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Abstract
There are many interesting dynamical systems in which degenerate invariant tori appear.
We give conditions under which these degenerate tori have stable and unstable invariant
manifolds, with stable and unstable directions having arbitrary finite dimension. The
setting in which the dimension is larger than one was not previously considered and is
technically more involved because in such case the invariant manifolds do not have, in
general, polynomial approximations. As an example, we apply our theorem to prove that
there are motions in the (𝒏 + 2)-body problem in which the distances among the first 𝒏
bodies remain bounded for all time, while the relative distances between the first 𝒏-bodies
and the last two and the distances between the last bodies tend to infinity, when time goes
to infinity. Moreover, we prove that the final motion of the first 𝒏 bodies corresponds to
a KAM torus of the 𝒏-body problem.
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1 Introduction

1.1 Parabolic invariant tori with stable and unstable invariant
manifolds

Consider, as a motivating example, the analytic local system of ordinary differential
equations 

¤𝑥 = 𝑓 (𝑥,𝑦) (𝐴𝑠𝑥 + 𝑋 (𝑥,𝑦, 𝜃 )) ,
¤𝑦 = 𝑓 (𝑥,𝑦) (𝐴𝑢𝑦 + 𝑌 (𝑥,𝑦, 𝜃 )) ,
¤𝜃 = 𝜔 + Θ(𝑥,𝑦, 𝜃 ),

(1.1)

where (𝑥,𝑦) P 𝐵 Ă R𝑛 ˆR𝑚 , 𝐵 is a ball around the origin, 𝜃 P T𝑑 = (R/2𝜋Z)𝑑 , the matrices
𝐴𝑠 and 𝐴𝑢 satisfy Spec𝐴𝑠 , Spec (´𝐴𝑢) Ă {𝑧 P C | Im 𝑧 ă 0}, 𝜔 P R𝑑 is a Diophantine
frequency vector, 𝑋 , 𝑌 are of order greater or equal than 2 with respect (𝑥,𝑦), and Θ of
order greater or equal than 1. Assume that 𝑓 has order 𝑁 in (𝑥,𝑦), with 𝑁 ě 0. Under these
hypotheses, the set T = {𝑥 = 0, 𝑦 = 0} is an invariant torus of the system and the flow on
T is a rigid rotation with frequency vector 𝜔 .

If 𝑓 ” 1, it is well known that T is an invariant hyperbolic torus with stable and unstable
invariant manifolds, which are analytic graphs over (𝑥, 𝜃 ) and (𝑦, 𝜃 ), respectively.

Assume that 𝑁 ě 1. Then, the set T , although still invariant, is no longer hyperbolic but
degenerate. We will say that T is a parabolic torus, as opposed to hyperbolic and elliptic. In
this case, it is a non-trivial matter to establish the local behaviour of the system around T .
For instance, if 𝑑 = 0, that is, if (1.1) does not depend on the angles 𝜃 , the system, provided
𝑓 (𝑥,𝑦) ≠ 0, is equivalent to a system with a hyperbolic fixed point (by means of the rescal-
ing of time 𝑑𝑠/𝑑𝑡 = 𝑓 (𝑥,𝑦)) and, hence, it possesses formal stable and unstable invariant
manifolds, 𝑦 = 𝛾𝑠 (𝑥) and 𝑥 = 𝛾𝑢 (𝑦), in the sense that 𝛾𝑠,𝑢 are formal series which are invari-
ant by (1.1). However, if 𝑑 ě 1, 𝑛 ě 2, and 𝑓 is not a function depending only on 𝑥 , it is
not difficult to see that, in general, there is no formal stable manifold because, if one tries to
find 𝑦 = 𝛾𝑠 (𝑥, 𝜃 ) as a series in 𝑥 with coefficients depending on 𝜃 invariant by (1.1), formal
obstructions appear. On the contrary, it is not difficult to see that, if 𝑛 = 1 or 𝑓 only depends
on 𝑥 , there is always a series representing the stable manifold, regardless of the dimension
of the angles.

Of course, the existence of a formal stable invariant manifold of T does not imply the
existence of a true invariant one nor the formal obstructions necessarily prevent the exis-
tence of a true invariant manifold. These questions, that is, if T in (1.1) possesses stable or
unstable invariant manifolds and, in the case it does, what kind of regularity these manifolds
have, were posed by Simó in his 10th problem [1], were he remarked the formal obstructions
that appear in the case 𝑑 ě 1 and 𝑛 ě 2.
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In the present work we will consider a more general situation, namely, vector fields of
the form

𝑋 (𝑥,𝑦, 𝜃 ) = ©­«
𝑓 𝑁 (𝑥,𝑦, 𝜃, 𝜆) + O(∥(𝑥,𝑦)∥𝑁+1)
𝑔𝑀 (𝑥,𝑦, 𝜃, 𝜆) + O(∥(𝑥,𝑦)∥𝑀+1)

𝜔 + ℎě𝑃 (𝑥,𝑦, 𝜃, 𝜆)
ª®¬ , (1.2)

where 𝑓 𝑁 , 𝑔𝑀 , and ℎ𝑃 are functions of orders 𝑁 , 𝑀 , and 𝑃 in (𝑥,𝑦), respectively. Here, the
set T is also invariant by the flow of 𝑋 . We will provide a set of assumptions under which
T has a stable invariant manifold. For the unstable manifold one simply has to consider
the reversed time vector field. Observe that equation (1.1) is a particular case of this type of
vector fields.

It is important to remark that equation (1.1), although degenerate, appears in many
interesting problems. The fact that in many cases T possesses stable and unstable invariant
manifolds, has important consequences in the global dynamics of the corresponding sys-
tems. Actually, we will deal, more generally, with a quasiperiodic non-autonomous version
of (1.2).

One of the first important examples is the Sitnikov problem [2, 3], a particular instance
of the restricted 3-body problem. In some special coordinates, the Sitnikov problem can be
written in the form (1.1) with 𝑛 = 1, 𝑑 = 1, and 𝑓 (𝑥,𝑦) = (𝑥 + 𝑦)3. McGehee [4] proved an
existence result of analytic (out of the fixed point) stablemanifolds for two dimensionalmaps
which implies the existence of an analytic stable manifold for T . A generalization of this
statement for 𝐶𝑘 maps providing one dimensional stable manifolds in arbitrary dimension
was carried out in [5], using the parametrization method. Besides the Sitnikov problem, the
restricted planar 3-body problem, either circular or elliptic [6–9], or the planar 3-body prob-
lem [10] can bewritten in the form (1.1) with𝑛 = 1,𝑑 = 1, and 𝑓 (𝑥) = (𝑥+𝑦)3, with important
dynamical consequences. Indeed, in all these works, devoted to show the existence of either
chaotic and oscillatory motions or diffusion phenomena, one of the key ingredients of the
proof is the existence of invariant manifolds of certain parabolic fixed points or periodic
orbits at infinity and their analytic dependence with respect to several parameters. See also
[11] for a different approach to parabolic tori in celestial mechanics. Parabolic points with
invariant manifolds can also be found in problems in economics (see [12, 13]). In this last
case, 𝑛 = 1, 𝑑 = 0, and 𝑓 (𝑥) = 𝑥 .

The approaches in [4, 5] required 𝑛 = 1 and 𝑑 = 1, that is, they only work if the stable
invariant manifold for the stroboscopic return map is one dimensional. The generalization
for 𝑑 ě 2 but keeping 𝑛 = 1 was carried out in [14], with implications in the general 𝑛-body
problem, which, in certain parts of the phase space, can be written in the form (1.1) with
𝑛 = 1, 𝑑 = 2𝑛 + 2, and 𝑓 (𝑥) = 𝑥3. In this case, T in (1.1) admits a formal stable invariant
manifold as a power series in 𝑥 with coefficients depending on 𝜃 , which is used as a seed in
the parametrization method.

Studying parabolic fixed points with stable invariant manifolds of dimension larger than
one with the parametrization method is more involved. The reason is that, unlike the previ-
ous cases, if the dimension of the invariant manifolds is larger than one, in general they do
not admit a Taylor expansion at the fixed point. To overcome this difficulty, it was shown
in [15, 16] that, for vector fields of the form (1.2) with 𝑑 = 0, under suitable hypotheses, they
admit expansions as sums of homogeneous functions of increasing order. Having in mind
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some applications to celestial mechanics (see section 1.3), in the present work we extend the
results in [15, 16] to parabolic tori.

1.2 Degenerate tori and homogeneous functions
The purpose of the present paper is twofold. On the one hand, we present a general theorem
which, under suitable conditions, provides the existence of invariant manifolds of the invari-
ant torus T for vector fields of the form (1.2) (and for maps with equivalent conditions). On
the other, we show the existence of new type of orbits in the 𝑁 -body problem, defined for
all time either in the future or in the past, with a prescribed final behaviour. We call these
orbits double parabolic orbits to infinity. See Section 1.3 for an accurate description of these
motions.

The conditions we impose on the vector field (1.2) are placed in Section 2.2.1 (they are
completely analogous for maps and for flows). Of course, since the linearization of the vector
field at T vanishes identically, they have to involve several terms of the jet of the vector
field at the torus. In fact, they only involve the first non-vanishing terms of the jet of the
(𝑥,𝑦)-components of the vector field at the torus, plus a very mild condition on the angular
directions. In particular, they imply the existence of a weak contraction in the 𝑥-direction
and a weak expansion in the 𝑦-direction, but some other requirements are also needed.

We apply the parametrization method [17–19] to find the invariant manifolds of T
in (1.2). The main differences among the results in the present paper and those in [15, 16]
are the following.

First, instead of considering parabolic fixed points, here we consider parabolic tori. This
is a non-trivial extension that widens the field of application of the results. We are interested
in particular in the case where the dynamics on the manifold synchronizes with the one
on T . This fact, that always happens in the hyperbolic case, may not occur in the parabolic
one. Our theorem is also valid even when this synchronization does not take place, and we
give conditions under which it happens. In this sense, we improve the results in [14], where
only the cases where the synchronization occurs where considered. One of the consequences
of synchronization is that then the invariant manifolds are foliated by the stable leaves of
the points in the torus and this foliation is regular in the base.

Second, we do not require the vector field to be defined in a whole neighborhood of
the torus, not even at a formal level. We only require some kind of regularity in sectorial
domains with the torus at their vertex, expressed in terms of homogeneous functions. We
do require the leading terms to be defined and regular around the torus, although we believe
that this requirement may be relaxed and we impose it for convenience, since it holds in the
examples we consider.

Third, we consider only the analytic case. The only reason is to simplify the proof. We
believe that the arguments in [15, 16] to deal with the𝐶𝑘 case can be adapted here, but they
are rather cumbersome and the applications we consider are analytic.

The existence of the manifolds is formulated as an a posteriori result, that is, in
Theorem 2.7, for maps, or Theorem 2.14, for flows, we show that, if the invariance
equation (2.7), in the case of maps, or (2.23), in the case of flows, admits an approximate solu-
tion as sum of homogeneous functions of increasing order up to some specified order, then
it has a true analytic solution. Separately, Theorem 2.8 (Theorem 2.16, in the case of flows)
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provides such approximation.We emphasize that, in general, there is no polynomial approx-
imate solution of the invariance equations (2.7) or (2.23) since formal obstructions appear.
Obtaining this approximate solution is a non-trivial task. Finally, Theorems 2.9 and 2.16 sim-
ply join the a posteriori and the approximation results into an existence result, to ease their
application in practice.

Theorems 2.7 and 2.8 apply in the case the involved maps have the form

𝐹𝜆
©­«
𝑥

𝑦

𝜃

ª®¬ =
©­«
𝑥 + 𝑓 ě𝑁 (𝑥,𝑦, 𝜃, 𝜆)
𝑦 + 𝑔ě𝑀 (𝑥,𝑦, 𝜃, 𝜆)

𝜃 + 𝜔 + ℎě𝑃 (𝑥,𝑦, 𝜃, 𝜆)
ª®¬ .

We add Corollary 2.11, which applies to maps of the form

𝐺𝜆 (𝑥,𝑦, 𝜃 ) =
©­«

A𝑥 + 𝑓 ě𝑁 (𝑥,𝑦, 𝜃, 𝜆)
B𝑦 + 𝑔ě𝑀 (𝑥,𝑦, 𝜃, 𝜆)
𝜃 + 𝜔 + ℎě𝑃 (𝑥,𝑦, 𝜃, 𝜆)

ª®¬ , SpecA, SpecB Ă
⋃
𝑘PZ

{𝑧 P C | 𝑧𝑘 = 1}.

These kind of maps appear in [12, 13], where a certain economic model based on critical
values is considered.

1.3 Double parabolic orbits to infinity in the (𝒏 + 2)-body problem
We present an application of Theorem 2.16 to celestial mechanics, more concretely, to obtain
new types of solutions of the full planar 𝑁 -body problem. In the present paper, by direct
application of Theorem 2.16, we show that the set of double parabolic orbits to infinity con-
tains manifolds of certain dimension. As far as we know, these solutions have not been
previously found. They are defined either for all future or all past time, avoiding collision
and non-collision singularities. Further analysis, completely beyond the scope of the present
paper, could lead to the existence of solutions that combine both of them, from the past to the
future. The existence of solutions of the 𝑛-body problem combining prescribed final motions
in the past and the future is an important question that has been addressed with different
techniques in different instances of the problem (see, amongst others, [2, 3, 8, 10, 20–23]).

In a precise way, here double parabolic orbits to infinity means the following. Consider
the planar (𝑛 + 2)-body problem, with 𝑛 ě 1. Denote by 𝑄0 the cluster of the first 𝑛 masses
and by 𝑞0 the position of their center of mass in some inertial system of reference. Let 𝑞𝑛
and 𝑞𝑛+1 be the positions of the last two bodies. Let 𝑝0, 𝑝𝑛 and 𝑝𝑛+1 be their corresponding
momenta. Denote by 𝑑𝑘 the distance between 𝑞0 and 𝑞𝑘 , 𝑘 = 𝑛, 𝑛 + 1, and by 𝑑0, the distance
between 𝑝𝑛 and 𝑝𝑛+1. Assume, for the moment, that these three distances are infinite, while
their momenta 𝑝0 = 𝑝𝑛 = 𝑝𝑛+1 = 0. We prove that, in some coordinates, the vector field
describing the (𝑛+2)-body problem is regular around this configuration. We remark that, in
this configuration, the relative positions of 𝑞0, 𝑞1, and 𝑞2 are not free. They are described in
this section, below. When the three clusters are at infinity with zero momenta, the motion
of the bodies in 𝑄0 is described by an 𝑛-body problem. It is well known that KAM tori
exist in the 𝑛-body problem [24–26]. We choose any of those KAM tori. In these regularized
variables, the configuration in which the chosen KAM tori and the other two masses are
at infinity is a regular invariant torus with dynamics conjugated to a Diophantine rotation.
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The vector field has the form (1.2). Our aim is to find invariant manifolds of solutions that
tend either in the past or in the future to this invariant torus.

It is well known, however, that any solution of the (𝑛 + 2)-body problem in which the
three clusters arrive to infinity with parabolic velocity must tend to a central configuration
of the 3-body problem for 𝑞0, 𝑞1 and 𝑞2 [27] (see also [28–30]), that is, either the relative
positions of the three clusters tend to an equilateral triangle or to a collinear configuration,
which only depends on the masses of the bodies. See Figure 1. This is not the case when the
limit velocities are hyperbolic [31].

Fig. 1 Tending to collinear and equilateral configurations.

Let𝑚0, . . . ,𝑚𝑛+1 be the (non-zero) masses of the planar (𝑛 + 2)-body problem. Let𝑚 𝑗 ,
0 ď 𝑗 ď 𝑛 ´ 1, be fixed and assume that𝑚𝑛,𝑚𝑛+1 are small enough.

We recall that the planar (𝑛 + 2)-body problem admits a Hamiltonian formulation
(see (5.1) for the Hamiltonian formulation and, in general, Section 5.1 for the actual descrip-
tion of the problem and the coordinates we use). It has three classical first integrals, besides
the energy, namely, two corresponding to the total linear momentum and one to the total
angular momentum. Fix any fixed value of the total linear momentum (that can be assumed
to be 0), any value of the total angular momentum, and reduce the problem by these inte-
grals. The reduced problem has 2𝑛+1 degrees of freedom. In the reduced system, we consider
three clusters of masses: the first one, containing masses 𝑚0 to 𝑚𝑛´1, and the second and
third ones, containing the masses𝑚𝑛 and𝑚𝑛+1, respectively.

Consider the following “central configurations” of the planar 3-body problem:
(E) an equilateral triangle, with a cluster in each vertex,
(C) a collinear configuration, where the first, more massive, cluster lies between the two

lighter ones.
In the case of the first cluster, which involves several bodies, to be on a vertex means that
the center of mass of the cluster lies on the vertex. In the case (E), there is only one of such
configurations, modulo permutation of the vertices. The case (C), modulo permutation of
the lighter bodies, there is also a single one.

Both in the cases (E) and (C), when the mutual distances of the clusters are infinite and
the momenta of each cluster are 0, the motion of the bodies in the first cluster is described
by a 𝑛-body problem after reduction of the total linear momentum. Let T be a KAM torus
of this 𝑛-body problem, with Diophantine frequency 𝜔 . It has dimension 2(𝑛 ´ 1). Observe
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that T does not depend on the masses𝑚𝑛 ,𝑚𝑛+1. We call T𝐸 and T𝐶 the invariant torus of
the (𝑛 + 2)-body problem where the first cluster evolves in T , while the three clusters are
in either (E) or (C) configuration, at infinity with zero momentum.
Theorem 1.1. If𝑚𝑛 and𝑚𝑛+1 are small enough but both different from 0, with the smallness
condition only depending on𝑀0 =

∑𝑛´1
𝑘=0 𝑚𝑘 , the following holds.

• T𝐸 possesses 3 + 2(𝑛 ´ 1) dimensional stable and unstable manifolds,𝑊 𝑢,𝑠

𝐸
, that can be

parametrized by some variables (𝑢, 𝜑) P 𝑉 ˆ T2(𝑛´1) Ă R3 ˆ T2(𝑛´1) , 𝑉 being some
sectorial domain in R3 with the origin in its vertex, and such that the 𝜑-dynamics is given
by ¤𝜑 = 𝜔 .

• T𝐶 possesses 2 + 2(𝑛 ´ 1) dimensional stable and unstable manifolds,𝑊 𝑢,𝑠

𝐶
, that can be

parametrized by some variables (𝑢, 𝜑) P 𝑉 ˆ T2(𝑛´1) Ă R2 ˆ T2(𝑛´1) and such that the
𝜑-dynamics is given by ¤𝜑 = 𝜔 .

Theorem 5.2 is a rewording of Theorem 1.1, expressed in appropriate coordinates, after
the explicit reduction by the total linear momentum and the total angular momentum of
the system is done. This reduction is performed in Section 5.1. Later on, in Section 5.2, we
introduce the quasiperiodic solutions, which correspond to trajectories on invariant tori of
the 𝑛-body problem.

Theorem 1.1 assumes that the masses of the last two bodies are small, but different
from 0. It provides the existence of an invariant manifold of solutions tending to parabolic
motions in a collinear configuration where the cluster of more massive bodies is between
the last two, and to an equilateral configuration, respectively. There is still another possi-
ble final configuration, the remaining collinear case, in which the cluster of more massive
bodies moves to infinity in one direction while the last ones go to infinity in the other one.
Our current proof does not cover this case, although we believe it could be extended, with
additional effort, to include it.

We assume that themasses of the last two bodies are small. In doing so, roughly speaking,
the problem becomes perturbative, since the interaction between the large cluster with each
of the small masses is O(𝑚𝑛,𝑚𝑛+1) while the interaction between the last masses themselves
is O(𝑚𝑛𝑚𝑛+1). However, the coupling between the small masses is crucial and the existence
of the manifolds strongly depends on the non-vanishing of a coefficient of the perturbation.
If themasses are small, this non-degeneracy can be easily checked. The sign of the coefficient
is different for T𝐸 and T𝐶 , the two configurations we consider, which is the reason why
the corresponding invariant manifolds have different dimension. If the masses are taken
larger, bifurcations may occur (as happens, for instance, for the Lagrange points 𝐿4 and 𝐿5
of the restricted 3-body problem). We have not pursued in this direction, but we believe that
Theorems 2.14 and 2.15 can be applied even if the masses𝑚𝑛 and𝑚𝑛+1 are not small. This
seems feasible because there are only three clusters and the number of central configurations
in the 3-body problem is well established. One could also consider the problem of more than
two masses going to infinity in a parabolic fashion.

It is also worth to remark that, since the existence of𝑊 𝑢,𝑠

𝐸
and𝑊 𝑢,𝑠

𝐶
is a consequence

of Theorems 2.14 and 2.15, parametrizations of them can be approximated by sums of ana-
lytic homogeneous functions of increasing order. In some instances of the 3-body problem
(see [15]), these homogeneous functions are indeed homogeneous polynomials. Then, the
question of the Gevrey regularity of these expansions makes sense. This was studied in a
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lower dimensional problem in [32].We conjecture that the invariantmanifolds in the present
setting also admit polynomial approximations which are Gevrey of a certain class.

Finally we remark that, in the case of the planar 3-body problem, that is, 𝑛 = 1 in our
setting, T is a single parabolic point and the configurations T𝐸 and T𝐶 are the well known
central configurations of the problem. After the reductions, the planar 3-body problem is a 3-
degrees of freedomHamiltonian. Then, our theorem implies thatT𝐸 possesses 3-dimensional
stable and unstable manifolds, which both lie in the same 5-dimensional energy level. These
manifolds intersect at least along a homoclinic orbit provided by the homographic solution
given by the central configuration.

1.4 Structure of the paper
In Section 2 we introduce the notations and definitions we will use along the paper, as well
as the statements of the general theorems. We provide different statements for maps and
flows to ease their application, although the claims for flows are deduced from the ones for
maps.

Section 3 is devoted to the proof of the a posteriori claims, that is, assuming that a suitable
approximate solution of some invariance equation is known, we prove the existence of a
true solution. The statements are proven through a fixed point scheme.

Section 4 contains the construction of the approximate solutions of the corresponding
invariance equation. As we have already mentioned, these solutions are not polynomial but
sums of homogeneous functions of increasing order in certain variables. Notwithstanding,
the solutions are given through explicit formulas.

Section 5 contains the proof of the existence of double parabolic motions to infinity in
the (𝑛 + 2)-body problem. It is done by finding suitable coordinates, which include a normal
form procedure and blown-up, in which the general theorem applies.

2 Invariant manifolds of normally parabolic invariant tori
The first goal of this section is to introduce the main notation and conventions we use along
thework. This is done in Section 2.1.1. In Section 2.1.2 we enunciate the small divisors lemma
we extensively use along the paper.

The remaining sections are devoted to state the main results of this work. Section 2.2
deals with the case of the existence of local stable manifolds associated to invariant normally
parabolic tori for analytic maps and Section 2.4 is devoted to the case of analytic vector fields
depending quasiperiodically on time also having an invariant normally parabolic tori.

In both settings we present four types of results: the so-called a posteriori result (Theo-
rems 2.7 and 2.14), an approximation result (Theorems 2.8 and 2.15), an existence result of
local stable manifolds, which is a direct consequence of the previous ones (Theorems 2.9
and 2.16) and finally a conjugation result, Corollaries 2.10 and 2.17.

2.1 Notation and a small divisors lemma

2.1.1 Notation

In this section we introduce the notations and conventions we will use without explicit
mention along the paper. Most of them are widely used in the literature and were already
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used in the previous works [15, 16, 32]. However, for the convenience of the reader, we
reproduce them here.

The general notation about the sets we will use is:
• We denote 𝐵𝑟 the open ball of a Banach space 𝐸 of radius 𝑟 centered at the origin. We
will write 𝐵𝑟 Ă 𝐸 to indicate that 𝐵𝑟 is a ball in the space 𝐸. Given a set 𝑈 Ă 𝐸, we
denote𝑈 its closure.

• When we write R𝑛 ˆ R𝑚 , and we have norms in R𝑛 and R𝑚 , we consider the product
norm in it, namely ∥(𝑥,𝑦)∥ = max{∥𝑥 ∥, ∥𝑦∥}. This determines the operator norms for
linear maps in these spaces. All these norms will be denoted by ∥ ¨ ∥.

• Real and complex 𝑑-torus: we represent the real torus by T𝑑 =
(
RzZ

)𝑑 . Given 𝜎 ą 0, a
complex extension is

T𝑑𝜎 =

{
𝜃 = (𝜃1, ¨ ¨ ¨ , 𝜃𝑑 ) P (CzZ

)𝑑 | |Im𝜃 𝑗 | ă 𝜎, @ 𝑗

}
.

• Given an open set𝑈 Ă R𝑘 , we denote by𝑈C an open complex extension of it.
• Given a function 𝑓 : 𝑈 Ă R𝑘 Ñ R𝑙 and 𝑥 P 𝑈 , 𝐷𝑓 (𝑥) denotes its derivative (or
differential) and, for a function 𝑓 (𝑥,𝑦), 𝑓 : 𝑈 Ă R𝑘 ˆ R𝑘

1
Ñ R𝑙 B𝑥 𝑓 (𝑥,𝑦) or 𝐷𝑥 𝑓 (𝑥,𝑦)

denote its partial derivative with respect to the variable 𝑥 P R𝑘 , etc.
With respect to averages, we introduce the following notation:

• For a function 𝑓 : 𝑈 ˆ T𝑑 Ă R𝑘 ˆ T𝑑 Ñ R𝑙 , we denote by 𝑓 its average with respect
to 𝜃 P T𝑑 and 𝑓 = 𝑓 ´ 𝑓 its oscillatory (mean free) part. In Section 5 we will also use
the notation [𝑓 ] = 𝑓 .

• We say that a function 𝑓 (𝑥, 𝜃, 𝑡), 𝑓 : 𝑈 ˆ T𝑑 ˆRÑ R𝑙 is quasiperiodic with respect to
𝑡 P R if there exists a function 𝑓 : 𝑈 ˆT𝑑 ˆT𝑑

1
Ñ R𝑙 , for some 𝑑 1 and a vector 𝜈 P R𝑑

1 ,
such that

𝑓 (𝑧, 𝜃, 𝑡) = 𝑓 (𝑧, 𝜃, 𝜈𝑡). (2.1)
We say that 𝜈 is the time frequency of 𝑓 .

• If 𝑓 is a quasiperiodic function, and 𝑓 satisfies (2.1), the average of 𝑓 , denoted by 𝑓 ,
is the average of 𝑓 (𝑧, 𝜃, 𝜃 1) with respect to (𝜃, 𝜃 1) P T𝑑 ˆ T𝑑

1 . In the same way, the
oscillatory part is 𝑓 = 𝑓 ´ 𝑓 .

• We say that a quasiperiodic function 𝑓 is analytic if 𝑓 is.
• We will use the analogous definitions if the functions depend on parameters, consid-
ering the corresponding functions defined on 𝑈 ˆ T𝑑 ˆ Λ or 𝑈 ˆ T𝑑 ˆ T𝑑

1
ˆ Λ, with

Λ Ă R𝑝 .
• Also, we will use the analogous definitions for the complex extensions of the involved
functions.

Next, we enumerate some general conventions we will use:
• We will denote M ą 0 a generic constant, that can take different values at different
places.

• We will omit the dependence of the functions on some of the variables whenever there
is no danger of confusion, mainly the dependence on parameters.
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• Given 𝑓 : 𝑈 ˆ T𝑑 ˆ Λ Ă R𝑘 ˆ T𝑑 ˆ R𝑝 Ñ R𝑙 we will denote by 𝑓 (𝑘 ) its 𝑘-Fourier
coefficient, namely

𝑓 (𝑧, 𝜃, 𝜆) =
∑︁
𝑘PZ𝑑

𝑓 (𝑘 ) (𝑧, 𝜆)𝑒2𝜋𝑖𝑘¨𝜃 , 𝑘 ¨ 𝜃 = 𝑘1𝜃1 + ¨ ¨ ¨ + 𝑘𝑑𝜃𝑑 .

• Given 𝑓 (𝑧,𝑤), 𝑓 : 𝑈 ˆ𝑊 Ñ R𝑙 , 0 P 𝑈 , where𝑊 is some set, we will write 𝑓 (𝑧,𝑤) =
O(∥𝑧∥𝑘 ), 𝑓 = O(∥𝑧∥𝑘 ) or simply 𝑓 = O𝑘 if and only if there exists a constant M such
that ∥ 𝑓 (𝑧,𝑤)∥ ď M∥𝑧∥𝑘 for all𝑤 P𝑊 and 𝑧 P 𝑈 X 𝐵1.

• For functions 𝑓 (𝑧, 𝜃, 𝜆), 𝑧 P R𝑘 , 𝜃 P T𝑑 , 𝜆 P R𝑝 , we use the convention that the super-
script in the function, 𝑓 𝑙 , indicates that 𝑓 𝑙 is a homogeneous function of degree 𝑙 with
respect to 𝑧. We will write 𝑓 ě𝑙 if 𝑓 ě𝑙 = O𝑙 .

• If (𝑥,𝑦, 𝑧) P R𝑘 ˆ R𝑙 ˆ R𝑚 and 𝑓 is a function taking values on R𝑘 ˆ R𝑙 ˆ R𝑚 , we
will denote by 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 the corresponding projections over the subspaces generated by
the variables 𝑥,𝑦, 𝑧, respectively. We will also use the notation 𝑓𝑥,𝑦 = (𝑓𝑥 , 𝑓𝑦) and the
analogous notation for other combinations of the variables.

• When 𝜆 is a parameter and the composition 𝑓 (𝑧, 𝜆) = ℎ(𝑔(𝑧, 𝜆), 𝜆) makes sense, we
will write 𝑓 = ℎ ˝ 𝑔. When dealing with time dependent vector fields, for notational
purposes, the time 𝑡 will be considered as a parameter.

• We will denote Φ𝑍 (𝑡 ; 𝑡0, 𝑧, 𝜆) the solution of the differential equation ¤𝑧 = 𝑍 (𝑧, 𝑡, 𝜆).

2.1.2 Diophantine vectors and small divisors lemmas

We recall the definition of Diophantine vector and the so-called small divisors equation in
both the map and the differential equation contexts.

In the map setting, 𝜔 P R𝑑 is Diophantine if there exist 𝑐 ą 0 and 𝜏 ě 𝑑 such that for all
𝑘 P Z𝑑z{0} and 𝑙 P Z

|𝜔 ¨ 𝑘 ´ 𝑙 | ě 𝑐 |𝑘 |´𝜏 ,
where |𝑘 | = |𝑘1 | + ¨ ¨ ¨ + |𝑘𝑑 | and 𝜔 ¨ 𝑘 denotes the Euclidean scalar product.

In the differential equations setting, 𝜔 P R𝑑 is Diophantine if there exist 𝑐 ą 0 and
𝜏 ě 𝑑 + 1 such that for all 𝑘 P Z𝑑z{0}

|𝜔 ¨ 𝑘 | ě 𝑐 |𝑘 |´𝜏 .

Given𝑈 Ă R𝑛 , Λ Ă R𝑝 and ℎ : 𝑈 ˆ T𝑑 ˆ Λ Ñ R𝑚 , the small divisors equation for maps is

𝜑 (𝑢, 𝜃 + 𝜔, 𝜆) ´ 𝜑 (𝑢, 𝜃, 𝜆) = ℎ(𝑢, 𝜃, 𝜆) (2.2)

and the corresponding small divisors equation for differential equations is

B𝜃𝜓 (𝑢, 𝜃, 𝜆) ¨ 𝜔 = ℎ(𝑢, 𝜃, 𝜆). (2.3)

The following version of the small divisors lemma, depending on 𝑢 P C𝑛 and on 𝜆 P C𝑝

can be readily adapted from the one in [33].
Theorem 2.1. Take 𝑈 Ă C𝑛 , 0 P 𝑈 , Λ Ă C𝑝 and 𝜎 ą 0. Let ℎ : 𝑈 ˆ T𝑑𝜎 ˆ Λ Ñ C𝑘 be real
analytic with zero average and let 𝜔 P R𝑑 be a Diophantine vector.
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Then, there exist unique solutions 𝜑,𝜓 : 𝑈 ˆ T𝑑𝜎 ˆ Λ Ñ C𝑘 of (2.2) and (2.3), respectively,
real analytic, with zero average, such that, for (𝑢, 𝜆) P 𝑈 ˆ Λ,

sup
𝜃PT𝑑

𝜎´𝛿

∥𝜑 (𝑢, 𝜃, 𝜆)∥, sup
𝜃PT𝑑

𝜎´𝛿

∥𝜓 (𝑢, 𝜃, 𝜆)∥ ď
M
𝛿𝜏

sup
𝜃PT𝑑𝜎

∥ℎ(𝑢, 𝜃, 𝜆)∥, 0 ă 𝛿 ă 𝜎.

Moreover, if ℎ is a homogeneous function of degree 𝑘 with respect to 𝑢, then 𝜑,𝜓 also are
homogeneous functions of degree 𝑘 with respect to 𝑢. If ℎ = O(∥𝑢∥𝑟 ), 𝑟 ě 1 then also
𝜑,𝜓 = O(∥𝑢∥𝑟 ).

We will denote by D[ℎ] the unique solution with zero average of either (2.2) or (2.3).
We note that, since

B𝑢𝜑 (𝑢, 𝜃 + 𝜔, 𝜆) ´ B𝑢𝜑 (𝑢, 𝜃, 𝜆) = B𝑢ℎ(𝑢, 𝜃, 𝜆),

if B𝑢ℎ = O(∥𝑢∥𝑟´1) then B𝑢𝜑 = O(∥𝑢∥𝑟´1).

2.2 Results for maps
This section is devoted to state the claims concerning with the existence of invariant man-
ifolds of tori for families of maps with an invariant torus whose transversal dynamics is
tangent to the identity. In Section 2.2.1 we describe the maps under consideration and the
general conditions we need to guarantee the existence of these invariant manifolds. After-
wards, in Section 2.2.2 we state the main results. In the statements of the results, some extra
conditions will be introduced.

2.2.1 Set up and hypotheses

Let U Ă R𝑛 ˆ R𝑚 be an open set such that 0 P U and Λ be an open subset of R𝑝 . We
consider families of maps 𝐹𝜆 : U ˆ T𝑑 Ñ R𝑛 ˆ R𝑚 ˆ T𝑑 , 𝜆 P Λ, of the form

𝐹𝜆
©­«
𝑥

𝑦

𝜃

ª®¬ =
©­«
𝑥 + 𝑓 ě𝑁 (𝑥,𝑦, 𝜃, 𝜆)
𝑦 + 𝑔ě𝑀 (𝑥,𝑦, 𝜃, 𝜆)

𝜃 + 𝜔 + ℎě𝑃 (𝑥,𝑦, 𝜃, 𝜆)
ª®¬ (2.4)

with 𝜔 P R𝑑 and 𝑓 ě𝑁 = O(∥(𝑥,𝑦)∥𝑁 ), 𝑔ě𝑀 = O(∥(𝑥,𝑦)∥𝑀 ) and ℎě𝑃 = O(∥(𝑥,𝑦)∥𝑃 ) for
𝑁,𝑀 ě 2 and 𝑃 ě 1.

For such maps, the torus

T = {(0, 0, 𝜃 ) P R𝑛 ˆ R𝑚 ˆ T𝑑 }

is invariant and normally parabolic, that is, the dynamics in the transversal directions to the
torus is parabolic.

We are interested in describing the stable and unstable sets of a torus related to a given
open set 𝐴 Ă R𝑛 ˆ R𝑚 ˆ T𝑑 such that T P 𝐴. Hence, we introduce the stable set

𝑊 s
𝐴 = {(𝑥,𝑦, 𝜃 ) P 𝐴 | 𝐹𝑘

𝜆
(𝑥,𝑦, 𝜃 ) P 𝐴, @𝑘 ě 0, lim

𝑘Ñ8
(𝐹𝑘
𝜆
)𝑥,𝑦 (𝑥,𝑦, 𝜃 ) = (0, 0)} (2.5)
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and the unstable one:

𝑊 u
𝐴 = {(𝑥,𝑦, 𝜃 ) P 𝐴 | 𝐹´𝑘

𝜆
(𝑥,𝑦, 𝜃 ) P 𝐴, @𝑘 ě 0, lim

𝑘Ñ8
(𝐹´𝑘

𝜆
)𝑥,𝑦 (𝑥,𝑦, 𝜃 ) = (0, 0)}.

Their local versions are defined changing 𝐴 by 𝐴𝜌 = {𝜉 P 𝐴 | dist(𝜉,T) ă 𝜌}. We will see
that these sets are manifolds.

More concretely, we look for invariant manifolds tangent to the 𝑥-subspace. Therefore,
we consider sets 𝑉 Ă R𝑛 , 0 P 𝑉 and their local versions 𝑉𝜌 = 𝑉 X 𝐵𝜌 , where 𝐵𝜌 is the ball
of radius 𝜌 in R𝑛 ˆ R𝑚 . Moreover, for 𝛽 ą 0, we define the sets

𝑉𝜌,𝛽 = {(𝑥,𝑦) P 𝑉𝜌 ˆ R𝑚 | ∥𝑦∥ ď 𝛽 ∥𝑥 ∥}, A𝜌,𝛽 = 𝑉𝜌,𝛽 ˆ T𝑑 . (2.6)

The setA𝜌,𝛽 will play the role of the set𝐴 in (2.5). In this paper, we concentrate on the study
of the stable manifold associated to a set of the form A𝜌,𝛽 = 𝑉𝜌,𝛽 ˆT𝑑 . The unstable one can
be obtained considering 𝐹´1

𝜆
.

We will provide conditions for the existence of the invariant manifolds using the
parametrizationmethod, see [17–19, 34] for a general presentation of the method and [5, 14–
16] for the specific application of the method to parabolic objects. Summarizing, this method
consists in looking for functions 𝐾 (𝑢, 𝜃, 𝜆) and 𝑅(𝑢, 𝜃, 𝜆) satisfying the invariance condition

𝐹𝜆 (𝐾 (𝑢, 𝜃, 𝜆)) = 𝐾 (𝑅(𝑢, 𝜃, 𝜆), 𝜆), (2.7)

with𝐾 (0, 𝜃, 𝜆) = 0,𝑅(0, 𝜃, 𝜆) = 0 together with extra conditions to have themanifold tangent
at T to be a suitable subspace.

We assume the following general conditions on 𝐹𝜆 and the domainU:
(i) U is an open set that contains a set of the form𝑉𝜌0,𝛽0 Ă R𝑛 ˆR𝑚 for some positive 𝜌0

and 𝛽0 (see (2.6)), where 𝑉 is a cone-like domain, namely 0 P B𝑉 and for all 𝑥 P 𝑉 and
𝑠 ą 0, 𝑠𝑥 P 𝑉 . We remark that the origin does not necessarily belong toU.

(ii) 𝑓 ě𝑁 , 𝑔ě𝑀 and ℎě𝑃 can be expressed as sums of analytic functions, homogeneous with
respect to (𝑥,𝑦) P U of integer positive degree up to some order 𝑞 ´ 1 ě 𝑁 . More
precisely, there exists 𝑞 P N, 𝑞 ą 𝑁 and

𝑓 ě𝑁 (𝑥,𝑦, 𝜃, 𝜆) =
𝑞´1∑︁
𝑗=𝑁

𝑓 𝑗 (𝑥,𝑦, 𝜃, 𝜆) + 𝑓 ě𝑞 (𝑥,𝑦, 𝜃, 𝜆),

𝑔ě𝑀 (𝑥,𝑦, 𝜃, 𝜆) =
𝑞´1∑︁
𝑗=𝑀

𝑔 𝑗 (𝑥,𝑦, 𝜃, 𝜆) + 𝑔ě𝑞 (𝑥,𝑦, 𝜃, 𝜆),

ℎě𝑃 (𝑥,𝑦, 𝜃, 𝜆) =
𝑞´1∑︁
𝑗=𝑃

ℎ 𝑗 (𝑥,𝑦, 𝜃, 𝜆) + ℎě𝑞 (𝑥,𝑦, 𝜃, 𝜆),

(2.8)

where 𝑓 𝑗 , 𝑔 𝑗 , ℎ 𝑗 are analytic functions, homogeneous of degree 𝑗 in (𝑥,𝑦) P U, and
the remainders 𝑓 ě𝑞, 𝑔ě𝑞, ℎě𝑞 are analytic and of order O(∥(𝑥,𝑦)∥𝑞). Moreover, we ask
that B

𝑗
𝑥,𝑦 𝑓

ě𝑞, B
𝑗
𝑥,𝑦𝑔

ě𝑞, B
𝑗
𝑥,𝑦ℎ

ě𝑞 = O𝑞´𝑗 for 𝑗 = 1, 2.
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Note that for homogeneous functions in (𝑥,𝑦) this property is automatically satisfied
and when we take derivatives with respect to 𝜃 we do not lose order. Note that the
functions 𝑓 𝑗 , 𝑔 𝑗 , ℎ 𝑗 can be extended by homogeneity to the set U𝑒 ˆ T𝑑 ˆ Λ where
U𝑒 = {(𝑥,𝑦) P R𝑛 ˆ R𝑚 | D𝑡 P (0, 1] such that 𝑡 (𝑥,𝑦) P U}.

Next, we assume three conditions, (iii), (iv) and (v) below, on 𝑓
𝑁

and 𝑔𝑀 . First, given
𝜌 ą 0, we define the constant

𝑎𝑓 := ´ sup
𝑥P𝑉𝜌 , 𝜆PΛ

∥𝑥 + 𝑓 𝑁 (𝑥, 0, 𝜆)∥ ´ ∥𝑥 ∥
∥𝑥 ∥𝑁

. (2.9)

(iii) Let 𝜌0 be the radius introduced in (i). The constant 𝑎𝑓 with 𝜌 = 𝜌0 satisfies the weak
contraction condition

𝑎𝑓 ą 0.
Note that this implies

∥𝑥 + 𝑓 𝑁 (𝑥, 0, 𝜆)∥ ď ∥𝑥 ∥ ´ 𝑎𝑓 ∥𝑥 ∥𝑁 , 𝑥 P 𝑉𝜌0 , 𝜆 P Λ.

(iv) We assume
𝑔𝑀 (𝑥, 0, 𝜃, 𝜆) = 0.

Moreover, we ask 𝑓
𝑁 (𝑥, 0, 𝜆) and B𝑦𝑔

𝑀 (𝑥, 0, 𝜆) to be defined and analytic in U˚ ˆ Λ,
whereU˚ in an open set of R𝑛 containing 0. Note that, by the homogeneity property,
the domain of 𝑓

𝑁 (𝑥, 0, 𝜆) and B𝑦𝑔
𝑀 (𝑥, 0, 𝜆) with respect to 𝑥 can be extended to R𝑛 .

(v) We assume that there exists a positive constant 𝑎𝑉 ą 0 such that

dist(𝑥 + 𝑓 𝑁 (𝑥, 0, 𝜆),𝑉 𝑐𝜌0) ě 𝑎𝑉 ∥𝑥 ∥𝑁 , 𝑥 P 𝑉𝜌0 , 𝜆 P Λ,

where 𝑉 𝑐𝜌0 is the complementary set of 𝑉𝜌0 Ă R𝑛 . As a consequence 𝑉𝜌0 is an invariant
set for the map 𝑥 ÞÑ 𝑥 + 𝑓 𝑁 (𝑥, 0, 𝜆).

Remark 2.2. It is important to emphasize that, if U is an open set that contains the origin,
then condition (ii) is automatically satisfied; the expansions in (2.8) are the standard Taylor
expansions with respect to (𝑥,𝑦) P U.

For the sake of completeness and applicability we have preferred to allow the more general
situation when the origin is not contained in the regularity domain of 𝐹𝜆 . In this context we
work with decompositions as sums of homogeneous functions instead of the classical Taylor
expansion.
Remark 2.3. The hypotheses are chosen to obtain local invariant manifolds tangent to the
subspace {𝑦 = 0}. When the invariant manifold we are looking for is not going to be tangent to
{𝑦 = 0} but of the form 𝑦 = 𝐿𝑥 +O(∥𝑥 ∥2) we can perform the linear change 𝑢 = 𝑥, 𝑣 = 𝑦´𝐿𝑥

and look for the invariant manifold tangent to 𝑦 = 0.
Remark 2.4. Let F𝜆 : UˆT𝑑 Ñ R𝑛+𝑚ˆT𝑑 , 𝜆 P Λ, be amap satisfying (i)-(iii) with𝑁, 𝑀 ě 2
and 𝑃 ě 1 having an invariant manifold associated to the origin tangent to {𝑦 = 0}. That is,
assume that the manifold can be represented as the graph, 𝑦 = K(𝑥, 𝜃, 𝜆), withK analytic, C1
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at 0,K(0, 𝜃, 𝜆) = 0 and B𝑥K(0, 𝜃, 𝜆) = 0. Then, after a close to the identity change of variables,
F𝜆 has to satisfy that𝑀 ď 𝑁 and 𝑔𝑀 (𝑥, 0, 𝜃, 𝜆) = 0. We prove this remark in Appendix A.
Remark 2.5. We notice that we are not assuming any condition on ℎ𝑃 . Therefore, we can
always assume that 𝑃 ď 𝑁 since the case ℎ𝑃 = 0 is allowed.

To finish this section, given 𝜌 ą 0 we define the auxiliary constants related to 𝑓
𝑁

𝑏 𝑓 = inf
𝜆PΛ

sup
𝑥P𝑉𝜌

∥ 𝑓 𝑁 (𝑥, 0, 𝜆)∥
∥𝑥 ∥𝑁

, 𝐴𝑓 = ´ sup
𝑥P𝑉𝜌 , 𝜆PΛ

∥Id + 𝐷𝑥 𝑓
𝑁 (𝑥, 0, 𝜆)∥ ´ 1

∥𝑥 ∥𝑁´1 ,

𝐷 𝑓 = ´ sup
𝑥P𝑉𝜌 , 𝜆PΛ

∥Id ´ 𝐷𝑥 𝑓
𝑁 (𝑥, 0, 𝜆)∥ ´ 1

∥𝑥 ∥𝑁´1 .

(2.10)

and 𝐵𝑔 related to 𝑔𝑀 :

𝐵𝑔 = ´ sup
𝑥P𝑉𝜌 , 𝜆PΛ

∥Id ´ 𝐷𝑦𝑔
𝑀 (𝑥, 0, 𝜆)∥ ´ 1

∥𝑥 ∥𝑀´1 . (2.11)

We notice that the constant 𝑏 𝑓 is independent on 𝜌 since 𝑓
𝑁
is a homogeneous function

of degree 𝑁 .
Remark 2.6. Notice that, if 𝜌1 ď 𝜌2 then the corresponding constants 𝑎1,2

𝑓
, 𝑏1,2
𝑓
,𝐴1,2

𝑓
, 𝐷1,2

𝑓
, and

𝐵
1,2
𝑔 , associated to 𝜌1 and 𝜌2, respectively, defined in (2.9), (2.10) and (2.11) satisfy 𝑎1

𝑓
ě 𝑎2

𝑓
,

𝑏1
𝑓
= 𝑏2

𝑓
, 𝐴1

𝑓
ě 𝐴2

𝑓
, 𝐷1

𝑓
ě 𝐷2

𝑓
and 𝐵1

𝑔 ě 𝐵2
𝑔 . See Lemma 3.7 in [16]. We also have 𝑎𝑓 ď 𝑏 𝑓 .

This remark will allow us to take 𝜌 as small as we need. We will use this fact throughout
the paper without mention it.

2.2.2 Main results

Let
𝐸˚ ą

{
max{´𝐵𝑔,´𝐷 𝑓 , 0}, if 𝑀 = 𝑁,

max{´𝐵𝑔, 0}, if 𝑀 ă 𝑁 .
(2.12)

Denoting [¨] the integer part of a real number, we introduce the required minimum order 𝑞:

𝑞˚ =

[
max

{
2𝑁 ´ 𝑃, 2𝑁 ´𝑀 + 1, 𝑁 ´ 1 + 𝑁 ´ 1

𝑁 ´ 5/3
𝐸˚

𝑎𝑓

}]
(2.13)

and the index

𝑗˚𝑢 =

{ [
´
𝐷𝑓

𝑎𝑓

]
, if 𝐷 𝑓 ă 0,

1, if 𝐷 𝑓 ě 0.
(2.14)

The first result we state is an a posteriori result. Roughly speaking, it says that, if we know
a good enough approximate solution of the invariance equation (2.7), then there is a true
solution of this equation close to it.
Theorem 2.7 (A posteriori result). Let 𝐹𝜆 be of the form (2.4) satisfying conditions (𝑖) ´ (𝑣)
with 𝑞 ě 𝑞˚. Assume 𝜔 is Diophantine and 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃}.
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Moreover, assume there exist analytic maps 𝐾ď : 𝑉𝜌0 ˆ T𝑑 ˆ Λ Ñ R𝑛 ˆ R𝑚 ˆ T𝑑 and
𝑅 : 𝑉𝜌0 ˆ T𝑑 ˆ Λ Ñ 𝑉𝜌0 ˆ T𝑑 , being sums of homogeneous functions with respect to 𝑢, of the
form

𝐾ď
𝑥,𝑦 (𝑢,Θ, 𝜆) ´ (𝑢, 0) = O(∥𝑢∥2), 𝐾ď

𝜃
(𝑢,Θ, 𝜆) ´ Θ = O(∥𝑢∥),

𝑅𝑢 (𝑢,Θ, 𝜆) ´ (𝑢 + 𝑓 𝑁 (𝑢, 0, 𝜆)) = O(∥𝑢∥𝑁+1), 𝑅Θ(𝑢,Θ, 𝜆) ´ Θ ´ 𝜔 = O(∥𝑢∥)
such that

𝐸ď := 𝐹𝜆 ˝ 𝐾ď ´ 𝐾ď ˝ 𝑅 = O(∥𝑢∥𝑞). (2.15)
Then, there exist 0 ă 𝜌 ď 𝜌0 and a unique analytic function

Δ : 𝑉𝜌 ˆ T𝑑 ˆ Λ Ñ R𝑛+𝑚 ˆ T𝑑

satisfying Δ𝑥,𝑦 = O(∥𝑢∥𝑞´𝑁+1), Δ𝜃 = O(∥𝑢∥𝑞´2𝑁+𝑃+1) and

𝐹𝜆 ˝ (𝐾ď + Δ) ´ (𝐾ď + Δ) ˝ 𝑅 = 0. (2.16)

Moreover, the map Δ is real analytic in a complex extension of 𝑉𝜌 ˆ T𝑑 ˆ Λ.
Let 𝐾 = 𝐾ď + Δ. For 𝜌, 𝛽 small enough, 𝐾 (𝑉𝜌 ˆ T𝑑 , 𝜆) Ă𝑊 s

A𝜌,𝛽
, with A𝜌,𝛽 defined in (2.6),

and, when the constant 𝐵𝑔 ą 0, for some slightly smaller cone set 𝑉 ,

𝐾 (𝑉𝜌 ˆ T𝑑 , 𝜆) =𝑊 s
Â𝜌,𝛽

, Â𝜌,𝛽 = 𝑉𝜌,𝛽 ˆ T𝑑 . (2.17)

Theorem 2.7 is proven in Section 3. The next result gives conditions that guarantee the
existence of approximations that fit the hypotheses of Theorem 2.7. Later on, in Section 4,
we provide a concrete algorithm to compute the approximations as sums of homogeneous
functions of the variable 𝑢, depending on the angles and parameters.
Theorem 2.8 (Construction of the approximations). Assume that the map 𝐹𝜆 is of the
form (2.4) satisfying conditions (𝑖) ´ (𝑣) and 𝑞 ě 𝑞˚. Furthermore, assume 𝜔 is Diophantine,
𝐴𝑓 ą 𝑏 𝑓 and

𝐷𝑦𝑔
𝑀 (𝑥, 0, 𝜆) is invertible for all (𝑥, 𝜆) P 𝑉𝜌0 ˆ Λ, if 𝑀 ă 𝑁,

2 +
𝐵𝑔

𝑎𝑓
ą 0, if 𝑀 = 𝑁 .

Then, there exists 0 ă 𝜌 ď 𝜌0 such that for any 𝑗 ď 𝑞 ´ 𝑁 , there exist analytic maps 𝐾 ( 𝑗 ) :
𝑉𝜌 ˆ T𝑑 ˆ Λ Ñ R𝑛+𝑚 ˆ T𝑑 , and 𝑅 ( 𝑗 ) : 𝑉𝜌 ˆ T𝑑 ˆ Λ Ñ 𝑉𝜌 ˆ T𝑑 , such that

𝐸 ( 𝑗 ) := 𝐹𝜆 ˝ 𝐾 ( 𝑗 ) ´ 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗 ) = O(∥𝑢∥ 𝑗+𝑁 ). (2.18)

Moreover, 𝐾 ( 𝑗 ) and 𝑅 ( 𝑗 ) can be represented as sums of analytic homogeneous functions, of the
form

𝐾
( 𝑗 )
𝑥 (𝑢,Θ, 𝜆) = 𝑢 +

𝑗∑︁
𝑙=2

𝐾
𝑙

𝑥 (𝑢, 𝜆) +
𝑗∑︁
𝑙=1

𝐾𝑙+𝑁´1
𝑥 (𝑢,Θ, 𝜆),
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𝐾
( 𝑗 )
𝑦 (𝑢,Θ, 𝜆) =

𝑗+𝑁´𝑀∑︁
𝑙=2

𝐾
𝑙

𝑦 (𝑢, 𝜆) +
𝑗+𝑁´𝑀∑︁
𝑙=2

𝐾𝑙+𝑀´1
𝑦 (𝑢,Θ, 𝜆),

𝐾
( 𝑗 )
𝜃

(𝑢,Θ, 𝜆) = Θ +
𝑗+𝑁´𝑃∑︁
𝑙=1

𝐾
𝑙

𝜃 (𝑢, 𝜆) +
𝑗+𝑁´𝑃∑︁
𝑙=1

𝐾𝑙+𝑃´1
𝜃

(𝑢,Θ, 𝜆)

and

𝑅
( 𝑗 )
𝑢 (𝑢,Θ, 𝜆) = 𝑢 + 𝑓 𝑁 (𝑢, 0, 𝜆) +

𝑗˚𝑢∑︁
𝑙=2

𝑅𝑙+𝑁´1
𝑢 (𝑢, 𝜆), 𝑅

( 𝑗 )
Θ (𝑢,Θ, 𝜆) = Θ+𝜔 +

𝑗∑︁
𝑙=2

𝑅𝑙+𝑃´2
Θ (𝑢, 𝜆)

for 𝑗 ą 𝑗˚𝑢 . Furthermore, if 𝑃 = 𝑁 , we obtain 𝑅 ( 𝑗 )
Θ (𝑢,Θ, 𝜆) = Θ + 𝜔 .

2.3 Consequences of Theorems 2.7 and 2.8 for maps
Combining Theorems 2.7 and 2.8, we have the following claim.
Theorem 2.9 (Existence of the stable manifold). Let 𝐹𝜆 be a map of the form (2.4) satisfy-
ing conditions (𝑖) ´ (𝑣) with 𝑞 ě 𝑞˚, where 𝑞˚ was introduced in (2.13). Assume that 𝜔 is
Diophantine, 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃} and

𝐷𝑦𝑔
𝑀 (𝑥, 0, 𝜆) is invertible for all (𝑥, 𝜆) P 𝑉𝜌0 ˆ Λ, if 𝑀 ă 𝑁,

2 +
𝐵𝑔

𝑎𝑓
ą 0, if 𝑀 = 𝑁 .

Then, there exists 0 ă 𝜌 ď 𝜌0 such that the invariance equation

𝐹𝜆 ˝ 𝐾 = 𝐾 ˝ 𝑅

has analytic solutions 𝐾 : 𝑉𝜌 ˆ T𝑑 ˆ Λ Ñ U ˆ T𝑑 , 𝑅 : 𝑉𝜌 ˆ T𝑑 ˆ Λ Ñ 𝑉𝜌 ˆ T𝑑 satisfying
that, for 𝛽 ą 0 small enough and 𝜆 P Λ

𝐾 (𝑉𝜌 ˆ T𝑑 , 𝜆) Ă𝑊 s
A𝜌,𝛽

, (2.19)

where A𝜌,𝛽 defined in (2.6) and𝑊 s
A𝜌,𝛽

is the stable set of 𝐹𝜆 (see (2.5)).
If we further assume that, if𝑀 = 𝑁 , 𝐵𝑔 ą 0 then, for some slightly smaller cone set 𝑉 ,

𝐾 (𝑉𝜌 ˆ T𝑑 , 𝜆) =𝑊 s
Â𝜌,𝛽

and 𝑊 s
Â𝜌,𝛽

=
⋂
𝑘ě0

𝐹´𝑘

𝜆
(𝑉𝜌,𝛽 ˆ T𝑑 ). (2.20)

2.3.1 A conjugation result for attracting parabolic tori

A direct consequence of the previous results is that if the transversal dynamics to the torus
is parabolic and (weak) attracting for 𝑥 belonging to a cone set 𝑉𝜌 , then it is conjugate to a
map that can be expressed as a finite sum of homogeneous functions in 𝑥 P 𝑉𝜌 , depending
trivially on the angles.
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Corollary 2.10. Let 𝐹𝜆 be a family of maps of the form (2.4) independent of the 𝑦-variable,
namely

𝐹𝜆 (𝑥, 𝜃 ) =
(
𝑥 + 𝑓 ě𝑁 (𝑥, 𝜃, 𝜆), 𝜃 + 𝜔 + ℎě𝑃 (𝑥, 𝜃, 𝜆)

)
.

Assume that 𝑓 ě𝑁 , ℎě𝑃 satisfy the corresponding conditions in (i)-(v) for some 𝑞1 ě 𝑞˚, 𝜔 is
Diophantine and𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´𝑃}. Then, the map 𝐹𝜆 is conjugate to a map 𝑅 of the form

𝑅(𝑢, 𝜃, 𝜆) = ©­«𝑢 + 𝑓 𝑁 (𝑢, 𝜆) +
𝑗˚𝑢∑︁
𝑙=2

𝑅𝑙+𝑁´1
𝑥 (𝑢, 𝜆), 𝜃 + 𝜔 +

𝑞1´𝑁∑︁
𝑙=2

𝑅𝑙+𝑃´2
𝜃

(𝑢, 𝜆)ª®¬ ,
with (𝑢, 𝜃, 𝜆) P 𝑉𝜌 ˆ T ˆ Λ, for some 0 ă 𝜌 ď 𝜌0 and 𝑗˚𝑢 is defined in (2.14). Let 𝐻 be the
conjugation. Then, 𝐻 and 𝑅 are real analytic in a complex extension of 𝑉𝜌 ˆ T𝑑 ˆ Λ.

2.3.2 The case when all eigenvalues of the linearization of the transversal
dynamics to the torus are roots of 1

In this section we explain how to apply the previous results to maps, 𝐺𝜆 satisfying that for
some ℓ P N, 𝐹𝜆 := 𝐺 ℓ

𝜆
has the form (2.4). Namely we assume that

𝐺𝜆 (𝑥,𝑦, 𝜃 ) =
©­«

A𝑥 + 𝑓 ě𝑁 (𝑥,𝑦, 𝜃, 𝜆)
B𝑦 + 𝑔ě𝑀 (𝑥,𝑦, 𝜃, 𝜆)
𝜃 + 𝜔 + ℎě𝑃 (𝑥,𝑦, 𝜃, 𝜆)

ª®¬ , SpecA, SpecB Ă
⋃
𝑘PZ

{𝑧 P C | 𝑧𝑘 = 1}. (2.21)

We notice that in this case the torus T = {(0, 0, 𝜃 ) P R𝑛 ˆ R𝑚 ˆ T𝑑 } is also invariant and
normally parabolic. We define,𝑊 s

𝐴
, the stable set of 𝐺𝜆 associated to the parabolic torus T

as in (2.5), simply by changing 𝐹𝜆 by 𝐺𝜆 .
We have the following result.

Corollary 2.11. Let 𝐺𝜆 be of the form (2.21) and ℓ P N be the minimum integer such that
𝐹𝜆 := 𝐺 ℓ

𝜆
satisfies that 𝐷𝐹𝜆 (0) = Id.

Assume that 𝐹𝜆 is under the conditions in Theorem 2.9. Denote by 𝑉 a cone, 𝜌, 𝛽 ą 0
constants and 𝐾, 𝑅 functions satisfying the conclusions of Theorem 2.9, that is 𝐾 (𝑉𝜌 ˆT𝑑 , 𝜆) Ă

𝑊 s
A𝜌,𝛽

(𝐹𝜆) with A𝜌,𝛽 = 𝑉𝜌,𝛽 ˆ T𝑑 being the set defined in (2.6) and𝑊 s
A𝜌,𝛽

(𝐹𝜆) the stable set of
𝐹𝜆 associated to T .

Then,

W :=
ℓ´1⋃
𝑗=0
𝐺
𝑗

𝜆

(
𝐾 (𝑉𝜌 ˆ T𝑑 , 𝜆)

)
Ă𝑊 s

B𝜌,𝛽
, with B𝜌,𝛽 =

ℓ´1⋃
𝑗=0
𝐺
𝑗

𝜆
(A𝜌,𝛽 )

and𝑊 s
B𝜌,𝛽

being the stable set defined in (2.5) with respect to 𝐺𝜆 .

Assuming further that 𝐵𝑔 ą 0 (the constant defined in (2.11) for 𝐹𝜆 = 𝐺 ℓ
𝜆
), we have that

𝑊 s
B̂𝜌,𝛽

= Ŵ, where the notation ̂ means that the sets are related to a slightly smaller cone

𝑉 Ă 𝑉 .
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Roughly speaking, this result asserts that the stable set of𝐺𝜆 is composed by ℓ different
branches, each of them being the image by some iterate of 𝐺𝜆 of the stable set of 𝐹𝜆 = 𝐺 ℓ

𝜆
.

The proof of this claim is postponed to Appendix B.
Remark 2.12. The maps considered in Corollary 2.11 appear in [12, 13] when a certain
economic model based on critical values is considered.

2.4 Results for differential equations
Now we consider parametric families of non autonomous vector fields, depending quasi
periodically on time, of the form

𝑋 (𝑥,𝑦, 𝜃, 𝑡, 𝜆) =
(
𝑓 ě𝑁 (𝑥,𝑦, 𝜃, 𝑡, 𝜆), 𝑔ě𝑀 (𝑥,𝑦, 𝜃, 𝑡, 𝜆), 𝜔 + ℎě𝑃 (𝑥,𝑦, 𝜃, 𝑡, 𝜆)

)
(2.22)

with (𝑥,𝑦, 𝜃, 𝑡, 𝜆) P U ˆ Td ˆ Rˆ Λ Ă R𝑛+𝑚 ˆ Td ˆ Rˆ R𝑝 , 0 P U, 𝜔 P Rd and satisfying
𝑓 ě𝑁 = O(∥(𝑥,𝑦)∥𝑁 ), 𝑔ě𝑀 = O(∥(𝑥,𝑦)∥𝑀 ), ℎě𝑃 = O(∥(𝑥,𝑦)∥𝑃 ) for some 2 ď 𝑀 ď 𝑁 and
1 ď 𝑃 ď 𝑁 .

As in the case of maps, for any fixed value of the parameter, the torus T = {(0, 0, 𝜃 ) |
𝜃 P Td} is invariant by the flow having all transversal directions parabolic. We consider the
following local stable manifold, which depends on a set 𝐴 Ă R𝑛+𝑚 ˆ T𝑑 , T P 𝐴, which is
defined by

𝑊 s
𝐴 = {(𝑥,𝑦, 𝜃, 𝑡0) P 𝐴 ˆ R | Φ𝑋 (𝑡 ; 𝑡0, 𝑥,𝑦, 𝜃, 𝜆) P 𝐴, @𝑡 ě 𝑡0,

lim
𝑡Ñ8

(Φ𝑋 )𝑥,𝑦 (𝑡 ; 𝑡0, 𝑥,𝑦, 𝜃, 𝜆) = (0, 0)},

where, according to the notation in Section 2.1, Φ𝑋 (𝑡 ; 𝑡0, 𝑥,𝑦, 𝜃, 𝜆) is the flow of the differen-
tial equation associated to (2.22). The sets𝐴 will be of the form A𝜌,𝛽 = 𝑉𝜌,𝛽 ˆT𝑑 , introduced
in (2.6) or containing it.

We want to provide conditions that guarantee the existence and regularity of the local
stable manifold.Wewill use the parametrizationmethod. In the case of differential equations
consists in solving the invariance equation

Φ𝑋 (𝑡 ; 𝑠, 𝐾 (𝑢, θ, 𝑠, 𝜆), 𝜆) = 𝐾 (Ψ(𝑡 ; 𝑠,𝑢, θ, 𝜆), 𝑡, 𝜆)

for 𝐾 and Ψ, where Ψ is the solution of the equation restricted to the stable manifold (which
is also unknown). The equivalent infinitesimal version of the invariance equation is

𝑋 (𝐾 (𝑢, θ, 𝑡, 𝜆), 𝑡, 𝜆) ´ B𝑢,θ𝐾 (𝑢, θ, 𝑡, 𝜆)𝑌 (𝑢, θ, 𝑡, 𝜆) ´ B𝑡𝐾 (𝑢, θ, 𝑡, 𝜆) = 0, (2.23)

where 𝑌 is the vector field associated to the flow Ψ which describes the dynamics on𝑊 s
A𝜌,𝛽

.
By the definition of quasi periodicity we write 𝑋 (𝑥,𝑦, 𝜃, 𝑡, 𝜆) = 𝑋 (𝑥,𝑦, 𝜃, 𝜈𝑡, 𝜆) for some

𝑋 : UˆT𝑑 ˆT𝑑
1
ˆΛ Ñ R𝑛+𝑚ˆR𝑑 (see (2.1) in Section 2.1.1) and some 𝜈 P R𝑑

1 independent
on 𝜆 that we call the time frequency of𝑋 . We introduce q𝑋 : UˆT𝑑+𝑑

1
ˆΛ Ñ R𝑛+𝑚ˆT𝑑ˆT𝑑

1

by
q𝑋 (𝑥,𝑦, 𝜗, 𝜆) =

(
𝑋 (𝑥,𝑦, 𝜗, 𝜆)

𝜈

)
, 𝜗 = (𝜃, 𝜏) P R𝑑+𝑑

1

,
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and the extended frequency
q𝜔 = (𝜔, 𝜈).

The following elementary lemma allows us to relate the results for vector fields with the
ones for maps.
Lemma 2.13. Let 𝐹𝜆 : U ˆ T𝑑 ˆ T𝑑

1
Ñ R𝑛+𝑚 ˆ T𝑑 ˆ T𝑑

1
be the time 1 map of q𝑋 , i.e.

𝐹𝜆 (𝑥,𝑦, 𝜗) = Φ
q𝑋
(1;𝑥,𝑦, 𝜗, 𝜆). We have that if 𝑓 ě𝑁 , 𝑔ě𝑀 , ℎě𝑃 in (2.22) satisfy hypotheses (i)-(v)

and q𝜔 Diophantine, then the map 𝐹𝜆 has the form (2.4) with slightly different 𝑓 ě𝑁 , 𝑔ě𝑀 , ℎě𝑃

but with the same constants 𝑎𝑓 , 𝑏 𝑓 , 𝐴𝑓 , 𝐷 𝑓 , 𝐵𝑔, 𝑎𝑉 .
The proof of this lemma is straightforward fromTheorem 2.1, performing a finite averag-

ing procedure, Gronwall’s lemma and easy estimates, see [14] for the case 𝑛 = 1, 𝑁 = 𝑀 = 𝑃 .
We skip the details of the proof.
Theorem 2.14 (A posteriori result for flows). Let 𝑋 be a vector field of the form (2.22) with
𝑓 ě𝑁 , 𝑔ě𝑀 , ℎě𝑃 satisfying conditions (𝑖)´ (𝑣) for some 𝑞 ě 𝑞˚ with 𝑞˚ given in (2.13). Assume
that q𝜔 = (𝜔, 𝜈) is Diophantine and 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃}. Assume further that there exist
analytic maps 𝐾ď : 𝑉𝜌0 ˆ Td ˆ R ˆ Λ Ñ U ˆ Td and 𝑌 : 𝑉𝜌0 ˆ Td ˆ R ˆ Λ Ñ R𝑛 ˆ R𝑑

quasiperiodic with respect to 𝑡 with time frequency 𝜈 , which are sums of homogeneous functions
with respect to 𝑢, of the form

𝐾ď
𝑥,𝑦 (𝑢, θ, 𝑡, 𝜆) ´ (𝑢, 0) = O(∥𝑢∥2), 𝐾ď

𝜃
(𝑢, θ, 𝑡, 𝜆) ´ θ = O(∥𝑢∥),

𝑌𝑢 (𝑢, θ, 𝑡, 𝜆) ´ 𝑓
𝑁 (𝑢, 0, 𝜆) = O(∥𝑢∥𝑁+1), 𝑌θ(𝑢, θ, 𝑡, 𝜆) ´ 𝜔 = O(∥𝑢∥)

such that

𝑋 (𝐾ď(𝑢, θ, 𝑡, 𝜆), 𝑡, 𝜆) ´ B𝑢,θ𝐾
ď(𝑢, θ, 𝑡, 𝜆)𝑌 (𝑢, θ, 𝑡, 𝜆) ´ B𝑡𝐾

ď(𝑢, θ, 𝑡, 𝜆) = O(∥𝑢∥𝑞).

Then, writing Θ = (θ, 𝜏), the parametrization q𝐾ď(𝑢,Θ, 𝜆) = (𝐾ď(𝑢,Θ, 𝜆), 𝜏) and
q𝑅(𝑢,Θ, 𝜆) = Φ

q𝑌
(1;𝑢,Θ, 𝜆), the time 1-map of q𝑌 (𝑢,Θ, 𝜆) = (𝑌 (𝑢,Θ, 𝜆), 𝜈), satisfy all the

hypotheses in Theorem 2.7 for the map 𝐹𝜆 (𝑥,𝑦, 𝜃 ) = Φ
𝑋
(1;𝑥,𝑦, 𝜃, 𝜆).

Let qΔ : 𝑉𝜌 ˆT𝑑+𝑑
1
ˆΛ Ñ R𝑛+𝑚 ˆT𝑑+𝑑

1
be the analytic function provided by Theorem 2.7.

Then, the quasiperiodic function Δ(𝑢, θ, 𝑡) = qΔ𝑥,𝑦,𝜃 (𝑢, θ, 𝜈𝑡) satisfies the invariance equation

𝑋 ˝ (𝐾ď + Δ) ´ B𝑢,θ(𝐾ď + Δ)𝑌 ´ B𝑡 (𝐾ď + Δ) = 0.

If 𝜌, 𝛽 are small enough, 𝐾 := 𝐾ď + Δ satisfies that 𝐾 (𝑉𝜌 ˆ Td ˆR, 𝜆) Ă𝑊 s
A𝜌,𝛽

and, when

𝐵𝑔 ą 0, for some slightly smaller cone set 𝑉 ,

𝐾 (𝑉𝜌 ˆ Td ˆ R, 𝜆) =𝑊 s
Â𝜌,𝛽

.

Theorem 2.14 can be proven from Theorem 2.7 and Lemma 2.13 following exactly the
same lines as the ones showed in Section 5 in [14] (see also [15]). The details are left to the
reader.

Concerning the approximate solution, we have the analogous result to Theorem 2.8.
Even that, using Lemma 2.13 we could compute the approximate solution by means of the
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approximate solution given by Theorem 2.8 for the time 1-map of the vector field 𝑋 , in
Section 4.3 we provide an algorithm to compute 𝐾 ( 𝑗 ) and 𝑌 ( 𝑗 ) directly from the vector field
𝑋 itself.
Theorem 2.15 (Approximation result for flows). Assume that 𝑋 is an analytic vector field
of the form (2.22), satisfying conditions (𝑖) ´ (𝑣) with 𝑞 ě 𝑞˚ and 𝑞˚ defined in (2.13), that
q𝜔 = (𝜔, 𝜈) is Diophantine and

𝐷𝑦𝑔
𝑀 (𝑥, 0, 𝜆) is invertible for all (𝑥, 𝜆) P 𝑉𝜌0 ˆ Λ, if 𝑀 ă 𝑁,

2 +
𝐵𝑔

𝑎𝑓
ą 0, if 𝑀 = 𝑁 .

Then, there exists 0 ă 𝜌 ď 𝜌0 such that for any 𝑗 ď 𝑞 ´ 𝑁 , there exist an analytic map 𝐾 ( 𝑗 ) :
𝑉𝜌 ˆT𝑑 ˆRˆΛ Ñ R𝑛+𝑚ˆT𝑑 and an analytic vector field𝑌 ( 𝑗 ) : 𝑉𝜌 ˆT𝑑 ˆRˆΛ Ñ R𝑛ˆR𝑑 ,
depending quasiperiodically on 𝑡 with time frequency 𝜈 , such that

𝐸 ( 𝑗 ) := 𝑋 (𝐾 ( 𝑗 ) (𝑢, θ, 𝑡, 𝜆), 𝑡, 𝜆) ´ B𝑢,θ𝐾
( 𝑗 ) (𝑢, θ, 𝑡, 𝜆)𝑌 (𝑢, θ, 𝑡, 𝜆) ´ B𝑡𝐾

( 𝑗 ) (𝑢, θ, 𝑡, 𝜆)
= O(∥𝑢∥ 𝑗+𝑁 ).

(2.24)

In addition, 𝐾 ( 𝑗 ) and 𝑌 ( 𝑗 ) can be expressed as sum of homogeneous functions of the form

𝐾
( 𝑗 )
𝑥 (𝑢, θ, 𝑡, 𝜆) = 𝑢 +

𝑗∑︁
𝑙=2

𝐾
𝑙

𝑥 (𝑢, 𝜆) +
𝑗∑︁
𝑙=1

𝐾𝑙+𝑁´1
𝑥 (𝑢, θ, 𝑡, 𝜆),

𝐾
( 𝑗 )
𝑦 (𝑢, θ, 𝑡, 𝜆) =

𝑗+𝑁´𝑀∑︁
𝑙=2

𝐾
𝑙

𝑦 (𝑢, 𝜆) +
𝑗+𝑁´𝑀∑︁
𝑙=1

𝐾𝑙+𝑀´1
𝑦 (𝑢, θ, 𝑡, 𝜆),

𝐾
( 𝑗 )
𝜃

(𝑢, θ, 𝑡, 𝜆) = θ +
𝑗+𝑁´𝑃∑︁
𝑙=2

𝐾
𝑙´1
𝜃 (𝑢, 𝜆) +

𝑗+𝑁´𝑃∑︁
𝑙=1

𝐾𝑙+𝑃´2
𝜃

(𝑢, θ, 𝑡, 𝜆)

and, for 𝑗 ą 𝑗˚𝑢 (see (2.14) for the precise value of 𝑗˚𝑢 ),

𝑌
( 𝑗 )
𝑢 (𝑢, θ, 𝑡, 𝜆) = 𝑓 𝑁 (𝑢, 0, 𝜆) +

𝑗˚𝑢∑︁
𝑙=2

𝑌 𝑙+𝑁´1
𝑢 (𝑢, 𝜆), 𝑌

( 𝑗 )
θ

(𝑢, θ, 𝑡, 𝜆) = 𝜔 +
𝑗∑︁
𝑙=2

𝑌 𝑙+𝑃´2
θ

(𝑢, 𝜆).

Moreover, if 𝑃 = 𝑁 , we obtain 𝑌 ( 𝑗 )
θ

(𝑢, θ, 𝑡, 𝜆) = 𝜔 .
As a consequence of these results we obtain the existence theorem, Theorem 2.16 and a

conjugation result, Corollary 2.17.
Theorem 2.16 (Existence of the stable manifold for flows). Let 𝑋 be an analytic vector field
of the form (2.22) satisfying conditions (𝑖) ´ (𝑣) with 𝑞 ě 𝑞˚. Assume that q𝜔 = (𝜔, 𝜈) is
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Diophantine, 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃} and

𝐷𝑦𝑔
𝑀 (𝑥, 0, 𝜆) is invertible for all (𝑥, 𝜆) P 𝑉𝜌0 ˆ Λ, if 𝑀 ă 𝑁,

2 +
𝐵𝑔

𝑎𝑓
ą 0, if 𝑀 = 𝑁 .

Then, there exists 0 ă 𝜌 ď 𝜌0 such that the invariance equation (2.23) has analytic solutions
𝐾 : 𝑉𝜌 ˆ Td ˆ R ˆ Λ Ñ U ˆ Td and 𝑌 : 𝑉𝜌 ˆ Λ Ñ R𝑛 ˆ R𝑑 . If 𝜌, 𝛽 are small enough, 𝐾
satisfies that 𝐾 (𝑉𝜌 ˆ Td ˆ R, 𝜆) Ă𝑊 s

A𝜌,𝛽
. Moreover, if 𝐵𝑔 ą 0, for 𝜆 P Λ and for some slightly

smaller cone set 𝑉 ,
𝐾 (𝑉𝜌 ˆ Td ˆ R, 𝜆) =𝑊 s

Â𝜌,𝛽

.

The conjugation result, analogous to Corollary 2.10, is:
Corollary 2.17. Let 𝑋 be an analytic vector field of the form (2.22) without the 𝑦-component
and independent of the 𝑦-variable. Assume that 𝑓 ě𝑁 and ℎě𝑃 satisfy the corresponding con-
ditions in (i)-(v) with 𝑞 ě 𝑞˚. We also assume that q𝜔 = (𝜔, 𝜈) is Diophantine and 𝐴𝑓 ą

𝑏 𝑓 max{1, 𝑁 ´ 𝑃}. Then, there exists 0 ă 𝜌 ă 𝜌0 such that the vector field 𝑋 restricted to
𝑉𝜌,𝛽 ˆ T𝑑 ˆ R is conjugate to

𝑌 (𝑢, 𝜆) = ©­«𝑓 𝑁 (𝑢, 𝜆) +
𝑗˚𝑥∑︁
𝑙=2

𝑌 𝑙+𝑁´1
𝑥 (𝑢, 𝜆), 𝜔 +

𝑞´𝑁∑︁
𝑙=2

𝑌 𝑙+𝑃´2
𝜃

(𝑢, 𝜆)ª®¬ .
Moreover, both the conjugation and the vector field 𝑌 are real analytic in a complex extension
of 𝑉𝜌 ˆ T𝑑 ˆ Rˆ Λ.

3 Proof of the a posteriori result for maps
We start by explaining the strategy we use to prove Theorem 2.7. First, in Section 3.1 we
prove that, using Theorem 2.1 in an appropriate way, we can remove the dependence on the
angle up to order 𝑞´ 1 in all the functions involved in equation (2.15). Second, in Section 3.2
we provide the operator we will deal with to prove the result, solving a related fixed point
equation. This is done using the Fourier expansion (with respect to 𝜃 ) of the involved func-
tions. In Section 3.3, extending the technology developed in [14, 15], we prove that the above
mentioned fixed point operator is a contraction. Finally, in Section 3.4 we prove (2.17).

Along this section we will omit the dependence on the parameter 𝜆 in the notation.
We assume that the family of maps 𝐹 satisfy conditions (i)-(v) with 𝑞 ě 𝑞˚, where 𝑞˚ is

defined in (2.13).

3.1 Preliminaries
The purpose of this section is to rewrite Theorem 2.7 in a more suitable form to apply func-
tional analysis techniques. Actually, Theorem 2.7 will be a consequence of Proposition 3.4
below which will be proved in Sections 3.2-3.3.

In this section, to be able to apply Theorem 2.1, taking into account that 𝐹 is analytic,
we will consider its extension to a complex domainUC ˆ T𝜎 ˆ ΛC.

22



Proposition 3.1. Assume we are under the hypotheses of Theorem 2.7. Then, there exist a
change of variables C(𝜉, 𝜂, 𝜑) = (𝑥,𝑦, 𝜃 ) and a reparametrization P(𝑣,𝜓 ) = (𝑢,Θ) such that
equation (2.16) becomes

𝐹 ˝ (𝐾ď + Δ̂) ´ (𝐾ď + Δ̂) ˝ 𝑅 = 0 (3.1)
with

𝐹 = (𝐹𝜉 , 𝐹𝜂, 𝐹𝜑 ) = C´1 ˝ 𝐹 ˝ C
and

𝐾ď = (𝐾ď

𝜉
, 𝐾ď
𝜂 , 𝐾

ď
𝜑 ) = C´1 ˝ 𝐾ď ˝ P, 𝑅 = (𝑅𝑣, 𝑅𝜓 ) = P´1 ˝ 𝑅 ˝ P

satisfying the corresponding conditions in Theorem 2.7 and

𝐸ď(𝑣,𝜓 ) := 𝐹 ˝ 𝐾ď(𝑣,𝜓 ) ´ 𝐾ď ˝ 𝑅(𝑣,𝜓 ) = O(∥𝑣 ∥𝑞). (3.2)

Moreover,
B𝜑𝐹𝜉,𝜂, B𝜑𝐹𝜑 ´ Id = O(∥(𝜉, 𝜂)∥𝑞)

and
B𝜓𝐾

ď

𝜉,𝜂
, B𝜓𝐾

ď
𝜑 ´ Id, B𝜓𝑅𝑣, B𝜓𝑅𝜓 ´ Id = O(∥𝑣 ∥𝑞).

The main part of this section is devoted to prove this proposition. After the proof is
complete we state Proposition 3.4 and deduce Theorem 2.7 from it. First, we perform several
steps of averaging to remove the dependence of 𝐹 on the angles up to order 𝑞 ´ 1.
Lemma 3.2. Let 𝐹 be a map of the form (2.4) satisfying conditions (i)-(v), with𝜔 Diophantine.
Then, there exists a near to the identity change of variables C : U1 ˆ T𝑑 Ñ U ˆ T𝑑 , where
U1 is a domain slightly smaller thanU such that 0 P U1

, which transforms 𝐹 into

𝐹 (𝜉, 𝜂, 𝜑) =
©­­«
𝜉 + 𝑓 𝑁 (𝜉, 𝜂) + 𝑓 ě𝑁+1(𝜉, 𝜂)
𝜂 + 𝑔𝑀 (𝜉, 𝜂) + 𝑔ě𝑀+1(𝜉, 𝜂)

𝜑 + 𝜔 + ℎ𝑃 (𝜉, 𝜂) + ℎ̂ě𝑃+1(𝜉, 𝜂)

ª®®¬ + 𝐹ě𝑞 (𝜉, 𝜂, 𝜑)

with 𝐹ě𝑞 (𝜉, 𝜂, 𝜑) = O(∥(𝜉, 𝜂)∥𝑞). The change has the form

(𝑥,𝑦, 𝜃 ) = C(𝜉, 𝜂, 𝜑) = (𝜉, 𝜂, 𝜑) + Ĉ(𝜉, 𝜂, 𝜑)

with

Ĉ(𝜉, 𝜂, 𝜑) =
(
𝑞´1∑︁
𝑗=𝑁

C 𝑗
𝑥 (𝜉, 𝜂, 𝜑),

𝑞´1∑︁
𝑗=𝑀

C 𝑗
𝑦 (𝜉, 𝜂, 𝜑),

𝑞´1∑︁
𝑗=𝑃

C 𝑗

𝜃
(𝜉, 𝜂, 𝜑)

)
and the terms C 𝑗 are homogeneous functions of degree 𝑗 in the (𝜉, 𝜂)-variables.

Moreover, C and 𝐹 are analytic.

Proof. If𝑀 ă 𝑁 , first we perform a change of variables of the form

(𝑥,𝑦, 𝜃 ) = (𝜉, 𝜂 + C𝑀𝑦 (𝜉, 𝜂, 𝜑), 𝜑),
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where C𝑀𝑦 is a homogeneous function of degree 𝑀 in (𝜉, 𝜂) to be determined. The trans-
formed map, denoted by 𝐹 (1) , keeps the same form as 𝐹 for the 𝑥, 𝜃 components since

𝑓 𝑁 (𝜉, 𝜂 + C𝑀𝑦 (𝜉, 𝜂, 𝜑), 𝜑) = 𝑓 𝑁 (𝜉, 𝜂, 𝜑) + O(∥(𝜉, 𝜂)∥𝑁´1+𝑀 ) = 𝑓 𝑁 (𝜉, 𝜂, 𝜑) + O(∥(𝜉, 𝜂)∥𝑁+1),

ℎ𝑃 (𝜉, 𝜂 + C𝑀𝑦 (𝜉, 𝜂, 𝜑), 𝜑) = ℎ𝑃 (𝜉, 𝜂, 𝜑) + O(∥(𝜉, 𝜂)∥𝑃´1+𝑀 ) = ℎ𝑃 (𝜉, 𝜂, 𝜑) + O(∥(𝜉, 𝜂)∥𝑃+1).
With respect to the 𝜂 component we obtain

𝐹
(1)
𝜂 = 𝜂 + C𝑀𝑦 (𝜉, 𝜂, 𝜑) ´ C𝑀𝑦 (𝜉, 𝜂, 𝜑 + 𝜔) + 𝑔𝑀 (𝜉, 𝜂) + 𝑔𝑀 (𝜉, 𝜂, 𝜑) + O(∥(𝜉, 𝜂)∥𝑀+1).

We consider the equation

C𝑀𝑦 (𝜉, 𝜂, 𝜑 + 𝜔) ´ C𝑀𝑦 (𝜉, 𝜂, 𝜑) = 𝑔𝑀 (𝜉, 𝜂, 𝜑)

and, by Theorem 2.1, we take C𝑀𝑦 = D[𝑔𝑀 ] to have

𝐹
(1)
𝜂 = 𝜂 + 𝑔𝑀 (𝜉, 𝜂) + 𝑔ě𝑀+1(𝜉, 𝜂, 𝜑).

Then, 𝐹 (1) still satisfies conditions (i)-(v). In particular, now conditions (iii), (v) only depend
on 𝑓

𝑁 (𝜉, 0) which remains unchanged. Clearly, condition (iv) is satisfied by 𝑔𝑀 (𝜉, 0). We
repeat this procedure (𝑁 ´𝑀)-times to get a new map (renaming the variables by (𝑥,𝑦, 𝜃 )
and the map by 𝐹 ) such that

𝐹𝑦 (𝑥,𝑦, 𝜃 ) = 𝑦 +
𝑁´1∑︁
𝑗=𝑀

𝑔 𝑗 (𝑥,𝑦) + 𝑔ě𝑁 (𝑥,𝑦, 𝜃 ),

where 𝑔 𝑗 are homogeneous functions of degree 𝑗 , 𝑔ě𝑁 = O(∥(𝑥,𝑦)∥𝑁 ) and 𝐹 satisfies
conditions (i)-(v).

Now, if 𝑃 ă 𝑁 , we deal with the 𝜃 component and we consider a change of coordinates

(𝑥,𝑦, 𝜃 ) = (𝜉, 𝜂, 𝜑 + C𝑃
𝜃
(𝜉, 𝜂, 𝜑)),

where C𝑃
𝜃
is a homogeneous function of degree 𝑃 in (𝜉, 𝜂). The components (𝜉, 𝜂) of the

transformed map, denoted again by 𝐹 (1) , satisfy conditions (i)-(ii) and

𝐹
(1)
𝜉

= 𝜉 + 𝑓 𝑁 (𝜉, 𝜂, 𝜑) + O(∥(𝜉, 𝜂)∥𝑁+1),

𝐹
(1)
𝜂 = 𝜂 +

𝑁´1∑︁
𝑗=𝑀

𝑔 𝑗 (𝜉, 𝜂) + 𝑔ě𝑁 (𝜉, 𝜂, 𝜑),

𝐹
(1)
𝜑 = 𝜑 + 𝜔 + C𝑃

𝜃
(𝜉, 𝜂, 𝜑) ´ C𝑃

𝜃
(𝜉, 𝜂, 𝜑 + 𝜔) + ℎ𝑃 (𝜉, 𝜂) + ℎ̃𝑃 (𝜉, 𝜂, 𝜑) + O(∥(𝜉, 𝜂)∥𝑃+1).
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Therefore, choosing C𝑃
𝜃
= D[ℎ̃𝑃 ], we have that

𝐹
(1)
𝜑 = 𝜑 + 𝜔 + ℎ𝑃 (𝜉, 𝜂) + O(∥(𝜉, 𝜂)∥𝑃+1).

Repeating this procedure (𝑁 ´ 𝑃)-times we obtain a map 𝐺 (0) (𝑥,𝑦, 𝜃 ) such that

B𝜃𝐺
(0) ´ Id = O(∥(𝑥,𝑦)∥𝑁 ).

Next, we look for a change of variables of the form

(𝑥,𝑦, 𝜃 ) = (𝜉 + C𝑁𝑥 (𝜉, 𝜂, 𝜑), 𝜂 + C𝑁𝑦 (𝜉, 𝜂, 𝜑), 𝜑 + C𝑁
𝜃
(𝜉, 𝜂, 𝜑)),

where C𝑁𝑥 , C𝑁𝑦 and C𝑁
𝜃

are homogeneous functions with respect to 𝜉, 𝜂 of degree 𝑁 , to
transform 𝐺 to 𝐺 (1) . We impose the conditions

C𝑁𝑥 (𝜉, 𝜂, 𝜑) ´ C𝑁𝑥 (𝜉, 𝜂, 𝜑 + 𝜔) + 𝑓 𝑁 (𝜉, 𝜂) + 𝑓 𝑁 (𝜉, 𝜂, 𝜑) = O(∥(𝜉, 𝜂)∥𝑁+1),

C𝑁𝑦 (𝜉, 𝜂, 𝜑) ´ C𝑁𝑦 (𝜉, 𝜂, 𝜑 + 𝜔) +
𝑁∑︁
𝑗=𝑀

𝑔 𝑗 (𝜉, 𝜂) + 𝑔𝑁 (𝜉, 𝜂, 𝜑) = O(∥(𝜉, 𝜂)∥𝑁+1),

C𝑃
𝜃
(𝜉, 𝜂, 𝜑) ´ C𝑃

𝜃
(𝜉, 𝜂, 𝜑 + 𝜔) +

𝑁∑︁
𝑗=𝑃

ℎ
𝑗 (𝜉, 𝜂) + ℎ̃𝑁 (𝜉, 𝜂, 𝜑) = O(∥(𝜉, 𝜂)∥𝑁+1).

As before, taking C𝑁𝑥 = D[𝑓 𝑁 ], C𝑁𝑦 = D[𝑔𝑁 ] and C𝑁
𝜃

= D[ℎ̃𝑁 ] which are analytic and
have the right order, we obtain

B𝜑𝐺
(1)
𝜉,𝜂

= O(∥(𝜉, 𝜂)∥𝑁+1), B𝜑𝐺
(1)
𝜑 ´ Id = O(∥(𝜉, 𝜂)∥𝑁+1).

Since𝐺 (0) is a sum of homogeneous functions up to degree 𝑞 ´ 1 plus a remainder of order
𝑞, we can repeat this procedure (𝑞 ´ 𝑁 )-times obtaining that 𝐹 := 𝐺 (𝑞´𝑁 ) satisfies

B𝜑𝐹𝜉,𝜂 = O(∥(𝜉, 𝜂)∥𝑞), B𝜑𝐹𝜑 ´ Id = O(∥(𝜉, 𝜂)∥𝑞).

The change C in the statement is the composition of all previous changes. Since C is close
to the identity, it sendsU1 ˆ T𝑑

𝜎 1 toU ˆ T𝑑𝜎 , whereU1 is a slightly smaller domain thanU
and 𝜎 1 ă 𝜎 . □

In the following lemma, which is a straightforward consequence of Lemma 3.2, we make
a better choice of the parameters (𝑢,Θ) which will allow us to find a new reparametrization
𝑅 such that its terms of order less than 𝑞 do not depend on the angular variables.
Lemma 3.3. Assume that 𝑅 is analytic and satisfies the conditions for 𝐹 in Theorem 2.7 for
some 𝜌0 ą 0. Then, there exist 𝜌 ą 0 and an analytic change of parameters P : 𝑉𝜌1 ˆ T𝑑

𝜎 1 Ñ
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𝑉𝜌0 ˆ T𝑑𝜎 of the form (𝑢,Θ) = P(𝑣,𝜓 ) = (𝑣,𝜓 ) + P̂ (𝑣,𝜓 ) with

P̂𝑢 (𝑣,𝜓 ) =
𝑞´1∑︁
𝑗=𝑁

P 𝑗
𝑢 (𝑣,𝜓 ), P̂Θ(𝑣,𝜓 ) =

𝑞´1∑︁
𝑗=𝑃

P 𝑗

Θ(𝑣,𝜓 ),

where 𝑉𝜌1 is a slightly smaller cone, 𝜎 1 ă 𝜎 and P 𝑗 are homogeneous functions of degree 𝑗 ,
with respect to 𝑣 , such that

𝑅(𝑣,𝜓 ) := P´1 ˝ 𝑅 ˝ P(𝑣,𝜓 ) = q𝑅(𝑣,𝜓 ) + O(∥𝑣 ∥𝑞)

with

q𝑅(𝑣,𝜓 ) := (𝑣 + 𝑅𝑣 (𝑣),𝜓 + 𝜔 + 𝑅𝜓 (𝑣)) = (𝑣 + 𝑓 𝑁 (𝑣, 0) + O(∥𝑣 ∥𝑁+1),𝜓 + 𝜔 + O(∥𝑣 ∥𝑃 )) .

In addition, both q𝑅 and 𝑅 are analytic and q𝑅 is a sum of homogeneous functions in 𝑣 up to order
𝑞 ´ 1.

Proof. The claim follows applying Lemma 3.2 to 𝑅 instead of 𝐹 , taking into account that 𝑅
is a map independent of 𝑦 and that does not have 𝑦-component (that is,𝑚 = 0). □

Now we apply Lemmas 3.2 and 3.3 to prove Proposition 3.1.

Proof of Proposition 3.1. We set 𝐹, 𝐾ď and 𝑅 satisfying all the conditions of Theorem 2.7. Let
C and 𝐹 those provided by Lemma 3.2. We notice that, since

C ˝ 𝐹 ˝ C´1 ˝ 𝐾ď ´ 𝐾ď ˝ 𝑅 = 𝐸ď

we have that
𝐹 ˝ C´1 ˝ 𝐾ď = C´1(𝐾ď ˝ 𝑅 + 𝐸ď).

Then, q𝐾ď := C´1 ˝ 𝐾ď satisfies the conditions in Theorem 2.7:

q𝐾ď

𝜉,𝜂
(𝑢,Θ) ´ (𝑢, 0) = O(∥𝑢∥2), q𝐾ď

𝜑 (𝑢,Θ) ´ Θ = O(∥𝑢∥))

and, by the mean value theorem, the new remainder

q𝐸ď := 𝐹 ˝ q𝐾ď ´ q𝐾ď ˝ 𝑅 = C´1 ˝ (𝐾ď ˝ 𝑅 + 𝐸ď) ´ C´1 ˝ 𝐾ď ˝ 𝑅 = O(∥𝑢∥𝑞),

(see (2.15)).
Next, we consider the close to the identity change of parameters in Lemma 3.3, (𝑢,Θ) =

P(𝑣,𝜓 ). We have that

𝐹 ˝ q𝐾ď(P(𝑣,𝜓 )) ´ q𝐾ď ˝ 𝑅(P(𝑣,𝜓 )) = q𝐸ď(P(𝑣,𝜓 )) .

We define 𝐾ď = q𝐾ď ˝ P and 𝐸ď = q𝐸ď ˝ P. Then, the above equality reads

𝐹 ˝ 𝐾ď ´ 𝐾ď ˝ 𝑅 = 𝐸ď (3.3)
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with 𝑅 = P´1 ˝𝑅 ˝ P defined in Lemma 3.3 and 𝐸ď = O(∥𝑣 ∥𝑞). We emphasize that 𝐾ď also
satisfies the conditions in Theorem 2.7, namely it is a sum of homogeneous functions in 𝑣
and

𝐾ď

𝜉,𝜂
(𝑣,𝜓 ) ´ (𝑣, 0) = O(∥𝑣 ∥2), 𝐾ď

𝜑 (𝑣,𝜓 ) ´𝜓 = O(∥𝑣 ∥). (3.4)

It only remains to check that B𝜓𝐾
ď

𝜉,𝜂
= O(∥𝑣 ∥𝑞) and B𝜓𝐾

ď
𝜑 ´ Id = O(∥𝑣 ∥𝑞). To do so we

write 𝐹 = 𝐹ď𝑞´1 + 𝐹ě𝑞 and then (3.3) becomes

𝐹ď𝑞´1 ˝ 𝐾ď ´ 𝐾ď ˝ 𝑅 = 𝐸ď ´ 𝐹ě𝑞 ˝ 𝐾ď. (3.5)

Since by Lemma 3.3, 𝑅 = q𝑅 + O(∥𝑣 ∥𝑞) and by Lemma 3.2, 𝐹ď𝑞´1 ´ (0, 0, 𝜑) does not depend
on the angle 𝜑 , equation (3.5) can be written as:

𝐹ď𝑞´1(𝐾ď

𝜉,𝜂
(𝑣,𝜓 ), 𝐾ď

𝜑 (𝑣,𝜓 )) ´ 𝐾ď ˝ q𝑅(𝑣,𝜓 ) = O(∥𝑣 ∥𝑞), (3.6)

where q𝑅(𝑣,𝜓 ) = (𝑣 + 𝑅𝑣 (𝑣),𝜓 + 𝜔 + 𝑅𝜓 (𝑣)).
Now, taking the derivative with respect to𝜓 in both sides of (3.6), using that 𝐷𝐹ď𝑞´1 =

Id + (O(∥𝑣 ∥𝑁´1), O(∥𝑣 ∥𝑀´1), O(∥𝑣 ∥𝑃´1)) and that B𝜓 q𝑅 = (0, Id), we obtain

B𝜓𝐾
ď(𝑣,𝜓 ) ´ B𝜓𝐾

ď(q𝑅(𝑣,𝜓 )) =
©­­­«
O(∥𝑣 ∥𝑞) + O(∥𝑣 ∥𝑁´1∥B𝜓𝐾

ď

𝜉,𝜂
(𝑣,𝜓 )∥)

O(∥𝑣 ∥𝑞) + O(∥𝑣 ∥𝑀´1∥B𝜓𝐾
ď

𝜉,𝜂
(𝑣,𝜓 )∥)

O(∥𝑣 ∥𝑞) + O(∥𝑣 ∥𝑃´1∥B𝜓𝐾
ď

𝜉,𝜂
(𝑣,𝜓 )∥)

ª®®®¬ . (3.7)

On the other hand, using the properties of 𝐾ď in (3.4) and the ones of q𝑅 in Lemma 3.3, by
Taylor’s theorem we have that

B𝜓𝐾
ď(𝑣 + 𝑅𝑣 (𝑣),𝜓 + 𝜔 + 𝑅𝜓 (𝑣)) = B𝜓𝐾

ď(𝑣,𝜓 + 𝜔)

+
©­­«
O(∥𝑣 ∥𝑁 ∥B2

𝜓,𝑣
𝐾ď

𝜉
(𝑣,𝜓 )∥) + O(∥𝑣 ∥𝑃 ∥B2

𝜓,𝜓
𝐾ď

𝜉
(𝑢,𝜓 )∥)

O(∥𝑣 ∥𝑁 ∥B2
𝜓,𝑣
𝐾ď
𝜂 (𝑣,𝜓 )∥) + O(∥𝑣 ∥𝑃 ∥B2

𝜓,𝜓
𝐾ď
𝜂 (𝑣,𝜓 )∥)

O(∥𝑣 ∥𝑁 ∥B2
𝜓,𝑣
𝐾ď
𝜑 (𝑣,𝜓 )∥) + O(∥𝑣 ∥𝑃 ∥B2

𝜓,𝜓
𝐾ď
𝜑 (𝑣,𝜓 )∥)

ª®®¬ .
(3.8)

Notice that, using 𝑁 ě 𝑃 ě 1, 𝑁 ě 𝑀 ě 2, properties (3.4) of 𝐾 , that 𝑅𝑣 = O(∥𝑢∥𝑁 ) and
𝑅𝜓 = O(∥𝑣 ∥𝑃 ), at least, we obtain that

B𝜓𝐾
ď(𝑣,𝜓 ) ´ B𝜓𝐾

ď(𝑣,𝜓 + 𝜔) =
(
O(∥𝑣 ∥3),O(∥𝑣 ∥3),O(∥𝑣 ∥2)

)
.

Here, to estimate the orders of the first and second derivatives of 𝐾ď we have used that 𝐾ď

satisfies C ˝ 𝐾ď = 𝐾ď with C, 𝐾ď being sums of homogeneous functions with respect to
(𝜉, 𝜂) and 𝑢, respectively, and that all of them are analytic inU ˆT𝑑𝜎 for someU and 𝜎 ą 0.

Therefore, since B𝜓𝐾
ď

𝜉,𝜂
and B𝜓𝐾

ď
𝜑 ´ Id have zero average, by Theorem 2.1,

B𝜓𝐾
ď(𝑣,𝜓 ) ´ (0, 0, Id) =

(
O(∥𝑣 ∥3),O(∥𝑣 ∥3),O(∥𝑣 ∥2)

)
.
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Assume by induction that

B𝜓𝐾
ď(𝑣,𝜓 ) ´ (0, 0, Id) =

(
O(∥𝑣 ∥𝑙 ),O(∥𝑣 ∥𝑙 ),O(∥𝑣 ∥𝑙´1)

)
for 𝑙 = 2, ¨ ¨ ¨ , 𝑞 ´ 1. Then, using (3.7) and (3.8) we have that

B𝜓𝐾
ď(𝑣,𝜓 ) ´ B𝜓𝐾

ď(𝑣,𝜓 + 𝜔) = ©­«
O(∥𝑣 ∥𝑞) + O(∥𝑣 ∥𝑁´1+𝑙 ) + O(∥𝑣 ∥𝑃+𝑙 )
O(∥𝑣 ∥𝑞) + O(∥𝑣 ∥𝑀´1+𝑙 ) + O(∥𝑣 ∥𝑃+𝑙 )
O(∥𝑣 ∥𝑞) + O(∥𝑣 ∥𝑃´1+𝑙 ) + O(∥𝑣 ∥𝑃+𝑙´1)

ª®¬ .
Now, using Theorem 2.1 and that 𝑁 ě 𝑀 ě 2, 𝑁 ě 𝑃 ě 1, we conclude that

B𝜓𝐾
ď(𝑣,𝜓 ) ´ (0, 0, Id) =

(
O(∥𝑣 ∥𝑙+1),O(∥𝑣 ∥𝑙+1),O(∥𝑣 ∥𝑙 )

)
.

Therefore, when 𝑙 = 𝑞 ´ 1,

B𝜓𝐾
ď(𝑣,𝜓 ) ´ (0, 0, Id) =

(
O(∥𝑣 ∥𝑞),O(∥𝑣 ∥𝑞),O(∥𝑣 ∥𝑞´1)

)
.

To finish, we notice that, applying once more (3.7) and (3.8), we obtain that in fact,
B𝜓𝐾

ď
𝜑 (𝑣,𝜓 ) ´ Id = O(∥𝑣 ∥𝑞).
By construction of 𝐹 and Remark 2.6 the constants 𝑎𝑓 , 𝐴𝑓 and 𝑏 𝑓 of 𝐹 for 𝜌 1 ď 𝜌 satisfy

condition (iii) and 𝐴𝑓 ą 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃} = 𝑏 𝑓 max{1, 𝑁 ´ 𝑃}. Now, Proposition 3.1
follows from Lemmas 3.2 and 3.3. □

We state an intermediate result, whose technical proof is postposed to Sections 3.2
and 3.3, that implies the existence part of Theorem 2.7 as a corollary. Indeed, formula (3.6)
suggests that we can use a simpler 𝑅 to prove the result.
Proposition 3.4. Let 𝐹 , 𝐾 and 𝑅 satisfy the conditions on Proposition 3.1. Let q𝑅(𝑣,𝜓 ) =

(q𝑅𝑣 (𝑣), q𝑅𝜓 (𝑣,𝜓 )) = (𝑣 + 𝑅𝑣 (𝑣),𝜓 + 𝜔 + 𝑅𝜓 (𝑣)), introduced in Lemma 3.3, that satisfies

𝑅(𝑣,𝜓 ) ´ q𝑅(𝑣,𝜓 ) = O(∥𝑣 ∥𝑞).

Then, the invariance equation

𝐹 ˝ (𝐾ď + qΔ) ´ (𝐾ď + qΔ) ˝ q𝑅 = 0 (3.9)

has an analytic solution qΔ such that qΔ𝜉,𝜂 = O(∥𝑣 ∥𝑞´𝑁+1), qΔ𝜑 = O(∥𝑣 ∥𝑞´2𝑁+𝑃+1).

Proof of the claim on the existence of the parametrization in Theorem 2.7 from Proposition 3.4.
We first note that, by Proposition 3.1, to prove Theorem 2.7 we only need to solve the
invariance equation (3.1). We note that the difference between the invariance equation (3.9)
in Proposition 3.4 and (3.1) is just the dynamics on the invariant manifold, namely in
the latter is q𝑅 while in the former is 𝑅. To overcome this issue we apply Proposition 3.4
to 𝑅(𝑣,𝜓 ) considered as a map 𝑈 ˆ T𝑑 Ă R𝑛 ˆ T𝑑 Ñ R𝑛 ˆ T𝑑 instead of the map
𝐹 : U ˆ T𝑑 Ă R𝑛 ˆ R𝑚 ˆ T𝑑 Ñ R𝑛 ˆ R𝑚 ˆ T𝑑 taking 𝐾ď = Id. Then, 𝑅 satisfies the
hypotheses of Proposition 3.1 with𝑚 = 0. Note that in particular, 𝑅𝑣 (𝑣) = 𝑓 (𝑢, 0). Indeed,
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since 𝑅(𝑣,𝜓 ) ´ q𝑅(𝑣,𝜓 ) = O(∥𝑣 ∥𝑞), we have that 𝑅 ˝ Id ´ Id ˝ q𝑅 = O(∥𝑣 ∥𝑞). Then, there
exists Δ𝑅 such that

𝑅 ˝ (Id + Δ𝑅) ´ (Id + Δ𝑅) ˝ q𝑅 = 0
and

Δ𝑅 (𝑣,𝜓 ) =
(
O(∥𝑣 ∥𝑞´𝑁+1),O(∥𝑣 ∥𝑞´2𝑁+𝑃+1)

)
.

We define Ψ = Id + Δ𝑅 and we have that 𝑅 ˝ Ψ = Ψ ˝ q𝑅, so that 𝑅 and q𝑅 are conjugate. Now,
let qΔ be a solution of (3.9). We introduce

Δ̂ = 𝐾ď ˝ Ψ´1 ´ 𝐾ď + qΔ ˝ Ψ´1 =
(
O(∥𝑣 ∥𝑞´𝑁+1),O(∥𝑣 ∥𝑞´𝑁+1),O(∥𝑣 ∥𝑞´2𝑁+𝑃+1)

)
.

Then,

0 = 𝐹 ˝ (𝐾ď + qΔ) ˝ Ψ´1 ´ (𝐾ď + qΔ) ˝ q𝑅 ˝ Ψ´1

= 𝐹 ˝ (𝐾ď + qΔ) ˝ Ψ´1 ´ (𝐾ď + qΔ) ˝ Ψ´1 ˝ 𝑅

= 𝐹 ˝ (𝐾ď + Δ̂) ´ (𝐾ď + Δ̂) ˝ 𝑅.

This implies the existence result in Theorem 2.7, since all changes of variables and parame-
ters are analytic. □

Remark 3.5. We postpose the proof of the characterization of the local stable invariant
manifold𝑊 s

A𝜌,𝛽
in (2.17) to Section 3.4.

3.2 The functional equation for 𝑲
We will prove Proposition 3.4 solving a fixed point equation derived from (3.1).

The first (non-trivial) step is to find the appropriate fixed point equation. As we did
previously, we decompose 𝐹 = 𝐹ď𝑞´1 + 𝐹ě𝑞 with 𝐹ď𝑞´1 ´ Id independent on 𝜑 . Denoting
𝜁 = (𝜉, 𝜂), 𝐷𝐹ď𝑞´1 has the form

𝐷𝐹ď𝑞´1(𝜁 ) =
©­­«

Id + B𝜉 𝑓
𝑁 (𝜁 ) + B𝜉 𝑓

ě𝑁+1(𝜁 ) B𝜂 𝑓
𝑁 (𝜁 ) + B𝜂 𝑓

ě𝑁+1(𝜁 ) 0
B𝜉𝑔

𝑀 (𝜁 ) + B𝜉𝑔
ě𝑀+1(𝜁 ) Id + B𝜂𝑔

𝑀 (𝜁 ) + B𝜂𝑔
ě𝑀+1(𝜁 ) 0

B𝜉ℎ
𝑃 (𝜁 ) + B𝜉ℎ̂

ě𝑃+1(𝜁 ) B𝜂ℎ
𝑃 (𝜁 ) + B𝜂ℎ̂

ě𝑃+1(𝜁 ) Id

ª®®¬ .
Therefore, we can write

𝐷𝐹ď𝑞´1(𝜁 ) = M(𝜁 ) + N(𝜁 ) :=
(

Id + C(𝜁 ) 0
0 Id

)
+

(
0 0

c(𝜁 ) 0

)
. (3.10)

Notice that (3.10) defines implicitlyM(𝜁 ), N(𝜁 ), C(𝜁 ) and c(𝜁 ). We also decompose

𝐾ď(𝑣,𝜓 ) = 𝐾ď𝑞´1(𝑣,𝜓 ) + 𝐾ě𝑞 (𝑣,𝜓 ), 𝐾ě𝑞 (𝑣,𝜓 ) = O(∥𝑣 ∥𝑞)

with 𝐾ď𝑞´1(𝑣,𝜓 ) of degree 𝑞 ´ 1 with respect to 𝑣 and 𝐾ď𝑞´1(𝑣,𝜓 ) ´ (𝑣, 0,𝜓 ) independent
of𝜓 . We decompose the condition for qΔ as

0 =𝐹 ˝ (𝐾ď + qΔ) ´ (𝐾ď + qΔ) ˝ q𝑅
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=𝐹ď𝑞´1 ˝ 𝐾ď ´ 𝐾ď ˝ q𝑅

+ 𝐹ě𝑞 (𝐾ď + qΔ)
+ 𝐹ď𝑞´1 ˝ (𝐾ď + qΔ) ´ 𝐹ď𝑞´1 ˝ 𝐾ď ´ 𝐷𝐹ď𝑞´1(𝐾ď)qΔ
+ 𝐷𝐹ď𝑞´1(𝐾ď)qΔ ´ M(𝐾ď𝑞´1)qΔ
+M(𝐾ď𝑞´1)qΔ ´ qΔ ˝ q𝑅.

We introduce the operators

L[qΔ] =M(𝐾ď𝑞´1)qΔ ´ qΔ ˝ q𝑅,

N[qΔ] =𝐹ď𝑞´1 ˝ 𝐾ď ´ 𝐾ď ˝ q𝑅 + 𝐹ě𝑞 ˝ (𝐾ď + qΔ) + 𝐷𝐹ď𝑞´1(𝐾ď)qΔ ´ M(𝐾ď𝑞´1)qΔ
+ 𝐹ď𝑞´1 ˝ (𝐾ď + qΔ) ´ 𝐹ď𝑞´1 ˝ 𝐾ď ´ 𝐷𝐹ď𝑞´1(𝐾ď)qΔ, (3.11)

and we rewrite the condition for qΔ as

L[qΔ] = ´N[qΔ] . (3.12)

In order to express the above equation as a fixed point equation we need to invert the linear
operator L in an appropriate Banach space. Actually, we will find a right inverse of it. In
this section we proceed formally. In the next one we provide the necessary estimates. We
have to solve the equation

L[qΔ] = 𝑇 (3.13)
with 𝑇 in some functional space. First, we expand qΔ and 𝑇 in Fourier series:

qΔ(𝑣,𝜓 ) =
∑︁
𝑘PZ𝑑

Δ(𝑘 ) (𝑣)𝑒2𝜋𝑖𝑘¨𝜓 , 𝑇 (𝑣,𝜓 ) =
∑︁
𝑘PZ𝑑

𝑇 (𝑘 ) (𝑣)𝑒2𝜋𝑖𝑘¨𝜓 .

We recall that 𝐹ď𝑞´1 ´ Id does not depend on 𝜑 (Lemma 3.2) and that𝐾ď𝑞´1(𝑣,𝜓 )´ (𝑣, 0,𝜓 )
does not depend on 𝜓 (Proposition 3.1). The block structure of the matrix M permits to
uncouple equation (3.13) into two equations, one for the (𝜉, 𝜂)-components, qΔ𝜉,𝜂 , 𝑇𝜉,𝜂 , and
the other for the 𝜑-components, qΔ𝜑 , 𝑇𝜑 . Therefore, we have to solve

[Id + C(𝐾ď𝑞´1
𝜉,𝜂

)]qΔ𝜉,𝜂 ´ qΔ𝜉,𝜂 ˝ q𝑅 = 𝑇𝜉,𝜂,

qΔ𝜑 ´ qΔ𝜑 ˝ q𝑅 = 𝑇𝜑 .

For the Fourier coefficients, since q𝑅(𝑣,𝜓 ) = (𝑣 + 𝑅𝑣 (𝑣),𝜓 + 𝜔 + 𝑅𝜓 (𝑣)), we have

[Id + C(𝐾ď𝑞´1
𝜉,𝜂

)]Δ(𝑘 )
𝜉,𝜂

´ 𝑒2𝜋𝑖𝑘 (𝜔+𝑅𝜓 (𝑣) )Δ(𝑘 )
𝜉,𝜂

˝ q𝑅𝑣 = 𝑇
(𝑘 )
𝜉,𝜂

, 𝑘 P Z𝑑 , (3.14)

Δ(𝑘 )
𝜑 ´ 𝑒2𝜋𝑖𝑘 (𝜔+𝑅𝜓 (𝑣) )Δ(𝑘 )

𝜑 ˝ q𝑅𝑣 = 𝑇
(𝑘 )
𝜑 , 𝑘 P Z𝑑 . (3.15)
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We denote L (𝑘 )
𝜉,𝜂

[
Δ(𝑘 )
𝜉,𝜂

]
and L (𝑘 )

𝜑

[
Δ(𝑘 )
𝜑

]
the left hand sides of (3.14) and (3.15), respectively.

The corresponding (formal) inverses S (𝑘 )
𝜉,𝜂

and S (𝑘 )
𝜑 are

S (𝑘 )
𝜉,𝜂

[
𝑇

(𝑘 )
𝜉,𝜂

]
(𝑣) =

8∑︁
𝑗=0

[
𝑗∏
𝑙=0

(
(Id + C ˝ 𝐾

ď𝑞´1
𝜉,𝜂

˝ q𝑅𝑙𝑣
)´1

]
𝑒2𝜋𝑖𝑘

(
𝑗𝜔+∑𝑗´1

𝑙=0 𝑅𝜓 ˝ q𝑅𝑙𝑣

)
𝑇

(𝑘 )
𝜉,𝜂

˝ q𝑅
𝑗
𝑣,

S (𝑘 )
𝜑

[
𝑇

(𝑘 )
𝜑

]
(𝑣) =

8∑︁
𝑗=0

𝑒2𝜋𝑖𝑘
(
𝑗𝜔+∑𝑗´1

𝑙=0 𝑅𝜓 ˝ q𝑅𝑙𝑣

)
𝑇

(𝑘 )
𝜑 ˝ q𝑅

𝑗
𝑣,

where q𝑅𝑙𝑣 =
q𝑅𝑣 ˝ . . .𝑙 ) ˝ q𝑅𝑣 . Let

S (𝑘 ) [𝑇 (𝑘 ) ] = (
S (𝑘 )
𝜉,𝜂

[
𝑇

(𝑘 )
𝜉,𝜂

]
,S (𝑘 )

𝜑

[
𝑇

(𝑘 )
𝜑

] )
.

Then, the operator L has a formal right inverse given by

S[𝑇 ] (𝑣,𝜓 ) =
∑︁
𝑘PZ𝑑

𝑒2𝜋𝑖𝑘¨𝜓S (𝑘 ) [𝑇 (𝑘 ) ] (𝑣) (3.16)

=

8∑︁
𝑗=0

[
𝑗∏
𝑙=0

(
M(𝐾ď𝑞´1

𝜉,𝜂
(q𝑅𝑙𝑣 (𝑣)))

)´1
]
𝑇

(
q𝑅
𝑗
𝑣 (𝑣), 𝑗𝜔 +𝜓 +

𝑗´1∑︁
𝑙=0

𝑅𝜓 (q𝑅𝑙𝑣 (𝑣))
)

or equivalently

S[𝑇 ] (𝑣,𝜓 ) =
8∑︁
𝑗=0

[
𝑗∏
𝑙=0

(
M(𝐾ď𝑞´1

𝜉,𝜂
(q𝑅𝑙𝑣 (𝑣)))

)´1
]
𝑇 ˝ q𝑅 𝑗 (𝑣,𝜓 ). (3.17)

Having defined S, we can consider the equation

qΔ = F [qΔ] := ´S ˝ N[qΔ] . (3.18)

Clearly, if qΔ is solution of (3.18), it is also solution of (3.12).

3.3 Solution of the fixed point equation
To prove that the fixed point equation (3.18) has a solution in a suitable Banach space we
need to study both the linear operator S, defined in (3.16), and the nonlinear operator N ,
defined in (3.11). This will be done in Sections 3.3.1 and 3.3.2, respectively.

We recall that the operator S depends on

q𝑅(𝑣,𝜓 ) = (q𝑅𝑣 (𝑣,𝜓 ), q𝑅𝜓 (𝑣,𝜓 )) = (𝑣 + 𝑅𝑣 (𝑣),𝜓 + 𝜔 + 𝑅𝜓 (𝑣)), (3.19)

where
𝑅𝑣 (𝑣) = 𝑓

𝑁 (𝑣, 0) +𝑤ě𝑁+1(𝑣), with 𝑤ě𝑁+1(𝑣) = O(∥𝑣 ∥𝑁+1),
and 𝑅𝜓 (𝑣) = O(∥𝑣 ∥𝑃 ) are sums of homogeneous functions in 𝑣 of degree at most 𝑞 ´ 1.
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For positive 𝜌 , 𝛾 and 𝜎 we define the sets

Ω𝜌 (𝛾) = {𝑣 P C𝑛 | 𝑣 = (Re 𝑣, Im 𝑣) P R𝑛 ˆ R𝑛, Re 𝑣 P 𝑉𝜌 , ∥Im 𝑣 ∥ ď 𝛾 ∥Re 𝑣 ∥}

and

Γ𝜌 (𝛾, 𝜎) =
{
(𝑣,𝜓 ) P Ω𝜌 (𝛾) ˆ T𝑑𝜎 | ∥Im𝜓 ∥ +

8∑︁
𝑙=0

∥Im𝑅𝜓 (q𝑅𝑙𝑣 (𝑣))∥ ă 𝜎

}
.

From now on we fix constants 𝑎, 𝑏 and 𝐴, 𝐵, 𝐷 such that

0 ă 𝑎 ă 𝑎𝑓 , 𝑏 ą 𝑏 𝑓 , 𝐵 ă 𝐵𝑔, 𝐷 ă 𝐷 𝑓 , 𝐴 ă 𝐴𝑓 , 𝐴 ą 𝑏 max{1, 𝑁 ´ 𝑃} (3.20)

and, if 𝐸1 ą 𝐸 ą max{´𝐵,´𝐷, 𝐸˚},

𝐸1 ă
𝑁 ´ 4/3
𝑁 ´ 5/3𝐸

˚. (3.21)

with 𝑎𝑓 , 𝑏 𝑓 , 𝐴𝑓 , 𝐷 𝑓 , 𝐵𝑔, 𝐸˚ defined in (2.9), (2.10) (2.11) and (2.12), respectively. Taking the
norm ∥𝑧∥ = max{∥Re 𝑧∥, ∥Im 𝑧∥} in C𝑛 , we have that if A is a complex 𝑛 ˆ 𝑛 matrix and
A = A1 + 𝑖A2 with A1,A2 real matrices, then ∥A∥ ď ∥A1∥ + ∥A2∥.

By definition (2.10) of 𝐷 𝑓 , for 𝜁 P 𝑉𝜌,𝛽 we have that


(Id + 𝐷𝜉 𝑓
𝑁 (𝜁 ) + 𝐷𝜉 𝑓 ě𝑁+1(𝜁 )

)´1



 ď 1 ´ (𝐷 𝑓 ´ (𝛽 + 𝜌)M)∥𝜉 ∥𝑁´1 ď 1 ´𝐷 ∥𝜉 ∥𝑁´1 (3.22)

and, by definition (2.11) of 𝐵𝑔,


(Id + 𝐷𝜂𝑔𝑀 (𝜁 ) + 𝐷𝜂𝑔ě𝑀+1(𝜁 )
)´1




 ď ∥Id ´ 𝐷𝜂𝑔
𝑀 (𝜁 )∥ +M∥𝜉 ∥𝑀

ď ∥Id ´ 𝐷𝜂𝑔
𝑀 (𝜉, 0)∥ +M𝛽 ∥𝜉 ∥𝑀´1 +M∥𝜉 ∥𝑀

ď 1 ´
(
𝐵𝑔 ´ (𝛽 + 𝜌)M

)
∥𝜉 ∥𝑀´1

ď 1 ´ 𝐵∥𝜉 ∥𝑀´1.

(3.23)

Moreover, ∥𝐷𝜂𝑔𝑀 (𝜁 ) + 𝐷𝜂𝑔ě𝑀+1(𝜁 )∥ ď 𝛽M∥𝜉 ∥𝑀´1.
Then, by definition (3.10) of M, and bounds (3.22) and (3.23), we obtain that, if 𝜌, 𝛽 are

small enough (depending on 𝐵 and 𝐷),

∥
(
M(𝜉, 𝜂)

)´1∥ ď 1 + 𝐸∥𝜉 ∥𝑁´1, (𝜉, 𝜂) P 𝑉𝜌,𝛽 .

Also, a computation shows that if 𝜉 P Ω𝜌 (𝛾), ∥𝜂∥ ď 𝛽 ∥𝜉 ∥, and 𝛾 is small we have
∥Re

(
M(𝜉, 𝜂)

)´1∥ ď 1+(𝐸+O(𝛾))∥𝜉 ∥𝑁´1 and ∥Im
(
M(𝜉, 𝜂)

)´1∥ ď M𝛾 ∥Re
(
M(𝜉, 𝜂)

)´1
´Id∥.

Therefore

∥
(
M(𝜉, 𝜂)

)´1∥ ď 1 + 𝐸1∥𝜉 ∥𝑁´1, 𝜉 P Ω𝜌 (𝛾), ∥𝜂∥ ď 𝛽 ∥𝜉 ∥. (3.24)

The next result is the key to control the iterates of q𝑅. Its proof is deferred to Appendix C.
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Lemma 3.6. Assume𝐴𝑓 ą 𝑏 𝑓 . Let q𝑅 be as (3.19) and 𝑎, 𝑏,𝐴 be constants satisfying (3.20) with
𝐴 ą 𝑏. Fix constants 𝑎˚ ă 𝑎(𝑁 ´ 1) and 𝑏˚ ą 𝑏 (𝑁 ´ 1). Then, there exist positive 𝜌,𝛾 small
enough such that
(1) The set Ω𝜌 (Γ) is invariant by q𝑅𝑣 , that is

q𝑅𝑣 (Ω𝜌 (𝛾)) Ă Ω𝜌 (𝛾).

(2) For 𝑘 ě 0 and 𝑣 P Ω𝜌 (𝛾):

∥𝑣 ∥[
1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1

] 1
𝑁´1

ď ∥q𝑅𝑘𝑣 (𝑣)∥ ď
∥𝑣 ∥[

1 + 𝑘𝑎˚∥𝑣 ∥𝑁´1
] 1
𝑁´1

. (3.25)

(3) If 𝐴/𝑏 ą max{1, 𝑁 ´ 𝑃}, then there exists some constantM ą 0 such that

8∑︁
𝑙=0

∥Im𝑅𝜓 (q𝑅𝑙𝑣 (𝑣))∥ ď M ∥Im 𝑣 ∥
∥𝑣 ∥𝑁´𝑃

, 𝑣 P Ω𝜌 (𝛾). (3.26)

(4) If 𝐴/𝑏 ą max{1, 𝑁 ´ 𝑃}, then there exists 𝜎 ą 0 such that

q𝑅(Γ𝜌 (𝛾, 𝜎)) Ă Γ𝜌 (𝛾, 𝜎). (3.27)

Remark 3.7. We notice that if 𝐴𝑓 ą 𝑏 𝑓 , then we can always take 𝐴 ă 𝐴𝑓 and 𝑏 ą 𝑏 𝑓
satisfying 𝐴 ą 𝑏.

We emphasize that when 𝑛 = 1, 𝐴𝑓 = 𝑁𝑏 𝑓 ą 𝑏 𝑓 (this does not happen, in general, when
𝑛 ą 1, see [15, 16] for examples). Then, (3.26) and (3.27) always hold true in the one dimensional
case, since we can choose the values of 𝐴 and 𝑏 satisfying the hypotheses of Lemma 3.6.
Remark 3.8. If 𝑃 ě 𝑁 ´1, the set Γ𝜌 (𝛾, 𝜎) contains Ω𝜌 (𝛾 1)ˆT𝑑

𝜎 1 for some 𝛾 1 ď 𝛾 and 𝜎 1 ď 𝜎 .
When 1 ď 𝑃 ă 𝑁 ´ 1, the set Γ𝜌 (𝛾, 𝜎) contains the points (𝑣,𝜓 ) satisfying Re 𝑣 P 𝑉𝜌 ,

∥Im 𝑣 ∥ ď 𝛾 1∥𝑣 ∥𝑁´𝑃 ,𝜓 P T𝑑
𝜎 1 , for some 𝛾 1 ď 𝛾 and 𝜎 1 ď 𝜎 .

The previous work [14] deals with the case 𝑛 = 1 and 𝑃 = 𝑁 . Lemma 3.6 is the main tool to
generalize the results in [14] to the case 1 ď 𝑃 ă 𝑁 .
Remark 3.9. Lemma 3.6 holds true uniformly in 𝜆 P C in compact subsets of ΛC where ΛC is
a suitable complex extension of Λ to an open subset of C𝑝 .

We introduce the spaces X𝑠 , 𝑠 P Z, we will deal with below. Given 0 ă 𝜌,𝛾 ď 1, and
𝜎 ą 0 we define

X𝑠 =
{
ℎ : Γ𝜌 (𝛾, 𝜎) Ñ Cℓ | ℎ real analytic , ∥ℎ∥𝑠 := sup

(𝑣,𝜓 )PΓ𝜌 (𝛾,𝜎 )

∥ℎ(𝑣,𝜓 )∥
∥𝑣 ∥𝑠 ă 8

}
with ℓ ě 1 (if some component ℎ𝜑 of ℎ takes values on T𝑑 , we will assume that the compo-
nent ℎ𝜑 of ℎ considered as an element of X𝑠 , takes values on the universal covering C𝑑 of
T𝑑 ). With the above introduced norms X𝑠 are Banach spaces. It is immediate to see that if
𝑠 ă 𝑡 , then X𝑡 Ă X𝑠 and if ℎ P X𝑡 then ∥ℎ∥𝑠 ď 𝜌𝑡´𝑠 ∥ℎ∥𝑡 . Furthermore, if ℎ P X𝑡 and 𝑔 P X𝑠
then ℎ ¨ 𝑔 P X𝑡+𝑠 and ∥ℎ ¨ 𝑔∥𝑡+𝑠 ď ∥ℎ∥𝑡 ∥𝑔∥𝑠 .
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Moreover, given 𝑟 P Z and 𝜈 ą 0, we introduce the product Banach space

Xˆ
𝑟 := X𝑟´𝑁+1 ˆ X𝑟´𝑁+1 ˆ X𝑟´2𝑁+𝑃+1

endowed with the norm

∥ℎ∥ˆ
𝑟 := ∥ℎ𝜉 ∥𝑟´𝑁+1 + ∥ℎ𝜂 ∥𝑟´𝑁+1 + 𝜈 ∥ℎ𝜑 ∥𝑟´2𝑁+𝑃+1

for some 𝜈 ą 0. To make this norm more flexible we keep 𝜈 as a parameter. Below we will
use a value of 𝜈 satisfying a certain smallness condition.

3.3.1 The linear operator S

Lemma 3.10. Assume that 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃}. Then, if

𝑠 ą max
{
𝑁 ´ 1 + 𝑁 ´ 1

𝑁 ´ 5/3
𝐸˚

𝑎𝑓
, 2𝑁 ´ 𝑃 ´ 1

}
,

the linear operator S : Xˆ

𝑠+𝑁´1 Ñ Xˆ
𝑠 formally introduced in (3.17) is well defined and

bounded.

Proof. Let 0 ă 𝑎 ă 𝑎𝑓 . We fix 𝑎˚, 𝑏˚, 𝜌, 𝛾 satisfying the conditions in Lemma 3.6, and more-
over, (𝑁 ´ 4/3)𝑎𝑓 ă 𝑎˚ and 𝛽 small. Then, Γ𝜌 (𝛾, 𝜎) is invariant by q𝑅. Given𝑇 P X𝑟 for some
𝑟 we have 

𝑇 (

q𝑅 𝑗 (𝑣,𝜓 ))


 ď ∥𝑇 ∥𝑟 ∥q𝑅

𝑗
𝑣 (𝑣,𝜓 )∥𝑟 ď ∥𝑇 ∥𝑟

∥𝑣 ∥𝑟

(1 + 𝑗𝑎˚∥𝑣 ∥𝑁´1)
𝑟

𝑁´1
.

From (3.10) we also introduceM1 = Id + C(𝜁 ). Then,

M´1 =

(
M´1

1 0
0 Id

)
.

Now let 𝑇 = (𝑇𝜉 ,𝑇𝜂,𝑇𝜑 ) P Xˆ

𝑠+𝑁´1. From the definition of S in (3.17) we also have

(S[𝑇 ])𝜉,𝜂 (𝑣,𝜓 ) =
8∑︁
𝑗=0

[
𝑗∏
𝑙=0

(
M1(𝐾ď𝑞´1

𝜉,𝜂
(q𝑅𝑙𝑣 (𝑣)))

)´1
]
𝑇𝜉,𝜂 ˝ q𝑅 𝑗 (𝑣,𝜓 ),

(S[𝑇 ])𝜑 (𝑣,𝜓 ) =
8∑︁
𝑗=0
𝑇𝜑 ˝ q𝑅 𝑗 (𝑣,𝜓 ).

Now, using (3.24) and that 𝐾ď𝑞´1
𝜉,𝜂

(𝑣) ´ (𝑣, 0) = O(∥𝑣 ∥2), we bound




 𝑗∏
𝑙=0

(
M1 ˝ 𝐾

ď𝑞´1
𝜉,𝜂

˝ q𝑅𝑙𝑣 (𝑣)
)´1






 ď

𝑗∏
𝑙=0

(1 + 𝐸1∥q𝑅𝑙𝑣 (𝑣)∥𝑁´1). (3.28)
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To bound (3.28) we will use the formal identity
∏
𝑟 𝑗 = exp

∑
log 𝑟 𝑗 , for 𝑟 𝑗 ą 0. Again by

Lemma 3.6,

𝑗∑︁
𝑙=0

log(1 + 𝐸1∥q𝑅𝑙𝑣 (𝑣)∥𝑁´1) ď 𝐸1

𝑗∑︁
𝑙=0

∥q𝑅𝑙𝑣 (𝑣)∥𝑁´1 ď 𝐸1∥𝑣 ∥𝑁´1
𝑗∑︁
𝑙=0

1
1 + 𝑙𝑎˚∥𝑣 ∥𝑁´1

ď 𝐸1∥𝑣 ∥𝑁´1 + 𝐸1

𝑎˚
log

(
1 + 𝑗𝑎˚∥𝑣 ∥𝑁´1).

Therefore, 




 𝑗∏
𝑙=0

(
M1 ˝ 𝐾

ď𝑞´1
𝜉,𝜂

˝ 𝑅𝑙𝑣 (𝑣)
)´1






 ď exp(𝐸1𝜌𝑁´1) (1 + 𝑗𝑎˚∥𝑣 ∥𝑁´1)𝐸1/𝑎˚

.

Then, using that 𝑠/(𝑁 ´ 1) ´ 𝐸1/𝑎˚ ą 1 + 𝐸˚/((𝑁 ´ 5/3)𝑎𝑓 ) ´ 𝐸1/((𝑁 ´ 4/3)𝑎𝑓 ) ą 1, by
Lemma 3.21, and that 𝑇𝜉 , 𝑇𝜂 P X𝑠 , we obtain

∥(S[𝑇 ])𝜉,𝜂 (𝑣,𝜓 )∥ ď ∥𝑇𝜉,𝜂 ∥𝑠 ∥𝑣 ∥𝑠
8∑︁
𝑗=0

exp(𝐸1𝜌𝑁´1)
(1 + 𝑗𝑎˚∥𝑣 ∥𝑁´1)

𝑠
𝑁´1 ´ 𝐸

𝑎˚

ď M∥𝑇𝜉,𝜂 ∥𝑠+𝑁´1∥𝑣 ∥𝑠´𝑁+1,

and similarly, since 𝑇𝜑 P X𝑠´𝑁+𝑃 ,

∥(S[𝑇 ])𝜑 (𝑣,𝜓 )∥ ď M∥𝑇𝜑 ∥𝑠´𝑁+𝑃 ∥𝑣 ∥𝑠´2𝑁+𝑃´1.

Then, we immediately get
∥S[𝑇 ] ∥ˆ

𝑠 ď M∥𝑇 ∥ˆ

𝑠+𝑁´1.

□

3.3.2 The nonlinear operator N

We denote by 𝐵ˆ

𝑟,𝛿 the closed ball of radius 𝛿 of Xˆ
𝑟 .

Lemma 3.11. Assume 𝑞 ě 𝑁 and 𝛿 is so small that if ℎ P 𝐵
ˆ

𝑞,𝛿 the range of𝐾
ď+ℎ is contained

in the domain of 𝐹 . Then, if 𝛿 is small, the operator N sends the ball 𝐵
ˆ

𝑞,𝛿 Ă Xˆ
𝑞 into Xˆ

𝑞+𝑁´1.
Moreover, if 𝑞 ě max{2𝑁 ´ 𝑃, 2𝑁 ´𝑀 + 1} and 𝜈 =

?
𝜌 ,

LipN|𝐵ˆ
𝑞,𝛿

ď M(𝜌1/2 + 𝜌).

Proof. Let ℎ P Xˆ
𝑞 . Note that the condition on 𝑞 implies 𝑞 ě 𝑁 + 1. Taking into account the

definition of N in (3.11) we decompose N(ℎ) = 𝑁1 + 𝑁2 + 𝑁3 + 𝑁4 with

𝑁1 = 𝐹
ď𝑞´1 ˝ 𝐾ď ´ 𝐾ď ˝ q𝑅,

𝑁2 = 𝐹
ě𝑞 ˝ (𝐾ď + ℎ),

𝑁3 = 𝐷𝐹
ď𝑞´1(𝐾ď)ℎ ´ M(𝐾ď𝑞´1)ℎ,
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𝑁4 = 𝐹
ď𝑞´1 ˝ (𝐾ď + ℎ) ´ 𝐹ď𝑞´1 ˝ 𝐾ď ´ 𝐷𝐹ď𝑞´1(𝐾ď)ℎ.

Since 𝑅 and 𝐾ď satisfy the approximate invariance equation (3.2) and 𝑅 ´ q𝑅 = O(∥𝑣 ∥𝑞),
𝑁1 P X𝑞 ˆX𝑞 ˆX𝑞 Ă Xˆ

𝑞+𝑁´1. Clearly, we also have 𝑁2 P X𝑞 ˆX𝑞 ˆX𝑞 . On the other hand,
from (3.10)

𝑁3 =

(
0 0

c(𝐾ď

𝜉,𝜂
) 0

) (
ℎ𝜉,𝜂
ℎ𝜑

)
+

(
[C(𝐾ď

𝜉,𝜂
) ´ C(𝐾ď𝑞´1

𝜉,𝜂
)] 0

0 0

) (
ℎ𝜉,𝜂
ℎ𝜑

)
.

Since
C(𝐾𝜉,𝜂) ´ C(𝐾ď𝑞´1

𝜉,𝜂
) =

(
O2𝑞´1 O2𝑞´1

O2𝑞´𝑁+𝑀´1 O2𝑞´𝑁+𝑀´1

)
(3.29)

and using the conditions on 𝑞, we have 𝑁3 P X𝑞 ˆ X𝑞 ˆ X𝑃´1+𝑞´𝑁+1 = Xˆ

𝑞+𝑁´1.
For 𝑁4, we write

(𝑁4)𝜉,𝜂,𝜑 =
1
2

∫ 1

0
(1 ´ 𝑡)𝐷2𝐹

ď𝑞´1
𝜉,𝜂,𝜑

(𝐾ď + 𝑡 ℎ)ℎb2 𝑑𝑡 .

Using that 𝐹ď𝑞´1 ´ (0, 0, 𝜑) does not depend on 𝜑 , we have (𝑁4)𝜉 P X𝑞+(𝑞´𝑁 ) , (𝑁4)𝜂 P

X𝑞+(𝑞+𝑀´2𝑁 ) and (𝑁4)𝜑 P X𝑞´𝑁+𝑃+(𝑞´𝑁 ) . Then, N(ℎ) P Xˆ

𝑞+𝑁´1.
Now we look for the Lipschitz constant of N restricted to 𝐵ˆ

𝑞,𝛿 . Given ℎ,𝑔 P 𝐵
ˆ

𝑞,𝛿 Ă Xˆ
𝑞

we decompose N(ℎ) ´ N(𝑔) = 𝑇1 +𝑇2 +𝑇3 +𝑇4 +𝑇5 with

𝑇1 = 𝐹
ě𝑞 ˝ (𝐾ď + ℎ) ´ 𝐹ě𝑞 ˝ (𝐾ď + 𝑔),

𝑇2 = 𝐷𝐹
ď𝑞´1(𝐾ď)ℎ ´ M(𝐾ď𝑞´1)ℎ ´ [𝐷𝐹ď𝑞´1(𝐾ď)𝑔 ´ M(𝐾ď𝑞´1)𝑔],

𝑇3 =
1
2

∫ 1

0
(1 ´ 𝑡) [𝐷2𝐹

ď𝑞´1
𝜉,𝜂,𝜑

(𝐾ď + 𝑡 ℎ) ´ 𝐷2𝐹
ď𝑞´1
𝜉,𝜂,𝜑

(𝐾ď + 𝑡 𝑔)]ℎb2 𝑑𝑡,

𝑇4 =
1
2

∫ 1

0
(1 ´ 𝑡)𝐷2𝐹

ď𝑞´1
𝜉,𝜂,𝜑

(𝐾ď + 𝑡 𝑔) (ℎ,ℎ ´ 𝑔) 𝑑𝑡,

𝑇5 =
1
2

∫ 1

0
(1 ´ 𝑡)𝐷2𝐹

ď𝑞´1
𝜉,𝜂,𝜑

(𝐾ď + 𝑡 𝑔) (ℎ ´ 𝑔,𝑔) 𝑑𝑡 .

We have

𝑇1 =
©­«
O𝑞´1 O𝑞´1 O𝑞
O𝑞´1 O𝑞´1 O𝑞
O𝑞´1 O𝑞´1 O𝑞

ª®¬ ©­«
ℎ𝜉 ´ 𝑔𝜉
ℎ𝜂 ´ 𝑔𝜂
ℎ𝜑 ´ 𝑔𝜑

ª®¬ ,
where O𝑘 stands for terms of order 𝑘 in 𝑣 . Therefore,

∥(𝑇1)𝜉,𝜂,𝜑 (𝑣,𝜓 )∥ ďM∥𝑣 ∥𝑞´1(∥ℎ𝜉 ´ 𝑔𝜉 ∥𝑞´𝑁+1 + ∥ℎ𝜂 ´ 𝑔𝜂 ∥𝑞´𝑁+1)∥𝑣 ∥𝑞´𝑁+1

+M∥𝑣 ∥𝑞 ∥ℎ𝜑 ´ 𝑔𝜑 ∥𝑞´2𝑁+𝑃+1∥𝑣 ∥𝑞´2𝑁+𝑃+1
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and hence

∥𝑇1∥ˆ

𝑞+𝑁´1 ď M(𝜌𝑞´𝑁 + 𝜈´1𝜌𝑞´2𝑁+𝑃+1 + 𝜈𝜌𝑞´𝑃 + 𝜌𝑞´𝑁+1)∥ℎ ´ 𝑔∥ˆ
𝑞 .

From the definition ofM we have

𝑇2 = 𝑇
1
2 +𝑇 2

2 :=
©­­«

0
0
c(𝐾ď

𝜉,𝜂
)
(
ℎ𝜉,𝜂 ´ 𝑔𝜉,𝜂

) ª®®¬ +
(
[C(𝐾𝜉,𝜂) ´ C(𝐾ď𝑞´1

𝜉,𝜂
)]

(
ℎ𝜉,𝜂 ´ 𝑔𝜉,𝜂

)
0

)
.

Therefore,

∥(𝑇 1
2 )𝜑 (𝑣,𝜓 )∥ ď M∥𝑣 ∥𝑃´1(∥ℎ𝜉 ´ 𝑔𝜉 ∥𝑞´𝑁+1 + ∥ℎ𝜂 ´ 𝑔𝜂 ∥𝑞´𝑁+1)∥𝑣 ∥𝑞´𝑁+1

and then ∥𝑇 1
2 ∥

ˆ

𝑞+𝑁´1 ď M𝜈 ∥ℎ ´ 𝑔∥ˆ
𝑞 . Taking into account (3.29) we also have

∥(𝑇 2
2 )𝜉 (𝑣,𝜓 )∥ ď M∥𝑣 ∥𝑞+𝑁´2(∥ℎ𝜉 ´ 𝑔𝜉 ∥𝑞´𝑁+1 + ∥ℎ𝜂 ´ 𝑔𝜂 ∥𝑞´𝑁+1)∥𝑣 ∥𝑞´𝑁+1

and then ∥(𝑇 2
2 )𝜉 ∥𝑞 ď M𝜌𝑞´1∥ℎ ´ 𝑔∥ˆ

𝑞 . Analogously, ∥(𝑇 2
2 )𝜂 ∥𝑞 ď M𝜌𝑞+𝑀´𝑁´1∥ℎ ´ 𝑔∥ˆ

𝑞 .
Then,

∥𝑇 2
2 ∥ˆ

𝑞+𝑁´1 ď M𝜌𝑞+𝑀´𝑁´1∥ℎ ´ 𝑔∥ˆ
𝑞 .

Next, we recall that 𝐹ď𝑞´1 ´ (0, 0, 𝜑) does not depend on 𝜑 . Concerning 𝑇3, using the third
derivatives of 𝐹ď𝑞´1 and the conditions on 𝑞,

∥(𝑇3)𝜉 (𝑣,𝜓 )∥ ďM∥𝑣 ∥𝑁´3(∥ℎ𝜉 ´ 𝑔𝜉 ∥𝑞´𝑁+1

+ ∥ℎ𝜂 ´ 𝑔𝜂 ∥𝑞´𝑁+1)∥𝑣 ∥𝑞´𝑁+1∥ℎ𝜉,𝜂 ∥2
𝑞´𝑁+1∥𝑣 ∥2(𝑞´𝑁+1)

and ∥(𝑇3)𝜉 ∥𝑞 ď M𝜌2(𝑞´𝑁 )𝛿2∥ℎ ´ 𝑔∥ˆ
𝑞 . Analogously, ∥(𝑇3)𝜂 ∥𝑞 ď M𝜌2𝑞+𝑀´3𝑁𝛿2∥ℎ ´ 𝑔∥ˆ

𝑞

and ∥(𝑇3)𝜑 ∥𝑞+𝑃´𝑁 ď M𝜌2(𝑞´𝑁 )𝛿2∥ℎ ´ 𝑔∥ˆ
𝑞 so that

∥𝑇3∥ˆ

𝑞+𝑁+1 ď M(𝜌2𝑞+𝑀´3𝑁 + 𝜈𝜌2(𝑞´𝑁 ) )𝛿2∥ℎ ´ 𝑔∥ˆ
𝑞 .

For 𝑇4,

∥(𝑇4)𝜉 (𝑣,𝜓 )∥ ď M∥𝑣 ∥𝑁´2(∥ℎ𝜉´𝑔𝜉 ∥𝑞´𝑁+1+∥ℎ𝜂´𝑔𝜂 ∥𝑞´𝑁+1)∥𝑣 ∥𝑞´𝑁+1∥ℎ𝜉,𝜂 ∥𝑞´𝑁+1∥𝑣 ∥𝑞´𝑁+1

and ∥(𝑇4)𝜉 ∥𝑞 ď M𝜌𝑞´𝑁𝛿 ∥ℎ ´ 𝑔∥ˆ
𝑞 . Analogously, ∥(𝑇4)𝜂 ∥𝑞 ď M𝜌𝑞+𝑀´2𝑁𝛿 ∥ℎ ´ 𝑔∥ˆ

𝑞 and
∥(𝑇4)𝜑 ∥𝑞+𝑃´𝑁 ď M𝜌𝑞´𝑁𝛿 ∥ℎ ´ 𝑔∥ˆ

𝑞 and

∥𝑇4∥ˆ

𝑞+𝑁´1 ď M((1 + 𝜈)𝜌𝑞´𝑁 + 𝜌𝑞+𝑀´2𝑁 )𝛿 ∥ℎ ´ 𝑔∥ˆ
𝑞 .

For𝑇5 we have the same estimate as for𝑇4. Taking into account the conditions on 𝑞 and that
𝜈 =

?
𝜌 we get the bound for the Lipschitz constant of N .

□
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3.3.3 End of the proof of Proposition 3.4

Our goal is to prove that the fixed point equation (3.18) has a solution belonging to Xˆ
𝑞 .

For that we start by estimating the first iterate of the operator F = ´S ˝ N , starting with
qΔ0 = 0, namely

qΔ1 = F (0) = ´S ˝ N[0] .
We recall that 𝑅 and 𝐾ď satisfy the approximate invariance equation (3.2) and that 𝑅 ´ q𝑅 =

O(∥𝑣 ∥𝑞). Therefore, using definition of N in (3.11) we have that

N[0] = 𝐹ď𝑞´1 ˝ 𝐾ď ´ 𝐾ď ˝ q𝑅 + 𝐹ě𝑞 ˝ 𝐾ď = 𝐹 ˝ 𝐾ď ´ 𝐾ď ˝ 𝑅 = O(∥𝑣 ∥𝑞)

and as a consequence N[0] P X𝑞 ˆ X𝑞 ˆ X𝑞 . By Lemmas 3.10 and 3.11, qΔ1 P Xˆ
𝑞 . We

introduce the radius
𝛿0 := 2∥qΔ1∥ˆ

𝑞

and the closed ball 𝐵ˆ

𝑞,𝛿0 of X
ˆ
𝑞 of radius 𝛿0.

A standard argument shows that if 𝜌 is small, F (𝐵ˆ

𝑞,𝛿0) Ă 𝐵
ˆ

𝑞,𝛿0 . Indeed, let qΔ P 𝐵
ˆ

𝑞,𝛿0 .
Then, by Lemma 3.11,

∥F (qΔ)∥ˆ
𝑞 ď ∥F (qΔ) ´ F (0)∥ˆ

𝑞 + ∥F (0)∥ˆ
𝑞

ď Lip F ∥qΔ∥ˆ
𝑞 + 𝛿0/2 ď M∥S∥(?𝜌 + 𝜌)𝛿0 + 𝛿0/2 ď 𝛿0,

if 𝜌 is small. Therefore we have a unique fixed point qΔ of F in 𝐵ˆ

𝑞,𝛿0 Ă Xˆ
𝑞 .

3.4 Characterization of the stable manifold
To finish the proof of Theorem 2.7 it remains to relate the parametrization 𝐾 (𝑢,Θ) with
𝑊 s
𝑉𝜌, 𝛽

. Assume that 𝐾 and 𝑅 are solutions of

𝐹 ˝ 𝐾 ´ 𝐾 ˝ 𝑅 = 0

with

𝐾𝑥 (𝑢,Θ) ´ 𝑢 = O(∥𝑢∥2), 𝐾𝑦 (𝑢,Θ) = O(∥𝑢∥2), 𝐾𝜃 (𝑢,Θ) ´ Θ = O(∥𝑢∥), (3.30)

and
𝑅𝑢 (𝑢,Θ) = 𝑢 + 𝑓 𝑁 (𝑢, 0) + O(∥𝑢∥𝑁+1), 𝑅Θ(𝑢,Θ) = Θ + 𝜔 + O(∥𝑢∥).

Wefirst recall that by Proposition 3.1, performing several steps of averaging and changes
of variables we can remove the dependence on 𝜃 of 𝐹 up to any order. Moreover, we also
have that the parametrization 𝐾 (𝑢,Θ) ´ (𝑢, 0,Θ) and 𝑅 do not depend on Θ up to any order.
We assume that we have removed this dependence up to order smaller or equal than 𝑁 . In
particular, after the corresponding change of variables, the new map 𝐹 reads as (2.4) with
𝑓 ě𝑁 , 𝑔ě𝑀 as in (2.8) satisfying that 𝑓 𝑁 = 𝑓

𝑁
(the average of 𝑓 𝑁 ) and 𝑔𝑀 = 𝑔𝑀 are functions

independent of 𝜃 . Then, the new map has the same constants 𝑎𝑓 , 𝑏 𝑓 , 𝐴𝑓 , 𝐵𝑔 as the initial one.
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We prove (2.17) for 𝐹 . From now on, we remove the symbol ̂ in the notation. Then,
undoing the changes of variables, we have the claim for 𝐹 . We first prove that, if 𝜌, 𝛽 are
small,

𝐾
(
𝑉𝜌 ˆ T𝑑

)
Ă𝑊 𝑠

A𝜌,𝛽
,

with 𝑉𝜌,𝛽 defined in (2.6). We claim that, for 𝑢 P 𝑉𝜌 and Θ P T𝑑 ,

𝐹𝑥 (𝐾 (𝑢,Θ)) P 𝑉𝜌 and ∥𝐹𝑦 (𝐾 (𝑢,Θ))∥ ď 𝛽 ∥𝐹𝑥 (𝐾 (𝑢,Θ))∥ . (3.31)

Indeed, since 𝐹𝑥 (𝑥,𝑦, 𝜃 ) = 𝑥 + 𝑓
𝑁 (𝑥, 0) +

∫ 1
0 𝐷𝑦 𝑓

𝑁 (𝑥, 𝑠𝑦)𝑦 𝑑𝑠 + 𝑓 ě𝑁+1(𝑥,𝑦, 𝜃 ), using that 𝑓 𝑁

satisfies condition (v), namely dist(𝑥 + 𝑓 𝑁 (𝑥, 0),𝑉 𝑐𝜌 ) ě 𝑎𝑉 ∥𝑥 ∥𝑁 , and (3.30) we easily obtain

dist(𝐹𝑥 (𝐾 (𝑢,Θ)),𝑉 𝑐𝜌 ) ě 𝑎𝑉 |𝑢 |𝑁 ´ M|𝑢 |𝑁+1

and we conclude that 𝐹𝑥 (𝐾 (𝑢,Θ)) P 𝑉𝜌 . Also,

𝐹𝑦 (𝐾 (𝑢,Θ)) = 𝐾𝑦 (𝑢,Θ) + 𝑔𝑀 (𝐾𝑥,𝑦 (𝑢,Θ)) + 𝑔ě𝑀+1(𝐾 (𝑢,Θ)) = O(∥𝑢∥2)

and

∥𝐹𝑥 (𝐾 (𝑢,Θ))∥ = ∥𝐾𝑥 (𝑢,Θ) + 𝑓
𝑁 (𝐾𝑥,𝑦 (𝑢,Θ)) + 𝑓 ě𝑁+1(𝐾 (𝑢,Θ))∥ ě ∥𝑢∥(1 ´ M∥𝑢∥)

give the second condition in (3.31). Next we notice that, by the definition of 𝑎𝑓 in (2.9),

∥𝑅𝑢 (𝑢,Θ)∥ ď ∥𝑢 + 𝑓 𝑁 (𝑢, 0)∥ +M∥𝑢∥𝑁+1 ď ∥𝑢∥ ´ 𝑎𝑓 ∥𝑢∥𝑁 +𝑀 ∥𝑢∥𝑁+1

ď ∥𝑢∥
(
1 ´

𝑎𝑓

2 ∥𝑢∥𝑁´1
)

ă ∥𝑢∥,

for (𝑢,Θ) P
(
𝑉𝜌z{0}

)
ˆ T𝑑 , if 𝜌 small. Using Lemma 3.6 and an induction argument we get

∥𝑅𝑘+1
𝑢 (𝑢,Θ)∥ ă ∥𝑅𝑘𝑢 (𝑢,Θ)∥ ă ∥𝑢∥ for 𝑘 ě 1 and thus 𝑅𝑘𝑢 (𝑢,Θ) Ñ 0 as 𝑘 Ñ 8. Therefore,

since 𝐹𝑘 ˝ 𝐾 = 𝐾 ˝ 𝑅𝑘 , for all 𝑘 P N, we have that

lim
𝑘Ñ8

𝐹𝑘𝑥,𝑦 (𝐾 (𝑢,Θ)) = 0

and this implies that 𝐾
(
𝑉𝜌 ˆ T𝑑

)
Ă𝑊 s

A𝜌,𝛽
.

Now, assuming 𝐵𝑔 ą 0 we will prove that, for a cone set 𝑉 close to 𝑉 ,

𝑊 s
Â𝜌,𝛽

Ă 𝐾
(
𝑉𝜌 ˆ T𝑑

)
.

To simplify the arguments we first check that the image of 𝐾 is (locally) the graph of a func-
tionK and then we will change variables to put the graph ofK on the horizontal subspace.
To check that {𝐾 (𝑢,Θ)} can be expressed as a graph we note that (3.30) implies that the map
𝐾𝑥,𝜃 : (𝑢,Θ) ÞÑ (𝐾𝑥 (𝑢,Θ), 𝐾𝜃 (𝑢,Θ)) is locally invertible and hence we can write (𝑢,Θ) =
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(𝐾𝑥,𝜃 )´1(𝑥, 𝜃 ) for 𝑥 in a slightly smaller cone set𝑉 . Therefore {𝐾 (𝑢,Θ) | (𝑢,Θ) P 𝑉 ˆ T𝑑 },
can be expressed as the graph 𝑦 = 𝐾𝑦 ˝ 𝐾´1

𝑥,𝜃
(𝑥, 𝜃 ) which has the same regularity as 𝐾 . We

define K = 𝐾𝑦 ˝ 𝐾´1
𝑥,𝜃

. We emphasize that K does not depend on 𝜃 till terms of order 𝑁 + 1.
Since 𝐾𝑦 (𝑢,Θ) = O(∥𝑢∥2), it is also clear that ∥K(𝑥, 𝜃 )∥ = O(∥𝑥 ∥2) so that, for 𝜌 small
enough, (𝑥,K(𝑥, 𝜃 ), 𝜃 ) P Â𝜌,𝛽 = 𝑉𝜌,𝛽 ˆ T𝑑 .

We perform the close to the identity change of variables

(𝑥,𝑦, 𝜃 ) = (𝜉, 𝜂 + K(𝜉, 𝜗), 𝜗).

We have that K(𝜉, 𝜗) = O(∥𝜉 ∥2) and 𝐷𝜃K(𝜉, 𝜗) = O(∥𝜉 ∥𝑁+1). The 𝜂-component of the
transformed map F is given by

F𝜂 (𝜉, 𝜂, 𝜗) = 𝜂 + 𝑔𝑀 (𝜉, 𝜂) + 𝑔ě𝑀+1(𝜉, 𝜂, 𝜗)

for some 𝑔ě𝑀+1. We have 𝑔𝑀 (𝜉, 0) = 0 and 𝑔ě𝑀+1(𝜉, 0, 𝜗) = 0. Therefore,

𝑔𝑀 (𝜉, 𝜂) = 𝐺 (𝜉, 𝜂)𝜂, 𝐺 (𝜉, 𝜂) =
∫ 1

0
𝐷𝑦𝑔

𝑀 (𝜉, 𝑠𝜂) 𝑑𝑠, 𝑔ě𝑀+1(𝜉, 𝜂, 𝜗) = 𝐺 (𝜉, 𝜂, 𝜗)𝜂.

It is clear that 𝜂 = 0 corresponds to𝑦 = K(𝑥, 𝜃 ). Therefore, it only remains to be checked
that, if (𝜉, 𝜂, 𝜗) are such that F 𝑘

𝜉,𝜂
(𝜉, 𝜂, 𝜗) P 𝑉𝜌,𝛽 for all 𝑘 P N and F 𝑘

𝜉,𝜂
(𝜉, 𝜂, 𝜗) Ñ 0 then

𝜂 = 0. Indeed, by the definition of 𝐵𝑔 in (2.11), we have that

∥F´1
𝜂 (𝜉, 𝜂, 𝜗)∥ ď ∥𝜂 ´𝐺 (𝜉, 𝜂)𝜂∥ +M∥𝜂∥∥𝜉 ∥𝑀

ď ∥Id ´𝐺 (𝜉, 0)∥∥𝜂∥ +M∥𝜉 ∥𝑀´2∥𝜂∥2 +M∥𝜉 ∥𝑀 ∥𝜂∥
ď ∥𝜂∥

(
1 ´ 𝐵𝑔∥𝜉 ∥𝑀´1 +M(𝜌 + 𝛽)∥𝜉 ∥𝑀´1) ď ∥𝜂∥,

if 𝜌, 𝛽 are small enough. Therefore, ∥F𝜂 (𝜉, 𝜂, 𝜗)∥ ě ∥𝜂∥ if (𝜉, 𝜂, 𝜗) P 𝑉𝜌,𝛽 ˆ T𝑑 . Applying
this property in a iterative way we have that, when F 𝑘

𝜉,𝜂
(𝜉, 𝜂, 𝜗) P 𝑉𝜌,𝛽 for all 𝑘 P N, then

∥𝜂∥ ď ∥F 𝑘
𝜂 (𝜉, 𝜂, 𝜗)∥ Ñ 0 as 𝑘 Ñ 8

and, consequently, ∥𝜂∥ = 0.

4 Approximation of the invariant manifolds
This section contains the proof of Theorems 2.8 and 2.15. First, in Section 4.1, we will con-
sider a first order partial differential equation which we will encounter as a cohomological
equation in the inductive step to find the terms of the expansion of the parametrization
𝐾 , and the function 𝑅 (for maps) or the vector field 𝑌 (for differential equations). Then,
in Sections 4.2 and 4.3 we prove the approximation results for maps and flows, respec-
tively. We emphasize that we provide an explicit inductive algorithm for computing such
approximations as finite sums of homogeneous functions in 𝑢.
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4.1 A first order partial differential equation with homogeneous
coefficients

In this section we recall Theorem 3.2 of [16] which will be a key result to solve the so-
called cohomological equations. In that paper the result is stated for the differentiable and
analytical cases. Here we reword it for the analytical case.

Let𝑉 Ă R𝑛 be a cone-like set, 0 P B𝑉 ,𝔪 P Z,𝔪 ě 1 and Λ Ă R𝑝 . Let p : R𝑛 ˆ Λ Ñ R𝑘 ,
Q : R𝑛 ˆ Λ Ñ L(R𝑘 ,R𝑘 ) and w : 𝑉 ˆ Λ Ñ R𝑘 , and consider the equation

𝐷ℎ(𝑢, 𝜆) ¨ p(𝑢, 𝜆) ´ Q(𝑢, 𝜆) ¨ ℎ(𝑢, 𝜆) = w(𝑢, 𝜆) (4.1)

for ℎ : 𝑉 ˆ Λ Ñ R𝑘 . Given 𝜌 ą 0, we define the constants 𝑎p, 𝑏p, 𝐴p and BQ by

𝑎p := ´ sup
𝑢P𝑉𝜌 , 𝜆PΛ

∥𝑢 + p(𝑢, 𝜆)∥ ´ ∥𝑢∥
∥𝑢∥𝑁

, 𝑏p := inf
𝜆PΛ

sup
𝑢P𝑉𝜌

∥p(𝑢, 𝜆)∥
∥𝑢∥𝑁

,

𝐴p := ´ sup
𝑢P𝑉𝜌 , 𝜆PΛ

∥Id + 𝐷p(𝑢, 𝜆)∥ ´ 1
∥𝑢∥𝑁´1 , BQ := ´ sup

𝑢P𝑉𝜌 , 𝜆PΛ

∥Id ´ Q(𝑢, 𝜆)∥ ´ 1
∥𝑢∥𝑁´1 .

(4.2)

We assume there exists 𝜌 ą 0 such that the following conditions hold
(a) p,Q and w are analytic homogeneous functions in 𝑉𝜌 ˆ Λ of degrees 𝑁, 𝑁 ´ 1 and

𝔪 + 𝑁 , respectively.
(b) The constants 𝑎p, 𝐴p, 𝑏p satisfy

𝑎p ą 0, 𝐴p ą 𝑏p.

(c) There exists a constant 𝑎p
𝑉

ą 0 such that

dist
(
𝑢 + p(𝑢, 𝜆),

(
𝑉𝜌

)𝑐 )
ě 𝑎

p
𝑉
∥𝑢∥𝑁 , @𝑢 P 𝑉𝜌 , @𝜆 P Λ.

(d) If BQ ă 0 we assume that

𝔪 + 1 +
BQ

𝑎p
ą 0. (4.3)

We will apply the next theorem for differentQ’s and in some cases we may have BQ ă

0.
We will have to consider complex extensions of Ω := 𝑉 ˆ Λ of the form

ΩC(𝛾) := {(𝑢, 𝜆) P C𝑛 ˆ C𝑝 | (Re𝑢, Re 𝜆) P 𝑉 ˆ Λ, ∥Im𝑢∥ ă 𝛾 ∥Re𝑢∥, ∥Im 𝜆∥ ă 𝛾2}.

Finally, let 𝜑p be the flow of ¤𝑢 = p(𝑢, 𝜆) and ΨQ be the fundamental matrix solution of
¤𝑧 = Q(𝜑p(𝑡 ;𝑢, 𝜆), 𝜆)𝑧 such that Ψ(0;𝑢, 𝜆) = Id.
Theorem 4.1 (Theorem 3.2 of [16]). Assume that p,Q,w satisfy hypotheses (a)-(d). Then,
equation (4.1) has a unique homogeneous solution of degree 𝔪 + 1 given by

ℎ(𝑢, 𝜆) = Hp,Q [ℎ] :=
∫ 0

8

Ψ´1
Q (𝑡 ;𝑢, 𝜆)w(𝜑p(𝑡 ;𝑢, 𝜆), 𝜆) 𝑑𝑡, 𝑢 P 𝑉 , 𝜆 P Λ. (4.4)
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If p,Q,w are real analytic functions defined on the extended set ΩC(𝛾0) for some 𝛾0 ą 0,
then there exists 0 ă 𝛾 ď 𝛾0 such that ℎ is a real analytic function on ΩC(𝛾).

4.2 The approximate solution of the invariance equation for maps
To simplify the notation, throughout this section we will not make explicit the dependence
of the considered objects on 𝜆. Also, at some places, we skip the dependence on their vari-
ables of some functions when it will not be possible confusion. We recall that the superscript
in a function, for instance𝐺 𝑗 , indicates that𝐺 𝑗 is a homogeneous function of degree 𝑗 with
respect to 𝑢 or (𝑥,𝑦), i.e. with respect to all its variables except the angles and parame-
ters. However, when we use parentheses,𝐺 ( 𝑗 ) indicates the expression of𝐺 at the 𝑗 step of
some iterative procedure. In this section we prove Theorem 2.8 by finding approximations,
𝐾 ( 𝑗 ) , 𝑅 ( 𝑗 ) , as sums of homogeneous functions that can be determined. The specific way to
do so is precisely described. By an induction procedure, we prove that indeed the functions
obtained with the proposed algorithm satisfy the approximate invariance equation (2.18).

4.2.1 Iterative procedure: the cohomological equations

Although there is some freedom, we look for an approximation 𝐾 ( 𝑗 ) = (𝐾 ( 𝑗 )
𝑥 , 𝐾

( 𝑗 )
𝑦 , 𝐾

( 𝑗 )
𝜃

) of
the parametrization of the invariant manifold and 𝑅 = (𝑅 ( 𝑗 )

𝑢 , 𝑅
( 𝑗 )
Θ ) of the form:

𝐾 (1) (𝑢,Θ) =
(
𝑢 + 𝐾𝑁𝑥 (𝑢,Θ), 0,Θ

)
, 𝑅 (1) (𝑢,Θ) =

(
𝑢 + 𝑅𝑁𝑢 (𝑢),Θ + 𝜔

)
,

and for 𝑗 ě 2,

𝐾 ( 𝑗 ) (𝑢,Θ) = 𝐾 ( 𝑗´1) (𝑢,Θ) + K ( 𝑗 ) (𝑢,Θ), 𝑅 ( 𝑗 ) (𝑢,Θ) = 𝑅 ( 𝑗´1) (𝑢,Θ) + R ( 𝑗 ) (𝑢,Θ)

with K ( 𝑗 ) , 𝑗 ě 2, decomposed as the sum of an average and an oscillatory part (of different
degrees):

K ( 𝑗 )
𝑥 (𝑢,Θ) = 𝐾 𝑗

𝑥 (𝑢) + 𝐾
𝑗+𝑁´1
𝑥 (𝑢,Θ),

K ( 𝑗 )
𝑦 (𝑢,Θ) = 𝐾 𝑗

𝑦 (𝑢) + 𝐾
𝑗+𝑀´1
𝑦 (𝑢,Θ),

K ( 𝑗 )
𝜃

(𝑢,Θ) = 𝐾 𝑗´1
𝜃 (𝑢) + 𝐾 𝑗+𝑃´2

𝜃
(𝑢,Θ)

and similarly R ( 𝑗 ) decomposed as:

R ( 𝑗 )
𝑢 (𝑢,Θ) = 𝑅 𝑗+𝑁´1

𝑢 (𝑢) + 𝑅 𝑗+𝑁´1
𝑢 (𝑢,Θ), R ( 𝑗 )

Θ (𝑢,Θ) = 𝑅 𝑗+𝑃´2
Θ (𝑢) + 𝑅 𝑗+𝑃´2

Θ (𝑢,Θ),

such that,

𝐸 ( 𝑗 ) := 𝐹 ˝ 𝐾 ( 𝑗 ) ´ 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗 ) =
(
O(∥𝑢∥ 𝑗+𝑁 ),O(∥𝑢∥ 𝑗+𝑀 ),O(∥𝑢∥ 𝑗+𝑃´1)

)
. (4.5)

Remark 4.2. Notice that property (4.5) is not (2.18) in the statement of Theorem 2.8. We will
obtain (2.18) in Section 4.2.2.
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First we check that the choices of𝐾 (1) and 𝑅 (1) are such that (4.5) becomes true for 𝑗 = 1.
Indeed, we write

𝐹˝𝐾 (1)´𝐾 (1)˝𝑅 (1) =
©­­«
𝐾𝑁𝑥 + 𝑓 𝑁 (𝑢 + 𝐾𝑁𝑥 , 0,Θ) ´ 𝑅

𝑁

𝑢 ´ 𝐾𝑁𝑥 (𝑢 + 𝑅𝑁𝑢 (𝑢),Θ + 𝜔) + O(∥𝑢∥𝑁+1)
O(∥𝑢∥𝑀+1)
O(∥𝑢∥𝑃 )

ª®®¬ .
Comparing the average and the oscillatory parts, we are lead to take 𝑅𝑁𝑢 (𝑢) = 𝑓

𝑁 (𝑢, 0) and
𝐾𝑁𝑥 to be the zero average solution D[𝑓 𝑁 ] of the small divisors equation

𝐾𝑁𝑥 (𝑢,Θ + 𝜔) ´ 𝐾𝑁𝑥 (𝑢,Θ) = 𝑓 𝑁 (𝑢, 0,Θ),

and (4.5) holds true for 𝑗 = 1. Assume, by induction, that we have determined 𝐾 (𝑙 ) and 𝑅 (𝑙 )

for 1 ď 𝑙 ď 𝑗 ´ 1, with 𝑗 ě 2 such that 𝐸 ( 𝑗´1) defined in (4.5) satisfies

𝐸 ( 𝑗´1) =
(
O(∥𝑢∥ 𝑗+𝑁´1),O(∥𝑢∥ 𝑗+𝑀´1),O(∥𝑢∥ 𝑗+𝑃´2)

)
.

We decompose

𝐸 ( 𝑗 ) =𝐹 ˝ 𝐾 ( 𝑗 ) ´ 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗 )

=𝐹 ˝ 𝐾 ( 𝑗´1) ´ 𝐾 ( 𝑗´1) ˝ 𝑅 ( 𝑗´1)

+ 𝐹 ˝ 𝐾 ( 𝑗 ) ´ 𝐹 ˝ 𝐾 ( 𝑗´1) ´ 𝐷𝐹 ˝ 𝐾 ( 𝑗´1) ¨ K ( 𝑗 )

+ 𝐷𝐹 ˝ 𝐾 ( 𝑗´1) ¨ K ( 𝑗 ) ´ K ( 𝑗 ) ˝ 𝑅 ( 𝑗´1)

´ 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗 ) + 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗´1) ,

and we define

T ( 𝑗 )
1 = 𝐹 ˝ 𝐾 ( 𝑗 ) ´ 𝐹 ˝ 𝐾 ( 𝑗´1) ´ 𝐷𝐹 ˝ 𝐾 ( 𝑗´1) ¨ K ( 𝑗 ) ,

T ( 𝑗 )
2 = 𝐷𝐹 ˝ 𝐾 ( 𝑗´1) ¨ K ( 𝑗 ) ´ K ( 𝑗 ) ˝ 𝑅 ( 𝑗´1) ,

T ( 𝑗 )
3 = 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗 ) ´ 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗´1) .

Since 𝐹 can be expressed as a sum of homogeneous functions with respect to (𝑥,𝑦)
(condition (ii)), it is not difficult to check that

T ( 𝑗 )
1 =

(
O(∥𝑢∥𝑁+𝑗 ),O(∥𝑢∥𝑀+𝑗 ),O(∥𝑢∥𝑃+𝑗 )

)
.

Now we deal with T ( 𝑗 )
2 . Using that 𝐾 ( 𝑗´1) (𝑢,Θ) = (𝑢 + O(∥𝑢∥2),O(∥𝑢∥2),Θ + O(∥𝑢∥)),

decomposition (2.8) in condition (ii) and condition (iv), we write

𝐷𝐹 ˝ 𝐾 ( 𝑗´1) =
©­«
Id + B𝑥 (𝑓 𝑁 + 𝑓 ě𝑁+1) B𝑦 (𝑓 𝑁 + 𝑓 ě𝑁+1) B𝜃 (𝑓 𝑁 + 𝑓 ě𝑁+1)

B𝑥 (𝑔𝑀 + 𝑔ě𝑀+1) Id + B𝑦 (𝑔𝑀 + 𝑔ě𝑀+1) B𝜃 (𝑔𝑀 + 𝑔ě𝑀+1)
B𝑥 (ℎ𝑃 + ℎě𝑃+1) B𝑦 (ℎ𝑃 + ℎě𝑃+1) Id + B𝜃 (ℎ𝑃 + ℎě𝑃+1)

ª®¬ ˝ 𝐾 ( 𝑗´1)

43



=
©­«
Id + B𝑥 𝑓

𝑁 (𝑢, 0,Θ) B𝑦 𝑓
𝑁 (𝑢, 0,Θ) B𝜃 𝑓

𝑁 (𝑢, 0,Θ)
0 Id + B𝑦𝑔

𝑀 (𝑢, 0,Θ) 0
0 0 Id

ª®¬ + N(𝑢,Θ)

with

N(𝑢,Θ) = ©­«
O(∥𝑢∥𝑁 ) O(∥𝑢∥𝑁 ) O(∥𝑢∥𝑁+1)
O(∥𝑢∥𝑀 ) O(∥𝑢∥𝑀 ) O(∥𝑢∥𝑀+1)
O(∥𝑢∥𝑃´1) O(∥𝑢∥𝑃´1) O(∥𝑢∥𝑃 )

ª®¬ .
We note that, by (iv), B𝜃𝑔

𝑀 ˝ 𝐾 ( 𝑗´1) = O(∥𝑢∥𝑀+1). Then,

T ( 𝑗 )
2 =

©­«
Id + B𝑥 𝑓

𝑁 (𝑢, 0,Θ) B𝑦 𝑓
𝑁 (𝑢, 0,Θ) B𝜃 𝑓

𝑁 (𝑢, 0,Θ)
0 Id + B𝑦𝑔

𝑀 (𝑢, 0,Θ) 0
0 0 Id

ª®¬
©­­«
𝐾
𝑗

𝑥 + 𝐾
𝑗+𝑁´1
𝑥

𝐾
𝑗

𝑦 + 𝐾
𝑗+𝑀´1
𝑦

𝐾
𝑗´1
𝜃 + 𝐾 𝑗+𝑃´2

𝜃

ª®®¬
´

©­­«
𝐾
𝑗

𝑥 ˝ 𝑅 ( 𝑗´1) + 𝐾 𝑗+𝑁´1
𝑥 ˝ 𝑅 ( 𝑗´1)

𝐾
𝑗

𝑦 ˝ 𝑅 ( 𝑗´1) + 𝐾 𝑗+𝑀´1
𝑦 ˝ 𝑅 ( 𝑗´1)

𝐾
𝑗´1
𝜃 ˝ 𝑅 ( 𝑗´1) + 𝐾 𝑗+𝑃´2

𝜃
˝ 𝑅 ( 𝑗´1)

ª®®¬ + N(𝑢,Θ) ¨ K ( 𝑗 ) .

Notice that, since 𝑅 ( 𝑗´1)
𝑢 (𝑢,Θ) = 𝑢 +𝑅𝑁𝑢 (𝑢) +O(∥𝑢∥𝑁+1) and 𝑅 ( 𝑗´1)

Θ (𝑢,Θ) = Θ+𝜔 +O(∥𝑢∥),
we have

𝐾
𝑗

𝑥,𝑦 ˝ 𝑅 ( 𝑗´1) (𝑢,Θ) = 𝐾 𝑗

𝑥,𝑦 (𝑢) + 𝐷𝐾
𝑗

𝑥,𝑦 (𝑢)𝑅
𝑁

𝑢 (𝑢) + O(∥𝑢∥ 𝑗+2𝑁´2),

𝐾
𝑗´1
𝜃 ˝ 𝑅 ( 𝑗´1) (𝑢,Θ) = 𝐾 𝑗´1

𝜃 (𝑢) + 𝐷𝐾 𝑗´1
𝜃 (𝑢)𝑅𝑁𝑢 (𝑢) + O(∥𝑢∥ 𝑗+2𝑁´3),

and, writing K̃ ( 𝑗 ) = (𝐾 𝑗+𝑁´1
𝑥 , 𝐾

𝑗+𝑀´1
𝑦 , 𝐾

𝑗+𝑃´2
𝜃

),

K̃ ( 𝑗 ) ˝ 𝑅 ( 𝑗´1) (𝑢,Θ) = K̃ ( 𝑗 ) (𝑢,Θ + 𝜔) +
(
O(∥𝑢∥ 𝑗+2𝑁´1,O(∥𝑢∥ 𝑗+𝑁+𝑀´1),O(∥𝑢∥ 𝑗+𝑁+𝑃´2)

)
.

Therefore

T ( 𝑗 )
2,𝑥 = ´ 𝐷𝐾

𝑗

𝑥 (𝑢)𝑅
𝑁

𝑢 (𝑢) + B𝑥 𝑓
𝑁 (𝑢, 0,Θ)𝐾 𝑗

𝑥 (𝑢) + B𝑦 𝑓
𝑁 (𝑢, 0,Θ)𝐾 𝑗

𝑦 (𝑢)

+ B𝜃 𝑓
𝑁 (𝑢, 0,Θ) (𝐾 𝑗´1

𝜃 (𝑢) + 𝐾 𝑗+𝑃´2
𝜃

(𝑢,Θ))

+ 𝐾 𝑗+𝑁´1
𝑥 (𝑢,Θ) ´ 𝐾

𝑗+𝑁´1
𝑥 (𝑢,Θ + 𝜔) + O(∥𝑢∥ 𝑗+𝑁 ),

T ( 𝑗 )
2,𝑦 = ´ 𝐷𝐾

𝑗

𝑦 (𝑢)𝑅
𝑁

𝑢 (𝑢) + B𝑦𝑔
𝑀 (𝑢, 0,Θ)𝐾 𝑗

𝑦 (𝑢) + 𝐾
𝑗+𝑀´1
𝑦 (𝑢,Θ) ´ 𝐾

𝑗+𝑀´1
𝑦 (𝑢,Θ + 𝜔)

+ O(∥𝑢∥ 𝑗+𝑀 ),

T ( 𝑗 )
2,𝜃 = ´ 𝐷𝐾

𝑗´1
𝜃 (𝑢)𝑅𝑁𝑢 (𝑢) + 𝐾 𝑗+𝑃´2

𝜃
(𝑢,Θ) ´ 𝐾

𝑗+𝑃´2
𝜃

(𝑢,Θ + 𝜔) + O(∥𝑢∥ 𝑗+𝑃´1).

Finally, we write T ( 𝑗 )
3

T ( 𝑗 )
3 =𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗 ) ´ 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗´1) =

∫ 1

0
𝐷𝐾 ( 𝑗 ) (𝑅 ( 𝑗´1) + 𝑠R ( 𝑗 ) )R ( 𝑗 ) 𝑑𝑠
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=

∫ 1

0

©­«
1 + O(∥𝑢∥) BΘ𝐾

𝑁
𝑥 + O(∥𝑢∥𝑁+1)

O(∥𝑢∥) O(∥𝑢∥𝑀+1)
O(1) 1 + O(∥𝑢∥)

ª®¬
(
R ( 𝑗 )
𝑢

R ( 𝑗 )
Θ

)
𝑑𝑠

=
©­­«
𝑅
𝑗+𝑁´1
𝑢 + 𝑅 𝑗+𝑁´1

𝑢 + BΘ𝐾
𝑁
𝑥 (𝑅 𝑗+𝑃´2

Θ + 𝑅 𝑗+𝑃´2
Θ ) + O(∥𝑢∥ 𝑗+𝑁 )

O(∥𝑢∥ 𝑗+𝑀 )
𝑅
𝑗+𝑃´2
Θ + 𝑅 𝑗+𝑃´2

Θ + O(∥𝑢∥ 𝑗+𝑃´1)

ª®®¬ .
Since 𝐹 is expressed as a sum of homogeneous functions until degree 𝑞 ´ 1, we write

𝐸 ( 𝑗´1) =
(
𝐸
𝑗+𝑁´1
𝑥 , 𝐸

𝑗+𝑀´1
𝑦 , 𝐸

𝑗+𝑃´2
𝜃

)
+

(
O(∥𝑢∥ 𝑗+𝑁 ),O(∥𝑢∥ 𝑗+𝑀 ),O(∥𝑢∥ 𝑗+𝑃´1)

)
. (4.6)

Therefore, since 𝐸 ( 𝑗 ) has to satisfy (4.5), namely:

𝐸 ( 𝑗 ) =
(
O(∥𝑢∥ 𝑗+𝑁 ),O(∥𝑢∥ 𝑗+𝑀 ),O(∥𝑢∥ 𝑗+𝑃´1)

)
,

from the previous estimates, we impose the corresponding conditions on 𝐸 ( 𝑗 )
𝑥 , 𝐸

( 𝑗 )
𝑦 , 𝐸

( 𝑗 )
𝜃

.
That is, for the 𝑥-component

𝐸
𝑗+𝑁´1
𝑥 (𝑢,Θ) ´ 𝐷𝐾

𝑗

𝑥 (𝑢)𝑅
𝑁

𝑢 (𝑢) ´ 𝑅
𝑗+𝑁´1
𝑢 (𝑢) ´ 𝑅

𝑗+𝑁´1
𝑢 (𝑢,Θ)

+ B𝑥 𝑓
𝑁 (𝑢, 0,Θ)𝐾 𝑗

𝑥 (𝑢) + B𝑦 𝑓
𝑁 (𝑢, 0,Θ)𝐾 𝑗

𝑦 (𝑢) + B𝜃 𝑓
𝑁 (𝑢, 0,Θ)𝐾 𝑗´1

𝜃 (𝑢)

+ 𝐾 𝑗+𝑁´1
𝑥 (𝑢,Θ) ´ 𝐾

𝑗+𝑁´1
𝑥 (𝑢,Θ + 𝜔) + B𝜃 𝑓

𝑁 (𝑢, 0,Θ)𝐾 𝑗+𝑃´2
𝜃

(𝑢,Θ)

´ BΘ𝐾
𝑁
𝑥 (𝑢,Θ) (𝑅 𝑗+𝑃´2

Θ (𝑢) + 𝑅 𝑗+𝑃´2
Θ (𝑢,Θ)) = O(∥𝑢∥ 𝑗+𝑁 ).

(4.7)

Concerning the 𝑦-component

𝐸
𝑗+𝑀´1
𝑦 (𝑢,Θ) ´ 𝐷𝐾

𝑗

𝑦 (𝑢)𝑅
𝑁

𝑢 (𝑢) + B𝑦𝑔
𝑀 (𝑢, 0,Θ)𝐾 𝑗

𝑦 (𝑢)

+ 𝐾 𝑗+𝑀´1
𝑦 (𝑢,Θ) ´ 𝐾

𝑗+𝑀´1
𝑦 (𝑢,Θ + 𝜔) = O(∥𝑢∥ 𝑗+𝑀 ).

(4.8)

And finally, for the 𝜃 -component

𝐸
𝑗+𝑃´2
𝜃

(𝑢,Θ) ´ 𝐷𝐾
𝑗´1
𝜃 (𝑢)𝑅𝑁𝑢 (𝑢) ´ 𝑅

𝑗+𝑃´2
Θ (𝑢) ´ 𝑅

𝑗+𝑃´2
Θ (𝑢,Θ)

+ 𝐾 𝑗+𝑃´2
𝜃

(𝑢,Θ) ´ 𝐾
𝑗+𝑃´2
𝜃

(𝑢,Θ + 𝜔) = O(∥𝑢∥ 𝑗+𝑃´1).
(4.9)

Now, we explain how to deal with equations (4.7), (4.8) and (4.9) to obtain the terms
K ( 𝑗 ) and R ( 𝑗 ) . We introduce some notation. Given a function 𝐺 (𝑢,Θ) = O(∥𝑢∥ℓ ) that can
be expressed as sum of homogeneous functions of integer degree, we write

𝐺 (𝑢,Θ) = {𝐺}ℓ (𝑢,Θ) + O(∥𝑢∥ℓ+1), (4.10)
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where {𝐺}ℓ is the homogeneous part of𝐺 of its lowest degree. For practical purposes we do
not assume {𝐺}ℓ to be different from zero. We also introduce

G
[
𝐾

( 𝑗 )
𝑦,𝜃
, 𝑅

( 𝑗 )
Θ

]
=B𝑦 𝑓

𝑁 (𝑢, 0,Θ)𝐾 𝑗

𝑦 (𝑢) + B𝜃 𝑓
𝑁 (𝑢, 0,Θ)𝐾 𝑗´1

𝜃 (𝑢) + B𝜃 𝑓
𝑁 (𝑢, 0,Θ)𝐾 𝑗+𝑃´2

𝜃
(𝑢,Θ)

´ BΘ𝐾
𝑁
𝑥 (𝑢,Θ) (𝑅 𝑗+𝑃´2

Θ (𝑢) + 𝑅 𝑗+𝑃´2
Θ (𝑢,Θ))

that satisfies G
[
𝐾

( 𝑗 )
𝑢,𝜃
, 𝑅

( 𝑗 )
Θ

]
= O(∥𝑢∥ 𝑗+𝑁´1) since 𝑃 ě 1 and BΘ𝐾

𝑁
𝑥 = O(∥𝑢∥𝑁 ).

Therefore, using that 𝑅𝑁𝑢 (𝑢) = 𝑓 𝑁 (𝑢, 0), equations (4.7), (4.8) and (4.9) decouple into the
triangular system:

𝐸
𝑗+𝑀´1
𝑦 (𝑢,Θ)+

{
´𝐷𝐾

𝑗

𝑦 (𝑢) 𝑓
𝑁 (𝑢, 0)

} 𝑗+𝑀´1
+ B𝑦𝑔

𝑀 (𝑢, 0,Θ)𝐾 𝑗

𝑦 (𝑢)

+𝐾 𝑗+𝑀´1
𝑦 (𝑢,Θ) ´ 𝐾

𝑗+𝑀´1
𝑦 (𝑢,Θ + 𝜔) = 0, (4.11)

𝐸
𝑗+𝑃´2
𝜃

(𝑢,Θ)+
{
´𝐷𝐾

𝑗´1
𝜃 (𝑢) 𝑓 𝑁 (𝑢, 0)

} 𝑗+𝑃´2
´ 𝑅

𝑗+𝑃´2
Θ (𝑢) ´ 𝑅

𝑗+𝑃´2
Θ (𝑢,Θ)

+𝐾 𝑗+𝑃´2
𝜃

(𝑢,Θ) ´ 𝐾
𝑗+𝑃´2
𝜃

(𝑢,Θ + 𝜔) = 0, (4.12)

𝐸
𝑗+𝑁´1
𝑥 (𝑢,Θ) ´ 𝐷𝐾

𝑗

𝑥 (𝑢) 𝑓
𝑁 (𝑢, 0) + B𝑥 𝑓

𝑁 (𝑢, 0,Θ)𝐾 𝑗

𝑥 (𝑢)

´ 𝑅
𝑗+𝑁´1
𝑢 (𝑢) ´ 𝑅

𝑗+𝑁´1
𝑢 (𝑢,Θ)

+ 𝐾 𝑗+𝑁´1
𝑥 (𝑢,Θ) ´ 𝐾

𝑗+𝑁´1
𝑥 (𝑢,Θ + 𝜔) +

{
G[𝐾 ( 𝑗 )

𝑦,𝜃
, 𝑅

( 𝑗 )
Θ ]

} 𝑗+𝑁´1
= 0. (4.13)

These are the so-called cohomological equations. To solve these equationswe deal separately
with the average and the oscillatory parts. We first deal with (4.11). We distinguish the cases
𝑀 ă 𝑁 and𝑀 = 𝑁 .

• Case 𝑀 ă 𝑁 . Averaging (4.11) we obtain B𝑦𝑔
𝑀 (𝑢, 0)𝐾 𝑗

𝑦 (𝑢) = ´𝐸
𝑗+𝑀´1(𝑢) and

therefore, since by the hypotheses of Theorem 2.8, B𝑦𝑔
𝑀 (𝑢, 0) is invertible,

𝐾
𝑗

𝑦 (𝑢) = ´
(
B𝑦𝑔

𝑀 (𝑢, 0)
)´1

𝐸
𝑗+𝑀´1
𝑦 (𝑢). (4.14)

• Case𝑀 = 𝑁 , the average part of equation (4.11) is

𝐷𝐾
𝑗

𝑦 (𝑢) 𝑓
𝑁 (𝑢, 0) ´ B𝑦𝑔

𝑁 (𝑢, 0)𝐾 𝑗

𝑦 (𝑢) = 𝐸
𝑗+𝑁´1
𝑦 (𝑢). (4.15)

This equation is of the form (4.1), therefore we apply Theorem 4.1 with Q(𝑢) =

B𝑦𝑔
𝑁 (𝑢, 0) and p(𝑢) = 𝑓 𝑁 (𝑢, 0) with the associated constants 𝑎p = 𝑎𝑓 ,𝑏p = 𝑏 𝑓 ,𝐴p = 𝐴𝑓

andBQ = 𝐵𝑔 defined in (2.9), (2.10) and (2.11), respectively. Note that, by (iv) the domain
with respect to 𝑢 of 𝑓

𝑁 (𝑢, 0) and B𝑦𝑔
𝑁 (𝑢, 0) can be extended to R𝑛 by homogeneity.

By condition (4.6) and Theorem 4.1 with 𝔪 = 𝑗 ´ 1 the solution of (4.15) is

𝐾
𝑗

𝑦 = Hp,Q

[
𝐸
𝑗+𝑁´1
𝑦

]
, with p = 𝑓

𝑁 (𝑢, 0), Q = B𝑦𝑔
𝑁 (𝑢, 0),
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whereHp,Q is defined in (4.4).
In both cases the oscillatory part of (4.11) is solved as a small divisors equation, using
Theorem 2.1 to an extension of the involved functions to a complex neighbourhood of their
domain. We have

𝐾
𝑗+𝑀´1
𝑦 = D

[
𝐸
𝑗+𝑀´1
𝑦 + B𝑦𝑔

𝑀𝐾
𝑗

𝑦

]
, (4.16)

where D is introduced in Section 2.1.2.
Remark 4.3. A remarkable fact is that, once 𝐾

𝑗

𝑦 and 𝐾 𝑗+𝑀´1
𝑦 are found, equations (4.12)

and (4.13) always have solution. For instance we can choose

𝐾
𝑗´1
𝜃 , 𝐾

𝑗

𝑥 = 0, 𝑅
𝑗+𝑃´2
Θ , 𝑅

𝑗+𝑁´1
𝑢 = 0, (4.17)

𝑅
𝑗+𝑁´1
𝑢 = 𝐸

𝑗+𝑁´1
𝑥 +

{
G[𝐾 ( 𝑗 )

𝑦,𝜃
, 𝑅

( 𝑗 )
Θ ]

} 𝑗+𝑁´1
,

𝑅
𝑗+𝑃´2
Θ = 𝐸

𝑗+𝑃´2
𝜃

(4.18)

and
𝐾
𝑗+𝑃´2
𝜃

= D[𝐸 𝑗+𝑃´2
𝜃

], 𝐾
𝑗+𝑁´1
𝑥 = D[𝐸 𝑗+𝑁´1

𝑥 +
{
G̃ [𝐾 ( 𝑗 )

𝑦,𝜃
, 𝑅

( 𝑗 )
Θ ]

} 𝑗+𝑁´1
] .

We notice that with this choice all the involved functions keep the same regularity as 𝐹 , 𝐾
𝑗

𝑦 ,
and 𝐾 𝑗+𝑀´1

𝑦 .
However, we want to go further and keep 𝑅 as simple as possible. That is, we want to take,

whenever possible, 𝑅 𝑗+𝑃´2
Θ and 𝑅 𝑗+𝑁´1

𝑢 equal to 0.
Before starting solving (4.12) and (4.13) let us say some words about the regularity of

𝐾
( 𝑗 )
𝑥,𝜃

and 𝑅 ( 𝑗 )
𝑢,Θ.

Remark 4.4. In Theorem 4.1, if instead of condition (b) we have𝐴p ă 𝑏p, we cannot conclude
that the solution of equation (4.1) has the same regularity as p and Q. This is an optimal gen-
eral condition as it was shown in Section 6 of [16], where some examples showing the loss of
regularity were provided.

However, when 𝑀 ă 𝑁 , the functions 𝐾
𝑗

𝑦 and 𝐾 𝑗+𝑀´1
𝑦 defined in (4.14) and (4.16) are

analytic. Therefore, in this case, when solving (4.12) and (4.13), if 𝐴𝑓 ď 𝑏 𝑓 , to have analytic
solutions of (4.12) and (4.13) we use the expressions (4.17) and (4.18),

After this remark we continue with the assumption that 𝐴𝑓 ą 𝑏 𝑓 .
The following analysis discusses how to obtain solutions with the simplest possible 𝑅.

We solve first (4.12). We take

𝐾
𝑗+𝑃´2
𝜃

= D
[
𝐸
𝑗+𝑃´2
𝜃

]
, 𝑅

𝑗+𝑃´2
Θ = 0.

Then, equation (4.12) becomes

𝐸
𝑗+𝑃´2
𝜃 (𝑢) =

{
𝐷𝐾

𝑗´1
𝜃 (𝑢) 𝑓 𝑁 (𝑢, 0)

} 𝑗+𝑃´2
+ 𝑅 𝑗+𝑃´2

Θ (𝑢).

We distinguish the cases 𝑃 ă 𝑁 and 𝑃 = 𝑁 .
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• Case 𝑃 ă 𝑁 . The expression
{
𝐷𝐾

𝑗´1
𝜃 (𝑢) 𝑓 𝑁 (𝑢, 0)

} 𝑗+𝑃´2
= 0 and we take

𝑅
𝑗+𝑃´2
Θ = 𝐸

𝑗+𝑃´2
𝜃 , 𝐾

𝑗´1
𝜃 free.

• Case 𝑃 = 𝑁 . We have that 𝐾 𝑗´1
𝜃 and 𝑅 𝑗+𝑁´2

Θ must satisfy

𝐷𝐾
𝑗´1
𝜃 (𝑢) 𝑓 𝑁 (𝑢, 0) + 𝑅 𝑗+𝑁´2

Θ (𝑢) = 𝐸 𝑗+𝑁´2
𝜃 (𝑢).

We take Q = 0 and p(𝑢) = 𝑓
𝑁 (𝑢, 0) in Theorem 4.1 and the corresponding constants

𝐵Q = 0, 𝑎p = 𝑎𝑓 , 𝐴p = 𝐴𝑓 and 𝑏p = 𝑏 𝑓 defined in (2.11), (2.9) and (2.10). We take

𝐾
𝑗´1
𝜃 = H

𝑓
𝑁
,0

[
𝐸
𝑗+𝑃´2
𝜃

]
, 𝑅

𝑗+𝑃´2
Θ = 0.

In both cases, the solution of the oscillatory part of (4.12) can be given by

𝐾
𝑗+𝑃´2
𝜃

= D[𝐸 𝑗+𝑃´2
𝜃

], 𝑅
𝑗+𝑃´2
Θ = 0.

We finally solve equation (4.13). We notice that after having solved (4.11) and (4.12), the
function G[𝐾 ( 𝑗 )

𝑦,𝜃
, 𝑅

( 𝑗 )
Θ ] is already a known function. To simplify the notation, we introduce

𝐺 𝑗+𝑁´1 :=
{
G[𝐾 ( 𝑗 )

𝑦,𝜃
, 𝑅

( 𝑗 )
Θ ]

} 𝑗+𝑁´1
,

where the notation {¨}𝑘 has been introduced in (4.10). We first deal with the average part
of (4.13) which is

𝐷𝐾
𝑗

𝑥 (𝑢) 𝑓
𝑁 (𝑢, 0) ´ B𝑥 𝑓

𝑁 (𝑢, 0)𝐾 𝑗

𝑥 (𝑢) + 𝑅
𝑗+𝑁´1
𝑢 = 𝐸

𝑗+𝑁´1
𝑥 +𝐺 𝑗+𝑁´1

.

We use again Theorem 4.1, now takingQ(𝑢) = B𝑥 𝑓
𝑁 (𝑢, 0) and p(𝑢) = 𝑓 𝑁 (𝑢, 0). Let B

B𝑥 𝑓
𝑁 =

𝐷 𝑓 be the corresponding constant (see (4.2) and (2.11)) and 𝑗˚𝑢 =

[
´
𝐷𝑓

𝑎𝑓

]
if𝐷 𝑓 ă 0 and 𝑗˚𝑢 = 1

if 𝐷 𝑓 ě 0 as defined in (2.14). Condition (4.3) in Theorem 4.1 is satisfied when 𝑗 + 𝐷𝑓

𝑎𝑓
ą 0.

Therefore,
• When 𝑗 ď 𝑗˚𝑢 we take 𝐾 𝑗

𝑥 free and

𝑅
𝑗+𝑁´1
𝑢 (𝑢) = 𝐸 𝑗+𝑁´1

𝑥 (𝑢) +𝐺 𝑗+𝑁´1(𝑢) ´ 𝐷𝐾
𝑗

𝑥 (𝑢) 𝑓
𝑁 (𝑢, 0) + B𝑥 𝑓

𝑁 (𝑢, 0)𝐾 𝑗

𝑥 (𝑢).

• When 𝑗 ą 𝑗˚𝑢 we apply Theorem 4.1 and we take

𝐾
𝑗

𝑥 = H
𝑓
𝑁
,B𝑥 𝑓

𝑁

[
𝐸
𝑗+𝑁´1
𝑥 +𝐺 𝑗+𝑁´1]

, 𝑅
𝑗+𝑁´1
𝑢 = 0.
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The oscillatory part of (4.13) is then solved by setting

𝐾
𝑗+𝑁´1
𝑥 = D[𝐸 𝑗+𝑁´1

𝑥 +𝐺 𝑗+𝑁´1 + B𝑥 𝑓
𝑁𝐾

𝑗

𝑥

]
, 𝑅

𝑗+𝑁´1
𝑢 = 0.

This arguments showwe can take𝑅 ( 𝑗 ) = 0 if 𝑗 ą 𝑗˚𝑢 .We emphasize that when𝑛 = 1, then
𝑓
𝑁 (𝑥, 0) = ´𝑎𝑓 𝑥

𝑁 and therefore 𝑏 𝑓 = 𝑎𝑓 , 𝐴𝑓 = 𝑁𝑎𝑓 ,B
B𝑥 𝑓

𝑁 = ´𝑁𝑎𝑓 . As a consequence,

𝑗˚𝑢 = 𝑁 and (𝑅 𝑗+𝑁´1
𝑢 , 𝑅

𝑗+𝑁´1
𝑢 ) = 0 if 𝑗 ą 𝑁 .

4.2.2 End of the proof of Theorem 2.8

As we pointed out in Remark 4.2, with the procedure described in the previous section, we
have obtained that there exist 𝐾 ( 𝑗 ) and 𝑅 ( 𝑗 ) satisfying

𝐸 ( 𝑗 ) = 𝐹 ˝ 𝐾 ( 𝑗 ) ´ 𝐾 ( 𝑗 ) ˝ 𝑅 ( 𝑗 ) =
(
O(∥𝑢∥ 𝑗+𝑁 ),O(∥𝑢∥ 𝑗+𝑀 ),O(∥𝑢∥ 𝑗+𝑃´1)

instead of the stated result 𝐸 ( 𝑗 ) = O(∥𝑢∥ 𝑗+𝑁 ). We need then to work further.
When𝑀 ă 𝑁 , we look for𝐾 (𝑙 ) , 𝑙 = 𝑗 +1, ¨ ¨ ¨ , 𝑗 +𝑁 ´𝑀 of the form𝐾 (𝑙 ) = 𝐾 (𝑙´1) +K (𝑙 ) ,

with
K (𝑙 )
𝑥,𝜃

= 0, K (𝑙 )
𝑦 (𝑢,Θ) = 𝐾𝑙𝑦 (𝑢) + 𝐾𝑙+𝑀´1

𝑦 (𝑢,Θ),
and we keep R (𝑙 ) = 0. Assume that, for 𝑗 + 1 ď 𝑙 ď 𝑗 + 𝑁 ´𝑀

𝐸 (𝑙´1) = 𝐹 ˝ 𝐾 (𝑙´1) ´ 𝐾 (𝑙´1) ˝ 𝑅 (𝑙´1) =
(
O(∥𝑢∥𝑙+𝑁´1),O(∥𝑢∥𝑙+𝑀´1),O(∥𝑢∥𝑙+𝑃´2)

)
.

Since the map 𝐹 can be expressed as a sum of homogeneous functions up to degree 𝑗 +
𝑁 ď 𝑞 ´ 1, we can apply the procedure described before setting 𝐾 (𝑙 )

𝑥,𝜃
= 0. The equation

corresponding to (4.11) is

𝐸𝑙+𝑀´1
𝑦 (𝑢,Θ) + B𝑦𝑔

𝑀 (𝑢, 0,Θ)𝐾𝑙𝑦 (𝑢) + 𝐾𝑙+𝑀´1
𝑦 (𝑢,Θ) ´ 𝐾𝑙+𝑀´1

𝑦 (𝑢,Θ + 𝜔) = 0,

which can be solved as described in the previous section. In addition, since 𝐾 (𝑙 )
𝑥,𝜃

= 0 and
𝑅 (𝑙 ) = 0, then 𝐸 (𝑙 )

𝑥 = O(∥𝑢∥ 𝑗+𝑁 ) and 𝐸 (𝑙 )
𝜃

= O(∥𝑢∥ 𝑗+𝑃´1) (see equations (4.7) and (4.9)).
We repeat this procedure until 𝑙 = 𝑗 + 𝑁 ´𝑀 and we obtain that

𝐸
( 𝑗+𝑁´𝑀 )
𝑥,𝑦 = O(∥𝑢∥ 𝑗+𝑁 ), 𝐸

( 𝑗+𝑁´𝑀 )
𝜃

= O(∥𝑢∥ 𝑗+𝑃´1).

Finally, we look for 𝐾 (𝑙+𝑁´𝑀 ) , 𝑅 (𝑙+𝑁´𝑀 ) for 𝑙 = 𝑗 + 1, ¨ ¨ ¨ , 𝑗 + 𝑁 ´ 𝑃 + 1 of the form
𝐾 (𝑙+𝑁´𝑀 ) = 𝐾 (𝑙+𝑁´𝑀´1) + K (𝑙+𝑁´𝑀 ) , with

K (𝑙+𝑁´𝑀 )
𝑥,𝑦 = 0, K (𝑙+𝑁´𝑀 )

𝜃
(𝑢,Θ) = 𝐾𝑙´1

𝜃 (𝑢) + 𝐾𝑙+𝑃´2
𝜃

(𝑢,Θ)

and 𝑅 (𝑙+𝑁´𝑀 ) = 𝑅 (𝑙+𝑁´𝑀´1) + R (𝑙+𝑁´𝑀´1) with

R (𝑙+𝑁´𝑀´1)
𝑢 = 0, RΘ = 𝑅

𝑙+𝑃´2
Θ + 𝑅𝑙+𝑃´2

Θ .
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Assume that, for 𝑗 + 1 ď 𝑙 ď 𝑗 + 𝑁 ´ 𝑃 + 1

𝐸 (𝑙+𝑁´𝑀´1) = 𝐹 ˝ 𝐾 (𝑙+𝑁´𝑀´1) ´ 𝐾 (𝑙+𝑁´𝑀´1) ˝ 𝑅 (𝑙+𝑁´𝑀´1)

=
(
O(∥𝑢∥ 𝑗+𝑁 ,O(∥𝑢∥ 𝑗+𝑁 ),O(∥𝑢∥𝑙+𝑃´1)

)
.

Similarly as before, now the equation corresponding to (4.12) is

𝐸𝑙+𝑃´2
𝜃

(𝑢,Θ)+
{
´𝐷𝐾

𝑙´1
𝜃 (𝑢) 𝑓 𝑁 (𝑢, 0)

}𝑙+𝑃´2
´ 𝑅

𝑙+𝑃´2
Θ (𝑢) ´ 𝑅𝑙+𝑃´2

Θ (𝑢,Θ)

+ 𝐾𝑙+𝑃´2
𝜃

(𝑢,Θ) ´ 𝐾𝑙+𝑃´2
𝜃

(𝑢,Θ + 𝜔) = 0

and it is solved as described previously. Note that we can always take 𝑅𝑙+𝑃´2
Θ = 0 and, if

𝑃 = 𝑁 we can also take 𝑅𝑙+𝑃´2
Θ = 0. Looking at equations (4.7) and (4.8), it can be easily

deduced that 𝐸 (𝑙+𝑁´𝑀 )
𝑥,𝑦 = O(∥𝑢∥ 𝑗+𝑁 ). In the last step of this new induction procedure we

obtain that the corresponding remainder 𝐸 ( 𝑗+2𝑁´𝑀´𝑃 ) = O(∥𝑢∥ 𝑗+𝑁 ).

4.3 Approximation of the invariant manifolds for differential
equations

Let 𝑋 be a vector field of the form (2.22) depending quasiperiodically on time with time
frequency 𝜈 . We briefly describe the procedure which is analogous to the one for maps
explained in detail in Section 4.2. Indeed, first we set

𝐾 (1) (𝑢, θ, 𝑡) = (𝑢 + 𝐾𝑁𝑥 (𝑢, θ, 𝑡), 0, θ), 𝑌 (1) (𝑢, θ, 𝑡) = (𝑓 𝑁 (𝑢, 0), θ + 𝜔)

and we check that 𝐸 (1) defined by (2.24) satisfies

𝐸 (1) =
(
O(∥𝑢∥1+𝑁 ),O(∥𝑢∥1+𝑀 ),O(∥𝑢∥𝑃 )

)
.

Then, we define 𝐾 ( 𝑗 ) = 𝐾 ( 𝑗´1) + K ( 𝑗 ) , 𝑌 ( 𝑗 ) = 𝑌 ( 𝑗´1) + Y ( 𝑗 ) with

K ( 𝑗 )
𝑥 (𝑢, θ, 𝑡) = 𝐾 𝑗

𝑥 (𝑢) + 𝐾
𝑗+𝑁´1
𝑥 (𝑢, θ, 𝑡), K ( 𝑗 )

𝑦 (𝑢, θ, 𝑡) = 𝐾 𝑗

𝑦 (𝑢) + 𝐾
𝑗+𝑀´1
𝑦 (𝑢, θ, 𝑡),

K ( 𝑗 )
𝜃

(𝑢, θ, 𝑡) = 𝐾 𝑗´1
𝜃 (𝑢) + 𝐾 𝑗+𝑃´2

𝜃
(𝑢, θ, 𝑡)

and Y ( 𝑗 ) as:

Y ( 𝑗 )
𝑢 (𝑢, θ, 𝑡) = 𝑌 𝑗+𝑁´1

𝑢 (𝑢) + 𝑌 𝑗+𝑁´1
𝑢 (𝑢, θ, 𝑡), Y ( 𝑗 )

θ
(𝑢,Θ) = 𝑌 𝑗+𝑃´2

θ (𝑢) + 𝑌 𝑗+𝑃´2
θ

(𝑢, θ, 𝑡).

We prove by induction, reproducing the same arguments as the ones in Section 4.2.1,
that if 𝐸 ( 𝑗´1) defined by (2.24) is such that

𝐸 ( 𝑗´1) (𝑢, θ, 𝑡) =(𝐸 𝑗+𝑁´1
𝑥 (𝑢, θ, 𝑡), 𝐸 𝑗+𝑀´1

𝑦 (𝑢, θ, 𝑡), 𝐸 𝑗+𝑃´2
𝜃

(𝑢, θ, 𝑡))
+

(
O(∥𝑢∥ 𝑗+𝑁 ),O(∥𝑢∥ 𝑗+𝑀 ),O(∥𝑢∥ 𝑗+𝑃´1)

)
50



with 𝐸𝑙
𝑥,𝑦,𝜃

homogeneous functions of degree 𝑙 , then 𝐸 ( 𝑗 ) satisfies

𝐸 ( 𝑗 ) = (O(∥𝑢∥ 𝑗+𝑁 ),O(∥𝑢∥ 𝑗+𝑀 ),O(∥𝑢∥ 𝑗+𝑃´1)),

if K ( 𝑗 ) ,Y ( 𝑗 ) are solutions of the cohomological equations

𝐸
𝑗+𝑀´1
𝑦 (𝑢, θ, 𝑡) =

{
𝐷𝐾

𝑗

𝑦 (𝑢) 𝑓
𝑁 (𝑢, 0)

} 𝑗+𝑀´1
+ B𝑦𝑔

𝑀 (𝑢, 0, θ, 𝑡)𝐾 𝑗

𝑦 (𝑢)

´ Bθ𝐾
𝑗+𝑀´1
𝑦 (𝑢, θ, 𝑡)𝜔 ´ B𝑡𝐾

𝑗+𝑀´1
𝑦 (𝑢, θ, 𝑡), (4.19)

𝐸
𝑗+𝑃´2
𝜃

(𝑢, θ, 𝑡) =
{
𝐷𝐾

𝑗´1
𝜃 (𝑢) 𝑓 𝑁 (𝑢, 0)

} 𝑗+𝑃´2
+ 𝑌 𝑗+𝑃´2

θ (𝑢) + 𝑌 𝑗+𝑃´2
θ

(𝑢, θ, 𝑡)

´ Bθ𝐾
𝑗+𝑃´2
𝜃

(𝑢, θ, 𝑡)𝜔 ´ B𝑡𝐾
𝑗+𝑃´2
𝜃

(𝑢, θ, 𝑡), (4.20)

𝐸
𝑗+𝑁´1
𝑥 (𝑢, θ, 𝑡) =𝐷𝐾 𝑗

𝑥 (𝑢) 𝑓
𝑁 (𝑢, 0) ´ B𝑥 𝑓

𝑁 (𝑢, 0,Θ)𝐾 𝑗

𝑥 (𝑢)

+ 𝑌 𝑗+𝑁´1
𝑢 (𝑢) + 𝑌 𝑗+𝑁´1

𝑢 (𝑢, θ, 𝑡) (4.21)

´ Bθ𝐾
𝑗+𝑁´1
𝑥 (𝑢, θ, 𝑡)𝜔 ´ B𝑡𝐾

𝑗+𝑁´1
𝑥 (𝑢, θ, 𝑡) ´

{
G[𝐾 ( 𝑗 )

𝑦,𝜃
, 𝑅

( 𝑗 )
θ

]
} 𝑗+𝑁´1

.

Equations (4.19), (4.20) and (4.21) are the corresponding ones to equations (4.11), (4.12)
and (4.13) for the case of maps. As expected, the difference between them is that the
difference term in the map setting

𝐾 (𝑢,Θ + 𝜔) ´ 𝐾 (𝑢,Θ)

now becomes the term
Bθ𝐾 (𝑢, θ, 𝑡)𝜔 + B𝑡𝐾 (𝑢, θ, 𝑡).

Here, to solve the corresponding equations

Bθ𝐾 (𝑢, θ, 𝑡)𝜔 + B𝑡𝐾 (𝑢, θ, 𝑡) = ℎ̃(𝑢, θ, 𝑡) (4.22)

with ℎ̃ a known function with zero average, we use the small divisors theorem (Theorem 2.1)
for differential equations instead of the one for maps. Indeed, consider ℎ̂(𝑢, θ, 𝜏) be such that
ℎ̃(𝑢, θ, 𝑡) = ℎ̂(𝑢, θ, 𝜈𝑡) (as explained in Section 2.1.1) and the small divisor equation

Bθ𝐾 (𝑢, θ, 𝜏)𝜔 + B𝜏𝐾 (𝑢, θ, 𝜏)𝜈 = ℎ̂(𝑢, θ, 𝜏).

Let𝐾 := D[ℎ̂] be its unique solution with zero average (we recall that we use the same nota-
tion, D, for both settings: flows and maps). It is then clear that 𝐾 (𝑢, θ, 𝑡) = D[ℎ̂] (𝑢, θ, 𝜈𝑡) is
the solution of (4.22). Then, with this interpretation, the algorithm described in Section 4.2.1
applies in the same way.
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5 Double parabolic orbits to infinity in the 𝒏 + 2-body
problem

5.1 The 𝒏 + 2-body problem and Jacobi coordinates
We consider 𝑛 + 2 point masses,𝑚𝑖 , 𝑖 = 0, . . . , 𝑛 + 1, evolving in the plane under their mutual
Newtonian gravitational attraction. We denote by 𝑞𝑖 P R2, 𝑖 = 0, . . . , 𝑛+1, the coordinates of
the 𝑖-th mass in an inertial frame of reference. Their motion is described by the Hamiltonian

𝐻 (𝑞, 𝑝) = 𝑇 (𝑝) ´𝑈 (𝑞), (5.1)

where 𝑝 = (𝑝0, . . . , 𝑝𝑛+1) P R2(𝑛+2) are the conjugate momenta and

𝑇 (𝑝0, . . . , 𝑝𝑛+1) =
𝑛+1∑︁
𝑗=0

1
2𝑚 𝑗

∥𝑝 𝑗 ∥2,

𝑈 (𝑞0, . . . , 𝑞𝑛+1) =
∑︁

0ď𝑖ă𝑗ď𝑛+1

𝑚𝑖𝑚 𝑗

∥𝑞𝑖 ´ 𝑞 𝑗 ∥
.

Well known first integrals of this system, besides the energy, are the total linear momentum,∑𝑛+1
𝑗=0 𝑝 𝑗 , and the total angular momentum,

∑𝑛+1
𝑗=0 det(𝑞 𝑗 , 𝑝 𝑗 ).

We devote next sections to prove Theorem 1.1. It will be an immediate consequence of
Theorems 2.14, 2.15, once the Hamiltonian (5.1) is written in the appropriate variables.

We want to show that there are solutions in which the first 𝑛 bodies evolve in a bounded
motion while the last two arrive to infinity as time goes to infinity. For this reason, we use
the classical Jacobi coordinates, in which the position of the 𝑗-th body is measured with
respect the center of mass of the bodies 0 to 𝑗 ´ 1, for 1 ď 𝑗 ď 𝑛 + 1. More concretely, we
consider the new set of coordinates (𝑞0, . . . , 𝑞𝑛+1) defined by

𝑞0 = 𝑞0,

𝑞 𝑗 = 𝑞 𝑗 ´
1
𝑀 𝑗

∑︁
0ďℓď𝑗´1

𝑚ℓ𝑞ℓ , 𝑗 = 1, . . . , 𝑛 + 1,

where𝑀 𝑗 =
∑𝑗´1
ℓ=0 𝑚ℓ , 𝑗 ě 1. The inverse change is given by

𝑞0 = 𝑞0,

𝑞 𝑗 = 𝑞 𝑗 +
∑︁

0ďℓď𝑗´1

𝑚ℓ

𝑀ℓ+1
𝑞ℓ , 𝑗 = 1, . . . , 𝑛 + 1. (5.2)

Denoting by 𝐴 the matrix such that 𝑞 = 𝐴𝑞, the change in the momenta given by 𝑝 = 𝐴´J𝑝

makes the whole transformation symplectic. Let

𝐻 (𝑞, 𝑝) = 𝑇 (𝐴J𝑝) ´𝑈 (𝐴´1𝑞)
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be the Hamiltonian𝐻 in the new variables. Notice that, in the (𝑞, 𝑝) variables, the total linear
momentum is simply 𝑝0. In particular, this implies that 𝐻 does not depend on 𝑞0. We can
also assume that 𝑝0 = 0. Then, 𝐻 does not depend on (𝑞0, 𝑝0). With this choice and defining
M = diag (𝑚´1

0 , . . . ,𝑚´1
𝑛+1), a computation gives

𝑇 (𝐴J𝑝) = 1
2𝑝

J𝐴M𝐴J𝑝 =

𝑛+1∑︁
𝑗=1

1
2𝜇 𝑗

∥𝑝 𝑗 ∥2,

where 𝜇´1
𝑗

= 𝑀´1
𝑗

+𝑚´1
𝑗
. Also, in view of (5.2), we have that

𝑞 𝑗 ´ 𝑞0 = 𝑞 𝑗 +
∑︁

1ďℓď𝑗´1

𝑚ℓ

𝑀ℓ+1
𝑞ℓ , 1 ď 𝑗 ď 𝑛 + 1,

𝑞 𝑗 ´ 𝑞𝑖 = 𝑞 𝑗 ´ 𝑞𝑖 +
∑︁

𝑖ďℓď𝑗´1

𝑚ℓ

𝑀ℓ+1
𝑞ℓ = 𝑞 𝑗 ´

𝑀𝑖

𝑀𝑖+1
𝑞𝑖 +

∑︁
𝑖+1ďℓď𝑗´1

𝑚ℓ

𝑀ℓ+1
𝑞ℓ , 1 ď 𝑖 ă 𝑗 ď 𝑛 + 1.

Then,

𝑈 (𝐴´1𝑞) =
∑︁

0ď𝑖ă𝑗ď𝑛´1

𝑚 𝑗𝑚𝑖

∥𝑞 𝑗 ´ 𝑞𝑖 ∥
+

∑︁
0ď𝑖ď𝑛´1

𝑚𝑛𝑚𝑖

∥𝑞𝑛 ´ 𝑞𝑖 ∥
+

∑︁
0ď𝑖ď𝑛´1

𝑚𝑛+1𝑚𝑖

∥𝑞𝑛+1 ´ 𝑞𝑖 ∥
+ 𝑚𝑛+1𝑚𝑛

∥𝑞𝑛+1 ´ 𝑞𝑛 ∥

=
∑︁

1ď𝑗ď𝑛´1

𝑚 𝑗𝑚0


𝑞 𝑗 + ∑
1ďℓď𝑗´1

𝑚ℓ

𝑀ℓ+1
𝑞ℓ




 +
∑︁

1ď𝑖ă𝑗ď𝑛´1

𝑚 𝑗𝑚𝑖


𝑞 𝑗 ´ 𝑞𝑖 +
∑
𝑖ďℓď𝑗´1

𝑚ℓ

𝑀ℓ+1
𝑞ℓ





+ 𝑚𝑛𝑚0


𝑞𝑛 + ∑

1ďℓď𝑛´1
𝑚ℓ

𝑀ℓ+1
𝑞ℓ




 +
∑︁

1ď𝑖ď𝑛´1

𝑚𝑛𝑚𝑖


𝑞𝑛 ´ 𝑞𝑖 +
∑
𝑖ďℓď𝑛´1

𝑚ℓ

𝑀ℓ+1
𝑞ℓ





+ 𝑚𝑛+1𝑚0


𝑞𝑛+1 +

∑
1ďℓď𝑛

𝑚ℓ

𝑀ℓ+1
𝑞ℓ




 +
∑︁

1ď𝑖ď𝑛´1

𝑚𝑛+1𝑚𝑖


𝑞𝑛+1 ´ 𝑞𝑖 +
∑
𝑖ďℓď𝑛

𝑚ℓ

𝑀ℓ+1
𝑞ℓ





+ 𝑚𝑛+1𝑚𝑛

∥𝑞𝑛+1 ´ 𝑞𝑛 + 𝑚𝑛

𝑀𝑛+1
𝑞𝑛 ∥

,

where in the first line of the formula 𝑞 = 𝐴´1𝑞. Now we introduce symplectic polar
coordinates in each subspace generated by (𝑞 𝑗 , 𝑝 𝑗 ):

𝑞 𝑗 = 𝑟 𝑗𝑒
𝑖𝜃 𝑗 ,

𝑝 𝑗 = 𝑦 𝑗𝑒
𝑖𝜃 𝑗 + 𝑖

𝐺 𝑗

𝑟 𝑗
𝑒𝑖𝜃 𝑗 ,

𝑗 = 1, . . . , 𝑛 + 1,

and denote by 𝐻 (𝑟̂ , 𝑦, 𝜃,𝐺, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛, 𝜃𝑛+1,𝐺𝑛+1) the Hamiltonian in these new
variables, where 𝑟̂ = (𝑟1, . . . , 𝑟𝑛´1) and, analogously, the same notation applies to 𝑦, 𝜃 , 𝐺 .

We will be interested in the region of the phase space where 𝑟𝑛+1, 𝑟𝑛 " 𝑟𝑖 , 𝑖 = 1, . . . , 𝑛´1.
However, since the final motions we are looking for are parabolic, it will happen that 𝑟𝑛/𝑟𝑛+1
will be of order 1. Hence, we will be able to expand several magnitudes in 𝑟𝑖/𝑟𝑛 , 𝑟𝑖/𝑟𝑛+1,
𝑖 = 1, . . . , 𝑛 ´ 1, but not in 𝑟𝑛/𝑟𝑛+1.
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In the new variables the potential is

𝑈 (𝑟, 𝜃 ) = 𝑈 (𝑟̂ , 𝜃 ) +𝑈𝑛 (𝑟̂ , 𝑟𝑛, 𝜃1 ´𝜃𝑛, . . . , 𝜃𝑛´1 ´𝜃𝑛) +𝑈𝑛+1(𝑟̂ , 𝑟𝑛, 𝑟𝑛+1, 𝜃1 ´𝜃𝑛+1, . . . , 𝜃𝑛 ´𝜃𝑛+1),

where

𝑈 (𝑟̂ , 𝜃 ) =
∑︁

1ď𝑗ď𝑛´1

𝑚 𝑗𝑚0���𝑟 𝑗 + ∑
1ďℓď𝑗´1

𝑚ℓ

𝑀ℓ+1
𝑟ℓ𝑒

𝑖 (𝜃ℓ´𝜃 𝑗 )
���

+
∑︁

1ď𝑖ă𝑗ď𝑛´1

𝑚 𝑗𝑚𝑖���𝑟 𝑗 ´ 𝑟𝑖𝑒
𝑖 (𝜃𝑖´𝜃 𝑗 ) + ∑

𝑖ďℓď𝑗´1
𝑚ℓ

𝑀ℓ+1
𝑟ℓ𝑒

𝑖 (𝜃ℓ´𝜃 𝑗 )
��� ,

𝑈𝑛 (𝑟̂ , 𝑟𝑛, 𝜙1, . . . , 𝜙𝑛´1) =
𝑚𝑛𝑚0

𝑟𝑛

���1 + ∑
1ďℓď𝑛´1

𝑚ℓ

𝑀ℓ+1
𝑟ℓ
𝑟𝑛
𝑒𝑖𝜙ℓ

���
+

∑︁
1ď𝑗ď𝑛´1

𝑚𝑛𝑚 𝑗

𝑟𝑛

���1 ´
𝑟 𝑗

𝑟𝑛
𝑒𝑖𝜙 𝑗 + ∑

𝑗ďℓď𝑛´1
𝑚ℓ

𝑀ℓ+1
𝑟ℓ
𝑟𝑛
𝑒𝑖𝜙ℓ

��� ,
𝑈𝑛+1(𝑟̂ , 𝑟𝑛, 𝑟𝑛+1, 𝜙1, . . . , 𝜙𝑛) =

𝑚𝑛+1𝑚0

𝑟𝑛+1

���1 + ∑
1ďℓď𝑛

𝑚ℓ

𝑀ℓ+1
𝑟ℓ
𝑟𝑛+1

𝑒𝑖𝜙ℓ
���

+
∑︁

1ď𝑗ď𝑛

𝑚𝑛+1𝑚 𝑗

𝑟𝑛+1

���1 ´
𝑟 𝑗

𝑟𝑛+1
𝑒𝑖𝜙 𝑗 + ∑

𝑗ďℓď𝑛
𝑚ℓ

𝑀ℓ+1
𝑟ℓ
𝑟𝑛+1

𝑒𝑖𝜙ℓ
��� .

(5.3)
Proposition 5.1. Let𝑚0, . . . ,𝑚𝑛´1 P R+ be fixed. The functions𝑈𝑛 and𝑈𝑛+1 can be written as

𝑈𝑛 (𝑟̂ , 𝑟𝑛, 𝜙1, . . . , 𝜙𝑛´1) =
𝑚𝑛𝑀𝑛

𝑟𝑛
+ 𝑚𝑛

𝑟𝑛
𝑈𝑛 (𝑟̂ , 𝑟𝑛, 𝜙1, . . . , 𝜙𝑛´1) (5.4)

and
𝑈𝑛+1(𝑟̂ , 𝑟𝑛, 𝑟𝑛+1, 𝜙1, . . . , 𝜙𝑛) =

𝑚𝑛+1𝑀𝑛+1
𝑟𝑛+1

+ 𝑚𝑛+1
𝑟𝑛+1

𝑈𝑛+1(𝑟̂ , 𝑟𝑛, 𝑟𝑛+1, 𝜙1, . . . , 𝜙𝑛), (5.5)
with

𝑈𝑛 (𝑟̂ , 𝑟𝑛, 𝜙1, . . . , 𝜙𝑛´1) = A𝑛

(
𝑟1
𝑟𝑛
𝑒𝑖𝜙1 ,

𝑟1
𝑟𝑛
𝑒´𝑖𝜙1 . . . ,

𝑟𝑛´1
𝑟𝑛

𝑒𝑖𝜙𝑛´1 ,
𝑟𝑛´1
𝑟𝑛

𝑒´𝑖𝜙𝑛´1

)
,

𝑈𝑛+1(𝑟̂ , 𝑟𝑛, 𝑟𝑛+1, 𝜙1, . . . , 𝜙𝑛) = A𝑛+1

(
𝑟1
𝑟𝑛+1

𝑒𝑖𝜙1 ,
𝑟1
𝑟𝑛+1

𝑒´𝑖𝜙1 , . . . ,
𝑟𝑛

𝑟𝑛+1
𝑒𝑖𝜙𝑛 ,

𝑟𝑛

𝑟𝑛+1
𝑒´𝑖𝜙𝑛 ,𝑚𝑛

)
,

(5.6)

where
(1) A𝑛 (𝑧1, 𝑧1, . . . , 𝑧𝑛´1, 𝑧𝑛´1) is analytic with respect to its arguments in a neighborhood of 0

and satisfies

A𝑛 (𝑧1, 𝑧1, . . . , 𝑧𝑛´1, 𝑧𝑛´1) = O2(𝑧1, 𝑧1, . . . , 𝑧𝑛´1, 𝑧𝑛´1), (5.7)

(2) for any 𝐾 ą 1, there exists𝑚 ą 0 such that A𝑛+1(𝑧1, 𝑧1, . . . , 𝑧𝑛, 𝑧𝑛,𝑚𝑛) is analytic in

𝐷𝐾,𝑚 ={|𝑧 𝑗 |, |𝑧 𝑗 | ă 𝐾´1, 𝑗 = 1, . . . , 𝑛 ´ 1, |𝑧𝑛 |, |𝑧𝑛 | ă 𝐾,
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|𝑧𝑛 ´ 1|, |𝑧𝑛 ´ 1| ą 𝐾´1, |𝑚𝑛 | ă𝑚}

and, defining

Â𝑛+1(𝑧, 𝑧,𝑚𝑛) =A𝑛+1(0, . . . , 0, 𝑧, 𝑧,𝑚𝑛) (5.8)

=
𝑀𝑛���1 + 𝑚𝑛

𝑀𝑛+1
𝑧

��� + 𝑚𝑛���1 ´
𝑀𝑛

𝑀𝑛+1
𝑧

��� ´𝑀𝑛+1

=
𝑀𝑛(

1 + 𝑚𝑛

𝑀𝑛+1
(𝑧 + 𝑧) + 𝑚2

𝑛

𝑀2
𝑛+1
𝑧𝑧

)1/2
𝑚𝑛(

1 ´
𝑀𝑛

𝑀𝑛+1
(𝑧 + 𝑧) + 𝑀2

𝑛

𝑀2
𝑛+1
𝑧𝑧

)1/2 ´𝑀𝑛+1,

one has

A𝑛+1(𝑧1, 𝑧1, . . . , 𝑧𝑛, 𝑧𝑛,𝑚𝑛) ´ Â𝑛+1(𝑧𝑛, 𝑧𝑛,𝑚𝑛) = O2(𝑧1, 𝑧1, . . . , 𝑧𝑛´1, 𝑧𝑛´1), (5.9)

uniformly in 𝐷𝐾,𝑚𝜌 . Finally,

𝑇 (𝑟,𝑦,𝐺) =
𝑛+1∑︁
𝑗=1

1
2𝜇 𝑗

(
𝑦2
𝑗 +

𝐺2
𝑗

𝑟 2
𝑗

)
.

Proof. In view of (5.3), we clearly have that

A𝑛 (𝑧1, 𝑧1, . . . , 𝑧𝑛´1, 𝑧𝑛´1) =
𝑚0���1 + ∑

1ďℓď𝑛´1
𝑚ℓ

𝑀ℓ+1
𝑧ℓ

���+ ∑︁
1ď𝑗ď𝑛´1

𝑚 𝑗���1 ´ 𝑧 𝑗 +
∑
𝑗ďℓď𝑛´1

𝑚ℓ

𝑀ℓ+1
𝑧ℓ

���´𝑀𝑛

and

A𝑛+1(𝑧1, 𝑧1, . . . , 𝑧𝑛, 𝑧𝑛,𝑚𝑛) =
𝑚0���1 + ∑

1ďℓď𝑛
𝑚ℓ

𝑀ℓ+1
𝑧ℓ

��� + ∑︁
1ď𝑗ď𝑛

𝑚 𝑗���1 ´ 𝑧 𝑗 +
∑
𝑗ďℓď𝑛

𝑚ℓ

𝑀ℓ+1
𝑧ℓ

��� ´𝑀𝑛+1.

The claim is then a straightforward computation. Formulas (5.7) and (5.9) are obtained by
expanding in powers of 𝑧1, 𝑧1, . . . , 𝑧𝑛´1, 𝑧𝑛´1. The first order terms cancel out identically. □

Now we reduce the number of equations by the total angular momentum. To do so, we
consider the symplectic change of variables

𝑟̃𝑖 = 𝑟𝑖 , 𝑦𝑖 = 𝑦𝑖 , 𝑖 = 1, . . . , 𝑛 + 1

𝐺𝑖 = 𝐺𝑖 , 𝜃𝑖 = 𝜃𝑖 ´ 𝜃𝑛+1, 𝑖 = 1, . . . , 𝑛

𝐺𝑛+1 = 𝐺1 + ¨ ¨ ¨ +𝐺𝑛+1, 𝜃𝑛+1 = 𝜃𝑛+1.

(5.10)

Since the total angular momentum Θ = 𝐺1 + ¨ ¨ ¨ +𝐺𝑛+1 = 𝐺𝑛+1 is a conserved quantity, the
Hamiltonian in the new variables does not depend on 𝜃𝑛+1.
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We remark that, since the potential𝑈 in (5.3) only depends on the angles through 𝜃𝑖´𝜃 𝑗 ,
with 1 ď 𝑖, 𝑗 ď 𝑛 ´ 1, in the new variables (5.10) it has the same expression. We will use
it with the same name. The same happens to 𝑈𝑛 but not to 𝑈𝑛+1. Dropping the tildes from
the variables, the potential 𝑈 in the new variables — which we denote again with the same
letter although now does not depend on 𝜃𝑛+1 — is

𝑈 (𝑟̂ , 𝑟𝑛, 𝜃, 𝜃𝑛) = 𝑈 (𝑟̂ , 𝜃 ) +𝑈𝑛 (𝑟̂ , 𝑟𝑛, 𝜃1 ´ 𝜃𝑛, . . . , 𝜃𝑛´1 ´ 𝜃𝑛) +𝑈𝑛+1(𝑟̂ , 𝑟𝑛, 𝑟𝑛+1, 𝜃, 𝜃𝑛). (5.11)

The Hamiltonian in the new variables is

𝐻 (𝑟̂ , 𝑦, 𝜃,𝐺, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛) = 𝐻 (𝑟̂ , 𝑦, 𝜃,𝐺) + H (𝑟̂ , 𝑦, 𝜃,𝐺, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛),
(5.12)

where
𝐻 (𝑟̂ , 𝑦, 𝜃,𝐺) = 𝑇 (𝑟̂ , 𝑦,𝐺) ´𝑈 (𝑟̂ , 𝜃 ),

with

𝑇 (𝑟̂ , 𝑦,𝐺) =
𝑛´1∑︁
𝑗=1

1
2𝜇 𝑗

(
𝑦2
𝑗 +

𝐺2
𝑗

𝑟 2
𝑗

)
, (5.13)

the potential𝑈 was introduced in (5.3) and

H(𝑟̂ , 𝑦, 𝜃,𝐺, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛) = T (𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1,𝐺,𝐺𝑛) ´

(
𝑈 (𝑟, 𝜃 ) ´𝑈 (𝑟̂ , 𝜃 )

)
,

(5.14)
with

T (𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1,𝐺,𝐺𝑛) =
1

2𝜇𝑛

(
𝑦2
𝑛 +

𝐺2
𝑛

𝑟 2
𝑛

)
+ 1

2𝜇𝑛+1

(
𝑦2
𝑛+1 +

(Θ ´𝐺1 ¨ ¨ ¨ ´𝐺𝑛)2

𝑟 2
𝑛+1

)
.

5.2 A torus in the 𝒏-body problem

The Hamiltonian 𝐻 = 𝑇 ´ 𝑈 , with 𝑇 and 𝑈 defined in (5.13) and (5.3), respectively, is the
Hamiltonian of a planar𝑛-body problem in Jacobi coordinates. As such, it possesses 2(𝑛´1)-
dimensional KAM invariant tori. Let 𝜔 P R2(𝑛´1) be a Diophantine frequency for which a
KAM tori of 𝐻 exists. There exists a symplectic with respect to the standard 2-form 𝑑𝑟̂ ^

𝑑𝑦 +𝑑𝜃 ^𝑑𝐺 , analytic change of variables (𝑟̂ , 𝑦, 𝜃,𝐺) = Φ̂(𝜑, 𝜌), (𝜑, 𝜌) P T2(𝑛´1) ˆ𝐵, where
𝐵 Ă R2(𝑛´1) is some ball, such that

𝐻𝜔 (𝜑, 𝜌) = 𝐻 ˝ Φ̂(𝜑, 𝜌) = ⟨𝜔, 𝜌⟩ + O2(𝜌).

Let
Φ(𝜑, 𝜌, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛) = (Φ̂(𝜑, 𝜌), 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛).

It is canonical in the sense that transforms the standard 2-form into

𝑑𝜑 ^ 𝑑𝜌 + 𝑑𝑟𝑛 ^ 𝑑𝑦𝑛 + 𝑑𝑟𝑛+1 ^ 𝑑𝑦𝑛+1 + 𝑑𝜃𝑛 ^ 𝑑𝐺𝑛 . (5.15)
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We define

𝐻𝜔 (𝜑, 𝜌, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛) = 𝐻 ˝ Φ(𝜑, 𝜌, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛)
= 𝐻𝜔 (𝜑, 𝜌) + H̃ ˝ Φ(𝜑, 𝜌, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛),

(5.16)

the Hamiltonian in the new variables.
We define the function

Θ̃(𝜑, 𝜌) = Θ ´ (𝐺1 + ¨ ¨ ¨ +𝐺𝑛´1) ˝ Φ̂(𝜑, 𝜌). (5.17)

Since, for 𝜌 = 0, 𝐺1 + ¨ ¨ ¨ +𝐺𝑛´1 is a conserved quantity of 𝐻𝜔 , we have that

Θ̃0
0 = Θ ´ (𝐺1 + ¨ ¨ ¨ +𝐺𝑛´1) ˝ Φ̂(𝜑, 0) (5.18)

does not depend on 𝜑 and it is the average with respect to 𝜑 of Θ̃(𝜑, 0).
Theorem 1.1 is a consequence of the following result.

Theorem 5.2. If 𝑚𝑛,𝑚𝑛+1 ą 0 are small enough, then Hamiltonian (5.16) satisfies the
following.

• Collinear case. There exist𝐴 = 1+O(𝑚𝑛,𝑚𝑛+1), depending on𝑚𝑛,𝑚𝑛+1, and𝐺0
𝑛 , depend-

ing on𝑚𝑛,𝑚𝑛+1 and Θ̃0
0, and two 2 + 2(𝑛 ´ 1)-dimensional analytic invariant manifolds,

𝑊¯

Col, invariant by the flow generated by (5.16) such that, for any solution

(𝜑, 𝜌, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛) (𝑡) P𝑊¯

Col,

there exists 𝜑0
˘ P T2(𝑛´1) such that

lim
𝑡Ñ˘8

𝑟𝑛 (𝑡) = lim
𝑡Ñ˘8

𝑟𝑛+1(𝑡) = 8, lim
𝑡Ñ˘8

𝜃𝑛 (𝑡) = 𝜋,

lim
𝑡Ñ˘8

𝑦𝑛 (𝑡) = lim
𝑡Ñ˘8

𝑦𝑛+1(𝑡) = 0, lim
𝑡Ñ˘8

𝐺𝑛 (𝑡) = 𝐺0
𝑛,

lim
𝑡Ñ˘8

𝜌 (𝑡) = 0, lim
𝑡Ñ˘8

[𝜑 (𝑡) ´ 𝜔𝑡] = 𝜑0
˘

and
lim

𝑡Ñ˘8

𝑟𝑛+1(𝑡)
𝑟𝑛 (𝑡)

= 𝐴.

• Equilateral case. There exist 𝜃0 = 𝜋/3+O(𝑚𝑛,𝑚𝑛+1) and𝐴 = 1+O(𝑚𝑛,𝑚𝑛+1), depending
on𝑚𝑛,𝑚𝑛+1, and 𝐺0

𝑛 , depending on𝑚𝑛,𝑚𝑛+1 and Θ̃0
0, and two 3 + 2(𝑛 ´ 1)-dimensional

analytic invariant manifold,𝑊¯

Eq , invariant by the flow generated by (5.16) such that, for
any solution (𝜑, 𝜌, 𝑟𝑛, 𝑦𝑛, 𝑟𝑛+1, 𝑦𝑛+1, 𝜃𝑛,𝐺𝑛) (𝑡) P𝑊¯

Eq , there exists 𝜑
0
˘ P T2(𝑛´1) such that

lim
𝑡Ñ˘8

𝑟𝑛 (𝑡) = lim
𝑡Ñ˘8

𝑟𝑛+1(𝑡) = 8, lim
𝑡Ñ˘8

𝜃𝑛 (𝑡) = 𝜃0,

lim
𝑡Ñ˘8

𝑦𝑛 (𝑡) = lim
𝑡Ñ˘8

𝑦𝑛+1(𝑡) = 0, lim
𝑡Ñ˘8

𝐺𝑛 (𝑡) = 𝐺0
𝑛,

lim
𝑡Ñ˘8

𝜌 (𝑡) = 0, lim
𝑡Ñ˘8

[𝜑 (𝑡) ´ 𝜔𝑡] = 𝜑0
˘
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and
lim

𝑡Ñ˘8

𝑟𝑛+1(𝑡)
𝑟𝑛 (𝑡)

= 𝐴.

We devote the rest of the section to the proof of the theorem. The collinear case is
a immediate consequence of Proposition 5.9 and, the equilateral one, of Proposition 5.12,
below.

5.3 Local behaviour at infinity: double McGehee coordinates
In order to study the behaviour of the systemwhen 𝑟𝑛+1, 𝑟𝑛 " 𝑟𝑖 , 𝑖 = 1, . . . , 𝑛´1, we introduce
the double McGehee coordinates 𝑥𝑛 𝑥𝑛+1, 𝑦𝑛, 𝑦𝑛+1 through

𝑟𝑛 =
2𝛼𝑛
𝑥2
𝑛

, 𝑦𝑛 = 𝛽𝑛𝑦𝑛, 𝑟𝑛+1 =
2𝛼𝑛+1

𝑥2
𝑛+1

, 𝑦𝑛+1 = 𝛽𝑛+1𝑦𝑛+1, (5.19)

where 𝛼𝑛 , 𝛽𝑛 , 𝛼𝑛+1 and 𝛽𝑛+1 are constants, depending on𝑚𝑛 ,𝑚𝑛+1, such that

𝛽𝑛

4𝜇𝑛𝛼𝑛
=
𝑚𝑛𝑀𝑛

4𝛼2
𝑛𝛽𝑛

= 1,

𝛽𝑛+1
4𝜇𝑛+1𝛼𝑛+1

=
𝑚𝑛+1𝑀𝑛+1

4𝛼2
𝑛+1𝛽𝑛+1

= 1,
(5.20)

that is,
𝛼𝑛 =

1
24/3𝑀

1/3
𝑛+1, 𝛽𝑛 = 22/3𝑀𝑛𝑚𝑛

𝑀
2/3
𝑛+1

,

𝛼𝑛+1 =
1

24/3𝑀
1/3
𝑛+2, 𝛽𝑛+1 = 22/3𝑀𝑛+1𝑚𝑛+1

𝑀
2/3
𝑛+2

.

(5.21)

We are interested in the case where 𝑚0 + ¨ ¨ ¨ +𝑚𝑛´1 is of order 1 while 𝑚𝑛 and 𝑚𝑛+1 are
small. In particular, the constants 𝛼𝑛 and 𝛼𝑛+1 are of order 1 while 𝛽𝑛 and 𝛽𝑛+1 are small.
Furthermore, we have that

𝛼𝑛

𝛼𝑛+1
= 1 + O

(
𝑚𝑛+1
𝑀𝑛+1

)
. (5.22)

The change (5.19) is not symplectic. It transforms the form (5.15) into

𝑑𝜑 ^ 𝑑𝜌 ´
4𝛼𝑛𝛽𝑛
𝑥3
𝑛

𝑑𝑥𝑛 ^ 𝑑𝑦𝑛 ´
4𝛼𝑛+1𝛽𝑛+1

𝑥3
𝑛+1

𝑑𝑥𝑛+1 ^ 𝑑𝑦𝑛+1 + 𝑑𝜃𝑛 ^ 𝑑𝐺𝑛 . (5.23)

We denote H̃ = T̃ ´𝑈 the HamiltonianH in (5.14) and𝐻 = 𝐻 +H̃ in (5.12) both expressed
in these new variables. We drop the tildes on the 𝑦 variables.

Taking into account (5.11), (5.3), (5.4) and (5.5), the potential 𝑈 ´ 𝑈 (see (5.11)) is
transformed into

𝑈𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝑥𝑛+1, 𝜃𝑛) =
𝑚𝑛𝑀𝑛

2𝛼𝑛
𝑥2
𝑛 +

𝑚𝑛+1𝑀𝑛+1
2𝛼𝑛+1

𝑥2
𝑛+1 (5.24)
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+𝑚𝑛

𝑥2
𝑛

2𝛼𝑛
𝑈𝑛,𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝜃𝑛) +𝑚𝑛+1

𝑥2
𝑛+1

2𝛼𝑛+1
𝑈𝑛+1,𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝑥𝑛+1, 𝜃𝑛),

where

𝑈𝑛,𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝜃𝑛) = 𝑈𝑛
(̂
𝑟 (𝜑, 𝜌), 2𝛼𝑛

𝑥2
𝑛

, 𝜃1(𝜑, 𝜌) ´ 𝜃𝑛, . . . , 𝜃𝑛´1(𝜑, 𝜌) ´ 𝜃𝑛

)
, (5.25)

𝑈𝑛+1,𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝑥𝑛+1, 𝜃𝑛) = 𝑈𝑛+1

(̂
𝑟 (𝜑, 𝜌), 2𝛼𝑛

𝑥2
𝑛

,
2𝛼𝑛+1

𝑥2
𝑛+1

, 𝜃1(𝜑, 𝜌), . . . , 𝜃𝑛´1(𝜑, 𝜌), 𝜃𝑛
)
,

with (𝑟1(𝜑, 𝜌), . . . , 𝑟𝑛´1(𝜑, 𝜌), 𝜃1(𝜑, 𝜌), . . . , 𝜃𝑛´1(𝜑, 𝜌)) = (𝑟̂ , 𝜃 ) ˝ Φ̂(𝜑, 𝜌), while the kinetic
energy part ofH becomes

T̃𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1,𝐺𝑛) =
𝛽2
𝑛

2𝜇𝑛
𝑦2
𝑛 +

𝛽2
𝑛+1

2𝜇𝑛+1
𝑦2
𝑛+1 +

𝐺2
𝑛𝑥

4
𝑛

4𝛼2
𝑛𝜇𝑛

+
(Θ̃(𝜑, 𝜌) ´𝐺𝑛)2𝑥4

𝑛+1
4𝛼2
𝑛+1𝜇𝑛+1

, (5.26)

where Θ̃ was introduced in (5.17).
Proposition 5.3. Let𝑚0, . . . ,𝑚𝑛´1 P R+ be fixed.
(1) 𝑈𝑛,𝜔 is analytic with respect to its arguments in a neighborhood of (𝜌, 𝑥𝑛) = 0 and admits

an expansion of the form

𝑈𝑛,𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝜃𝑛) =
∑︁

𝑗ě2,ℓě0
𝑐 𝑗,ℓ (𝜑, 𝜃𝑛)𝑥2𝑗

𝑛 𝜌
ℓ .

(2) The function𝑈𝑛+1,𝜔 can be written as

𝑈𝑛+1,𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝑥𝑛+1, 𝜃𝑛) = 𝑢0

(
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒𝑖𝜃𝑛 ,
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒´𝑖𝜃𝑛

)
+

∑︁
𝑘ě2

𝑢𝑘

(
𝜑, 𝜌,

𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒𝑖𝜃𝑛 ,
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒´𝑖𝜃𝑛

)
𝑥2𝑘
𝑛+1,

where, given 𝐾 ą 1, 𝑢 𝑗 (𝜑, 𝜌, 𝑧, 𝑧) is analytic in a neighborhood of 𝜌 = 0, |𝑧 |, |𝑧 | ă 𝐾 ,
|1 ´ 𝑧 |, |1 ´ 𝑧 | ě 𝐾´1 and

𝑢0(𝑧, 𝑧) = Â𝑛+1(𝑧, 𝑧,𝑚𝑛) (5.27)

where Â𝑛+1 was introduced in (5.8). For 𝑘 ě 2, we introduce the expansion

𝑢𝑘 (𝜑, 𝜌, 𝑧, 𝑧) =
∑︁
𝑗ě0

𝑢𝑘,𝑗 (𝜑, 𝑧, 𝑧)𝜌 𝑗 .

Proof. The claim for 𝑈𝑛,𝜔 follows immediately from (5.25), (5.4) and item (1) of Proposi-
tion 5.1.
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As for𝑈𝑛+1,𝜔 , in view of (5.6), we have that

𝑈𝑛+1,𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝑥𝑛+1, 𝜃𝑛) = A𝑛+1

(
𝑟1(𝜑, 𝜌)

𝑥2
𝑛+1

2𝛼𝑛+1
𝑒𝑖𝜃1 (𝜑,𝜌 ) , 𝑟1(𝜑, 𝜌)

𝑥2
𝑛+1

2𝛼𝑛+1
𝑒´𝑖𝜃1 (𝜑,𝜌 ) ,

. . . , 𝑟𝑛´1(𝜑, 𝜌)
𝑥2
𝑛+1

2𝛼𝑛+1
𝑒𝑖𝜃𝑛´1 (𝜑,𝜌 ) , 𝑟𝑛´1(𝜑, 𝜌)

𝑥2
𝑛+1

2𝛼𝑛+1
𝑒´𝑖𝜃𝑛´1 (𝜑,𝜌 ) ,

𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒𝑖𝜃𝑛 ,
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒´𝑖𝜃𝑛

)
.

The claim follows immediately from item (2) of Proposition 5.1. □

Let
𝑉0(𝛼, 𝜃 ) = 𝑢0(𝛼𝑒𝑖𝜃 , 𝛼𝑒´𝑖𝜃 ).

The following lemma summarizes the properties of the functions 𝑢0, 𝑉0 that will be need.
Lemma 5.4. There exist 𝛿, 𝐾,𝑚 ą 0 such that, for all 0 ď 𝑚𝑛 ď 𝑚, (𝛼, 𝜃 ) P [1 ´ 𝛿, 1 + 𝛿] ˆ

[𝜋 ´ 𝛿, 𝜋 + 𝛿] Y [1 ´ 𝛿, 1 + 𝛿] ˆ [𝜋/3 ´ 𝛿, 𝜋/3 + 𝛿] where 𝑉0 is analytic and����B 𝑗𝑉0
B𝛼 𝑗

(𝛼, 𝜃 )
���� ď 𝐾𝑚𝑛, 𝑗 = 0, 1, 2.

Moreover,

B𝑉0
B𝜃

(𝛼, 𝜃 ) = ´
7
8𝑚𝑛 (𝜃 ´ 𝜋) (1 + O(𝛼 ´ 1,𝑚𝑛, 𝜃 ´ 𝜋)),

B𝑉0
B𝜃

(𝛼, 𝜃 ) = 9
4𝑚𝑛

(
𝜃 ´

𝜋

3 + O(𝛼 ´ 1,𝑚𝑛) + O2(𝛼 ´ 1,𝑚𝑛, 𝜃 ´ 𝜋/3)
)
.

In particular, for each (𝛼,𝑚𝑛) P [1 ´ 𝛿, 1 + 𝛿] ˆ [0,𝑚], the equation

B𝑉0
B𝜃

(𝛼, 𝜃 ) = 0

has the solutions 𝜃 = 𝜋 and the unique analytic solution in [𝜋/3 ´ 𝛿, 𝜋/3 + 𝛿], 𝜃 0(𝛼,𝑚𝑛),
satisfying

𝜃 0(𝛼,𝑚𝑛) =
𝜋

3 + O(𝛼 ´ 1,𝑚𝑛).

Proof. In view of (5.8) and recalling that𝑀𝑛+1 = 𝑀𝑛 +𝑚𝑛 ,

𝑉0(𝛼, 𝜃 ) =
𝑀𝑛(

1 + 2 𝑚𝑛

𝑀𝑛+1
𝛼 cos𝜃 + 𝑚2

𝑛

𝑀2
𝑛+1
𝛼2

)1/2 + 𝑚𝑛(
1 ´ 2 𝑀𝑛

𝑀𝑛+1
𝛼 cos𝜃 + 𝑀2

𝑛

𝑀2
𝑛+1
𝛼2

)1/2 ´𝑀𝑛+1

is clearly analytic in neighborhoods of (𝛼, 𝜃,𝑚𝑛) = (1, 𝜋, 0) and (𝛼, 𝜃,𝑚𝑛) = (1, 𝜋/3, 0),
since, then,𝑀𝑛/𝑀𝑛+1 = 1, and 𝑉0 |𝑚𝑛=0 = 0. This implies the first claim.

The second claim is a straightforward computation. The third one is an immediate
consequence of the second. □
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5.4 The constants 𝑨, 𝑩 and 𝑮0
𝒏

Next lemma provides constants that will be needed later.
Lemma 5.5. Let𝑀𝑛 =

∑𝑛´1
𝑗=0 𝑚 𝑗 be fixed. Consider the equations for the constants 𝐴 and 𝐵



𝐴3𝐵 = 𝐴,(
1 + 𝑚𝑛+1

4𝛼2
𝑛+1𝛽𝑛+1

𝑉0

(
𝛼𝑛

𝛼𝑛+1
𝐴2, 𝜃

)
+ 𝑚𝑛+1𝛼𝑛

4𝛼3
𝑛+1𝛽𝑛+1

B𝑉0
B𝛼

(
𝛼𝑛

𝛼𝑛+1
𝐴2, 𝜃

)
𝐴2

)
𝐴4

=

(
1 ´

𝑚𝑛+1

4𝛼2
𝑛+1𝛽𝑛

B𝑉0
B𝛼

(
𝛼𝑛

𝛼𝑛+1
𝐴2, 𝜃

)
𝐴4

)
𝐵,

with 𝜃 = 𝜋 or 𝜃 = 𝜃 0(𝐴,𝑚𝑛) := 𝜃 0
(
𝛼𝑛
𝛼𝑛+1

𝐴2,𝑚𝑛

)
, where 𝜃 0 is the function introduced in

Lemma 5.4. Then, if 𝑚𝑛 and 𝑚𝑛+1 are small enough, they admit two pairs of solutions, 𝐴, 𝐵,
corresponding to 𝜃 = 𝜋 and 𝜃 = 𝜃 0(𝐴,𝑚𝑛),

𝐴 = 1 + O(𝑚𝑛,𝑚𝑛+1), 𝐵 = 1 + O(𝑚𝑛,𝑚𝑛+1).

As a consequence 𝜃 0(𝐴,𝑚𝑛) = 𝜋
3 + O(𝑚𝑛,𝑚𝑛+1).

Proof. We emphasize that, for 𝑧 P C, 𝑧 ≠ 1, Â𝑛+1(𝑧, 𝑧, 0) = 𝑀𝑛 ´ 𝑀𝑛+1 = 0. Then, when
𝑚𝑛 = 0, 𝑉0(𝛼, 𝜃 ) = Â𝑛+1(𝛼𝑒𝑖𝜃 , 𝛼𝑒´𝑖𝜃 , 0) = 0 for all 𝛼, 𝜃 such that 𝛼𝑒𝑖𝜃 ≠ 1. Using this,
the claim simply follows by applying the standard implicit function theorem at the value
(𝐴, 𝐵,𝑚𝑛,𝑚𝑛+1) = (1, 1, 0, 0), taking into account the definitions of 𝛼𝑛 , 𝛽𝑛 , 𝛼𝑛+1 and 𝛽𝑛+1
in (5.21) and Lemma 5.4. □

We expand Θ̃, introduced in (5.17), as

Θ̃(𝜑, 𝜌) =
∑︁
𝑘ě0

Θ̃𝑘 (𝜑)𝜌𝑘 .

We also introduce

𝐺0
𝑛 =

Θ̃0
0𝐴

4

𝛼2
𝑛+1𝜇𝑛+1

(
1

𝛼2
𝑛𝜇𝑛

+ 𝐴4

𝛼2
𝑛+1𝜇𝑛+1

)´1
, (5.28)

where 𝐴 is given by Lemma 5.5 and Θ̃0
0 was introduced in (5.18). Observe that 𝐺0

𝑛 can take
two different values, one for 𝜃 = 𝜋 and another one for 𝜃 = 𝜃 0(𝐴,𝑚𝑛) in the definition of
the constants 𝐴 and 𝐵. We use the same letter to denote both quantities.

We use 𝐺0
𝑛 to introduce a new variable 𝑔𝑛 through 𝐺𝑛 = 𝐺0

𝑛 + 𝑔𝑛 . This change, which
preserves the 2-form (5.23), only affects the kinetic energy part of the Hamiltonian, in (5.26),
which now becomes

T̃𝜔 (𝜑, 𝜌, 𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1, 𝑔𝑛) =
𝛽2
𝑛

2𝜇𝑛
𝑦2
𝑛 +

𝛽2
𝑛+1

2𝜇𝑛+1
𝑦2
𝑛+1

+ (𝐺0
𝑛 + 𝑔𝑛)2𝑥4

𝑛

4𝛼2
𝑛𝜇𝑛

+
(Θ̃(𝜑, 𝜌) ´𝐺0

𝑛 ´ 𝑔𝑛)2𝑥4
𝑛+1

4𝛼2
𝑛+1𝜇𝑛+1

.
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5.5 Some steps of normal form
In order to apply Theorems 2.15 and 2.16 we will need some coefficients of the expansions of
T̃𝜔 and𝑈𝜔 in powers of 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1/𝑥𝑛 , 𝜃𝑛 and 𝜌 to be independent of𝜑 . To accomplish this,
we perform several steps of normal form, as is done in [14]. We use the following immediate
fact. Given the generating function 𝑆 (𝜑, 𝜌,𝑦𝑛, 𝑥𝑛, 𝑦𝑛+1, 𝑥𝑛+1, 𝜃𝑛, 𝑔𝑛), if the equations

𝜑 = 𝜑 + B𝑆

B𝜌
, 𝜌 = 𝜌 + B𝑆

B𝜑

2𝛼𝑘𝛽𝑘
𝑥2
𝑘

=
2𝛼𝑘𝛽𝑘
𝑥2
𝑘

+ B𝑆

B𝑦𝑘
,

4𝛼𝑘𝛽𝑘
𝑥3
𝑘

𝑦𝑘 =
4𝛼𝑘𝛽𝑘
𝑥3
𝑘

𝑦𝑘 ´
B𝑆

B𝑥𝑘
, 𝑘 = 𝑛, 𝑛 + 1

𝜃𝑛 = 𝜃𝑛 +
B𝑆

B𝑔𝑛
, 𝑔𝑛 = 𝑔𝑛 +

B𝑆

B𝜃𝑛
,

(5.29)

define a close to the identity map

𝑇 : (𝜑, 𝜌, 𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1, 𝜃𝑛, 𝑔𝑛) ÞÑ (𝜑, 𝜌, 𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1, 𝜃𝑛, 𝑔𝑛),

then 𝑇 preserves the 2-form (5.23).
Proposition 5.6. Choose 𝜃 = 𝜋 or 𝜃 = 𝜃 0(𝐴,𝑚𝑛) in Lemma 5.5 and 𝐾 as in Proposition 5.3.
Then, after an averaging procedure, Hamiltonian (5.16) becomes

𝐻𝜔 (𝜑, 𝜌, 𝜃𝑛, 𝑔𝑛, 𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1)

= ⟨𝜔, 𝜌⟩ + 𝛽2
𝑛

2𝜇𝑛
𝑦2
𝑛 +

𝛽2
𝑛+1

2𝜇𝑛+1
𝑦2
𝑛+1 ´

𝑚𝑛𝑀𝑛

2𝛼𝑛
𝑥2
𝑛 ´

𝑚𝑛+1𝑀𝑛+1
2𝛼𝑛+1

𝑥2
𝑛+1

´𝑚𝑛+1
𝑥2
𝑛+1

2𝛼𝑛+1
𝑢0

(
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒𝑖𝜃𝑛 ,
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒´𝑖𝜃𝑛

)
+ 1

4𝛼2
𝑛𝜇𝑛

(𝐺0
𝑛 + 𝑔𝑛)2𝑥4

𝑛 + Θ̂0𝑥
4
𝑛+1

´
1

2𝛼2
𝑛+1𝜇𝑛+1

(Θ̃0
0 ´𝐺0

𝑛)𝑥4
𝑛+1𝑔𝑛 +

1
4𝛼2
𝑛+1𝜇𝑛+1

𝑥4
𝑛+1𝑔

2
𝑛 + 𝑅(𝜑, 𝜌, 𝜃𝑛, 𝑔𝑛, 𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1),

where
(1) the function 𝑢0(𝑧, 𝑧) was introduced in (5.27) (see also (5.8)),
(2) 𝐺0

𝑛 and Θ̃
0
0 were introduced in (5.28) and (5.18), respectively, and depend on the choice of

𝜃 in Lemma 5.5,
(3) Θ̂0 = [(Θ̃0(𝜑) ´𝐺0

𝑛)2]/(4𝛼2
𝑛+1𝜇𝑛+1) is a constant,

(4) the remainder has the form

𝑅(𝜑, 𝜌, 𝜃𝑛, 𝑔𝑛, 𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1)

=
∑︁

𝑘, 𝑗,𝑚, 𝑙, 𝑟, 𝑠 ě 0,
𝑘 + 𝑗 ě 2

𝑢𝑘,𝑗,𝑚,𝑙,𝑟,𝑠

(
𝜑,
𝑥2
𝑛+1
𝑥2
𝑛

𝑒𝑖𝜃𝑛 ,
𝑥2
𝑛+1
𝑥2
𝑛

𝑒´𝑖𝜃𝑛

)
𝑥2𝑘
𝑛 𝑥

2𝑗
𝑛+1𝑦

𝑚
𝑛 𝑦

𝑙
𝑛+1𝑔

𝑟
𝑛𝜌

𝑠 ,
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and there exists 𝜚 depending on 𝜚 , such that 𝑢𝑘,𝑗,𝑚,𝑙,𝑟,𝑠 are analytic in its arguments when

𝜑 P T2(𝑛´1) , |1 ´ 𝑧1 |, |1 ´ 𝑧1 | ą 𝜚´1 with 𝑧1 =
𝑥2
𝑛+1
𝑥2
𝑛
𝑒𝑖𝜃𝑛 . In addition 𝑅 satisfies

B𝑅

B𝑥𝑛
= O5(𝑥𝑛, 𝑥𝑛+1),

B𝑅

B𝑥𝑛+1
=O5(𝑥𝑛, 𝑥𝑛+1),

B𝑅

B𝑦𝑛
= O6(𝑥𝑛, 𝑥𝑛+1),

B𝑅

B𝑦𝑛+1
=O6(𝑥𝑛, 𝑥𝑛+1),

B𝑅

B𝜑
= (O(𝜌) + O2(𝑦𝑛+1, 𝑔𝑛, 𝑥𝑛, 𝑥𝑛+1))O6(𝑥𝑛, 𝑥𝑛+1),

B𝑅

B𝜌
=O4(𝑥𝑛, 𝑥𝑛+1),

B𝑅

B𝜃𝑛
= O(𝜌)O4(𝑥𝑛, 𝑥𝑛+1) + O6(𝑥𝑛, 𝑥𝑛+1),

B𝑅

B𝑔𝑛
=O(𝜌)O4(𝑥𝑛, 𝑥𝑛+1)

+ O6(𝑥𝑛, 𝑥𝑛+1).

Proof. Using Proposition 5.3 for𝑈𝑛,𝜔 and𝑈𝑛+1,𝜔 we write (with the notation 𝑧 = 𝛼𝑛𝑥
2
𝑛+1

𝛼𝑛+1𝑥2
𝑛
𝑒𝑖𝜃𝑛 )

T̃𝜔 (𝜑, 𝜌, 𝑥𝑛,𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1, 𝑔𝑛) =
𝛽2
𝑛

2𝜇𝑛
𝑦2
𝑛 +

𝛽2
𝑛+1

2𝜇𝑛+1
𝑦2
𝑛+1 +

(𝐺0
𝑛 + 𝑔𝑛)2𝑥4

𝑛

4𝛼2
𝑛𝜇𝑛

+ (𝐺0
𝑛 + 𝑔𝑛)2𝑥4

𝑛

4𝛼2
𝑛𝜇𝑛

+
𝑥4
𝑛+1𝑔

2
𝑛

4𝛼2
𝑛+1𝜇𝑛+1

+
(Θ̃(𝜑, 𝜌) ´𝐺0

𝑛)2𝑥4
𝑛+1

4𝛼2
𝑛+1𝜇𝑛+1

´
1

2𝛼2
𝑛+1𝜇𝑛+1

(Θ̃(𝜑, 𝜌) ´𝐺0
𝑛)𝑔𝑛𝑥4

𝑛+1,

𝑈𝜔 (𝜑, 𝜌, 𝑥𝑛,𝑥𝑛+1, 𝜃𝑛) =
𝑚𝑛𝑀𝑛

2𝛼𝑛
𝑥2
𝑛 +

𝑚𝑛+1𝑀𝑛+1
2𝛼𝑛+1

𝑥2
𝑛+1 +𝑚𝑛

𝑥6
𝑛

2𝛼𝑛
𝑐2,0(𝜑, 𝜃𝑛)

+𝑚𝑛+1
𝑥2
𝑛+1

2𝛼𝑛+1
𝑢0 (𝑧, 𝑧) +𝑚𝑛+1

𝑥6
𝑛+1

2𝛼𝑛+1
𝑢2,0(𝜑, 𝑧, 𝑧) + 𝑅0(𝜑, 𝜌, 𝑥𝑛, 𝜃𝑛)

with 𝑢2,0(𝜑, 𝑧, 𝑧) = 𝑢2(𝜑, 𝜌, 𝑧, 𝑧) and 𝑅0 satisfying the properties stated for 𝑅 in the Proposi-
tion. Indeed, the problematic terms are the ones of the form 𝑢𝑘 (𝜑, 𝜌, 𝑧, 𝑧)𝑥2𝑘+2

𝑛+1 , 𝑘 ě 3, with
𝑢𝑘 analytic. For those terms

B𝑥𝑛 (𝑢𝑘 (𝜑, 𝜌, 𝑧, 𝑧)𝑥2𝑘+2
𝑛+1 ), B𝑥𝑛+1 (𝑢𝑘 (𝜑, 𝜌, 𝑧, 𝑧)𝑥2𝑘+2

𝑛+1 ) = O(𝑥2𝑘+1
𝑛 ),

provided |𝑧´ 1|, |𝑧´ 1| ą 𝜚´1 and𝑚𝑛,𝑚𝑛+1 are small enough, and its is immediate to check
that these terms satisfy the other properties stated for 𝑅.

Therefore, the terms on the Hamiltonian we need to average out are the following:
(1) 𝑥4

𝑛+1 in T̃𝜔 ,
(2) 𝑥4

𝑛+1𝑔𝑛 in T̃𝜔 ,
(3) 𝑥6

𝑛 in 𝑥2
𝑛𝑈𝑛,𝜔 ,

(4) 𝑥6
𝑛+1𝑢 (𝜑, 𝜌,

𝛼𝑛𝑥
2
𝑛+1

𝛼𝑛+1𝑥2
𝑛
𝑒𝑖𝜃𝑛 ,

𝛼𝑛𝑥
2
𝑛+1

𝛼𝑛+1𝑥2
𝑛
𝑒´𝑖𝜃𝑛 ) that comes from the term 𝑢2 in 𝑈𝜔 and a contribu-

tion from the averaging step (2), and
(5) 𝛽𝑛+1𝑏1(𝜑)𝑥6

𝑛+1𝑦𝑛+1/(4𝛼𝑛+1𝜇𝑛+1). This term appears after the averaging step (1).
We average them out with a sequence of transformations defined through (5.29) with

suitable generating functions 𝑆 . We drop the tildes in the variables after each step. Along the
proof, after performing each step of averaging, we take care about the new terms that can
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not be considered as a remainder. The tedious but immediate substitution of the sequence
of transformations is left to the reader.

We recall that, given a function 𝑓 depending on some angles 𝜑 , [𝑓 ] denotes its average
with respect 𝜑 .

We start with (1). We consider in (5.29) the generating function 𝑆 (𝜑, 𝜌, 𝑥𝑛+1) =

𝑏1(𝜑, 𝜌)𝑥4
𝑛+1, where ⟨𝜔,∇𝜑𝑏1⟩ = (4𝛼2

𝑛+1𝜇𝑛+1)´1
( (
Θ̃(𝜑̃, 𝜌) ´𝐺0

𝑛

)2
´ [

(
Θ̃(𝜑̃, 𝜌) ´𝐺0

𝑛

)2]
)
. We

recall that 𝜔 is Diophantine, and then the existence and analyticity of 𝑏1 is guaranteed by
Theorem 2.1 (see also [33]). In addition, we can select it with zero mean. Therefore,

𝜌 = 𝜌 ´ ∇𝜑𝑏1(𝜑, 𝜌)𝑥4
𝑛+1, 𝜑 = 𝜑 + ∇𝜌𝑏1(𝜑, 𝜌)𝑥4

𝑛+1,

𝑦𝑛+1 = 𝑦𝑛+1 +
1

𝛼𝑛+1𝛽𝑛+1
𝑏1(𝜑, 𝜌)𝑥6

𝑛+1.

After this change, the term with 𝑥4
𝑛+1 in the kinetic energy becomes

[
(
Θ̃(𝜑̃, 𝜌) ´𝐺0

𝑛

)2] 1
4𝛼2
𝑛+1𝜇𝑛+1

= Θ̂0 + O(𝜌),

with O(𝜌) satisfying the conditions for the remainder 𝑅, to which we add the term (besides
some other terms considered as a remainder)

𝑏1(𝜑̃, 𝜌)
𝛽𝑛+1

𝛼𝑛+1𝜇𝑛+1
𝑥6
𝑛+1𝑦𝑛+1.

We will average out this term in step (5).
As for (2), we consider 𝑏2(𝜑̃, 𝜌) satisfying ⟨𝜔,∇𝜑𝑏2⟩ = ´(2𝛼2

𝑛+1𝜇𝑛+1)´1(Θ̃(𝜑, 𝜌) ´𝐺0
𝑛) ´

[Θ̃(𝜑, 𝜌) ´𝐺0
𝑛] and the generating function 𝑆 (𝜑, 𝜌, 𝑥𝑛+1, 𝑔𝑛) = 𝑏2(𝜑, 𝜌)𝑥4

𝑛+1𝑔𝑛 . Again, since
𝜔 is Diophantine, this equation can be solved. It defines the change

𝜌 = 𝜌 ´ ∇𝜑𝑏2(𝜑, 𝜌)𝑥4
𝑛+1𝑔𝑛, 𝜑 = 𝜑 + ∇𝜌𝑏2(𝜑, 𝜌)𝑥4

𝑛+1𝑔𝑛,

𝑦𝑛+1 = 𝑦𝑛+1 +
2

𝛼𝑛+1𝛽𝑛+1
𝑏2(𝜑, 𝜌)𝑥6

𝑛+1𝑔𝑛, 𝜃𝑛 = 𝜃𝑛 + 𝑏2(𝜑, 𝜌)𝑥4
𝑛+1.

We emphasize that after this change the coefficient of 𝑥4
𝑛+1𝑔𝑛 becomes

´𝑥4
𝑛+1𝑔𝑛

( [Θ̃(𝜑, 𝜌)] ´𝐺0
𝑛)

2𝛼2
𝑛+1𝜇𝑛+1

= ´𝑥4
𝑛+1𝑔𝑛

(Θ̃0
0 ´𝐺0

𝑛)
2𝛼2
𝑛+1𝜇𝑛+1

+ O(𝑥4
𝑛+1𝑔𝑛𝜌)

with O(𝑥4
𝑛+1𝑔𝑛𝜌), independent on 𝜑 , satisfying the remainder conditions. Moreover, this

change of variables produces a new term in the Hamiltonian of the form∑︁
𝑗ě1

𝑢̃ 𝑗 (𝑧, 𝑧)𝑥2+4𝑗
𝑛+1 (𝑏2(𝜑, 𝜌)) 𝑗 = 𝑢̃1(𝑧, 𝑧)𝑥6

𝑛+1𝑏2(𝜑, 0) + O(𝜌𝑥6
𝑛+1) + O(𝑥10

𝑛+1), (5.30)
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where 𝑢 𝑗 are analytic with respect their arguments, provided |𝑧 ´ 1|, |𝑧 ´ 1| ą 𝜚´1, see
Proposition 5.3.

The coefficient 𝑢1 is averaged out in step (4). The rest of the terms go to the remainder.
Now we deal with (3). We consider 𝑆 (𝜑, 𝜃𝑛, 𝑥𝑛) = 𝑏3(𝜑, 𝜃𝑛)𝑥6

𝑛 , where ⟨𝜔,∇𝜑𝑏3⟩ = 𝑐2,0 ´

[𝑐2,0], and is straightforwardly checked that, after the change of variables induced by the
generating function 𝑆 , the new coefficient of 𝑥6

𝑛 is [𝑐2,0] and that the remainder satisfies the
required properties.

To deal with (4), we consider a generating function of the form

𝑆 (𝜑, 𝑥𝑛, 𝑥𝑛+1) = 𝑆
(
𝜑,

𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒𝑖𝜃𝑛 ,
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒´𝑖𝜃𝑛

)
𝑥6
𝑛+1,

with, 𝑆 satisfying
⟨𝜔,∇𝜑𝑆⟩ =

𝑚𝑛+1
2𝛼𝑛+1

(𝑢2,0 ´ [𝑢2,0]) + 𝑢1𝑏2,

where 𝑢1𝑏2, introduced in (5.30), has zero mean. In this case, through (5.29) 𝑆 defines the
change,

𝜌 = 𝜌 ´ ∇𝜑𝑆
(
𝜑, 𝜌, 𝑧̃, 𝑧̃

)
𝑥6
𝑛+1, 𝑔𝑛 = 𝑔𝑛 + 𝐹3

(
𝜑, 𝜌, 𝑧̃, 𝑧̃

)
𝑥6
𝑛+1

𝑦𝑛 = 𝑦𝑛 + 𝐹1
(
𝜑, 𝜌, 𝑧̃, 𝑧̃

)
𝑥2
𝑛𝑥

6
𝑛+1, 𝑦𝑛+1 = 𝑦𝑛+1 + 𝐹2

(
𝜑, 𝜌, 𝑧̃, 𝑧̃

)
𝑥8
𝑛+1,

where 𝑧 = 𝛼𝑛
𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛
, and 𝐹𝑖 , 𝑖 = 1, 2, 3, are analytic functions of their arguments.

Finally, in (5), we consider

𝑆 (𝜑,𝑦𝑛+1, 𝑥𝑛+1) = 𝑏3(𝜑)𝑥6
𝑛+1𝑦𝑛+1,

where ⟨𝜔,∇𝜑𝑏3⟩ = 𝛽𝑛+1𝑏1/(𝛼𝑛+1𝜇𝑛+1). Equations (5.29) define the change

𝑥𝑛+1 = 𝑥𝑛+1(1 + 𝑏3(𝜑̃)𝑥8
𝑛+1)´1/2 = 𝑥𝑛+1 + 𝑆1

(
𝜑, 𝑥8

𝑛+1
)
𝑥9
𝑛+1,

𝑦𝑛+1 = 𝑦𝑛+1(1 ´ 6𝑏3(𝜑̃)𝑥2
𝑛+1)´1/2 = 𝑦𝑛+1 + 𝑆2

(
𝜑, 𝑥8

𝑛+1
)
𝑥8
𝑛+1𝑦𝑛+1,

𝜌 = 𝜌 ´ ∇𝜑𝑏3(𝜑̃)𝑥6
𝑛+1𝑦𝑛+1 = 𝜌 + 𝑆3(𝜑, 𝑥8

𝑛+1)𝑥6
𝑛+1𝑦𝑛+1,

where 𝑆𝑖 , 𝑖 = 1, 2, 3, are analytic in their arguments. □

5.6 Regularization of infinity

In what follows, 𝜃0 will be either´𝜋 or 𝜃 0(𝐴,𝑚𝑛) = 𝜋
3 +O(𝑚𝑛,𝑚𝑛+1) in Lemma 5.5. Recalling

that
𝑢0

(
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒𝑖𝜃𝑛 ,
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

𝑒´𝑖𝜃𝑛

)
= 𝑉0

(
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

, 𝜃𝑛

)
where 𝑉0 was introduced in Lemma 5.4, we define

𝑣̃𝑖, 𝑗 =
B𝑖+𝑗𝑉0
B𝛼𝑖B𝜃 𝑗

(
𝛼𝑛

𝛼𝑛+1
𝐴2, 𝜃0

)
, 𝑖, 𝑗 ě 0. (5.31)

65



By Lemma 5.4, 𝑣̃𝑖, 𝑗 = O(𝑚𝑛).
For future purposes, we introduce the constants

𝜈 =

d

1 ´
𝑚𝑛+1

4𝛼2
𝑛+1𝛽𝑛

𝐴4𝑣̃1,0 = 1 + O(𝑚𝑛+1), Γ𝑛 =
1
2

(
1

𝛼2
𝑛𝜇𝑛

+ 𝐴4

𝛼2
𝑛+1𝜇𝑛+1

)
, (5.32)

where𝐴 and 𝐵 were introduced in Lemma 5.5, whose value depends on the choice of 𝜃0. We
notice that, since

𝜇𝑛

𝜇𝑛+1
=
𝑀𝑛+2𝑀𝑛𝑚𝑛

𝑀2
𝑛+1𝑚𝑛+1

=
𝑚𝑛

𝑚𝑛+1
(1 + O(𝑚𝑛,𝑚𝑛+1)),

𝐴 = 1 + O(𝑚𝑛,𝑚𝑛+1) and the conditions (5.20) and (5.22), we have that

Γ𝑛 =
1

2𝛼2
𝑛𝜇𝑛

(
1 + 1

𝑚𝑛+1
(𝑚𝑛 + O2(𝑚𝑛,𝑚𝑛+1))

)
=

8𝛼𝑛
𝑀𝑛𝑚𝑛𝑚𝑛+1

(𝑚𝑛+1 +𝑚𝑛 + O2(𝑚𝑛,𝑚𝑛+1)) .

(5.33)
The regularization will be obtained as a sequence of simple changes of variables and

blow-ups that are summarized in the following technical result.
Proposition 5.7. Consider the blow-ups given by

𝑥𝑛+1 = 𝑥𝑛 (𝐴 + 𝜉𝑛+1), 𝑦𝑛+1 = 𝑦𝑛 (𝐵 + 𝜂𝑛+1), 𝑦𝑛 = 𝑥𝑛 (𝜈 + 𝜁𝑛),
𝜉𝑛+1 = 𝑥𝑛𝜉𝑛+1, 𝜂𝑛+1 = 𝑥𝑛𝜂𝑛+1, 𝜃𝑛 = 𝜃0 + 𝑥𝑛𝜃𝑛, 𝑔𝑛 = Γ´1

𝑛 𝑔𝑛, 𝜌 = 𝑥3
𝑛𝜌.

Then, denoting 𝑍 = (𝜁𝑛, 𝜉𝑛+1, 𝜂𝑛+1, 𝜃𝑛, 𝑔𝑛, 𝜌𝑛) there exists a linear change of variables 𝑍 = C𝑍 ,
where

𝐶 =

©­­­­­­­«

1 0 0 0 0 0
0 1 + 𝛿2,2 1 + 𝛿2,3 𝛿2,4 𝛿2,5 0
0 ´4 + 𝛿3,2 1 + 𝛿3,3 𝛿3,4 𝛿3,5 0
0 𝛿4,2 𝛿4,3 1 + 𝛿4,4 1 + 𝛿4,5 0
0 𝛿5,2 𝛿5,3 𝛿5,4 ´1 + 𝛿5,5 0
0 0 0 0 0 Id

ª®®®®®®®¬
,

and
𝛿𝑖, 𝑗 = O(𝑚𝑛,𝑚𝑛+1),

such that in these variables the Hamiltonian system with Hamiltonian 𝐻𝜔 has the equations
¤𝑥𝑛 = ´𝜈𝑥4

𝑛 + 𝑥4
𝑛O1(𝜁𝑛) + O9(𝑥𝑛),

¤̃
𝑍 = 𝑥3

𝑛M𝑍 + 𝑥3
𝑛O2(𝑥𝑛, 𝑍 ),

¤𝜑 = 𝜔 + 𝑥3
𝑛O1(𝑥𝑛, 𝑍 ),

(5.34)
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where

M =

©­­­­­­­«

2 + 𝜀1,1 0 0 0 0 0
0 3 + 𝜀2,2 0 0 0 0
0 0 ´2 + 𝜀3,3 0 0 0
0 0 0 1 + 𝜀4,4 0 0
0 0 0 0 ´𝛾2 + 𝜀5,5 0
0 0 0 0 0 (1 + 𝜀6,6)Id

ª®®®®®®®¬
,

with {
𝜀𝑖,𝑖 = O(𝑚𝑛,𝑚𝑛+1), if 𝑖 ≠ 5,
𝜀5,5 = O2(𝑚𝑛,𝑚𝑛+1).

Remark 5.8. Notice that, since the hypotheses of the existence result, Theorem 2.16, only
depend on the dominant terms, there is no need to control the dependence on𝑚𝑛,𝑚𝑛+1 of the
non dominant terms.

Proof. We perform the blow ups in three steps. The first one corresponds to (𝜉𝑛+1, 𝜂𝑛+1):

𝑥𝑛+1 = 𝑥𝑛 (𝐴 + 𝜉𝑛+1), 𝑦𝑛+1 = 𝑦𝑛 (𝐵 + 𝜂𝑛+1).

For any choice of 𝜃0 we have 𝑣̃0,1 = 0 (see definition (5.31) of 𝑣̃0,1 and Lemma 5.4). We
recall that the equations of motion associated to the Hamiltonian𝐻𝜔 , in Proposition 5.6, are
obtained using the 2-form (5.23) taking into account the choice of the constants 𝛼𝑛 , 𝛼𝑛+1, 𝛽𝑛 ,
and 𝛽𝑛+1 in (5.20). Then, also using Lemma5.5 we have that

¤𝜉𝑛+1 =
1
𝑥𝑛

¤𝑥𝑛+1 ´
𝑥𝑛+1

𝑥2
𝑛

¤𝑥𝑛 = ´
1

4𝛼𝑛+1𝛽𝑛+1

𝑥3
𝑛+1
𝑥𝑛

B𝐻𝜔

B𝑦𝑛+1
+ 1

4𝛼𝑛𝛽𝑛
𝑥𝑛𝑥𝑛+1

B𝐻𝜔

B𝑦𝑛

= ´
1

4𝛼𝑛+1𝛽𝑛+1

𝑥3
𝑛+1
𝑥𝑛

(
𝛽2
𝑛+1
𝜇𝑛+1

𝑦𝑛+1 +
B𝑅

B𝑦𝑛+1

)
+ 1

4𝛼𝑛𝛽𝑛
𝑥𝑛𝑥𝑛+1

(
𝛽2
𝑛

𝜇𝑛
𝑦𝑛 +

B𝑅

B𝑦𝑛

)
= ´𝑥2

𝑛𝑦𝑛 (𝐴 + 𝜉𝑛+1)3(𝐵 + 𝜂𝑛+1) + 𝑥2
𝑛𝑦𝑛 (𝐴 + 𝜉𝑛+1) + O8(𝑥𝑛)

= 𝑥2
𝑛𝑦𝑛 (´𝐴3𝐵 +𝐴) ´

(
(3𝐴2𝐵 ´ 1)𝜉𝑛+1 +𝐴3𝜂𝑛+1

)
𝑥2
𝑛𝑦𝑛 + O2(𝜉𝑛+1, 𝜂𝑛+1)𝑥2

𝑛𝑦𝑛 + O8(𝑥𝑛)
= [´(2 + O(𝑚𝑛,𝑚𝑛+1)𝜉𝑛+1 ´ (1 + O(𝑚𝑛,𝑚𝑛+1)𝜂𝑛+1 + O2(𝜉𝑛+1, 𝜂𝑛+1)] 𝑥2

𝑛𝑦𝑛 + O8(𝑥𝑛).

To avoid cumbersome notation, 𝑉0 (and its derivatives) means 𝑉0 evaluated at
(
𝛼𝑛
𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛
, 𝜃

)
.

Similar computations, recalling that 𝑥𝑛+1 = 𝑥𝑛 (𝐴 + 𝜉𝑛+1) and 𝑦𝑛+1 = 𝑦𝑛 (𝐵 + 𝜂𝑛+1), and using
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again Lemma 5.5, lead us to :

¤𝜂𝑛+1 =
1
𝑦𝑛

¤𝑦𝑛+1 ´
𝑦𝑛+1

𝑦2
𝑛

¤𝑦𝑛 =
1

4𝛼𝑛+1𝛽𝑛+1

𝑥3
𝑛+1
𝑦𝑛

B𝐻𝜔

B𝑥𝑛+1
´

1
4𝛼𝑛𝛽𝑛

𝑥3
𝑛𝑦𝑛+1

𝑦2
𝑛

B𝐻𝜔

B𝑥𝑛

=
1

4𝛼𝑛+1𝛽𝑛+1

𝑥4
𝑛+1
𝑦𝑛

(
´
𝑚𝑛+1𝑀𝑛+1
𝛼𝑛+1

´
𝑚𝑛+1
𝛼𝑛+1

𝑉0 ´
𝑚𝑛+1
𝛼𝑛+1

𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

B𝑉0
B𝛼

+ 𝑥´1
𝑛+1O5(𝑥𝑛, 𝑥𝑛+1)

)
´

1
4𝛼𝑛𝛽𝑛

𝑥4
𝑛𝑦𝑛+1

𝑦2
𝑛

(
´
𝑚𝑛𝑀𝑛

𝛼𝑛
+ 𝑚𝑛+1
𝛼𝑛+1

𝛼𝑛

𝛼𝑛+1

𝑥4
𝑛+1
𝑥4
𝑛

B𝑉0
B𝛼

+ 𝑥´1
𝑛 O5(𝑥𝑛, 𝑥𝑛+1)

)
=
𝑥4
𝑛

𝑦𝑛

(
´𝐴4

(
1 + 1

𝑀𝑛+1
𝑣̃0,0 +

1
𝑀𝑛+1

𝛼𝑛

𝛼𝑛+1
𝑣̃1,0𝐴

2
)
+ 𝐵

(
1 ´

𝑚𝑛+1

4𝛼2
𝑛+1𝛽𝑛

𝑣̃1,0𝐴
4
)

+ 𝐿1𝜉𝑛+1 + 𝐿2𝜂𝑛+1 + 𝐿3(𝜃 ´ 𝜃0) + O2(𝜉𝑛+1, 𝜂𝑛+1, 𝜃 ´ 𝜃0) + O4(𝑥𝑛)
)

=
𝑥4
𝑛

𝑦𝑛

(
𝐿1𝜉𝑛+1 + 𝐿2𝜂𝑛+1 + 𝐿3(𝜃 ´ 𝜃0) + O2(𝜉𝑛+1, 𝜂𝑛+1, 𝜃 ´ 𝜃0) + O4(𝑥𝑛)

)
,

where, taking into account (5.31) and (5.20),

𝐿1 = ´4 + O(𝑚𝑛,𝑚𝑛+1), 𝐿2 = 1 + O(𝑚𝑛,𝑚𝑛+1), 𝐿3 = O(𝑚𝑛,𝑚𝑛+1).

We emphasize that the non-explicit error terms are now analytic functions in their
variables, the only non-regular factor being the quotient 𝑥4

𝑛/𝑦𝑛 .
The rest of the equations can be obtained immediately from the Hamiltonian structure

and Proposition 5.6. Concerning 𝑥𝑛 and 𝑦𝑛 , using (5.20), we have that

¤𝑥𝑛 = ´
𝑥3
𝑛

4𝛼𝑛𝛽𝑛
B𝐻𝜔

B𝑦𝑛
= ´𝑥3

𝑛𝑦𝑛 + O9(𝑥𝑛),

¤𝑦𝑛 =
𝑥3
𝑛

4𝛼𝑛𝛽𝑛
B𝐻𝜔

B𝑥𝑛
= ´

(
1 ´

𝑚𝑛+1

4𝛼2
𝑛+1𝛽𝑛

𝐴4𝑣̃1,0

)
𝑥4
𝑛 + 𝑥4

𝑛O1(𝜉𝑛+1, 𝜃𝑛 ´ 𝜃0) + O8(𝑥𝑛).
(5.35)

In the case of 𝜃𝑛 and 𝑔𝑛 , by the choice of 𝐺0
𝑛 in (5.28) and Lemma 5.4 and using that, by

Lemma 5.4 and the choice of 𝜃0, 𝑣̃0,1 = 0, the equations are

¤𝜃𝑛 =
B𝐻𝜔

B𝑔𝑛
=

1
2

(
1

𝛼2
𝑛𝜇𝑛

+ 𝐴4

𝛼2
𝑛+1𝜇𝑛+1

)
𝑥4
𝑛𝑔𝑛 + 𝑥4

𝑛O1(𝜉𝑛+1) + O(𝜌)O4(𝑥𝑛) + O6(𝑥𝑛),

¤𝑔𝑛 = ´
B𝐻𝜔

B𝜃𝑛
=
𝑚𝑛+1
2𝛼𝑛+1

𝑥2
𝑛+1

B𝑉0
B𝜃𝑛

(
𝛼𝑛

𝛼𝑛+1

𝑥2
𝑛+1
𝑥2
𝑛

, 𝜃𝑛

)
+ O(𝜌)O4(𝑥𝑛, 𝑥𝑛+1) + O6(𝑥𝑛, 𝑥𝑛+1)

=
𝑚𝑛+1
2𝛼𝑛+1

𝑥2
𝑛 (𝐴 + 𝜉𝑛+1)2 B𝑉0

B𝜃𝑛

(
𝛼𝑛

𝛼𝑛+1
(𝐴 + 𝜉𝑛+1)2, 𝜃𝑛

)
+ O(𝜌)O4(𝑥𝑛) + O6(𝑥𝑛)

=
𝛼𝑛

𝛼2
𝑛+1

𝑚𝑛+1𝐴
3𝑣̃1,1𝑥

2
𝑛𝜉𝑛+1 +

1
2𝛼𝑛+1

𝑚𝑛+1𝐴
2𝑣̃0,2𝑥

2
𝑛 (𝜃𝑛 ´ 𝜃0) + 𝑥2

𝑛O2(𝜉𝑛+1, 𝜃 ´ 𝜃0)

+ O(𝜌)O4(𝑥𝑛) + O6(𝑥𝑛).
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In view of Lemma 5.4, if 𝜃0 = 0, then 𝑣̃1,1 = 0 but, if 𝜃0 = 𝜃 0(𝐴,𝑚), then 𝑣̃1,1 ≠ 0. The
coefficient 𝑣̃0,2 is different from 0 for both choices of 𝜃0.

Finally, the equations for 𝜑 and 𝜌 become

¤𝜑 =
B𝐻𝜔

B𝜌
= 𝜔 + O4(𝑥𝑛),

¤𝜌 = ´
B𝐻𝜔

B𝜑
= (O(𝜌) + O2(𝑦𝑛, 𝑔𝑛, 𝑥𝑛))O6(𝑥𝑛).

(5.36)

The change 𝑦𝑛 = 𝑥𝑛 (𝜈 +𝜁𝑛) regularizes the term 𝑥4
𝑛/𝑦𝑛 in the equation for 𝜂𝑛+1. Indeed, with

this change,

¤𝜉𝑛+1 =𝜈𝑥
3
𝑛 (1 + 𝜈´1𝜁𝑛)

[
´ (2 + O(𝑚𝑛,𝑚𝑛+1))𝜉𝑛+1 ´ (1 + O(𝑚𝑛,𝑚𝑛+1))𝜂𝑛+1 + O2(𝜉𝑛+1, 𝜂𝑛+1)

]
+ O8(𝑥𝑛),

¤𝜂𝑛+1 =𝜈
´1𝑥3

𝑛 (1 + 𝜈´1𝜁𝑛)´1 [ ´ (4 + O(𝑚𝑛,𝑚𝑛+1))𝜉𝑛+1 + (1 + O(𝑚𝑛,𝑚𝑛+1))𝜂𝑛+1

+ O(𝑚𝑛,𝑚𝑛+1) (𝜃𝑛 ´ 𝜃0) + O2(𝜉𝑛+1, 𝜂𝑛+1, 𝜃𝑛 ´ 𝜃0) + O4(𝑥𝑛)
]
,

while equations (5.35) are transformed into

¤𝑥𝑛 = ´𝜈𝑥4
𝑛 (1 + 𝜈´1𝜁𝑛) + O9(𝑥𝑛),

¤𝜁𝑛 = 2𝜈𝑥3
𝑛𝜁𝑛 + 𝑥3

𝑛O1(𝜉𝑛+1, 𝜃𝑛 ´ 𝜃0) + 𝑥3
𝑛𝜁

2
𝑛 + O5(𝑥𝑛).

Equations (5.36) become
¤𝜑 = 𝜔 + O4(𝑥𝑛),
¤𝜌 = (O(𝜌) + O2(𝑥𝑛, 𝑔𝑛))O6(𝑥𝑛).

The equations for 𝜃𝑛, 𝑔𝑛 remain unchanged (the higher order terms O𝑙 can change their
explicit expression but they keep the same order).

After this change, the vector field is analytic in its arguments in a neighborhood of

{𝜑 P T, 𝜌 = 0, 𝑥𝑛 = 0, 𝜁𝑛 = 0, 𝜉𝑛+1 = 0, 𝜂𝑛+1 = 0, 𝜃𝑛 P T, 𝑔𝑛 = 0}.

Now we deal with the last blow-up:

𝜉𝑛+1 = 𝑥𝑛𝜉𝑛+1, 𝜃𝑛 = 𝜃0 + 𝑥𝑛𝜃𝑛, 𝜌 = 𝑥3
𝑛𝜌, 𝜂𝑛+1 = 𝑥𝑛𝜂𝑛+1, 𝑔𝑛 = Γ´1

𝑛 𝑔𝑛 .

Proceeding as before, it is immediate to check that

¤𝑥𝑛 = ´𝜈𝑥4
𝑛 + 𝑥4

𝑛O1(𝜁𝑛) + O9(𝑥𝑛),
¤𝜁𝑛 = 2𝜈𝑥3

𝑛𝜁𝑛 + 𝑥4
𝑛O1(𝜉𝑛+1, 𝜃𝑛) + 𝑥3

𝑛𝜁
2
𝑛 + O5(𝑥𝑛).

(5.37)

Also, for (𝜉𝑛+1, 𝜂𝑛+1),

¤̃
𝜉𝑛+1 =𝜈𝑥

3
𝑛

[
´ (1 + O(𝑚𝑛,𝑚𝑛+1))𝜉𝑛+1 ´ (1 + O(𝑚𝑛,𝑚𝑛+1))𝜂𝑛+1 + O2(𝜉𝑛+1, 𝜂𝑛+1, 𝜁 )

]
+ O7(𝑥𝑛),
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¤̃𝜂𝑛+1 =𝜈
´1𝑥3

𝑛

[
´ (4 + O(𝑚𝑛,𝑚𝑛+1))𝜉𝑛+1 + (1 + 𝜈2 + O(𝑚𝑛,𝑚𝑛+1))𝜂𝑛+1 (5.38)

+ O(𝑚𝑛,𝑚𝑛+1)𝜃 + 𝑥𝑛O2(𝜉𝑛+1, 𝜂𝑛+1, 𝜃 ) + O3(𝑥𝑛)
]
,

and for (𝜃𝑛, 𝑔𝑛),

¤̃
𝜃𝑛 = 𝜈𝑥3

𝑛𝜃𝑛 + 𝑥3
𝑛𝑔𝑛 + 𝑥4

𝑛O1(𝜉𝑛+1) + 𝑥3
𝑛O2(𝑥𝑛, 𝜉𝑛+1, 𝜃𝑛, 𝜁𝑛),

¤̃𝑔𝑛 = 𝛾1𝑥
3
𝑛𝜉𝑛+1 + 𝛾2𝑥

3
𝑛𝜃𝑛 + 𝑥3

𝑛O2(𝜉𝑛+1, 𝜃𝑛) + O6(𝑥𝑛),
(5.39)

where, using (5.33),

𝛾1 =
𝛼𝑛

𝛼2
𝑛+1

𝑚𝑛+1𝐴
3𝑣̃1,1Γ𝑛 =

8
𝑀𝑛

(𝑚𝑛 +𝑚𝑛+1 + O2(𝑚𝑛,𝑚𝑛+1))
𝑣̃1,1
𝑚𝑛

,

𝛾2 =
1

2𝛼𝑛+1
𝑚𝑛+1𝐴

2𝑣̃0,2Γ𝑛 =
4
𝑀𝑛

(𝑚𝑛 +𝑚𝑛+1 + O2(𝑚𝑛,𝑚𝑛+1))
𝑣̃0,2
𝑚𝑛

,

(5.40)

and, finally, for (𝜑, 𝜌),

¤𝜑 = 𝜔 + O4(𝑥𝑛),
¤̃𝜌 = 3𝜈𝑥3

𝑛𝜌 + O(𝜌)O6(𝑥𝑛) + O2(𝑥𝑛, 𝑔𝑛)O3(𝑥𝑛) + 𝜌𝑥3
𝑛O1(𝜁𝑛).

(5.41)

To finish the proof of the proposition, the last change is simply a linear change of vari-
ables to distinguish between the contracting and the expanding variables. It only involves
the variables (𝜉𝑛+1, 𝜂𝑛+1, 𝜃𝑛, 𝑔𝑛). Denoting 𝑍 = (𝜁𝑛, 𝜉𝑛+1, 𝜂𝑛+1, 𝜃𝑛, 𝑔𝑛, 𝜌)J, equations (5.37),
(5.38), (5.39) and (5.41) can be written as


¤𝑥𝑛 = ´𝜈𝑥4

𝑛 + 𝑥4
𝑛O1(𝜁𝑛) + O9(𝑥𝑛),

¤𝑍 = 𝑥3
𝑛M𝑍 + 𝑥3

𝑛O2(𝑥𝑛, 𝑍 ),
¤𝜑 = 𝜔 + 𝑥3

𝑛O1(𝑥𝑛, 𝑍 ),

with,

𝑀 =

©­­­­­­­«

2 + 𝜀1,1 0 0 0 0 0
0 ´1 + 𝜀2,2 ´1 + 𝜀2,3 𝜀2,4 0 0
0 ´4 + 𝜀3,2 2 + 𝜀3,3 𝜀3,4 0 0
0 0 0 1 + 𝜀4,4 1 0
0 𝛾1 0 𝛾2 0 0
0 0 0 0 0 (3 + 𝜀6,6)Id

ª®®®®®®®¬
,

where, using that, by (5.32), 𝜈 = 1 + O(𝑚𝑛,𝑚𝑛+1), Lemma 5.4 and (5.40),

𝜀𝑖, 𝑗 = O(𝑚𝑛,𝑚𝑛+1).

Taking into account the definition of 𝑣̃1,1 and 𝑣̃0,2 in (5.31) and Lemma 5.4, we have that

𝛾𝑖 = O(𝑚𝑛,𝑚𝑛+1), 𝑖 = 1, 2, (5.42)
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and {
𝛾2 ă 0, if 𝜃0 = 𝜋

𝛾2 ą 0, if 𝜃0 = 𝜃 (𝐴,𝑚𝑛,𝑚𝑛+1).
(5.43)

Next, we need to diagonalize the submatrixM.
We notice that the most part of the matrix M is already in diagonal form so that it is

only necessary to diagonalize the submatrix

M̃ =

©­­­«
´1 + 𝜀2,2 ´1 + 𝜀2,3 𝜀2,4 0
´4 + 𝜀3,2 2 + 𝜀3,3 𝜀3,4 0

0 0 1 + 𝜀4,4 1
𝛾1 0 𝛾2 0

ª®®®¬ =

(
M1,1 M1,2
M2,1 M2,2

)
,

whereM𝑖, 𝑗 are the 2 ˆ 2 blocks of M̃.
We observe that the eigenvalues ofM1,1 are 3+ O(𝑚𝑛,𝑚𝑛+1) and ´2+ O(𝑚𝑛,𝑚𝑛+1) and,

using (5.42) and (5.43), the eigenvalues ofM2,2 are 1+O1(𝑚𝑛,𝑚𝑛+1) and ´𝛾2 +O2(𝑚𝑛,𝑚𝑛+1).
The corresponding eigenvectors are, respectively, 𝑣1 = (1,´4)J+O(𝑚𝑛,𝑚𝑛+1), 𝑣2 = (1, 1)J+
O(𝑚𝑛,𝑚𝑛+1), 𝑣3 = (1, 0)J + O2(𝑚𝑛,𝑚𝑛+1) and 𝑣4 = (1,´1)J + O(𝑚𝑛,𝑚𝑛+1). Let B1,1 and B2,2
be the matrices with columns 𝑣1, 𝑣2 and 𝑣3, 𝑣4, respectively, and

B =

(
B1,1 0

0 B2,2

)
.

Clearly, the matrix

M̂ = B´1M̃B =

(
M̂1,1 M̂1,2
M̂2,1 M̂2,2

)
satisfies

M̂1,1 =

(
3 + O(𝑚𝑛,𝑚𝑛+1) 0

0 ´2 + O(𝑚𝑛,𝑚𝑛+1)

)
,

M̂2,2 =

(
1 + O(𝑚𝑛,𝑚𝑛+1) 0

0 ´𝛾2 + O2(𝑚𝑛,𝑚𝑛+1)

)
while

M̂1,2, M̂2,1 = O(𝑚𝑛,𝑚𝑛+1).
It remains to prove that there exists

A = Id4ˆ4 + O2(𝑚𝑛,𝑚𝑛+1)

such that
A´1M̂A =

(
M̃1,1 0

0 M̃2,2

)
, (5.44)

with
M̃1,1 = M̂1,1 + O2(𝑚𝑛,𝑚𝑛+1), M̃2,2 = M̂2,2 + O2(𝑚𝑛,𝑚𝑛+1)
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being diagonal matrices. We notice that, taking C̃ = BA and

C =
©­«
Id 0 0
0 C̃ 0
0 0 Id

ª®¬ ,
the proposition follows. In order to prove (5.44), we first look for A1,2 such that the matrix

Ã =

(
Id A1,2
0 Id

)
satisfies

Ã´1M̂Ã =

(
M̂1,1 + O2(𝑚𝑛,𝑚𝑛+1) 0

M̂2,1 M̂2,2 + O2(𝑚𝑛,𝑚𝑛+1)

)
. (5.45)

Since

Ã´1M̂Ã =

(
M̂1,1 + A1,2M̂2,1 M̂1,1A1,2 ´ A1,2M̂2,2 + M̂1,2 ´ A1,2M̂2,1A1,2

M̂2,1 M̂2,2 + M̂2,1A1,2

)
,

equation (5.45) is equivalent to find a solution A1,2 = O(𝑚𝑛,𝑚𝑛+1) of

LA1,2 = ´M̂1,2 + A1,2M̂2,1A1,2, (5.46)

where
LA1,2 = M̂1,1A1,2 ´ A1,2M̂2,2.

One can easily check that L is invertible and then we rewrite equation (5.46) as the fixed
point equation

A1,2 = FA1,2 := ´L´1𝑀1,2 + L´1A1,2M̂2,1A1,2.

We have that ∥F 0∥ = ∥L´1𝑀1,2∥ ď ∥L´1∥∥M̂1,2∥ = O(𝑚𝑛,𝑚𝑛+1). Defining 𝜌 = 2∥F 0∥,
∥FA1,2 ´ F Ã1,2∥ ď 2𝜌 ∥L´1∥∥A2,1 ´ Ã2,1∥ if A1,2, Ã1,2 satisfy ∥A1,2∥, ∥Ã1,2∥ ď 𝜌 . Conse-
quently, F is a contraction in the ball of radius 𝜌 , if𝑚𝑛 and𝑚𝑛+1 are small enough, which
proves the existence of A1,2 = O(𝑚𝑛,𝑚𝑛+1).

Next, let
B̃ =

(
Id + O2(𝑚𝑛,𝑚𝑛+1) 0

0 Id + O2(𝑚𝑛,𝑚𝑛+1)

)
such that the diagonal blocks of

B̃´1Ã´1M̂ÃB̃ =

(
N1,1 0
N2,1 N2,2

)
are in diagonal form. Suchmatrix B̃ exists because the diagonal blocks ofA´1M̂A are already
in diagonal form up to errors of size O2(𝑚𝑛,𝑚𝑛+1). We observe that

N1,1 = M̂1,1 + O2(𝑚𝑛,𝑚𝑛+1), N2,2 = M̂2,2 + O2(𝑚𝑛,𝑚𝑛+1), N2,1 = M̂2,1 + O2(𝑚𝑛,𝑚𝑛+1).
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Next, let A2,1 be such that

N2,2A2,1 ´ A2,1N1,1 = ´N2,1.

Such matrix exists, since, as the operator L above, the operator A2,1 ÞÑ N2,2A2,1 ´ A2,1N1,1
is invertible. Let

Â =

(
Id 0
A2,1 Id

)
.

It is immediate to check that Â´1B̃´1Ã´1𝑀ÃB̃Â is block diagonal and, in fact, diagonal
provided N1,1,N2,2 are diagonal matrices. □

5.7 Applying Theorems 2.15 and 2.16. Collinear case

We need to distinguish the cases 𝜃0 = 𝜋 and 𝜃0 = 𝜃0(𝐴,𝑚𝑛) since the corresponding stable
invariant manifolds have different dimension (see Theorem 5.2). In this section we consider
the case 𝜃0 = 𝜋 , that corresponds to the collinear configuration. In this case, the constant 𝛾2
in the matrix M in (5.34) is negative. Following the notation of Section 2.2.1, we introduce
𝑥 = (𝑥𝑛, 𝜂𝑛+1)J, 𝑦 = (𝜁𝑛, 𝜉𝑛+1, 𝜒𝑛, 𝜐̂𝑛, 𝜌)J with 𝑥 P R2, 𝑦 P R4+2(𝑛´1) and 𝜑 P T2(𝑛´1) . Then,
equations (5.34) become

¤𝑥 = 𝑓 (𝑥,𝑦) + O5(𝑥,𝑦),
¤𝑦 = 𝑔(𝑥,𝑦) + O5(𝑥,𝑦),
¤𝜑 = 𝜔 + O4(𝑥,𝑦),

(5.47)

where
𝑓 (𝑥,𝑦) = 𝑥3

𝑛𝑆𝑥,

𝑔(𝑥,𝑦) = 𝑥3
𝑛𝑈𝑦,

(5.48)

and

𝑆 =

(
´𝜆1 0

0 ´𝜆2

)
, 𝑈 =

©­­­­­­«

𝜆1 0 0 0 0
0 𝜆2 0 0 0
0 0 𝜆3 0 0
0 0 0 𝜆4 0
0 0 0 0 𝜆5Id

ª®®®®®®¬
(5.49)

with

𝜆1 = 𝜈, 𝜆2 = 2 + 𝜀2,2,

𝜆1 = 2 + 𝜀̃1,1, 𝜆2 = 3 + 𝜀̃2,2, 𝜆3 = 1 + 𝜀̃3,3, 𝜆4 = ´𝛾2 + 𝜀̃4,4, 𝜆5 = 1 + 𝜀̃5,5,
(5.50)

and
𝜀𝑖,𝑖 = O(𝑚𝑛,𝑚𝑛+1), 𝜀 𝑗, 𝑗 = O(𝑚𝑛,𝑚𝑛+1), 𝑗 ≠ 4, 𝜀̃4,4 = O2(𝑚𝑛,𝑚𝑛+1).

For 𝛿, 𝜅 ą 0, we introduce the cone in R2

𝑉𝛿,𝜅 = {𝑥 = (𝑥𝑛, 𝜂𝑛+1) P R2 | 0 ă 𝑥𝑛 ă 𝛿, |𝜂𝑛+1 | ď 𝜅𝑥𝑛}.

For all 𝑥 = (𝑥𝑛, 𝜂𝑛+1) P 𝑉𝛿,𝜅 we have that

𝑥𝑛, |𝜂𝑛+1 | ď ∥𝑥 ∥ ď (1 + 𝜅2)1/2𝑥𝑛, (5.51)
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where ∥ ¨ ∥ denotes the standard Euclidean norm in R2.
The next proposition guarantees that we can apply Theorems 2.15 and 2.16 to

Equation (5.47).
Proposition 5.9. The vector field corresponding to equation (5.47) has the form (2.22) with
𝑁 = 𝑀 = 𝑃 = 4. If𝑚𝑛 ,𝑚𝑛+1 are small enough, for 𝛿 small enough, it satisfies hypothesis (v) in
Section 2.2.1 in the domain 𝑉𝛿,𝜅 with

𝑎𝑉 =
1

(1 + 𝜅2)1/2 min
{

1
(1 + 𝜅2)1/2 (1 + O(𝑚𝑛,𝑚𝑛+1)) , 1 + O(𝑚𝑛,𝑚𝑛+1)

}
ą 0.

The constants 𝑎𝑓 , in (2.9), 𝑏 𝑓 , 𝐴𝑓 , in (2.10) and 𝐵𝑔, in (2.11), in the domain 𝑉𝛿,𝜅 have the
following values:

𝑎𝑓 ě 𝜈 + O(𝛿3, 𝜅2), 𝑏 𝑓 ď 1 + O(𝑚𝑛, 𝑀𝑛+1) + O(𝜅2),
𝐴𝑓 ě 2 + O(𝑚𝑛,𝑚𝑛+1) + O(𝜅) + O(𝛿3, 𝜅2), 𝐵𝑔 ě ´𝛾2 + O2(𝑚𝑛,𝑚𝑛+1).

Hence, if𝑚𝑛 ,𝑚𝑛+1 are small enough so that ´𝛾2 + O2(𝑚𝑛,𝑚𝑛+1) ą 0, then, for 𝜅 and 𝛿 small
enough,

𝑎𝑓 ą 0, 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃}, 𝐵𝑔 ą 0.
Consequently, Equation (5.47) satisfies the hypotheses of Theorems 2.15 and 2.16. The origin
possesses a 2 + 2(𝑛 ´ 1) analytic stable invariant manifold.

Proof. We will use the standard Euclidean norm and its induced matrix norm to compute all
the constants. We start by computing 𝑎𝑉 . Clearly, if (𝑎, 𝑏) P 𝑉𝛿,𝜅 ,

𝑑 ((𝑎, 𝑏),𝑉 𝑐
𝛿,𝜅

) = min
{

1
(1 + 𝜅2)1/2 (𝜅𝑎 ´ |𝑏 |) , 𝛿 ´ 𝑎

}
.

Then, if 𝑥 P 𝑉𝜅,𝛿 , denoting 𝑥˚ = (𝑥˚
𝑛 , 𝜂

˚
𝑛+1) = 𝑥 + 𝑓 (𝑥, 0), since

|𝜂˚
𝑛+1 | = |𝜂𝑛+1 | (1 ´ 𝜆2𝑥

3
𝑛) ă 𝜅𝑥𝑛 (1 ´ 𝜆2𝑥

3
𝑛),

we have that, for 𝛿 small enough,

1
(1 + 𝜅2)1/2

(
𝜅𝑥˚

𝑛 ´ |𝜂˚
𝑛+1 |

)
=

1
(1 + 𝜅2)1/2

(
𝜅

(
𝑥𝑛 ´ 𝜆1𝑥

4
𝑛

)
´ |𝜂2

𝑛+1(1 ´ 𝜆2𝑥
3
𝑛) |

)
ě

1
(1 + 𝜅2)1/2

(
𝜅

(
𝑥𝑛 ´ 𝜆1𝑥

4
𝑛

)
´ 𝜅𝑥𝑛 |1 ´ 𝜆2𝑥

3
𝑛 |

)
=

1
(1 + 𝜅2)1/2 (𝜆2 ´ 𝜆1) 𝑥4

𝑛 .

Also, for 𝑥 P 𝑉𝜅,𝛿 ,
𝛿 ´ 𝑥˚

𝑛 = 𝛿 ´ 𝑥𝑛 + 𝜆1𝑥
4
𝑛 ě 𝜆1𝑥

4
𝑛 .
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Hence, using (5.51), for 𝑥 P 𝑉𝜅,𝛿 , we have that

𝑑 (𝑥˚,𝑉 𝑐
𝜅,𝛿

) ě
1

(1 + 𝜅2)1/2 min
{

1
(1 + 𝜅2)1/2 (𝜆2 ´ 𝜆1) , 𝜆1

}
∥𝑥 ∥4.

The claim for 𝑎𝑉 follows combining this last inequality with (5.50) and taking into account
that 𝜈 = 1 + O(𝑚𝑛,𝑚𝑛+1), .

Now we compute 𝑎𝑓 . Using (5.48), (5.49) and (5.51), since

∥𝑥 + 𝑓 (𝑥, 0)∥ =
b

𝑥2
𝑛 (1 ´ 𝜆1𝑥

3
𝑛)2 + 𝜂2

𝑛+1(1 ´ 𝜆2𝑥
3
𝑛)2

= ∥𝑥 ∥
(
1 ´ 2𝜆1

𝑥5
𝑛

∥𝑥 ∥2 ´ 2𝜆2
𝑥3
𝑛𝜂

2
𝑛+1

∥𝑥 ∥2 + O(∥𝑥 ∥6)
)1/2

ď ∥𝑥 ∥ ´ (𝜆1 + 𝜆2𝜅
2)∥𝑥 ∥4 + O(∥𝑥 ∥7)

we have that

𝑎𝑓 = ´ sup
𝑥P𝑉𝛿,𝜅

∥𝑥 + 𝑓 (𝑥, 0)∥ ´ ∥𝑥 ∥
∥𝑥 ∥4 ě

𝜆1 + 𝜆2𝜅
2 + O(𝛿3)

(1 + 𝜅2)3/2 .

By (5.56), the claim follows.
Next, we compute 𝑏 𝑓 . Since, in view of (5.48), (5.49) and (5.51),

∥ 𝑓 (𝑥, 0)∥ = 𝑥3
𝑛 ∥𝑆𝑥 ∥ ď 𝑥4

𝑛

b

𝜆2
1 + 𝜅2𝛾2

2

we have that, using (5.56),

𝑏 𝑓 = sup
𝑥P𝑉𝛿,𝜅

∥ 𝑓 (𝑥, 0)∥
∥𝑥 ∥4 ď

a

𝜈 + 4𝜅2(4 + O(𝑚𝑛,𝑚𝑛+)) .

The claim on 𝑏 𝑓 follows then from (5.50).
Now we compute

𝐴𝑓 = ´ sup
𝑥P𝑉𝛿,𝜅

∥Id + 𝐷𝑥 𝑓 (𝑥, 0)∥ ´ 1
∥𝑥 ∥3 .

We bound the spectral radius of (Id + 𝐷𝑥 𝑓 (𝑥, 0))J(Id + 𝐷𝑥 𝑓 (𝑥, 0)). Since

Id + 𝐷𝑥 𝑓 (𝑥, 0) =
(

1 ´ 4𝜆1𝑥
3
𝑛 0

´3𝜆2𝑥
2
𝑛𝜂𝑛+1 1 ´ 𝜆2𝑥

3
𝑛

)
,

we have that

(Id + 𝐷𝑥 𝑓 (𝑥, 0))J(Id + 𝐷𝑥 𝑓 (𝑥, 0)) =
(

1 ´ 8𝜆1𝑥
3
𝑛 + O(𝑥6

𝑛) ´(1 ´ 𝜆2𝑥
3
𝑛)3𝜆2𝑥

2
𝑛𝜂𝑛+1

´(1 ´ 𝜆2𝑥
3
𝑛)3𝜆2𝑥

2
𝑛𝜂𝑛+1 1 ´ 2𝜆2𝑥

3
𝑛 + O(𝑥6

𝑛)

)
.
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Hence, since (5.50) implies that

8𝜆1 = 8 + O(𝑚𝑛,𝑚𝑛+1), 2𝜆2 = 4 + O(𝑚𝑛,𝑚𝑛+1),

applying Gershgorin circle theorem,

∥Id + 𝐷𝑥 𝑓 (𝑥, 0)∥ ď 1 ´
(
2 + O(𝑚𝑛,𝑚𝑛+1) + O(𝜅) + O(𝑥3

𝑛)
)
𝑥3
𝑛 .

Hence,

𝐴𝑓 ě
2 + O(𝑚𝑛,𝑚𝑛+1) + O(𝜅) + O(𝛿3)

(1 + 𝜅2)3/2 .

We finally compute

𝐵𝑔 = ´ sup
𝑥P𝑉𝜅,𝛿

∥Id ´ 𝐷𝑦𝑔(𝑥, 0)∥ ´ 1
∥𝑥 ∥3 .

By (5.48) and (5.49) it follows that 𝐷𝑦𝑔(𝑥, 0) = 𝑥3
𝑛𝑈 . Then, using (5.50) we get

∥Id ´ 𝐷𝑦𝑔(𝑥, 0)∥ ď 1 ´ (´𝛾2 + O2(𝑚𝑛,𝑚𝑛+1))𝑥3
𝑛,

from which the claim for the stable manifold follows. In order to obtain the unstable one we
apply the same procedure to the time reversed system. □

5.8 Applying Theorems 2.15 and 2.16. Equilateral case

Now we deal with the case 𝜃0 = 𝜃0(𝐴,𝑚𝑛) = 𝜋/3 + O(𝑚𝑛,𝑚𝑛+1). Unlike the previous one,
we will see that the invariant manifolds are 3 + 2(𝑛 ´ 1)-dimensional, because in this case
𝜐̂𝑛 is a “stable” direction.

However, since 𝜐̂𝑛 is very slow, it is easy to check that equation (5.34) does not readily
satisfy the hypotheses in Theorems 2.15 and 2.16. To apply these theorems, we introduce
a new set of variables in the next proposition. We recall that 𝛾2 = O(𝑚𝑛,𝑚𝑛+1) and 𝜈 =

1 + O(𝑚𝑛,𝑚𝑛+1).
Proposition 5.10. Let 𝑚𝑛 , 𝑚𝑛+1 ą 0 be fixed but small enough. Take 𝜃0 = 𝜃0(𝐴,𝑚𝑛) in
equation (5.34), that corresponds to 𝛾2 ą 0. Let ℓ P N and define 𝑥𝑛 through 𝑥𝑛 = 𝑥 ℓ𝑛 , while
maintaining the other variables the same. Equation (5.34) becomes

¤̂𝑥𝑛 = ´
𝜈

ℓ
𝑥3ℓ+1
𝑛 + O8ℓ+1(𝑥𝑛),

¤̃
𝑍 = 𝑥3ℓ

𝑛 𝐶
´1𝑀𝐶𝑍 + 𝑥3ℓ

𝑛 O2(𝑥 ℓ𝑛, 𝑍 ),
¤𝜑 = 𝜔 + 𝑥3ℓ

𝑛 O1(𝑥 ℓ𝑛, 𝑍 ).

(5.52)

Proof. It is a straightforward computation. Indeed, using (5.34),

¤̂𝑥𝑛 =
1

ℓ𝑥 ℓ´1 ¤𝑥𝑛 =
1

ℓ𝑥 ℓ´1
(
´𝜈𝑥4ℓ

𝑛 + O9ℓ (𝑥𝑛)
)
,

from which the claim follows immediately. □
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Remark 5.11. Later, in Proposition 5.12, we will fix ℓ ě 1 such that 𝜈
ℓ

ă 𝛾2. Since 𝜈 =

1 + O(𝑚𝑛,𝑚𝑛+1) and 𝛾2 = O(𝑚𝑛,𝑚𝑛+1), ℓ will be large but fixed.
We use the same notation as in Section 5.7. We introduce 𝑥 = (𝑥𝑛, 𝜂𝑛+1, 𝜐̂𝑛)J, 𝑦 =

(𝜁𝑛, 𝜉𝑛+1, 𝜒𝑛, 𝜌)J, that is, 𝑥 P R3, 𝑦 P R3+2(𝑛´1) and 𝜑 P T2(𝑛´1) . Then, equation (5.52)
becomes

¤𝑥 = 𝑓 (𝑥,𝑦) + O3ℓ+2(𝑥,𝑦),
¤𝑦 = 𝑔(𝑥,𝑦) + O3ℓ+2(𝑥,𝑦),
¤𝜑 = 𝜔 + O3ℓ+1(𝑥,𝑦),

(5.53)

where
𝑓 (𝑥,𝑦) = 𝑥3ℓ

𝑛 𝑆𝑥,

𝑔(𝑥,𝑦) = 𝑥3ℓ
𝑛 𝑈𝑦

(5.54)

and

𝑆 =
©­«
´𝜆1 0 0

0 ´𝜆2 0
0 0 ´𝜆3

ª®¬ , 𝑈 =

©­­­­«
𝜆1 0 0 0
0 𝜆2 0 0
0 0 𝜆3 0
0 0 0 𝜆4Id

ª®®®®¬
(5.55)

with
𝜆1 =

𝜈

ℓ
, 𝜆2 = 2 + 𝜀2,2, 𝜆3 = 𝛾2 + 𝜀3,3,

𝜆1 = 2 + 𝜀̃1,1, 𝜆2 = 3 + 𝜀̃2,2, 𝜆3 = 1 + 𝜀̃3,3, , 𝜆4 = 1 + 𝜀̃4,4,
(5.56)

and
𝜀𝑖,𝑖 = O(𝑚𝑛,𝑚𝑛+1), 𝑖 ≠ 3, 𝜀3,3 = O2(𝑚𝑛,𝑚𝑛+1), 𝜀 𝑗, 𝑗 = O(𝑚𝑛,𝑚𝑛+1).

For 𝛿, 𝜅 ą 0, we introduce the following cone in R3

𝑉𝛿,𝜅 = {𝑥 = (𝑥𝑛, 𝜂𝑛+1, 𝜐̂𝑛) P R3 | 0 ă 𝑥𝑛 ă 𝛿, 𝜂2
𝑛+1 + 𝜐̂2

𝑛 ď 𝜅2𝑥2
𝑛}.

For all 𝑥 = (𝑥𝑛, 𝜂𝑛+1, 𝜐̂𝑛) P 𝑉𝛿,𝜅 we have that

𝑥𝑛, |𝜂𝑛+1 |, |̂𝜐𝑛 | ď ∥𝑥 ∥ ď (1 + 𝜅2)1/2𝑥𝑛, (5.57)

where ∥ ¨ ∥ denotes the standard Euclidean norm in R3.
Next proposition is analogous to Proposition 5.9 in this case.

Proposition 5.12. The vector field corresponding to equation (5.53) has the form (2.22) with
𝑁 = 𝑀 = 𝑃 = 3ℓ + 1. If𝑚𝑛 ,𝑚𝑛+1 are small, choosing ℓ large enough, for 𝛿 small, hypothesis (v)
in Section 2.2.1 is satisfied in the domain 𝑉𝛿,𝜅 with

𝑎𝑉 =
1

(1 + 𝜅2)1/2 min
{

1
(1 + 𝜅2)1/2

(
2 + 𝛾2 ´

𝜈

ℓ
+ O(𝑚𝑛,𝑚𝑛+1) + O(𝛿3ℓ )

)
, 𝜆1

}
ą 0.

For the constants 𝑎𝑓 , in (2.9), 𝑏 𝑓 , 𝐴𝑓 , in (2.10) and 𝐵𝑔, in (2.11), in the domain 𝑉𝛿,𝜅 have the
following estimates:

𝑎𝑓 ě
𝜈

ℓ
+ O(𝛿3ℓ , 𝜅2), 𝑏 𝑓 ď

c

𝜈2

ℓ2 + O(𝜅2),

𝐴𝑓 ě 𝛾2 + O2(𝑚𝑛,𝑚𝑛+1) + O(𝜅) + O(𝛿3ℓ , 𝜅2), 𝐵𝑔 ě 1 + O(𝑚𝑛,𝑚𝑛+1).
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Hence, if 𝑚𝑛 , 𝑚𝑛+1 are small enough such that 𝛾2 + O2(𝑚𝑛,𝑚𝑛+1) ą 0, taking ℓ sufficiently
large so that 𝜈/ℓ ă 𝛾2 + O2(𝑚𝑛,𝑚𝑛+1), then, for 𝜅 and 𝛿 small,

𝑎𝑓 ă 0, 𝐴𝑓 ą 𝑏 𝑓 max{1, 𝑁 ´ 𝑃}, 𝐵𝑔 ą 0.

Consequently, equation (5.53) satisfies the hypotheses of Theorems 2.15 and 2.16. The origin
possesses a 3 + 2(𝑛 ´ 1) analytic stable invariant manifold.

Proof. We assume𝑚𝑛 and𝑚𝑛+1 small enough so that 𝜆3 = 𝛾2+O2(𝑚𝑛,𝑚𝑛+1) ą 0 and choose
ℓ such that 𝜆1 = 𝜈/ℓ = (1 + O(𝑚𝑛,𝑚𝑛+1))/ℓ ă 𝜆3.

We will use the standard Euclidean norm and its induced matrix norm to compute all
the constants. We start by computing 𝑎𝑉 . Clearly, if (𝑎, 𝑏, 𝑐) P 𝑉𝛿,𝜅 ,

𝑑 ((𝑎, 𝑏, 𝑐),𝑉 𝑐
𝛿,𝜅

) = min
{

1
(1 + 𝜅2)1/2

(
𝜅𝑎 ´

?
𝑏2 + 𝑐2

)
, 𝛿 ´ 𝑎

}
.

Then, if 𝑥 P 𝑉𝜅,𝛿 , denoting 𝑥˚ = (𝑥˚
𝑛 , 𝜂

˚
𝑛+1, 𝜐̂

˚
𝑛 ) = 𝑥 + 𝑓 (𝑥, 0), since

|𝜂˚
𝑛+1 | = |𝜂𝑛+1 | (1 ´ 𝜆2𝑥

3ℓ
𝑛 ) ă 𝜅𝑥𝑛 (1 ´ 𝜆2𝑥

3ℓ
𝑛 ),

|̂𝜐˚
𝑛 | = |̂𝜐𝑛 | (1 ´ 𝜆3𝑥

3ℓ
𝑛 ) ă 𝜅𝑥𝑛 (1 ´ 𝜆3𝑥

3ℓ
𝑛 ),

we have that

1
(1 + 𝜅2)1/2

(
𝜅𝑥˚

𝑛 ´

b

(𝜂˚
𝑛+1)2 + (𝜐̂˚

𝑛 )2
)

=
1

(1 + 𝜅2)1/2

(
𝜅

(
𝑥𝑛 ´

𝜈

ℓ
𝑥3ℓ+1
𝑛

)
´

b

𝜂2
𝑛+1(1 ´ 𝜆2𝑥

3ℓ
𝑛 )2 + 𝜐̂2

𝑛 (1 ´ 𝜆3𝑥
3ℓ
𝑛 )2

)
ě

1
(1 + 𝜅2)1/2

(
𝜅

(
𝑥𝑛 ´ 𝜆1𝑥

3ℓ+1
𝑛

)
´ 𝜅𝑥𝑛

b

(1 ´ 𝜆2𝑥
3ℓ
𝑛 )2 + (1 ´ 𝜆3𝑥

3ℓ
𝑛 )2

)
=

1
(1 + 𝜅2)1/2

(
𝜆2 + 𝜆3 ´ 𝜆1 + O(𝛿3ℓ )

)
𝑥3ℓ+1
𝑛 .

Also, for 𝑥 P 𝑉𝜅,𝛿 ,
𝛿 ´ 𝑥˚

𝑛 = 𝛿 ´ 𝑥𝑛 + 𝜆1𝑥
3ℓ+1
𝑛 ě 𝜆1𝑥

3ℓ+1
𝑛 .

Hence, using (5.57), for 𝑥 P 𝑉𝜅,𝛿 ,

𝑑 (𝑥˚,𝑉 𝑐
𝜅,𝛿

) ě
1

(1 + 𝜅2)1/2 min
{

1
(1 + 𝜅2)1/2

(
2 + 𝛾2 ´

𝜈

ℓ
+ O(𝛿3ℓ )

)
,
𝜈

ℓ

}
∥𝑥 ∥3ℓ+1.
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Now we compute 𝑎𝑓 . Using (5.54), (5.55) and (5.57), we have

∥𝑥 + 𝑓 (𝑥, 0)∥ =
b

𝑥2
𝑛 (1 ´ 𝜆1𝑥

3ℓ
𝑛 )2 + 𝜂2

𝑛+1(1 ´ 𝜆2𝑥
3ℓ
𝑛 )2 + 𝜐̂2

𝑛 (1 ´ 𝜆3𝑥
3ℓ
𝑛 )2

= ∥𝑥 ∥
(
1 ´ 2𝜆1

𝑥3ℓ+2
𝑛

∥𝑥 ∥2 ´ 2𝜆2
𝑥3ℓ
𝑛 𝜂

2
𝑛+1

∥𝑥 ∥2 ´ 2𝜆3
𝑥3ℓ
𝑛 𝜐̂

2
𝑛+1

∥𝑥 ∥2 + O(∥𝑥 ∥6ℓ )
)1/2

ď ∥𝑥 ∥ ´ (𝜆1 + (𝜆2 + 𝜆3)𝜅2)∥𝑥 ∥3ℓ+1 + O(∥𝑥 ∥6ℓ+1)

and
𝑎𝑓 = ´ sup

𝑥P𝑉𝛿,𝜅

∥𝑥 + 𝑓 (𝑥, 0)∥ ´ ∥𝑥 ∥
∥𝑥 ∥3ℓ+1 ě

(𝜆1 + (𝜆2 + 𝜆3)𝜅2) + O(𝛿3ℓ )
(1 + 𝜅2)3ℓ/2 .

By (5.56), the claim follows.
Next, we compute 𝑏 𝑓 . Since, in view of (5.54), (5.55) and (5.57)

∥ 𝑓 (𝑥, 0)∥ = 𝑥3ℓ
𝑛 ∥𝑆𝑥 ∥ ď 𝑥3ℓ+1

𝑛

b

𝜆2
1 + 𝜅2(𝛾2

2 + 𝛾2
3 )

Using (5.56) we obtain

𝑏 𝑓 = sup
𝑥P𝑉𝛿,𝜅

∥ 𝑓 (𝑥, 0)∥
∥𝑥 ∥3ℓ+1 ď

c

𝜈2

ℓ2 + 𝜅2(4 + 𝛾2
2 + O(𝑚𝑛,𝑚𝑛+1)) .

Now we compute

𝐴𝑓 = ´ sup
𝑥P𝑉𝛿,𝜅

∥Id + 𝐷𝑥 𝑓 (𝑥, 0)∥ ´ 1
∥𝑥 ∥3ℓ .

We bound the spectral radius of (Id + 𝐷𝑥 𝑓 (𝑥, 0))J(Id + 𝐷𝑥 𝑓 (𝑥, 0)). Since

Id + 𝐷𝑥 𝑓 (𝑥, 0) = ©­«
1 ´ (3ℓ + 1)𝜆1𝑥

3ℓ
𝑛 0 0

´3ℓ𝜆2𝑥
3ℓ´1
𝑛 𝜂𝑛+1 1 ´ 𝜆2𝑥

3ℓ
𝑛 0

´3ℓ𝜆2𝑥
3ℓ´1
𝑛 𝜐̂𝑛 0 1 ´ 𝜆3𝑥

3ℓ
𝑛

ª®¬ ,
we have that

(Id + 𝐷𝑥 𝑓 (𝑥, 0))J(Id + 𝐷𝑥 𝑓 (𝑥, 0))

=
©­«
1 ´ 2(3ℓ + 1)𝜆1𝑥

3ℓ
𝑛 + O(𝑥6ℓ

𝑛 ) ´(1 ´ 𝜆2𝑥
3ℓ
𝑛 )3ℓ𝜆2𝑥

3ℓ´1
𝑛 𝜂𝑛+1 ´(1 ´ 𝜆3𝑥

3ℓ
𝑛 )3ℓ𝜆3𝑥

3ℓ´1
𝑛 𝜐̂𝑛

´(1 ´ 𝜆2𝑥
3ℓ
𝑛 )3ℓ𝜆2𝑥

3ℓ´1
𝑛 𝜂𝑛+1 1 ´ 2𝜆2𝑥

3ℓ
𝑛 + O(𝑥6ℓ

𝑛 ) 0
´(1 ´ 𝜆3𝑥

3ℓ
𝑛 )3ℓ𝜆3𝑥

3ℓ´1
𝑛 𝜐̂𝑛 0 1 ´ 2𝜆3𝑥

3ℓ
𝑛 + O(𝑥6ℓ

𝑛 )

ª®¬ .
Hence, since (5.56) implies that

2(3ℓ + 1)𝜆1 ą 6 + O(𝑚𝑛,𝑚𝑛+1), 2𝜆2 ą 4 + O(𝑚𝑛,𝑚𝑛+1), 2𝜆2 = 2𝛾2 + O2(𝑚𝑛,𝑚𝑛+1),

applying Gershgorin circle theorem,

∥Id + 𝐷𝑥 𝑓 (𝑥, 0)∥ ď 1 ´
(
𝛾2 + O2(𝑚𝑛,𝑚𝑛+1) + O(𝜅) + O(𝑥3ℓ

𝑛 )
)
𝑥3ℓ
𝑛 .
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Therefore,

𝐴𝑓 ě
𝛾2 + O2(𝑚𝑛,𝑚𝑛+1) + O(𝜅) + O(𝛿3ℓ )

(1 + 𝜅2)3ℓ/2 .

We finally compute

𝐵𝑔 = ´ sup
𝑥P𝑉𝜅,𝛿

∥Id ´ 𝐷𝑦𝑔(𝑥, 0)∥ ´ 1
∥𝑥 ∥3ℓ .

By (5.54) and (5.55) we have 𝐷𝑦𝑔(𝑥, 0) = 𝑥3ℓ
𝑛 𝑈 . By (5.56), this implies

∥Id ´ 𝐷𝑦𝑔(𝑥, 0)∥ ď 1 ´ (1 + O(𝑚𝑛,𝑚𝑛+1)𝑥3ℓ
𝑛 ,

from which the claim for the stable manifold follows. As in the collinear case, in order to
obtain the unstable one it is only necessary to apply the same procedure to the time reversed
system. □

6 Acknowledgements
I.B. has been partially supported by the grant PID-2021-122954NB-100, E.F. has been partially
supported by the grant PID2021-125535NB-I00, and P.M. has been partially supported by
the grant PID2021-123968NB-I00, funded by the Spanish State Research Agency through the
programs MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”.

Also, all authors have been partially supported by the Spanish State Research Agency,
through the Severo Ochoa andMaría deMaeztu Program for Centers and Units of Excellence
in R&D (CEX2020-001084-M).

A Proof of Remark 2.4
As in the rest of this work, we do not write the dependence of the different objects with
respect to the parameter 𝜆.

Assume that a map F as in the remark satisfies conditions (i)-(iii) and has an invariant
manifold tangent to {𝑦 = 0} represented as 𝑦 = K(𝑥, 𝜃 ). It is clear that if 𝑀 ą 𝑁 , we can
take

∑𝑀´1
𝑗=𝑁

𝑔 𝑗 (𝑥,𝑦, 𝜃 ) = 0, hence (iv) is satisfied and we are done.
Now we consider the case 𝑀 ď 𝑁 . By Lemma 3.2, we can remove the dependence on 𝜃

of the map F up to order 𝑁 . Let 𝑓
ě𝑁

˚ (𝑥,𝑦), 𝑔ě𝑀
˚ (𝑥,𝑦) and ℎě𝑃

˚ (𝑥,𝑦) be the terms of degree
less or equal than 𝑁 in each component of F ´ Id, respectively, after the dependence on 𝜃
has been removed. The invariance condition for K(𝑥, 𝜃 ) reads

K(𝑥, 𝜃 ) +𝑔ě𝑀
˚ (𝑥,K(𝑥, 𝜃 )) = K

(
𝑥 + 𝑓 ě𝑁

˚ (𝑥,K(𝑥, 𝜃 )), 𝜃 +𝜔 +ℎě𝑃

˚ (𝑥,K(𝑥, 𝜃 ))
)
+ O(∥𝑥 ∥𝑁+1).

Differentiating with respect to 𝜃 and writing

F ˚

𝑥,𝜃
=

(
𝑥 + 𝑓 ě𝑁

˚ (𝑥,K(𝑥, 𝜃 )), 𝜃 + 𝜔 + ℎě𝑃

˚ (𝑥,K(𝑥, 𝜃 ))
)

we have

B𝜃K(𝑥, 𝜃 )´B𝜃K(𝑥, 𝜃 + 𝜔)
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= ´ B𝑦𝑔
ě𝑀
˚ (𝑥,K(𝑥, 𝜃 ))B𝜃K(𝑥, 𝜃 ) + B𝑥K(F ˚

𝑥,𝜃
)B𝑦 𝑓

ě𝑁

˚ (𝑥,K(𝑥, 𝜃 ))B𝜃K(𝑥, 𝜃 )

+ B𝜃K(F ˚

𝑥,𝜃
)B𝑦ℎ

ě𝑃

˚ (𝑥,K(𝑥, 𝜃 ))B𝜃K(𝑥, 𝜃 )
+ B𝜃K(F ˚

𝑥,𝜃
) ´ B𝜃K(𝑥, 𝜃 + 𝜔) + O(∥𝑥 ∥𝑁+1). (A.1)

If we assume B𝜃K(𝑥, 𝜃 ) = O(∥𝑥 ∥𝑚) with 𝑚 ă 𝑁 , then the right hand side of (A.1) has
order min{𝑁 + 1,𝑚 + 1} with respect to 𝑥 . Since we are assuming K exists, B𝜃K has zero
average and therefore the right hand side of (A.1) should have zero average. By Theorem 2.1,
B𝜃K has to have order𝑚 + 1, which is a contradiction. Hence𝑚 ě 𝑁 . So we conclude that
B𝜃K(𝑥, 𝜃 ) = O(∥𝑥 ∥𝑁+1). Therefore, we can write K(𝑥, 𝜃 ) = Kď(𝑥) + O(∥𝑥 ∥𝑁+1) and the
invariance condition becomes

𝑔ě𝑀
˚ (𝑥,Kď(𝑥)) =

∫ 1

0
𝐷Kď(𝑥 + 𝑠 𝑓 ě𝑁

˚ (𝑥,Kď(𝑥))) 𝑓 ě𝑁

˚ (𝑥,Kď(𝑥)) 𝑑𝑠 + O(∥𝑥 ∥𝑁+1).

We decompose 𝑔ě𝑀
˚ (𝑥,𝑦) = 𝑔ě𝑀

˚ (𝑥, 0) + [𝑔ě𝑀
˚ (𝑥,𝑦)´𝑔ě𝑀

˚ (𝑥, 0)] =: 𝑔1(𝑥) +𝑔2(𝑥,𝑦)𝑦 and we
denote 𝑀1 the order of 𝑔1 and 𝑀2 ´ 1 the order of 𝑔2. If 𝑀1 ą 𝑀2 = 𝑀 , 𝑔𝑀˚ (𝑥,𝑦) = 𝑔2(𝑥,𝑦)𝑦
and satisfies 𝑔𝑀˚ (𝑥, 0) = 0. In the other case,𝑀 = 𝑀1 ď 𝑀2, we have

𝑔1(𝑥) = ´𝑔2(𝑥,Kď(𝑥))Kď(𝑥) + 𝐷Kď(𝑥) 𝑓 ě𝑁

˚ (𝑥,Kď(𝑥)) + O(∥𝑥 ∥2𝑁 ) + O(∥𝑥 ∥𝑁+1)

and this implies that 𝑁 ě 𝑀 = 𝑀1 ě min{𝑀2 +1, 𝑁 +1, 2𝑁 } which provides a contradiction
that comes from assuming that𝑀1 ď 𝑀2.

B Proof of Corollary 2.11
We first prove that

ℓ´1⋃
𝑗=0
𝐺
𝑗

𝜆
(𝑊 s
A𝜌,𝛽

(𝐹𝜆)) Ă𝑊 s
B𝜌,𝛽

. (B.1)

Take (𝑥,𝑦, 𝜃 ) P 𝐺
𝑗

𝜆
(𝑊 s
A𝜌,𝛽

(𝐹𝜆)). We have that (𝑥,𝑦, 𝜃 ) := 𝐺
´𝑗

𝜆
(𝑥,𝑦, 𝜃 ) P 𝑊 s

A𝜌,𝛽
(𝐹𝜆). For all

𝑙 P N, there exist 𝑝, 𝑞 P N, 0 ď 𝑝 ď ℓ ´ 1 such that 𝑗 + 𝑙 = 𝑞ℓ + 𝑝 . Then,

𝐺𝑙
𝜆
(𝑥,𝑦, 𝜃 ) = 𝐺 𝑗+𝑙

𝜆
(𝑥,𝑦, 𝜃 ) = 𝐺𝑞ℓ+𝑝

𝜆
(𝑥,𝑦, 𝜃 ) = 𝐺𝑝

𝜆

(
𝐹
𝑞

𝜆
(𝑥,𝑦, 𝜃 )

)
P 𝐺

𝑝

𝜆
(A𝜌,𝛽 ) Ă B𝜌,𝛽 .

Moreover

∥(𝐺𝑙
𝜆
)𝑥,𝑦 (𝑥,𝑦, 𝜃 )∥ =





(𝐺𝑝𝜆 (𝐹𝑞𝜆 (𝑥,𝑦, 𝜃 ))𝑥,𝑦



 ď M


(𝐹𝑞

𝜆
)𝑥,𝑦 (𝑥,𝑦, 𝜃 )



 Ñ 0 as 𝑞 Ñ 8.

Therefore, since 𝑞 Ñ 8 if and only if 𝑙 Ñ 8, (𝑥,𝑦, 𝜃 ) P𝑊 s
B𝜌,𝛽

.
Then, by Theorem 2.9

W Ă

ℓ´1⋃
𝑗=0
𝐺
𝑗

𝜆
(𝑊 s
A𝜌,𝛽

(𝐹𝜆) Ă𝑊 s
B𝜌,𝛽
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and the first claim of Corollary 2.11 is proved.
Assume now that 𝐵𝑔 ą 0, then, by Theorem 2.9 we have the properties in (2.20):

𝐾 (𝑉𝜌 ˆ T𝑑 , 𝜆) =𝑊 s
Â𝜌,𝛽

(𝐹𝜆) and 𝑊 s
Â𝜌,𝛽

(𝐹𝜆) =
⋂
𝑘ě0

𝐹´𝑘

𝜆
(Â𝜌,𝛽 ), (B.2)

where we recall that Â𝜌,𝛽 = 𝑉𝜌,𝛽 ˆ T𝑑 where𝑉 is a slightly smaller cone contained in𝑉 . To
avoid cumbersome notations, we skip the symbol ̂ in our notation. To prove the last part
of the result, by (B.1) and (B.2), we only need to check that

𝑊 s
B𝜌,𝛽

Ă

ℓ´1⋃
𝑗=0
𝐺
𝑗

𝜆
(𝑊 s
A𝜌,𝛽

(𝐹𝜆)) (B.3)

because, if (B.3) holds true, then by (B.1) and (B.2),

𝑊 s
B𝜌,𝛽

=

ℓ´1⋃
𝑗=0
𝐺
𝑗

𝜆
(𝑊 s
A𝜌,𝛽

(𝐹𝜆)) =
ℓ´1⋃
𝑗=0
𝐺
𝑗

𝜆

(
𝐾 (𝑉𝜌 ˆ T𝑑 , 𝜆)) = W .

Next we prove (B.3). We first observe that, since 𝐺𝜆, 𝐹𝜆 are local diffeomorphisms, we
have that

𝐺𝑙
𝜆
(𝑊A𝜌,𝛽

(𝐹𝜆)) =𝑊 s
𝐺𝑙
𝜆
(A𝜌,𝛽ˆT𝑑 ) (𝐹𝜆), 𝑙 P Z. (B.4)

Now we notice that, if for some 𝑗 P {0, ¨ ¨ ¨ , ℓ ´ 1}

𝐺
𝑗

𝜆
(A𝜌,𝛽 ) =

⋃
𝑖≠𝑗

𝐺𝑖
𝜆
(A𝜌,𝛽 )

then (B.3) holds true and the proof is complete in this case. Indeed, in this case B𝜌,𝛽 =

𝐺
𝑗

𝜆
(A𝜌,𝛽 ). Therefore, if (𝑥,𝑦, 𝜃 ) P 𝑊 s

B𝜌,𝛽
, then, for all 𝑙 P N, 𝐺𝑙

𝜆
(𝑥,𝑦, 𝜃 ) P 𝐺

𝑗

𝜆
(A𝜌,𝛽 ) and, in

particular, 𝐹 𝑙
𝜆
(𝑥,𝑦, 𝜃 ) P 𝐺

𝑗

𝜆
(A𝜌,𝛽 ) for all 𝑙 P N. From the second identity in (B.2) and (B.4),

we conclude that (𝑥,𝑦, 𝜃 ) P𝑊 s
𝐺

𝑗

𝜆
(A𝜌,𝛽 )

(𝐹𝜆) = 𝐺 𝑗

𝜆

(
𝑊 s
A𝜌,𝛽

(𝐹𝜆)
)
and (B.3) follows trivially.

From the previous arguments, we now assume that the set B𝜌,𝛽 can be rewritten as

B𝜌,𝛽 =

ℓ´1⋃
𝑗=0

𝐵 𝑗 , 𝐵 𝑗 = 𝐺
𝑗

𝜆
(A𝜌,𝛽 )z

{⋃
𝑖≠𝑗

𝐺𝑖
𝜆
(A𝜌,𝛽 )

}
≠ H.

We notice that 𝐵 𝑗 X 𝐵𝑖 = H if 𝑖 ≠ 𝑗 .
Let (𝑥,𝑦, 𝜃 ) P 𝑊 s

B𝜌,𝛽
X 𝐵0. It is clear that 𝐺𝑙𝜆 (𝑥,𝑦, 𝜃 ) P 𝐺𝑙

𝜆
(𝐵0) if 𝑙 ď ℓ ´ 1 and since the

only set 𝐵 𝑗 with non-empty intersection with𝐺𝑙
𝜆
(𝐵0) is 𝐵𝑙 , then𝐺𝑙𝜆 (𝑥,𝑦, 𝜃 ) P 𝐵𝑙 . In addition,

𝐺 ℓ
𝜆
(𝑥,𝑦, 𝜃 ) P 𝐺𝜆 (𝐵ℓ´1) = 𝐺 ℓ𝜆 (A𝜌,𝛽 )z

{
ℓ´1⋃
𝑖=1

𝐺𝑖
𝜆
(A𝜌,𝛽 )

}
.
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Since 𝐵 𝑗 X 𝐵𝑖 = H and 𝐺 ℓ
𝜆
(𝑥,𝑦, 𝜃 ) ∉ 𝐺𝑖

𝜆
(A𝜌,𝛽 ) for 𝑖 = 1, ¨ ¨ ¨ , ℓ ´ 1, we conclude that

𝐺 ℓ
𝜆
(𝑥,𝑦, 𝜃 ) P 𝐵0. By induction, we prove that if (𝑥,𝑦, 𝜃 ) P 𝐵0, 𝐹𝑞𝜆 (𝑥,𝑦, 𝜃 ) = 𝐺

𝑞ℓ

𝜆
(𝑥,𝑦, 𝜃 ) P 𝐵0.

Therefore, (𝑥,𝑦, 𝜃 ) P𝑊 s
𝐵0
(𝐹𝜆) Ă𝑊 s

A𝜌,𝛽
(𝐹𝜆).

When (𝑥,𝑦, 𝜃 ) P 𝑊 s
B𝜌,𝛽

X 𝐵 𝑗 , reasoning in an analogous way as for 𝑗 = 0, we conclude
that (𝑥,𝑦, 𝜃 ) P𝑊 s

𝐵 𝑗
(𝐹𝜆) Ă𝑊 s

𝐺
𝑗

𝜆
(A𝜌,𝛽 )

(𝐹𝜆) and by property (B.4) the proof of (B.3) is complete.

C Proof of Lemma 3.6
We first recall that for 𝑧 P C𝑙 we use the norm ∥𝑧∥ = max(∥Re 𝑧∥, ∥Im 𝑧∥). In addition, by
definition of the complex set Ω𝜌 (𝛾), ∥Im 𝑧∥ ď 𝛾 ∥Re 𝑧∥ and therefore ∥𝑧∥ = ∥Re 𝑧∥ if 𝛾 ď 1.
As a consequence, if we consider the definition of the values 𝑎𝑓 , 𝑏 𝑓 , 𝐴𝑓 , 𝐷 𝑓 and 𝐵𝑔 in (2.9),
(2.10) and (2.11) with 𝑥 belonging to Ω𝜌 (𝛾) instead of𝑉𝜌 , they change by a quantity of order
𝛾 , provided𝛾 is small enough. Since all the conditions on these constants are open conditions
we can choose 𝛾 small enough such that those properties still hold true.

We also recall that, q𝑅𝑣 (𝑣) = 𝑣 + 𝑓
𝑁 (𝑣, 0) +𝑤ě𝑁+1(𝑣), with𝑤ě𝑁+1(𝑣) = O(∥𝑣 ∥𝑁+1).

The two first items in Lemma 3.6 has been proven in previous works [14–16]. Then, we
sketch a simple proof of them. The first item relies on the invariance by q𝑅𝑣 of the set Ω𝜌 (𝛾).
To do so, the following technical lemma, which is a straightforward consequence of Taylor’s
theorem, is used.
Lemma C.1. Let 0 ă 𝜌,𝛾 ď 1. If 𝜒 : Ω𝜌 (𝛾) Ă C𝑛 Ñ C𝑛 is a real analytic function, satisfying
𝜒 (𝑣) = O(∥𝑣 ∥𝑘 ), then

𝜒 (𝑣) = 𝜒 (Re 𝑣) + 𝑖
∫ 1

0
𝐷𝜒 (Re 𝑣 + 𝑖𝑠Im 𝑣)Im 𝑣 𝑑𝑠 = 𝜒 (Re 𝑣) + 𝑖𝐷𝜒 (Re 𝑣)Im 𝑣 + 𝛾2O(∥Re 𝑣 ∥𝑘 ).

We fix 𝑎, 𝑏,𝐴 satisfying (3.20), namely 𝑎 ă 𝑎𝑓 , 𝑏 ą 𝑏 𝑓 and 𝐴 ă 𝐴𝑓 . Recall that 𝑎𝑓 ď 𝑏 𝑓 .
Let 𝑣 P Ω𝜌 (𝛾). We are going to check that Re q𝑅𝑣 (𝑣) P 𝑉𝜌 and ∥Im q𝑅𝑣 (𝑣)∥ ď 𝛾 ∥Re q𝑅𝑣 (𝑣)∥. On
the one hand, by hypothesis (v) on 𝑓

𝑁
and Lemma C.1 we have that, if 𝛾 is small,

dist
(
Re q𝑅𝑣 (𝑣),𝑉 𝑐𝜌

)
ě dist

(
Re 𝑣 + 𝑓 𝑁 (Re 𝑣, 0),𝑉 𝑐𝜌

)
´ M𝛾 ∥Re 𝑣 ∥𝑁 ě

𝑎𝑉

2 ∥Re 𝑣 ∥𝑁 .

On the other hand, if 𝑣 P Ω𝜌 (𝛾) with 𝛾 ď 1, using again Lemma C.1, and that ∥𝑣 ∥ = ∥Re 𝑣 ∥,
we obtain

∥Im q𝑅𝑣 (𝑣)∥ ď ∥Im 𝑣 ∥
(
∥Id + 𝐷𝑓 𝑁 (Re 𝑣, 0)∥ +M𝛾 ∥𝑣 ∥𝑁´1 +M∥𝑣 ∥𝑁

)
ď 𝛾 ∥Re 𝑣 ∥(1 ´ (𝐴𝑓 ´ M𝛾 ´ M𝜌)∥𝑣 ∥𝑁´1).

Using similar arguments we can see that ∥Re q𝑅𝑣 (𝑣)∥ ě ∥Re 𝑣 ∥(1´ (𝑏 𝑓 +M𝛾 +M𝜌)∥𝑣 ∥𝑁´1).
Then, to check that ∥Im q𝑅𝑣 (𝑣)∥ ď 𝛾 ∥Re q𝑅𝑣 (𝑣)∥, it is sufficient to check that

𝑏 𝑓 +M(𝛾 + 𝜌) ă 𝑏 ă 𝐴 ă 𝐴𝑓 ´ M(𝛾 + 𝜌)
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which is satisfied if 𝑏 ă 𝐴 and 𝜌,𝛾 are small enough. This proves that Ω𝜌 (𝛾) is invariant by
q𝑅𝑣 .

To prove (3.25) in the second item of Lemma 3.6, we note that there exist 𝜌,𝛾 small
enough such that if 𝑣 P Ω𝜌 (𝛾),

∥q𝑅𝑣 (𝑣)∥ ď ∥𝑣 ∥ ´ 𝑎𝑓 ∥𝑣 ∥𝑁 +M∥𝑣 ∥𝑁+1 ď ∥𝑣 ∥(1 ´ 𝑎∥𝑣 ∥𝑁´1), (C.1)

and
∥q𝑅𝑣 (𝑣)∥ ě ∥𝑣 ∥ ´ 𝑏 𝑓 ∥𝑣 ∥𝑁 ´ M∥𝑣 ∥𝑁+1 ě ∥𝑣 ∥(1 ´ 𝑏∥𝑣 ∥𝑁´1). (C.2)

Analogously,
∥𝐷 q𝑅𝑣 (𝑣)∥ ď 1 ´𝐴∥𝑣 ∥𝑁´1. (C.3)

Then, since
∥𝑣 ∥(1 ´ 𝑏∥𝑣 ∥𝑁´1) ď ∥q𝑅𝑣 (𝑣)∥ ď ∥𝑣 ∥(1 ´ 𝑎∥𝑣 ∥𝑁´1),

taking 𝑎˚ ă 𝑎(𝑁 ´ 1), 𝑏˚ ą 𝑏 (𝑁 ´ 1) and 𝜌,𝛾 small enough, it is clear that

∥𝑣 ∥[
1 + 𝑏˚∥𝑣 ∥𝑁´1]

1
𝑁´1

ď ∥q𝑅𝑣 (𝑣)∥ ď
∥𝑣 ∥[

1 + 𝑎˚∥𝑣 ∥𝑁´1
] 1
𝑁´1

, 𝑣 P Ω𝜌 (𝜌,𝛾). (C.4)

Introducing the map Rc(𝜉) = 𝜉
[
1 + c𝜉𝑁´1]´ 1

𝑁´1 , with c ą 0, (C.4) can be rewritten as

R𝑏˚ (∥𝑣 ∥) ď ∥q𝑅𝑣 (𝑣)∥ ď R𝑎˚ (∥𝑣 ∥).

On the other hand, the flow 𝜑 (𝑡,𝑤) of the differential equation ¤𝑤 = ´ c
𝑁´1𝑤

𝑁 is

𝜑 (𝑡,𝑤) = 𝑤[
1 + 𝑡c𝑤𝑁´1

] 1
𝑁´1

.

Clearly, by induction on 𝑘 , R𝑘c (∥𝑣 ∥) = 𝜑 (𝑘, ∥𝑣 ∥) for all 𝑘 ě 0. Since R𝑎˚ and R𝑏˚ are
increasing functions andΩ𝜌 (𝛾) is invariant by q𝑅𝑣 , using again induction on𝑘 we prove (3.25).

In order to prove items (3) and (4) of Lemma 3.6, we first need some estimates on 𝐷 q𝑅𝑣
and 𝐷2

q𝑅𝑣 .
Lemma C.2. Let 𝑎, 𝑏 and 𝐴 satisfy (C.1), (C.2) and (C.3) with 𝐴 ą 𝑏. Let also 1 ă ℓ ă 𝐴/𝑏
and 𝑏˚ =

(𝑁´1)𝐴
ℓ

. Then, there exist 𝜌,𝛾 small enough and a constant M ą 0 such that for all
𝑣 P Ω𝜌 (𝛾) and 𝑘 ě 1

∥𝐷 q𝑅𝑘𝑣 (𝑣)∥ ď

𝑘´1∏
𝑙=0

∥𝐷 q𝑅𝑣 (q𝑅𝑙𝑣 (𝑣))∥ ď
1[

1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1
] ℓ
𝑁´1

, (C.5)

∥𝐷2
q𝑅𝑘𝑣 (𝑣)∥ ď M 1

∥𝑣 ∥
[
1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1

] ℓ
𝑁´1

.
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In addition,

∥Im q𝑅𝑘𝑣 (𝑣)∥ ď
∥Im 𝑣 ∥[

1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1
] ℓ
𝑁´1

. (C.6)

Proof. By the chain rule and (C.3), if 𝑣 P Ω𝜌 (𝛾),

∥𝐷 q𝑅𝑘𝑣 (𝑣)∥ ď

𝑘´1∏
𝑙=0

∥𝐷 q𝑅𝑣 (q𝑅𝑙𝑣 (𝑣))∥ ď

𝑘´1∏
𝑙=0

(1 ´𝐴∥q𝑅𝑙𝑣 (𝑣)∥𝑁´1).

Now we bound the logarithm of the product. Since 𝑏˚ ą 𝑏 (𝑁 ´ 1), using property (3.25) we
obtain

𝑘´1∑︁
𝑙=0

log
(
1 ´𝐴∥q𝑅𝑙𝑣 (𝑣)∥𝑁´1) ď ´𝐴

𝑘´1∑︁
𝑙=0

∥q𝑅𝑙𝑣 (𝑣)∥𝑁´1 ď ´𝐴∥𝑣 ∥𝑁´1
𝑘´1∑︁
𝑙=0

1
1 + 𝑙𝑏˚∥𝑣 ∥𝑁´1

ď ´
𝐴

𝑏˚
log

(
1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1).

Therefore,
∥𝐷 q𝑅𝑘𝑣 (𝑣)∥ ď

1[
1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1

]𝐴/𝑏˚
.

Finally, since 𝐴
𝑏˚ = ℓ

𝑁´1 , property (C.5) is proven.
Now, we deal with the bound for ∥𝐷2

q𝑅𝑘𝑣 (𝑣)∥. We have that

∥𝐷2
q𝑅𝑘𝑣 (𝑣)∥ ď

𝑘´1∑︁
𝑚=0

∥𝐷2
q𝑅𝑣 (q𝑅𝑚𝑣 (𝑣))∥∥𝐷 q𝑅𝑚𝑣 (𝑣)∥

𝑘´1∏
𝑙=0

∥𝐷 q𝑅𝑣 (q𝑅𝑙𝑣 (𝑣))∥∥𝐷 q𝑅𝑣 (q𝑅𝑚𝑣 (𝑣))∥´1.

We recall that 𝑎˚ ă 𝑎(𝑁 ´ 1) and 𝑎˚ ă 𝑏˚. Using that ∥𝐷 q𝑅𝑣 (q𝑅𝑚𝑣 (𝑣))∥ ě 1 ´ C𝜌𝑁´1 for all
𝑚 P N, that ∥𝐷2

q𝑅𝑣 (𝑣)∥ ď M∥𝑣 ∥𝑁´2, (C.5) and (3.25):

∥𝐷2
q𝑅𝑘𝑣 (𝑣)∥ ď M

𝑘´1∏
𝑙=0

∥𝐷 q𝑅𝑣 (q𝑅𝑙𝑣 (𝑣))∥
𝑘´1∑︁
𝑚=0

∥q𝑅𝑚𝑣 (𝑣)∥𝑁´2∥𝐷 q𝑅𝑚𝑣 (𝑣)∥

ď M∥𝑣 ∥𝑁´2 1[
1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1

] ℓ
𝑁´1

𝑘´1∑︁
𝑚=0

1[
1 +𝑚𝑎˚∥𝑣 ∥𝑁´1

] 𝑁´2
𝑁´1

1[
1 +𝑚𝑏˚∥𝑣 ∥𝑁´1

] ℓ
𝑁´1

ď M∥𝑣 ∥𝑁´2 1[
1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1

] ℓ
𝑁´1

𝑘´1∑︁
𝑚=0

1[
1 +𝑚𝑎˚∥𝑣 ∥𝑁´1

] 𝑁´2+ℓ
𝑁´1

.

Then, since ℓ ą 1, the sum above converges when 𝑘 Ñ 8 and we conclude that

∥𝐷2
q𝑅𝑘𝑣 (𝑣)∥ ď M 1

∥𝑣 ∥
1[

1 + 𝑘𝑏˚∥𝑣 ∥𝑁´1
] ℓ
𝑁´1

.
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To finish the proof of this lemma we prove (C.6). By Lemma C.1,

∥Im q𝑅𝑘𝑣 (𝑣)∥ ď ∥Im 𝑣 ∥
∫ 1

0
∥𝐷 q𝑅𝑘𝑣 (Re 𝑣 + 𝑖𝑠Im 𝑣)∥ 𝑑𝑠.

Then, from the fact ∥Re 𝑣 + 𝑖𝑠Im 𝑣 ∥ = max{∥Re 𝑣 ∥, 𝑠 ∥Im 𝑣 ∥} = ∥Re 𝑣 ∥ = ∥𝑣 ∥, using (C.5) for
∥𝐷 q𝑅𝑘𝑣 (Re 𝑣 + 𝑖𝑠Im 𝑣)∥, we obtain the result. □

Remark C.3. When 𝑛 = 1 one can further check that Im q𝑅𝑘𝑣 (𝑣) ¨ Im 𝑣 ě 0 and that for
𝑎˚ ă 𝑎(𝑁 ´ 1) and ℓ ą 𝑁 ,

|Im q𝑅𝑘𝑣 (𝑣) | ě
|Im 𝑣 |[

1 + 𝑘𝑎˚∥𝑣 ∥𝑁´1
] ℓ
𝑁´1

.

Indeed, when 𝑛 = 1, q𝑅(𝑣) = 𝑣 ´ 𝑎𝑣𝑁 + O(|𝑣 |𝑁+1). Then, Im q𝑅(𝑣) = Im 𝑣 (1 ´ 𝑎O(|𝑣 |)𝑁´1) and
it is clear that, if Im 𝑣 is small, Im𝑅𝑘 (𝑣) and Im 𝑣 have the same sign.

To prove the lower bound for Im q𝑅𝑘 (𝑣) we use that, for any 𝐵 ą 𝑎𝑁 , taking 𝛾, 𝜌 small
enough

|Im q𝑅(𝑣) | ě |Im𝑥 | (1 ´ 𝐵 |𝑣 |𝑁´1), 𝑥 P Ω(𝛾, 𝜌).
Therefore,

|Im q𝑅𝑘 (𝑣) | ě |Im 𝑣 |
𝑘´1∏
𝑙=0

(1 ´ 𝐵 |q𝑅𝑙 (𝑣) |𝑁´1).

As we did in the proof of Lemma C.2, we consider the logarithm of the last product:

𝑘´1∑︁
𝑙=0

log
(
1 ´ 𝐵 |q𝑅𝑙 (𝑣) |𝑁´1) ě ´

𝐵

𝑎˚
log(1 + 𝑎˚𝑘) |𝑣 |𝑁´1).

Take 𝑎˚ ă 𝑎˚ and 𝜌 small enough such that

|Im q𝑅𝑘 (𝑣) | ě
|Im 𝑣 |[

1 + 𝑎˚𝑘 ∥𝑣 ∥𝑁´1
]𝐵/𝑎˚

.

Since the choice of 𝐵, 𝑎˚, 𝑎˚ can be done arbitrarily close to 𝑁𝑎, 𝑎(𝑁 ´ 1), 𝑎˚ and 𝐵/𝑎˚ ą

𝑁 /(𝑁 ´ 1) the proof is finished.
Next, we prove property (3.26) in the third item of Lemma 3.6. Recall that q𝑅𝜓 (𝑣,𝜓 ) =

𝜔 +𝜓 + 𝑅𝜓 (𝑣) with 𝑅𝜓 (𝑣) = O(∥𝑣 ∥𝑃 ). By Lemma C.1 one has that

∥Im𝑅𝜓 (𝑣)∥ ď ∥Im 𝑣 ∥
∫ 1

0
∥𝐷𝑅𝜓 (Re 𝑣 + 𝑖𝑠Im 𝑣)∥ 𝑑𝑠 ď M∥Im 𝑣 ∥∥𝑣 ∥𝑃´1.
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Let ℓ be such that max{1, 𝑁 ´ 𝑃} ă ℓ ă 𝐴/𝑏. Then, using (3.25) and Lemma C.2:

8∑︁
𝑗=0

∥Im𝑅𝜓 (q𝑅
𝑗
𝑣 (𝑣))∥ ď M

8∑︁
𝑗=0

∥Im q𝑅
𝑗
𝑣 (𝑣)∥∥q𝑅

𝑗
𝑣 (𝑣)∥𝑃´1

ď M∥Im 𝑣 ∥∥𝑣 ∥𝑃´1
8∑︁
𝑗=0

1[
1 + 𝑗𝑎˚∥𝑣 ∥𝑁´1

] ℓ+𝑃´1
𝑁´1

ď M ∥Im 𝑣 ∥
∥𝑣 ∥𝑁´𝑃

,

where we have used that 𝑎 ă 𝑏 and ℓ + 𝑃 ´ 1 ą 𝑁 ´ 1.
Finally, for item (4) let (𝑣,𝜓 ) P Γ𝜌 (𝛾, 𝜎). We have already seen that q𝑅𝑣 (𝑣) P Ω𝜌 (𝛾). It

remains to prove that q𝑅𝜓 (𝑣,𝜓 ) satisfies the condition of the definition of the set Γ𝜌 (𝛾, 𝜎). We
have

∥Im q𝑅𝜓 (𝑣,𝜓 )∥ +
8∑︁
𝑙=0

∥Im𝑅𝜓 (q𝑅𝑙+1
𝑣 (𝑣))∥ =∥Im (𝜓 + 𝑅𝜓 (𝑣))∥ +

8∑︁
𝑙=0

∥Im𝑅𝜓 (q𝑅𝑙+1
𝑣 (𝑣))∥

ď∥Im𝜓 ∥ +
8∑︁
𝑙=0

∥Im𝑅𝜓 (q𝑅𝑙𝑣 (𝑣))∥ ă 𝜎

so that Γ𝜌 (𝛾, 𝜎) is invariant by q𝑅. This finishes the proof of Lemma 3.6.
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