σ)dσ

ò
.

On one hand, using Gronwall’s Lemma, one has that |∆(u)| ≤ C |∆(T u)| for u ∈ [0, T u]
and, on the other hand∣∣∆(0) − Φ−1(T u)∆(T u)

∣∣ ≤ CδT u |∆(T u)| . (B.4)

Thus, to obtain an asymptotic formula for ∆(0), we need to compute ∆(T u). We write

∆(T u) = zu(T u) − zs(T s) + zs(T s) − zs(T u). (B.5)

Since the difference zu(T u)− zs(T s) is given by (B.3), we only need to analyze the term
zs(T s) − zs(T u). To do so, we first bound T u − T s. Since zs = (λs,Λs, xs, ys) satisfies
equation (B.2) and using the mean value theorem, we obtain that

T u − T s =
Λu(T s) − Λu(T u)

V ′(λp(u∗)) + β(T u, T s)
,

where, denoting T (r) = rT u + (1 − r)T s, the function β is given by

β(T u, T s) =

∫ 1

0

[
V ′(λu(T (r))) − V ′(λp(u∗))

]
dr +

∫ 1

0
∂λH1(z

u(T (r)))dr.

Notice that V ′(λp(u∗)) = V ′(λ∗) ̸= 0 (see (2.7)). Moreover, since T u, T s = u∗ + O(δ), by
(B.1) and the estimates in Proposition 2.1, one can see that |β(T u, T s)| ≤ Cδ. Therefore,

one has that |T u − T s| ≤ Cδ
4
3 e−

A
δ2 . Then, since

zs(T s) − zs(T u) = (T s − T u)

∫ 1

0
∂uz

s(rT u + (1 − r)T s)dr,
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we have zs(T s) − zs(T u) = O
(
δ

4
3 e−

A
δ2

)
. Therefore, by (B.3) and (B.5)

∆(T u) =
6
√

2δ
1
3 e−

A
δ2

î(
0, 0,Θ,Θ

)T
+ Õδ

ó
, (B.6)

where Õδ = (O(δ),O(δ),O(|log δ|−1),O(|log δ|−1))T . Lastly, joining the results in (B.4)
and (B.6), we obtain

|∆(0)| =
6
√

2δ
1
3 e−

A
δ2

î
|Φ−1(T u)

(
0, 0,Θ,Θ

)T | + Õδ

ó
.

Then, applying the expression of the fundamental matrix Φ given in Lemma 4.10, we
obtain the statement of the corollary.
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[BGG22] I. Baldomá, M. Giralt, and M. Guardia. Breakdown of homoclinic orbits to L3
in the RPC3BP (I). Complex singularities and the inner equation. Advances in
Mathematics, 408:108562 (64), 2022.
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