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Abstract

There are many interesting dynamical systems in which degenerate invariant tori appear.
We give conditions under which these degenerate tori have stable and unstable invariant
manifolds, with stable and unstable directions having arbitrary finite dimension. The
setting in which the dimension is larger than one was not previously considered and is
technically more involved because in such case the invariant manifolds do not have, in
general, polynomial approximations. As an example, we apply our theorem to prove that
there are motions in the (n + 2)-body problem in which the distances among the first n
bodies remain bounded for all time, while the relative distances between the first n-bodies
and the last two and the distances between the last bodies tend to infinity, when time goes
to infinity. Moreover, we prove that the final motion of the first n bodies corresponds to
a KAM torus of the n-body problem.
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1 Introduction

1.1 Parabolic invariant tori with stable and unstable invariant
manifolds

Consider, as a motivating example, the analytic local system of ordinary differential
equations
* = f(xy) (Asx + X(x,4,0)),
y=f(xy (Auy +Y(x,y,0), (1.1)
=0+ O(x,y,0),

where (x,y) € B < R" x R™, Bis a ball around the origin, § € T¢ = (R/22Z)?, the matrices
A and A, satisfy Spec A, Spec (—A,) < {z € C | Imz < 0}, @ € R? is a Diophantine
frequency vector, X, Y are of order greater or equal than 2 with respect (x,y), and © of
order greater or equal than 1. Assume that f has order N in (x, y), with N > 0. Under these
hypotheses, the set 7 = {x = 0, y = 0} is an invariant torus of the system and the flow on
7 is a rigid rotation with frequency vector w.

If f = 1,it is well known that 7 is an invariant hyperbolic torus with stable and unstable
invariant manifolds, which are analytic graphs over (x, ) and (y, 0), respectively.

Assume that N > 1. Then, the set 7, although still invariant, is no longer hyperbolic but
degenerate. We will say that 7 is a parabolic torus, as opposed to hyperbolic and elliptic. In
this case, it is a non-trivial matter to establish the local behaviour of the system around 7".
For instance, if d = 0, that is, if (1.1) does not depend on the angles 6, the system, provided
f(x,y) # 0, is equivalent to a system with a hyperbolic fixed point (by means of the rescal-
ing of time ds/dt = f(x,y)) and, hence, it possesses formal stable and unstable invariant
manifolds, y = y*(x) and x = y*(y), in the sense that y>* are formal series which are invari-
ant by (1.1). However, if d > 1, n > 2, and f is not a function depending only on x, it is
not difficult to see that, in general, there is no formal stable manifold because, if one tries to
find y = y*(x, 0) as a series in x with coefficients depending on 6 invariant by (1.1), formal
obstructions appear. On the contrary, it is not difficult to see that, if n = 1 or f only depends
on x, there is always a series representing the stable manifold, regardless of the dimension
of the angles.

Of course, the existence of a formal stable invariant manifold of 7~ does not imply the
existence of a true invariant one nor the formal obstructions necessarily prevent the exis-
tence of a true invariant manifold. These questions, that is, if 7 in (1.1) possesses stable or
unstable invariant manifolds and, in the case it does, what kind of regularity these manifolds
have, were posed by Sim6 in his 10th problem [1], were he remarked the formal obstructions
that appear in the case d > 1 and n > 2.



In the present work we will consider a more general situation, namely, vector fields of

the form
N (xy,0.0) +0(l(xy) 1N
X(x,y,0) =| g™ (x,5,6,2) + O(||(x, y) | |, (1.2)
w+h>P(x,y,0,2)

where f N gM , and h” are functions of orders N, M, and P in (x, y), respectively. Here, the
set 7 is also invariant by the flow of X. We will provide a set of assumptions under which
7 has a stable invariant manifold. For the unstable manifold one simply has to consider
the reversed time vector field. Observe that equation (1.1) is a particular case of this type of
vector fields.

It is important to remark that equation (1.1), although degenerate, appears in many
interesting problems. The fact that in many cases 7~ possesses stable and unstable invariant
manifolds, has important consequences in the global dynamics of the corresponding sys-
tems. Actually, we will deal, more generally, with a quasiperiodic non-autonomous version
of (1.2).

One of the first important examples is the Sitnikov problem [2, 3], a particular instance
of the restricted 3-body problem. In some special coordinates, the Sitnikov problem can be
written in the form (1.1) with n = 1,d = 1, and f(x,y) = (x + y)3. McGehee [4] proved an
existence result of analytic (out of the fixed point) stable manifolds for two dimensional maps
which implies the existence of an analytic stable manifold for 7. A generalization of this
statement for C¥ maps providing one dimensional stable manifolds in arbitrary dimension
was carried out in [5], using the parametrization method. Besides the Sitnikov problem, the
restricted planar 3-body problem, either circular or elliptic [6-9], or the planar 3-body prob-
lem [10] can be written in the form (1.1) withn = 1,d = 1,and f(x) = (x+y)*, with important
dynamical consequences. Indeed, in all these works, devoted to show the existence of either
chaotic and oscillatory motions or diffusion phenomena, one of the key ingredients of the
proof is the existence of invariant manifolds of certain parabolic fixed points or periodic
orbits at infinity and their analytic dependence with respect to several parameters. See also
[11] for a different approach to parabolic tori in celestial mechanics. Parabolic points with
invariant manifolds can also be found in problems in economics (see [12, 13]). In this last
case,n=1,d =0, and f(x) = x.

The approaches in [4, 5] required n = 1 and d = 1, that is, they only work if the stable
invariant manifold for the stroboscopic return map is one dimensional. The generalization
for d > 2 but keeping n = 1 was carried out in [14], with implications in the general n-body
problem, which, in certain parts of the phase space, can be written in the form (1.1) with
n=1,d=2n+2,and f(x) = x> In this case, 7" in (1.1) admits a formal stable invariant
manifold as a power series in x with coefficients depending on 6, which is used as a seed in
the parametrization method.

Studying parabolic fixed points with stable invariant manifolds of dimension larger than
one with the parametrization method is more involved. The reason is that, unlike the previ-
ous cases, if the dimension of the invariant manifolds is larger than one, in general they do
not admit a Taylor expansion at the fixed point. To overcome this difficulty, it was shown
in [15, 16] that, for vector fields of the form (1.2) with d = 0, under suitable hypotheses, they
admit expansions as sums of homogeneous functions of increasing order. Having in mind



some applications to celestial mechanics (see section 1.3), in the present work we extend the
results in [15, 16] to parabolic tori.

1.2 Degenerate tori and homogeneous functions

The purpose of the present paper is twofold. On the one hand, we present a general theorem
which, under suitable conditions, provides the existence of invariant manifolds of the invari-
ant torus 7 for vector fields of the form (1.2) (and for maps with equivalent conditions). On
the other, we show the existence of new type of orbits in the N-body problem, defined for
all time either in the future or in the past, with a prescribed final behaviour. We call these
orbits double parabolic orbits to infinity. See Section 1.3 for an accurate description of these
motions.

The conditions we impose on the vector field (1.2) are placed in Section 2.2.1 (they are
completely analogous for maps and for flows). Of course, since the linearization of the vector
field at 7 vanishes identically, they have to involve several terms of the jet of the vector
field at the torus. In fact, they only involve the first non-vanishing terms of the jet of the
(x, y)-components of the vector field at the torus, plus a very mild condition on the angular
directions. In particular, they imply the existence of a weak contraction in the x-direction
and a weak expansion in the y-direction, but some other requirements are also needed.

We apply the parametrization method [17-19] to find the invariant manifolds of 7~
in (1.2). The main differences among the results in the present paper and those in [15, 16]
are the following.

First, instead of considering parabolic fixed points, here we consider parabolic tori. This
is a non-trivial extension that widens the field of application of the results. We are interested
in particular in the case where the dynamics on the manifold synchronizes with the one
on 7. This fact, that always happens in the hyperbolic case, may not occur in the parabolic
one. Our theorem is also valid even when this synchronization does not take place, and we
give conditions under which it happens. In this sense, we improve the results in [14], where
only the cases where the synchronization occurs where considered. One of the consequences
of synchronization is that then the invariant manifolds are foliated by the stable leaves of
the points in the torus and this foliation is regular in the base.

Second, we do not require the vector field to be defined in a whole neighborhood of
the torus, not even at a formal level. We only require some kind of regularity in sectorial
domains with the torus at their vertex, expressed in terms of homogeneous functions. We
do require the leading terms to be defined and regular around the torus, although we believe
that this requirement may be relaxed and we impose it for convenience, since it holds in the
examples we consider.

Third, we consider only the analytic case. The only reason is to simplify the proof. We
believe that the arguments in [15, 16] to deal with the Ck case can be adapted here, but they
are rather cumbersome and the applications we consider are analytic.

The existence of the manifolds is formulated as an a posteriori result, that is, in
Theorem 2.7, for maps, or Theorem 2.14, for flows, we show that, if the invariance
equation (2.7), in the case of maps, or (2.23), in the case of flows, admits an approximate solu-
tion as sum of homogeneous functions of increasing order up to some specified order, then
it has a true analytic solution. Separately, Theorem 2.8 (Theorem 2.16, in the case of flows)



provides such approximation. We emphasize that, in general, there is no polynomial approx-
imate solution of the invariance equations (2.7) or (2.23) since formal obstructions appear.
Obtaining this approximate solution is a non-trivial task. Finally, Theorems 2.9 and 2.16 sim-
ply join the a posteriori and the approximation results into an existence result, to ease their
application in practice.

Theorems 2.7 and 2.8 apply in the case the involved maps have the form

x x+ ZN(x,y,0,1)
Fly|l=| y+g¢"(xy,6.0)
0 0+w+h2(x,y,0,1)

We add Corollary 2.11, which applies to maps of the form

Ax + fZN(x,y,0,2)
Gi(x,y,0) = By+g>M(x, y,0,1) |, Spec A, SpecB U{z eC| 2K = 1}.
0+w+h>P(x,4,0,1) kez

These kind of maps appear in [12, 13], where a certain economic model based on critical
values is considered.

1.3 Double parabolic orbits to infinity in the (n + 2)-body problem

We present an application of Theorem 2.16 to celestial mechanics, more concretely, to obtain
new types of solutions of the full planar N-body problem. In the present paper, by direct
application of Theorem 2.16, we show that the set of double parabolic orbits to infinity con-
tains manifolds of certain dimension. As far as we know, these solutions have not been
previously found. They are defined either for all future or all past time, avoiding collision
and non-collision singularities. Further analysis, completely beyond the scope of the present
paper, could lead to the existence of solutions that combine both of them, from the past to the
future. The existence of solutions of the n-body problem combining prescribed final motions
in the past and the future is an important question that has been addressed with different
techniques in different instances of the problem (see, amongst others, [2, 3, 8, 10, 20-23]).
In a precise way, here double parabolic orbits to infinity means the following. Consider
the planar (n + 2)-body problem, with n > 1. Denote by Qy the cluster of the first n masses
and by qo the position of their center of mass in some inertial system of reference. Let g,
and g,+1 be the positions of the last two bodies. Let py, p,, and p,+1 be their corresponding
momenta. Denote by dj the distance between qq and g, k = n, n+ 1, and by d,, the distance
between p, and p,+;. Assume, for the moment, that these three distances are infinite, while
their momenta py = p, = pn+1 = 0. We prove that, in some coordinates, the vector field
describing the (n+2)-body problem is regular around this configuration. We remark that, in
this configuration, the relative positions of g, g1, and g, are not free. They are described in
this section, below. When the three clusters are at infinity with zero momenta, the motion
of the bodies in Qq is described by an n-body problem. It is well known that KAM tori
exist in the n-body problem [24-26]. We choose any of those KAM tori. In these regularized
variables, the configuration in which the chosen KAM tori and the other two masses are
at infinity is a regular invariant torus with dynamics conjugated to a Diophantine rotation.



The vector field has the form (1.2). Our aim is to find invariant manifolds of solutions that
tend either in the past or in the future to this invariant torus.

It is well known, however, that any solution of the (n + 2)-body problem in which the
three clusters arrive to infinity with parabolic velocity must tend to a central configuration
of the 3-body problem for qo, g1 and g, [27] (see also [28-30]), that is, either the relative
positions of the three clusters tend to an equilateral triangle or to a collinear configuration,
which only depends on the masses of the bodies. See Figure 1. This is not the case when the
limit velocities are hyperbolic [31].

Mp

G .

Mpt1 \M mn
MOy ey M1

Mp+1
mo, y Mn—1
Fig. 1 Tending to collinear and equilateral configurations.
Let my, ..., mu41 be the (non-zero) masses of the planar (n + 2)-body problem. Let m;,

0 < j < n — 1, be fixed and assume that my, m,4; are small enough.

We recall that the planar (n + 2)-body problem admits a Hamiltonian formulation
(see (5.1) for the Hamiltonian formulation and, in general, Section 5.1 for the actual descrip-
tion of the problem and the coordinates we use). It has three classical first integrals, besides
the energy, namely, two corresponding to the total linear momentum and one to the total
angular momentum. Fix any fixed value of the total linear momentum (that can be assumed
to be 0), any value of the total angular momentum, and reduce the problem by these inte-
grals. The reduced problem has 2n+1 degrees of freedom. In the reduced system, we consider
three clusters of masses: the first one, containing masses mg to m,_1, and the second and
third ones, containing the masses m, and m,1, respectively.

Consider the following “central configurations” of the planar 3-body problem:

(E) an equilateral triangle, with a cluster in each vertex,
(C) a collinear configuration, where the first, more massive, cluster lies between the two
lighter ones.
In the case of the first cluster, which involves several bodies, to be on a vertex means that
the center of mass of the cluster lies on the vertex. In the case (E), there is only one of such
configurations, modulo permutation of the vertices. The case (C), modulo permutation of
the lighter bodies, there is also a single one.

Both in the cases (E) and (C), when the mutual distances of the clusters are infinite and
the momenta of each cluster are 0, the motion of the bodies in the first cluster is described
by a n-body problem after reduction of the total linear momentum. Let 7~ be a KAM torus
of this n-body problem, with Diophantine frequency w. It has dimension 2(n — 1). Observe



that 7~ does not depend on the masses m,, m,+;. We call 7¢ and 7¢ the invariant torus of
the (n + 2)-body problem where the first cluster evolves in 7, while the three clusters are
in either (E) or (C) configuration, at infinity with zero momentum.

Theorem 1.1. Ifm, and my4, are small enough but both different from 0, with the smallness
condition only depending on My = ZZ;ol my, the following holds.

* 9 possesses 3 + 2(n — 1) dimensional stable and unstable manifolds, W;"*, that can be
parametrized by some variables (u, @) € V x T?"=D < R? x T2(*=1V being some
sectorial domain in R with the origin in its vertex, and such that the p-dynamics is given
by ¢ = w.

* Jc possesses 2 + 2(n — 1) dimensional stable and unstable manifolds, W°, that can be
parametrized by some variables (u, p) € V x T2("=1) < R? x T?"=1 and such that the
@-dynamics is given by ¢ = w.

Theorem 5.2 is a rewording of Theorem 1.1, expressed in appropriate coordinates, after
the explicit reduction by the total linear momentum and the total angular momentum of
the system is done. This reduction is performed in Section 5.1. Later on, in Section 5.2, we
introduce the quasiperiodic solutions, which correspond to trajectories on invariant tori of
the n-body problem.

Theorem 1.1 assumes that the masses of the last two bodies are small, but different
from 0. It provides the existence of an invariant manifold of solutions tending to parabolic
motions in a collinear configuration where the cluster of more massive bodies is between
the last two, and to an equilateral configuration, respectively. There is still another possi-
ble final configuration, the remaining collinear case, in which the cluster of more massive
bodies moves to infinity in one direction while the last ones go to infinity in the other one.
Our current proof does not cover this case, although we believe it could be extended, with
additional effort, to include it.

We assume that the masses of the last two bodies are small. In doing so, roughly speaking,
the problem becomes perturbative, since the interaction between the large cluster with each
of the small masses is O (my,, m,;) while the interaction between the last masses themselves
is O(mpmp1). However, the coupling between the small masses is crucial and the existence
of the manifolds strongly depends on the non-vanishing of a coefficient of the perturbation.
If the masses are small, this non-degeneracy can be easily checked. The sign of the coefficient
is different for 7¢ and 7¢, the two configurations we consider, which is the reason why
the corresponding invariant manifolds have different dimension. If the masses are taken
larger, bifurcations may occur (as happens, for instance, for the Lagrange points Ly and Ls
of the restricted 3-body problem). We have not pursued in this direction, but we believe that
Theorems 2.14 and 2.15 can be applied even if the masses m;, and my,+; are not small. This
seems feasible because there are only three clusters and the number of central configurations
in the 3-body problem is well established. One could also consider the problem of more than
two masses going to infinity in a parabolic fashion.

It is also worth to remark that, since the existence of W;>* and Wg’s is a consequence
of Theorems 2.14 and 2.15, parametrizations of them can be approximated by sums of ana-
lytic homogeneous functions of increasing order. In some instances of the 3-body problem
(see [15]), these homogeneous functions are indeed homogeneous polynomials. Then, the
question of the Gevrey regularity of these expansions makes sense. This was studied in a



lower dimensional problem in [32]. We conjecture that the invariant manifolds in the present
setting also admit polynomial approximations which are Gevrey of a certain class.

Finally we remark that, in the case of the planar 3-body problem, that is, n = 1 in our
setting, 7~ is a single parabolic point and the configurations 7z and 7¢ are the well known
central configurations of the problem. After the reductions, the planar 3-body problem is a 3-
degrees of freedom Hamiltonian. Then, our theorem implies that 7z possesses 3-dimensional
stable and unstable manifolds, which both lie in the same 5-dimensional energy level. These
manifolds intersect at least along a homoclinic orbit provided by the homographic solution
given by the central configuration.

1.4 Structure of the paper

In Section 2 we introduce the notations and definitions we will use along the paper, as well
as the statements of the general theorems. We provide different statements for maps and
flows to ease their application, although the claims for flows are deduced from the ones for
maps.

Section 3 is devoted to the proof of the a posteriori claims, that is, assuming that a suitable
approximate solution of some invariance equation is known, we prove the existence of a
true solution. The statements are proven through a fixed point scheme.

Section 4 contains the construction of the approximate solutions of the corresponding
invariance equation. As we have already mentioned, these solutions are not polynomial but
sums of homogeneous functions of increasing order in certain variables. Notwithstanding,
the solutions are given through explicit formulas.

Section 5 contains the proof of the existence of double parabolic motions to infinity in
the (n +2)-body problem. It is done by finding suitable coordinates, which include a normal
form procedure and blown-up, in which the general theorem applies.

2 Invariant manifolds of normally parabolic invariant tori

The first goal of this section is to introduce the main notation and conventions we use along
the work. This is done in Section 2.1.1. In Section 2.1.2 we enunciate the small divisors lemma
we extensively use along the paper.

The remaining sections are devoted to state the main results of this work. Section 2.2
deals with the case of the existence of local stable manifolds associated to invariant normally
parabolic tori for analytic maps and Section 2.4 is devoted to the case of analytic vector fields
depending quasiperiodically on time also having an invariant normally parabolic tori.

In both settings we present four types of results: the so-called a posteriori result (Theo-
rems 2.7 and 2.14), an approximation result (Theorems 2.8 and 2.15), an existence result of
local stable manifolds, which is a direct consequence of the previous ones (Theorems 2.9
and 2.16) and finally a conjugation result, Corollaries 2.10 and 2.17.

2.1 Notation and a small divisors lemma
2.1.1 Notation

In this section we introduce the notations and conventions we will use without explicit
mention along the paper. Most of them are widely used in the literature and were already



used in the previous works [15, 16, 32]. However, for the convenience of the reader, we
reproduce them here.
The general notation about the sets we will use is:

We denote B, the open ball of a Banach space E of radius r centered at the origin. We
will write B, < E to indicate that B, is a ball in the space E. Given a set U < E, we
denote U its closure.

When we write R” x R™, and we have norms in R” and R™, we consider the product
norm in it, namely ||(x, y)|| = max{||x||, ||y||}. This determines the operator norms for
linear maps in these spaces. All these norms will be denoted by || - ||.

Real and complex d-torus: we represent the real torus by T¢ = (R\Z)d. Giveno > 0, a
complex extension is

ﬁ:@:wynﬁ@e@wﬁ|mwﬂ<aw}

Given an open set U — R, we denote by Uc an open complex extension of it.

Given a function f : U < RF — R and x € U, Df(x) denotes its derivative (or
differential) and, for a function f(x,y), f: U © RF x RE' — R! o, f(x,y) or Dy f(x,y)
denote its partial derivative with respect to the variable x € R¥, etc.

With respect to averages, we introduce the following notation:

For a function f : U x T¢ ¢ R¥ x T¢ — R!, we denote by f its average with respect
to 0 € T¢ and fz f- ]_‘ its oscillatory (mean free) part. In Section 5 we will also use
the notation [f] = ]_”
We say that a function f(x,6,t), f : U x T x R — R/ is quasiperiodic with respect to
t € R if there exists a function f: UxTdxTd - R!, for some d’ and a vector v € Rd/,
such that

f(z,0,t) = f(z0,vt). (2.1)
We say that v is the time frequency of f.
If f is a quasiperiodic function, and fsatisﬁes (2.1), the average of f, denoted by ]_‘,
is the average of f(z, 0,0") with respect to (6,0") € T x T . In the same way, the
oscillatory part is f =f— 17
We say that a quasiperiodic function f is analytic if f is.
We will use the analogous definitions if the functions depend on parameters, consid-
ering the corresponding functions defined on U x T¢ x A or U x T¢ x T x A, with
A CRP,
Also, we will use the analogous definitions for the complex extensions of the involved
functions.

Next, we enumerate some general conventions we will use:

We will denote M > 0 a generic constant, that can take different values at different
places.

We will omit the dependence of the functions on some of the variables whenever there
is no danger of confusion, mainly the dependence on parameters.
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« Given f : U x T? x A = R¥ x T¢ x R? — R! we will denote by f¥) its k-Fourier
coefficient, namely

f(z,0,2) = Z FO (2, )0 0=k + -+ kab.
kezd

* Given f(z,w), f: U x W — R!, 0 € U, where W is some set, we will write f(z,w) =
O(|1z1%), f = O(||z||¥) or simply f = Oy if and only if there exists a constant M such
that ||f(z, w)|| < M||z||* forallw e W and z € U n B;.

+ For functions f(z,0,1), z € R* 9 € T?, A € R?, we use the convention that the super-
script in the function, f!, indicates that f is a homogeneous function of degree [ with
respect to z. We will write £ if f>! = 0.

« If (x,y,2) € RF x RI x R™ and f is a function taking values on RF x R! x R™, we
will denote by f, fy, fz the corresponding projections over the subspaces generated by
the variables x, y, z, respectively. We will also use the notation f; ;, = (f, f;) and the
analogous notation for other combinations of the variables.

* When A is a parameter and the composition f(z,4) = h(g(z, 1), ) makes sense, we
will write f = h o g. When dealing with time dependent vector fields, for notational
purposes, the time ¢ will be considered as a parameter.

+ We will denote @z (1; ty, z, A) the solution of the differential equation z = Z(z, t, A).

2.1.2 Diophantine vectors and small divisors lemmas

We recall the definition of Diophantine vector and the so-called small divisors equation in
both the map and the differential equation contexts.
In the map setting, @ € R? is Diophantine if there exist ¢ > 0 and 7 > d such that for all
kez!\{0}andl e Z
low -k —1] = clk| 77,

where |k| = |ky| + - - - + |kg4| and w - k denotes the Euclidean scalar product.
In the differential equations setting, @ € R? is Diophantine if there exist ¢ > 0 and
T > d + 1 such that for all k € 2%\ {0}
| - k| = clk| ™.
GivenU c R", Ac R? and h: U x T x A — R™, the small divisors equation for maps is
o, 0+ w,A) —p(u,6,1) =h(ud,A) (2.2)
and the corresponding small divisors equation for differential equations is
0o (u,0,1) - w = h(u, 0, 1). (2:3)
The following version of the small divisors lemma, depending on u € C" and on A € C?
can be readily adapted from the one in [33].

Theorem 2.1. TakeU « C*, 0 U,A < C? ando > 0. Leth : U x Tg x A — C* be real
analytic with zero average and let » € R? be a Diophantine vector.
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Then, there exist unique solutions ¢, : U x T¢ x A — CF of (2.2) and (2.3), respectively,
real analytic, with zero average, such that, for (u,A) € U x A,

M
sup [lo(w, 0, sup Iy (w6, )| < 57 sup 1A (w, 6, D), 0<é<o.
0eT¢_ ¢ 0eTd 0eTd

Moreover, if h is a homogeneous function of degree k with respect to u, then ¢,y also are
homogeneous functions of degree k with respect to u. If h = O(||u||"), r = 1 then also
@ = O([[ull").

We will denote by D[h] the unique solution with zero average of either (2.2) or (2.3).
We note that, since

Oup(u, 0+ w, 1) — 0u,0(u,0,1) = 0,h(u, 6, ),
if 0yh = O(||ull"™") then Oy = O([lul|" ™).

2.2 Results for maps

This section is devoted to state the claims concerning with the existence of invariant man-
ifolds of tori for families of maps with an invariant torus whose transversal dynamics is
tangent to the identity. In Section 2.2.1 we describe the maps under consideration and the
general conditions we need to guarantee the existence of these invariant manifolds. After-
wards, in Section 2.2.2 we state the main results. In the statements of the results, some extra
conditions will be introduced.

2.2.1 Set up and hypotheses

Let U < R™ x R™ be an open set such that 0 € U and A be an open subset of R?. We
consider families of maps F : U x T - R™ x R™ x T4, ) € A, of the form

x x+ 2N (x,4,0,1)
Fily|=| y+5"(xy.6,2) (2.4)
0 0+w+h>P(x,1,0,1)

with w € R? and 2N = O(|(x, ) IIN), g™ = O(l|(x,y)|IM) and h>F = O(||(x,y)||?) for
N,M>2andP > 1.
For such maps, the torus

7 ={(0,0,0) € R" x R™ x T}
is invariant and normally parabolic, that is, the dynamics in the transversal directions to the
torus is parabolic.
We are interested in describing the stable and unstable sets of a torus related to a given

open set A < R" x R™ x T9 such that 7 € A. Hence, we introduce the stable set

W5 ={(x,y,0) € A| Ff(x,y,0) € A Vk > 0, klim (Ff)xy(x,4,0) = (0,00} (25)
—00
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and the unstable one:

Wi ={(xy.0) €Al F "(x.y.0) € AVk >0, Jim (F " )xy(x,9,0) = (0,0)}.
— 00

Their local versions are defined changing Aby A, = {{ € A | dist(£,7) < p}. We will see
that these sets are manifolds.

More concretely, we look for invariant manifolds tangent to the x-subspace. Therefore,
we consider sets V < R", 0 € V and their local versions V, =V n B, where B, is the ball
of radius p in R" x R™. Moreover, for f > 0, we define the sets

Vop={(ey) €V xR™ | |lyll < Blixll},  App=V,p x T (2.6)

The set A, 4 will play the role of the set A in (2.5). In this paper, we concentrate on the study
of the stable manifold associated to a set of the form A, 5 = V), s x T?. The unstable one can
be obtained considering F,° L

We will provide conditions for the existence of the invariant manifolds using the
parametrization method, see [17-19, 34] for a general presentation of the method and [5, 14-
16] for the specific application of the method to parabolic objects. Summarizing, this method
consists in looking for functions K(u, 6, 1) and R(u, 6, A) satisfying the invariance condition

Fy(K(u,0,4)) = K(R(u,6,1), 1), 2.7)

with K(0, 0, 1) = 0, R(0, 0, 1) = 0 together with extra conditions to have the manifold tangent
at 7 to be a suitable subspace.
We assume the following general conditions on F, and the domain U:
(i) U is an open set that contains a set of the form V,, 5, = R" x R™ for some positive py
and S (see (2.6)), where V is a cone-like domain, namely 0 € dV and for all x € V and
s > 0, sx € V. We remark that the origin does not necessarily belong to U.
(i) f>N,¢>M and h>" can be expressed as sums of analytic functions, homogeneous with
respect to (x,y) € U of integer positive degree up to some order ¢ — 1 > N. More
precisely, there exists g € N, g > N and

q—1
PNy 0.0 = ) f(x,9,0,0) + £7(x,3,6,2),
j=N
q—1
M (xy.0.0) = > ¢ (x,1,6.0) +g7(x,1.6,)), (2.8)
j=M
q—1
h=P(x, y,0,1) = Z W (x,y,0,1) + h”(x,y,0, 1),
j=P

where f/, ¢/, h/ are analytic functions, homogeneous of degree j in (x,y) € U, and

the remainders =9, g>%, h=? are analytic and of order O(||(x, y)||7). Moreover, we ask
that 0y , /=9, 04, ,979, 0%, yh”9 = Oy for j = 1,2.
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Note that for homogeneous functions in (x, y) this property is automatically satisfied
and when we take derivatives with respect to 8 we do not lose order. Note that the
functions f7, ¢/, h/ can be extended by homogeneity to the set U¢ x T¢ x A where
U° ={(x,y) e R" x R™ | 3t € (0, 1] such that t(x,y) € U}.

—N
Next, we assume three conditions, (iii), (iv) and (v) below, on f and g™. First, given
p > 0, we define the constant

—N
+ L0, )| —
S 25 .y 9
x€V),, AeA [l

(iii) Let po be the radius introduced in (i). The constant ar with p = p, satisfies the weak
contraction condition

ar > 0.
Note that this implies
lx+f (xO0DI<lxll —arllxl|™,  xe€Vp, AeA
(iv) We assume
g (x,0,6,1) = 0.

—N
Moreover, we ask f (x,0,1) and 6y§M (x,0,2) to be defined and analytic in U* x A,
where U* in an open set of R” containing 0. Note that, by the homogeneity property,

—N _ .
the domain of f (x,0, 1) and ang (x,0,1) with respect to x can be extended to R™.
(v) We assume that there exists a positive constant ay > 0 such that

=N
dist(x + f (x,0,),V5) = avlx||V,  x€eV,, AeA

where V7 is the complementary set of V,, — R". As a consequence Vj, is an invariant

0
set for the map x — x + ]_”N (x,0,1).
Remark 2.2. It is important to emphasize that, if U is an open set that contains the origin,
then condition (ii) is automatically satisfied; the expansions in (2.8) are the standard Taylor

expansions with respect to (x,y) € U.

For the sake of completeness and applicability we have preferred to allow the more general
situation when the origin is not contained in the regularity domain of F). In this context we
work with decompositions as sums of homogeneous functions instead of the classical Taylor
expansion.

Remark 2.3. The hypotheses are chosen to obtain local invariant manifolds tangent to the
subspace {y = 0}. When the invariant manifold we are looking for is not going to be tangent to
{y = 0} but of the formy = Lx + O(||x||*) we can perform the linear changeu = x, v =y — Lx
and look for the invariant manifold tangent toy = 0.

Remark 2.4. Let 7 : U xT? — R™™ xT9, A € A, be a map satisfying (i)-(iii) with N, M > 2
and P > 1 having an invariant manifold associated to the origin tangent to {y = 0}. That is,
assume that the manifold can be represented as the graph, y = K (x, 0, 1), with K analytic, C'
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at 0, K(0,0,1) = 0 and 0xK (0, 6, A) = 0. Then, after a close to the identity change of variables,
F> has to satisfy that M < N and g™ (x, 0,0, 1) = 0. We prove this remark in Appendix A.
Remark 2.5. We notice that we are not assuming any condition on h*. Therefore, we can
always assume that P < N since the case h” = 0 is allowed.

—N
To finish this section, given p > 0 we define the auxiliary constants related to f

—N —N
be = i lf (x,0,4)] 3 I1d+ Dy f (x,0,1)|| — 1
¢ = inf sup — Ap=— sup NI R
Aehyey,  |Ix]l XEV,, AeA [l
. (2.10)
Do = I1d — Dy f (x,0,1)[| — 1
f=- [|xc||N-1
x€V,, AeA x|
and By related to 7"
Id — D,g"(x,0, )| — 1
By=— sup I W ( i ) (2.11)

x€V,, AeA [|x]|M—1

—N
We notice that the constant b is independent on p since f  is a homogeneous function
of degree N.
Remark 2.6. Notice that, if p1 < p, then the corresponding constants ajlgz, bjlgz, A}’z, Djlgz, and
B;’Z, associated to p; and p,, respectively, defined in (2.9), (2.10) and (2.11) satisfy a} > a}zc,
b} = bjzc, A} > Ajzt, D} > DJ% and By > B;. See Lemma 3.7 in [16]. We also have ar < by.

This remark will allow us to take p as small as we need. We will use this fact throughout
the paper without mention it.

2.2.2 Main results

Let

B { max{—By, —Dy, 0}, if M=N, (2.12)

max{—By, 0}, if M <N.

Denoting [-] the integer part of a real number, we introduce the required minimum order g:

. N-1 E*
q* = |max{2N — P,.2N —M+1,N -1+ —— — (2.13)
N —5/3 ar
and the index b
_Dr i
¥ = [ ar| i D<o (2.14)
1, if DfZO.

The first result we state is an a posteriori result. Roughly speaking, it says that, if we know
a good enough approximate solution of the invariance equation (2.7), then there is a true
solution of this equation close to it.

Theorem 2.7 (A posteriori result). Let Fy be of the form (2.4) satisfying conditions (i) — (v)
with q > q*. Assume o is Diophantine and Ay > by max{1,N — P}.
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Moreover, assume there exist analytic maps K= : V, x T x A — R" x R™ x T? and
R:V, x T x A — Ve X T9, being sums of homogeneous functions with respect to u, of the
form

Kgy0.2) = (w0) =0([ul®), K (u,6,2) —©=0(lul),
Ru(.0,2) = (u+ 7 (0.2) = O(lulN™),  Ro(u,0,2) —© — v = O(|lull)
such that
ES :=F 0KS —KSoR=0(||u]|9). (2.15)
Then, there exist 0 < p < po and a unique analytic function

A:V, x T x A — R™ x T4
satisfying Axy = O(|ul|7N*1), Ag = O(||ul|?~2N*F*1) and
Fyo(KS+A)— (KS+A)oR=0. (2.16)

Moreover, the map A is real analytic in a complex extension of V,, x T x A.
LetK = K< + A. For p, p small enough, K(V,, x T 1) Wgﬁﬁ, with A, g defined in (2.6),

and, when the constant By > 0, for some slightly smaller cone set ‘7,
KV x TL) = W2, Ayp=V,5x T (2.17)
PP

Theorem 2.7 is proven in Section 3. The next result gives conditions that guarantee the
existence of approximations that fit the hypotheses of Theorem 2.7. Later on, in Section 4,
we provide a concrete algorithm to compute the approximations as sums of homogeneous
functions of the variable u, depending on the angles and parameters.

Theorem 2.8 (Construction of the approximations). Assume that the map F) is of the
form (2.4) satisfying conditions (i) — (v) and q = q*. Furthermore, assume w is Diophantine,
Af > bf and

Dy§M(x, 0,A) isinvertible for all (x, 1) € V,, x A, if M<N,

B
2+ =2 >0, if M=N.
ar

Then, there exists 0 < p < pq such that for any j < q — N, there exist analytic maps K\/)
V, x T4 x A — R™" x T4 and RUY) . V, x T x A — V, x T4, such that

EY) .= F o KY) —KY o RY) = O(|Ju|*N). (2.18)

Moreover, KY) and RY) can be represented as sums of analytic homogeneous functions, of the
form

J J
KO 0.0 =u+ Yy Ko(wd)+ Y KEN1(1,0,2),
1=2 =1
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) Jj+N—-M . J+N—-M
K (0,0,2) = Z K,(u )+ Z KIM=1(u,0,2),
1=2 1=2
) j+N—-P ; j+N—-P
K/ won=0+ > Kyuwh+ > KT 161

=1 =1

and

Jar J
RV (0,0,4) = ut - (w,0,) + Z REN-Y(w,2),  RY (4,0,1) =0+w+ Z REP=2(u, 2)
1=2 =2

for j > j¥. Furthermore, if P = N, we obtain Rg)(u, 0,1) =0+ w.

2.3 Consequences of Theorems 2.7 and 2.8 for maps

Combining Theorems 2.7 and 2.8, we have the following claim.

Theorem 2.9 (Existence of the stable manifold). Let F; be a map of the form (2.4) satisfy-
ing conditions (i) — (v) with q > q*, where q* was introduced in (2.13). Assume that o is
Diophantine, Af > by max{1, N — P} and

Dng(x, 0,1) s invertible for all (x,1) € V,,, X A, if M <N,

B
2+—g>0, if M=N.
ar

Then, there exists 0 < p < po such that the invariance equation
FpoK=KoR

has analytic solutions K : V,, x T¢xA—UxT,R: V, x T x A — V, x T satisfying
that, for B > 0 small enough and A € A

K(V, x T4 1) c W} (2.19)
p App

where A, g defined in (2.6) and Wy p is the stable set of F) (see (2.5)).
P,
If we further assume that, if M = N, By > 0 then, for some slightly smaller cone set V,
7 d _ 7S s _ —k (17 d
KW xTi ) =ws ~ and W2 = kQ) F 5 (V5 x T9). (2.20)
2.3.1 A conjugation result for attracting parabolic tori

A direct consequence of the previous results is that if the transversal dynamics to the torus
is parabolic and (weak) attracting for x belonging to a cone set V), then it is conjugate to a
map that can be expressed as a finite sum of homogeneous functions in x € V,, depending
trivially on the angles.
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Corollary 2.10. Let Fy be a family of maps of the form (2.4) independent of the y-variable,
namely

Fa(x,0) = (x + fZN(x,0,1),0 + 0 + h7P (x, 0, 1)).
Assume that fZN, h>F satisfy the corresponding conditions in (i)-(v) for some q > q*, w is
Diophantine and Ay > by max{1, N —P}. Then, the map F) is conjugate to a map R of the form

i q—N
R0 ={ut f @A)+ Y RN @), 040+ Y REP2 (1)),
1=2 =2

with (u,0,1) € V, x T x A, for some 0 < p < po and j; is defined in (2.14). Let H be the
conjugation. Then, H and R are real analytic in a complex extension of V,, x T4 x A.

2.3.2 The case when all eigenvalues of the linearization of the transversal
dynamics to the torus are roots of 1

In this section we explain how to apply the previous results to maps, G, satisfying that for
some £ € N, F) := GS has the form (2.4). Namely we assume that

Ax + fZN(x,y,0,2)
Gi(x,y,0) = By+g>M(x, y,0,4) |, Spec A, SpecB U{z eC| 2K = 1} (2.21)
0+w+h>P(x,4,0,1) kez

We notice that in this case the torus 7~ = {(0,0,6) € R” x R™ x T%} is also invariant and
normally parabolic. We define, W7, the stable set of G, associated to the parabolic torus 7~
as in (2.5), simply by changing F) by G,.

We have the following result.

Corollary 2.11. Let G, be of the form (2.21) and { € N be the minimum integer such that
F) = Gﬁ satisfies that DF,(0) = Id.

Assume that F) is under the conditions in Theorem 2.9. Denote by V a cone, p,§ > 0
constants and K, R functions satisfying the conclusions of Theorem 2.9, that is K(V,, x T 1) <
ngﬂ (Fp) with A, g =V, 5 x T being the set defined in (2.6) and ngﬁ (Fy) the stable set of
F) associated to T .

Then,

t— f—1
W= o (kv < n) cwg . with  Byp=| JGl(A,p)
=0

J Jj=0

[u

and Wy 5 being the stable set defined in (2.5) with respect to G,.
P
Assuming further that B; > 0 (the constant defined in (2.11) for F) = Gg), we have that

Wé = ‘W, where the notation ~ means that the sets are related to a slightly smaller cone
PP

VcVv.
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Roughly speaking, this result asserts that the stable set of G, is composed by ¢ different
branches, each of them being the image by some iterate of G, of the stable set of Fy = Gj.
The proof of this claim is postponed to Appendix B.

Remark 2.12. The maps considered in Corollary 2.11 appear in [12, 13] when a certain
economic model based on critical values is considered.

2.4 Results for differential equations

Now we consider parametric families of non autonomous vector fields, depending quasi
periodically on time, of the form

X(x,y,0,6,0) = (FPN(x,4,0,,),7M(x,y,0,t, 1), 0 + 7 (x,,0,1, 1)) (2.22)

with (x,1,0,6,2) e U x TY x R x A < R™™ x T4 x R x R?, 0 € U, w € RY and satisfying
£ = Ol I, 7 = O "), 17 = Ol ) ) forsome 2 < M < N and
< P<N.
As in the case of maps, for any fixed value of the parameter, the torus 7~ = {(0,0,0) |
0 € T4} is invariant by the flow having all transversal directions parabolic. We consider the
following local stable manifold, which depends on a set A < R™™ x T4, 7 € A, which is
defined by

Wi ={(xy,0,th) € AxR|Px(t;to,x,y,0,1) € A, Vt > 1o,
tliP;)(q)X)x’y(t; to, X, Y, Ha A) = (05 O)}s

where, according to the notation in Section 2.1, ®x (¢; ty, x, y, 0, A) is the flow of the differen-
tial equation associated to (2.22). The sets A will be of the form A, 5 =V, 5 x T4, introduced
in (2.6) or containing it.

We want to provide conditions that guarantee the existence and regularity of the local
stable manifold. We will use the parametrization method. In the case of differential equations
consists in solving the invariance equation

DOx (t;5,K(u,0,s,4),4) = K(¥(t;5,u,6,4),t,1)

for K and ¥, where ¥ is the solution of the equation restricted to the stable manifold (which
is also unknown). The equivalent infinitesimal version of the invariance equation is

X(K(1,0,8,), £, 1) — 00K (1,0, £, )Y (1,0, 1, 1) — 0,K (1,0, 1, 1) =0, (2.23)

where Y is the vector field associated to the flow ¥ which describes the dynamics on W; 5
P,

By the definition of quasi periodicity we write X (x,y,0,t, 1) = X(x, y, 0, vt, 1) for some
X:UxTIxT x A —> R*™ x RY (see (2.1) in Section 2.1.1) and some v € R? 1ndependent
on A that we call the time frequency of X. We introduce X : U x T4 x A — R™*m x T4 x T4

by
X(x,y,81) = (X(x’ b %4) ) 9= (01) e RH,
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and the extended frequency
o= (w,v).

The following elementary lemma allows us to relate the results for vector fields with the
ones for maps.
Lemma 2.13. Let Fy : U x T¢ x T — R™™ x T x T4 be the time 1 map of X, ie.
Fy(x,y,9) = @5 (1;x,y, 9, ). We have that if f=N,g>M, =Y in (2.22) satisfy hypotheses (i)-(v)
and & Diophantine, then the map F) has the form (2.4) with slightly different =N, g>M, h=>F
but with the same constants ar, bf, Ag, Dy, By, ay.

The proof of this lemma is straightforward from Theorem 2.1, performing a finite averag-
ing procedure, Gronwall’s lemma and easy estimates, see [14] for the casen =1, N = M = P.
We skip the details of the proof.
Theorem 2.14 (A posteriori result for flows). Let X be a vector field of the form (2.22) with
2N, g®M, h>P satisfying conditions (i) — (v) for some q = q* with q* given in (2.13). Assume
that & = (w, V) is Diophantine and Ay > by max{1, N — P}. Assume further that there exist
analytic maps K< : Vo x TV x R x A - U x T and Y : V) x T x R x A —> R" x R?
quasiperiodic with respect to t with time frequency v, which are sums of homogeneous functions
with respect to u, of the form

Koy 0,6,0) — (w0) =0(lull®), K7 (u6,t,4) —6=0(ul),

Yu(us ea t» /‘l) - ?N(u’ 05 A) = 0(”u||N+1)’ Ye(u! ea t’ /1) —w= O(”u”)
such that

X(KS(u,0,8,1),t,4) — 0 0KS(u,0,£, )Y (4,0, £,1) — 8,K=(u,0,t,1) = O(||ul|?).

_ Then, writing ® = (0,7), the parametrization K< (,0,1) = (I'(\g (u,0,2),7) and
R(u,0,1) = CDlv,(l;u, ©, 1), the time 1-map of Y(u,®,1) = (Y(u,®,A),v), satisfy all the
hypotheses in Theorem 2.7 for the map Fy(x,y,0) = CD)?(l;x, y,0, ).

LetA : V, x T4 x A — R™™ x T4 pe the analytic function provided by Theorem 2.7.
Then, the quasiperiodic function A(u,6,t) = Ex,y,g(u, 0, vt) satisfies the invariance equation

X o (KS+A) —0,6(KS +A)Y — 0,(KS +A) =0.

If p, B are small enough, K := K= + A satisfies that K(V,, x TIxR M) w; 5 and, when
P,

By > 0, for some slightly smaller cone set v,

K(Vp x T4 x R, 1) = ngﬁ.

Theorem 2.14 can be proven from Theorem 2.7 and Lemma 2.13 following exactly the

same lines as the ones showed in Section 5 in [14] (see also [15]). The details are left to the
reader.

Concerning the approximate solution, we have the analogous result to Theorem 2.8.

Even that, using Lemma 2.13 we could compute the approximate solution by means of the
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approximate solution given by Theorem 2.8 for the time 1-map of the vector field X, in
Section 4.3 we provide an algorithm to compute K/) and Y directly from the vector field
X itself.

Theorem 2.15 (Approximation result for flows). Assume that X is an analytic vector field
of the form (2.22), satisfying conditions (i) — (v) with q > q* and q* defined in (2.13), that
& = (w, v) is Diophantine and

Dng(x, 0,1) s invertible for all (x,1) € V,,, X A, if M <N,

B
2+—g>0, if M=N.
ar

Then, there exists 0 < p < pq such that for any j < q — N, there exist an analytic map KU :
V, x T x R x A — R™™ x T4 and an analytic vector field Y) : V, x T¢ xR x A — R" x RY,
depending quasiperiodically on t with time frequency v, such that

EV) = X(KY (4,0,1,1), £, 1) — 0y oK"Y (u,0,1,1)Y (1,0, 2, 1) — 0, K (u, 6,1, 1)

; 2.24
= O(llull’™). 229

In addition, K9 and YU) can be expressed as sum of homogeneous functions of the form

J J
KO 0,0.2) =u+ Y Kelwd)+ Yy KEN1(u,0,1,),
1=2 =1
) J+N—-M . J+N—M
K (0,6,6,2) = Z K,(u )+ Z KUM=1(,0,1,2),
=2 =1
) j+N—P 1 Jj+N—P
K (1,6,6,2) =0+ Z Ky (w2)+ Z K5 =2(u,0,1,2)

1=2 I=1

and, for j > j¥ (see (2.14) for the precise value of j¥),

Jit j
Y @0 ) = @0+ Y N wa), Y wen) = o+ Y ¥ A),
=2 =2

Moreover, if P = N, we obtain Ye(j) (4,0,1,1) = w.

As a consequence of these results we obtain the existence theorem, Theorem 2.16 and a
conjugation result, Corollary 2.17.
Theorem 2.16 (Existence of the stable manifold for flows). Let X be an analytic vector field
of the form (2.22) satisfying conditions (i) — (v) with q = q*. Assume that & = (w,v) is
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Diophantine, Af > by max{1, N — P} and
Dng(x, 0,1) s invertible for all (x,1) € V,, X A, if M <N,

B
2+—g>0, if M=N.
ar

Then, there exists0 < p < po such that the invariance equation (2.23) has analytic solutions
K:V, XxTIXxRXxA—UxT andY : V, x A — R" x RY. If p, B are small enough, K
satisfies that K(V,, x T4 xR, 1) w; 5 Moreover, if B; > 0, for A € A and for some slightly

P,

smaller cone set V,
K(V, x T* x R,2) = W2
(V, x X ) i
The conjugation result, analogous to Corollary 2.10, is:

Corollary 2.17. Let X be an analytic vector field of the form (2.22) without the y-component
and independent of the y-variable. Assume that >N and h>" satisfy the corresponding con-
ditions in (i)-(v) with ¢ > q*. We also assume that & = (w,v) is Diophantine and Ay >
by max{1, N — P}. Then, there exists 0 < p < po such that the vector field X restricted to
Vo X T¢ x R is conjugate to

¥ q9-N
YA =|F @A)+ ) VN @), oy i Rw ) .
=2 =2

Moreover, both the conjugation and the vector field Y are real analytic in a complex extension
oprdexRxA.

3 Proof of the a posteriori result for maps

We start by explaining the strategy we use to prove Theorem 2.7. First, in Section 3.1 we
prove that, using Theorem 2.1 in an appropriate way, we can remove the dependence on the
angle up to order g — 1 in all the functions involved in equation (2.15). Second, in Section 3.2
we provide the operator we will deal with to prove the result, solving a related fixed point
equation. This is done using the Fourier expansion (with respect to 6) of the involved func-
tions. In Section 3.3, extending the technology developed in [14, 15], we prove that the above
mentioned fixed point operator is a contraction. Finally, in Section 3.4 we prove (2.17).

Along this section we will omit the dependence on the parameter A in the notation.

We assume that the family of maps F satisfy conditions (i)-(v) with g > g*, where ¢* is
defined in (2.13).

3.1 Preliminaries

The purpose of this section is to rewrite Theorem 2.7 in a more suitable form to apply func-
tional analysis techniques. Actually, Theorem 2.7 will be a consequence of Proposition 3.4
below which will be proved in Sections 3.2-3.3.

In this section, to be able to apply Theorem 2.1, taking into account that F is analytic,
we will consider its extension to a complex domain Uc x T, x Ac.
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Proposition 3.1. Assume we are under the hypotheses of Theorem 2.7. Then, there exist a
change of variables C (&1, ¢) = (x,y, 0) and a reparametrization P (v, ) = (u, ©) such that
equation (2.16) becomes L R

Fo(KS+A)—(KS+A)oR=0 (3.1)
with _ R

F=(Fs,F,F,) =C 'oFoC
and R R L
K= = (K5, K5 KS) =C o KS o P, R=(Ry,Ry) =P 'oRoP

satisfying the corresponding conditions in Theorem 2.7 and
ES(0.9) = FoK=(0,9) = K= o R(s,9) = O(lo]|). (3.2)

Moreover, R R
OpFen, 0pFp —1d=O(lI(& M)
and R R R _
OyKE,: 04Ky —1d, 0yRy. QyRy —1d = O(|lol|).

The main part of this section is devoted to prove this proposition. After the proof is
complete we state Proposition 3.4 and deduce Theorem 2.7 from it. First, we perform several
steps of averaging to remove the dependence of F on the angles up to order ¢ — 1.
Lemma 3.2. Let F be a map of the form (2.4) satisfying conditions (i)-(v), with « Diophantine.
Then, there exists a near to the identity change of variables C : U' x T? — U x T¢, where

U’ is a domain slightly smaller than U such that 0 € Tl/, which transforms F into

_ E+F @maNE |
F(&n,9) = n+§M_(1§, m+gMEn) |+ FEn0)
p+w+h (En)+h>P(En)

with 1'59‘1(5, n,9) = O(||(& n)||9). The change has the form
(x,4.0) =C(&n.¢) = (51.0) +C(&1.9)
with
ClEne) =D, ClEne). ) ClEne). ) ClEn o)
j=N =M j=P

and the terms C/ are homogeneous functions of degree j in the (& n)-variables.
Moreover, C and F are analytic.

Proof. If M < N, first we perform a change of variables of the form

(x,5,0) = (En+CY(E1.9), 9),
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where C;” is a homogeneous function of degree M in (&, 1) to be determined. The trans-
formed map, denoted by F ), keeps the same form as F for the x, 6 components since

fYEn+C)Ene)le) = N Ene) +OUEMINTM) = FN(En 0) + OUIE I,

W (En+Cyl(Em,9).9) = B (Em @) +ONENITHM) = B (&, 0) + OUNENIT).

With respect to the n component we obtain

BV =n+Cl(En ) — CM(En o +0) + T (En) +TER @) + OUIE DM,

We consider the equation

CYl(Eno+w)—C)(En.0)=g"(En )

and, by Theorem 2.1, we take CQ/I = D[g"] to have

EY = n+g"(Em + M (En 0).

Then, F still satisfies conditions (i)-(v). In particular, now conditions (iii), (v) only depend

on ]_‘N(gf, 0) which remains unchanged. Clearly, condition (iv) is satisfied by g™ (¢, 0). We
repeat this procedure (N — M)-times to get a new map (renaming the variables by (x, y, 6)
and the map by F) such that

N-—1
Fyxy.0) =y+ ) §(xy) +g7N (x.y.0),
=M
where ¢/ are homogeneous functions of degree j, ¢°N = O(||(x,y)||N) and F satisfies

conditions (i)-(v).
Now, if P < N, we deal with the 8 component and we consider a change of coordinates

(x,4,0) = (£,1.0 + Cp (£1,9)),

where Cg is a homogeneous function of degree P in (&, 7). The components (£ 1) of the

transformed map, denoted again by F(1), satisfy conditions (i)-(ii) and

FV = £+ fN(Em0) +OUIEDIND,
N-—-1

EV =n+ Y FED+7FN(En ),
j=M

FV =40+ CP(Enp) — CREmp+0) +] (&n)+ R (& 1,0) +O(I(EMIPH).
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Therefore, choosing C;’ =D [EP ], we have that

F =g +o+h (En+OUIEDI™.
Repeating this procedure (N — P)-times we obtain a map G (x, v, ) such that
2G® —1d = O([| x, »)II).
Next, we look for a change of variables of the form

(x,5,0) = (E+CY(En @)L +Cl(En0). 0 +Cy (En,0)),

where CN, Cév and Cé\] are homogeneous functions with respect to & 71 of degree N, to
transform G to G(Y). We impose the conditions

CNEn ) —CNEnp+w)+ T En)+ Y (Ene) = OUIE I,

N
CY(En o) —CY(Emp+@) + ) FEn +3V(Ene) = OUIENINT),

=M

N _
Co(En.0) = Cf(Emp+o) + Y B (En) + RV (Em0) = O(IEMIN).
j=P

As before, taking CN = Z)[fN 1, Ci,\] = D[g"] and Cé\] = D[EN ] which are analytic and
have the right order, we obtain

2G5 =OUEDIN, 2,6y —1d=O(lIEMIND.

Since G(%) is a sum of homogeneous functions up to degree ¢ — 1 plus a remainder of order
g, we can repeat this procedure (¢ — N)-times obtaining that F := G(4~N) satisfies

QpFen =OUEDID,  0pF, —1d=O(I(E I

The change C in the statement is the composition of all previous changes. Since C is close
to the identity, it sends U’ x T‘i, to U x T¢, where U’ is a slightly smaller domain than U
and o’ < 0. ]

In the following lemma, which is a straightforward consequence of Lemma 3.2, we make
a better choice of the parameters (u, ®) which will allow us to find a new reparametrization
R such that its terms of order less than g do not depend on the angular variables.
Lemma 3.3. Assume that R is analytic and satisfies the conditions for F in Theorem 2.7 for
some py > 0. Then, there exist p > 0 and an analytic change of parameters P : Vp/ X T‘:’r, —
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Vo X T< of the form (u,©) = P(v,¢) = (v, /) + 58(0, V) with

-1l R -1
Pu(v,y) = Y Plwy),  Poloy) = > Phv. 1),
Jj=P

J=N

where Vp/ is a slightly smaller cone, ¢’ < o and P’ are homogeneous functions of degree j,
with respect to v, such that

R(o,9) =P~ oRoP(v,9) = R(v,¥) + O(|[o]|)
with
R(0.9) = (0 + Ro(0). ¥ + 0+ Ry(0)) = (0 + F (2,0) + O([olN*), ¥ + w + O(l[o]|")).
In addition, both R and R are analytic and R is a sum of homogeneous functions in v up to order

q—1.

Proof. The claim follows applying Lemma 3.2 to R instead of F, taking into account that R
is a map independent of y and that does not have y-component (that is, m = 0). O

Now we apply Lemmas 3.2 and 3.3 to prove Proposition 3.1.

Proof of Proposition 3.1. We set F, K < and R satisfying all the conditions of Theorem 2.7. Let
C and F those provided by Lemma 3.2. We notice that, since

CoFoC 'oKS —KSoR=ES

we have that R
FoC 'oKS =C Y (KSoR+EYS).

Then, K< := C~! o K< satisfies the conditions in Theorem 2.7:
KE,w0) = w0) = O0(Jul®), K5 (w6) -0 =0(|ul)
and, by the mean value theorem, the new remainder
S =FoKS—KSoR=C 'o(KSoR+ES)—C 'oKSoR=0(|ull9),

(see (2.15)).
Next, we consider the close to the identity change of parameters in Lemma 3.3, (u, ©) =
P (v, ). We have that

FoKS(P(0,9)) —KS oR(P(0,9)) = ES(P(0,y)).

—~

We define K< = K< o @ and ES = E< o P. Then, the above equality reads

FoKS —KSoR=ES (3.3)
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with R = £~ 0 Ro P defined in Lemma 3.3 and ES = O(||v||9). We emphasize that K< also
satisfies the conditions in Theorem 2.7, namely it is a sum of homogeneous functions in v
and

K5, @) = @0 =0(ll®). K5 (.y) =¥ =0l (3.4)
It only remains to check that é’y,fé = O(||v||?) and 61/,1?5 —Id = O(||v||9). To do so we

write F = F<9! 4+ F>9 and then (3.3) becomes

F<O-1,RKS _KSoR=ES — F*90K<. (3.5)

Since by Lemma 3.3, R=R+ O(]|v]|?) and by Lemma 3.2, Fsa-1_ (0,0, ¢) does not depend
on the angle ¢, equation (3.5) can be written as:

FSIYKE, (0,9). K5 (0.4)) — K= 0 R(o,9) = O(l[o]|), (36)

where ﬁ(v V) = (0+ Ry(0), Y + w + Ry (v)).
Now, taking the derivative with respect to  in both sides of (3.6), using that DF<S F<4-1 =
Id+ (O([lo]N=Y), O(JloIM~Y), O(||v]|P~?!)) and that (9¢,R = (0, Id), we obtain

O(llol|t) + O(llell™ 10y K, (0 91
yK=(0.9) — 0yK=(R(2.9)) = | (o) + Ol 10y KE, (0.9 | (3.7)
O(llol|?) + OllollP~ 104K, (0. )11

On the other hand, using the properties of K< in (3.4) and the ones of R in Lemma 3.3, by
Taylor’s theorem we have that

OyK=(0+Ry(0), ¥ + @ + Ry (0)) = 0yK= (v, + @)
O(llolIN 105 K5 (o, ¢)I|)+0(IIvIIPII6W K (w )
+ O(IIvIINII62 K\(v P +O0dlolI1193, , Ky (0. ¥)1)
O(IIvIINH@w o (@ x//)||)+0(||v||f’||6W s @)

(3.8)

Notice that, using N > P > 1, N > M > 2, properties (3.4) of K, that R, = O(||u||N) and
= O(||v]|?), at least, we obtain that

0yK=(0,9) — 0yK= (0,9 + @) = (O(llo]I*), O(l[o]1*), O(llo]|*)).
Here, to estimate the orders of the first and second derivatives of K< we have used that K<
satisfies C o KS = K< with C,KS being sums of homogeneous functions with respect to

(£ 1) and u, respectively, and that all of them are analytic in U x T¢ for some U and o > 0.
Therefore, since 61/,1({; and (')y,K,f — Id have zero average, by Theorem 2.1,

2yK=(0,9) — (0,0,1d) = (O(llo[I*), O(l[o]I*), O(llo|*)).
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Assume by induction that

0yK=(v,9) — (0,0,1d) = (O(l[o[1), O(llolI"), O(llo]I'))
forl=2,---,q— 1. Then, using (3.7) and (3.8) we have that

~ ~ O(|lo]19) + O(llo]N =) + O(l[o]|"*)
K= (0,9) = K=,y +w) =| O(lloll?) + O(llo] M=) + O(|[o]|"*)
O(llo]19) + O(l[olI”~**) + O(Jlo[|™*'~1)

Now, using Theorem 2.1 and that N > M > 2, N > P > 1, we conclude that
2yK=(0,9) — (0,0,1d) = (O(llo[I""), O(llolI"*h), O(lo]")).
Therefore, whenl = q — 1,
K= (0,9) — (0,0,1d) = (O(llol|9), O(llol|), O(ll0]|971)).

To Aﬁnish, we notice that, applying once more (3.7) and (3.8), we obtain that in fact,
oyKg (0, 9) —1d = O([jo]|9).

By construction of F and Remark 2.6 the constants ar, A} and Ef of F for p' < p satisfy
condition (iii) and Zf > Af > bymax{1,N — P} = Ef max{1, N — P}. Now, Proposition 3.1
follows from Lemmas 3.2 and 3.3. O

We state an intermediate result, whose technical proof is postposed to Sections 3.2
and 3.3, that implies the existence part of Theorem 2.7 as a corollary. Indeed, formula (3.6)
suggests that we can use a 31mp1er R to prove the result.

Proposition 3.4. Let F, K and R satisfy the conditions on Proposition 3.1. Let R(v, ) =
(R (v), R‘/,(v, V) = (0 +Ry(0), ¥ + w + Ry (v)), introduced in Lemma 3.3, that satisfies

R(v,9) = R(o,9) = O(llo]|9).
Then, the invariance equation
Fo(KS+A)— (KS+A)oR=0 (3.9)

has an analytic solution A such that Egﬂ,, = O(||lo||2~N*Y), E(p = O(||o||a—2N+P+1),

Proof of the claim on the existence of the parametrization in Theorem 2.7 from Proposition 3.4.
We first note that, by Proposition 3.1, to prove Theorem 2.7 we only need to solve the
invariance equation (3.1). We note that the difference between the invariance equation (3.9)
in Proposition 3.4 and (3.1) is just the dynamics on the invariant manifold, namely in
the latter is R while in the former is R. To overcome this issue we apply Proposition 3.4
to R(v, 1)) considered as a map U x T¢ < R" x T¢ — R™ x T¢ instead of the map
F:UxT! cR"xR™" xT4 - R* x R™ x T4 taking K< = Id. Then, R satisfies the
hypotheses of Proposition 3.1 with m = 0. Note that in particular, R,(v) = f(u 0). Indeed,
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since ﬁ(v, V) — ﬁ(v, ¥) = O(||v]|9), we have that Rold—IdoR = O(||v]|9). Then, there
exists Ag such that
Ro (Id+Ag) — (Id+ Ag) o R =0
and
Ar(o, 1) = (O([lo]| 7N, O([[o)|4~*N*FHh).
We define ¥ = Id + Ag and we have that Ro¥=¥o E, so that R and R are conjugate. Now,
let A be a solution of (3.9). We introduce

A=KSow ' —KS+Ro ¥ = (O(ll" M), 0ol N, O(llo]| 72N+,

Then,

This implies the existence result in Theorem 2.7, since all changes of variables and parame-
ters are analytic. O
Remark 3.5. We postpose the proof of the characterization of the local stable invariant
manifold W; p in (2.17) to Section 3.4.

P,
3.2 The functional equation for K

We will prove Proposition 3.4 solving a fixed point equation derived from (3.1).

The first (non-trivial) step is to find the appropriate fixed point equation. As we did
previously, we decompose F=F<t14 F>4 with FS~' —1d independent on ¢. Denoting
{ = (£1), DFS97! has the form

. d+0eF () + 22NN 0pf () + 0,2V 0
DFSTH) = 0gM(0) +0:7M () 1d+0,5M(0) + 0,571 () ©

ek’ ({) + 0:h=PH({) o () +,h>P () 1d

Therefore, we can write

DFS4-1(2) = M(0) + N({) = (I‘”OC@) 121) + (C(Og) 8) . (3.10)

Notice that (3.10) defines implicitly M({), N({), C({) and c({). We also decompose
K=(@y) =K< 0. 9) +KZ(0.y).  KZ(2.9) = O(l[o]%)

with K<971(o, i) of degree g — 1 with respect to v and K<a=1(o, ¥) — (v,0,¢) independent
of 1. We decompose the condition for A as

0=Fo(KS+A)— (KS+A)oR
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=FS1"'0KS —K<oR
+FPUKS +A)
+F<T7' o (KS +A) — FS7' o K< — DFSI71(KS)A
+DFST"Y(KS)A — M(K<7"1)A
+M(KSTHA —AoR.

We introduce the operators

LIA] =M(KSTHA — Ao R,
N[A] “FSI 1o KS _KSoR+F?%o (Es + Z) +D1?<q*1(fé)§ . M(I?@*l)ﬁ
+ FS01 o (RS 4 R) — FS91 0 K< — DFSI-1(R)A, (3.11)

and we rewrite the condition for A as
L[A] = —N[A]. (3.12)

In order to express the above equation as a fixed point equation we need to invert the linear
operator L in an appropriate Banach space. Actually, we will find a right inverse of it. In
this section we proceed formally. In the next one we provide the necessary estimates. We
have to solve the equation

LAl =T (3.13)

with T in some functional space. First, we expand A and T in Fourier series:

E(U, ¥) = Z A(k)(v)ezmk-l//, T(v,y) = Z T(k)(v)eZMk'l//,

kezd kezd

We recall that F<9~! —Id does not depend on ¢ (Lemma 3.2) and that K<9~1 (0, ) — (0, 0, )
does not depend on  (Proposition 3.1). The block structure of the matrix M permits to
uncouple equation (3.13) into two equations, one for the (&, 7)-components, A¢,, Tz, and

the other for the ¢-components, Eq,, T,. Therefore, we have to solve

[1d+C(K DIAgy — Agy o R =Ty,
Ay — A, 0R=T,.

For the Fourier coefficients, since ﬁ(v, ¥) = (v+ Ry(0), ¥ + @ + Ry (v)), we have

rsq—1 (k) o2k (0+Ry (v)) (k) b3 (k) d
[1d+ C(KSIH1al) — ANoR,=T®,  kez!,  (319)
AP — e2”1k<w+R¢<v>>A§f> oRy = T(;k), kezd. (3.5
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We denote Lékn) [Aékq)] and L;k) [Aq(ok)] the left hand sides of (3.14) and (3.15), respectively.
The corresponding (formal) inverses S él;) and S(f,k) are
J i
sS4 (1) 10) = Z [T(a+coREr o i)t | ebmiklonhs' o) 1b o 7
1=0 ’
0 . 3 A
S TR (0) = o2k (jorx] RwoRé)quk) o,
j=0

where ﬁfj =Ry0.D0R,. Let
Sk [T(k)] (k) [T(k)] S{E)k) [T(p(k)]).

Then, the operator £ has a formal right inverse given by

S[Tl(0,y) = ) e VP [T0] (o) (3.16)
kezd
0 J = j—1 _
- []_[ (MKST YR ()7 (Rg(u),jw+¢+ZR¢(R;(v)))
J=0 LI=0 1=0

or equivalently

o [ J
TI@y) =), [ﬂ (MRS (Ry(0)) | T o R0, 9). (3.17)
j=0 | I=0
Having defined S, we can consider the equation
A =F[A] = —-SoN[A]. (3.18)

Clearly, if A is solution of (3.18), it is also solution of (3.12).

3.3 Solution of the fixed point equation

To prove that the fixed point equation (3.18) has a solution in a suitable Banach space we
need to study both the linear operator S, defined in (3.16), and the nonlinear operator N,
defined in (3.11). This will be done in Sections 3.3.1 and 3.3.2, respectively.

We recall that the operator S depends on

R(0,9) = (Ro(0, ), Ry (0,9)) = (v + Ry(v), i + @ + Ry (), (3.19)
where N
Ro(®) =f (0,00 +w>N*(v),  with  w>N*1(0) = O(|[o||N*),

and Ry (v) = O(||v||?) are sums of homogeneous functions in v of degree at most q — 1.
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For positive p, y and o we define the sets
Q,(y) ={veC"| v=(Rev,Imv) € R" x R", Rev € V,, [[Imo]| < y|[Reo||}

and

o0
T,(y.0) = {(o, ¥) € Qu(y) x T2 | [ltmyl+ ) [[1m Ry (R (0))]| < o} :
1=0
From now on we fix constants a, b and A, B, D such that

0<a<as, b>br, B<B;, D<Dy A<Ap, A>bmax{l,N—-P} (3.20)
and, if E’ > E > max{—B, —D, E*},

,_N-4/3

N 5/3E*. (3.21)

with ar, by, Ar, Dy, By, E* defined in (2.9), (2.10) (2.11) and (2.12), respectively. Taking the
norm ||z|| = max{||Rez|, ||[Imz||} in C", we have that if A is a complex n x n matrix and
A = A, +iA; with A, A, real matrices, then ||A|| < ||Aq]] + ||A2]|.

By definition (2.10) of Dy, for { € V,, s we have that

[ 0a+ D™ @+ DN @0) 7| < 1= (D = (BrAMIIEN T < 1DV (322)

and, by definition (2.11) of By,

| 1d+ D,g" @) + 0,574 @) < Ihd = D)1l + MUY
I1d = D,g" & Ol + MBIEIM " + MU

<
<1 (By— (B+pM)lIEIM!
<1-BlEgM.

(3.23)

Moreover, [|Dyg" (¢) + Dyg™**! (D)l < MIIEIM".
Then, by definition (3.10) of M, and bounds (3.22) and (3.23), we obtain that, if p, f are
small enough (depending on B and D),

IMEM) I <1+ENENTY (£ eV,

Also, a computation shows that if £ € Q,(y), llnll < PlI&|l, and y is small we have
IRe (M(&,m) "Il < 1+(E+O () €IV~ and [[Im (M(&, ) "' [| < Myl[Re (M(&, 7))~ —1d]].

Therefore
I(M(E )l < 1+ENEN, §e Qp(y), il < BIIE- (3.24)

The next result is the key to control the iterates of R.Its proof is deferred to Appendix C.
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Lemma 3.6. Assume Ay > by. Let R be as (3.19) and a, b, A be constants satisfying (3.20) with
A > b. Fix constants a* < a(N — 1) and b* > b(N — 1). Then, there exist positive p,y small
enough such that

(1) The set Q,(T) is invariant by Ry, that is

Ro(Qp (1)) < Qp(y).
(2) Fork > 0 andv e Q,(y):

[lo]] llo]l

— <IRS| < — (3.25)
[1+kb*||v||1\7*1]N—1 [1+ka”‘||v||1"*1]""1
(3) IfA/b > max{1, N — P}, then there exists some constant M > 0 such that
S > [Im o]
Z IItm Ry (R (0)) | < M o[NP € Q,(p). (3.26)
1=0
(4) IfA/b > max{1, N — P}, then there exists 0 > 0 such that
E(Fp(y, 0)) < L,(y,0). (3.27)

Remark 3.7. We notice that ifAf > bf, then we can always take A < Ay and b > bf
satisfying A > b.

We emphasize that whenn = 1, Ay = Nbg > by (this does not happen, in general, when
n > 1, see[15, 16] for examples). Then, (3.26) and (3.27) always hold true in the one dimensional
case, since we can choose the values of A and b satisfying the hypotheses of Lemma 3.6.
Remark 3.8. IfP > N —1, the setT,(y, o) contains Q,(y’) x T‘i/ forsomey’ < yando’ < o.

When1 < P < N — 1, the set I,,(y, o) contains the points (v,1) satisfying Rev € V,,
Itmo|| < ¥ |lo||N-F, ¢ € Ti,,for somey <yando <o.

The previous work [14] deals with the casen = 1 and P = N. Lemma 3.6 is the main tool to
generalize the results in [14] to the case 1 < P < N.
Remark 3.9. Lemma 3.6 holds true uniformly in A € C in compact subsets of Ac where Ac is
a suitable complex extension of A to an open subset of CP.

We introduce the spaces X;, s € Z, we will deal with below. Given 0 < p,y < 1, and
o > 0 we define

h(o,
Xs = {h :T,(y,0) — C' | hreal analytic, ||hlls ;=  sup Ik Il _ OO}

e, (o) 2lI°

with £ > 1 (if some component h,, of h takes values on T¢, we will assume that the compo-
nent h, of h considered as an element of Xj, takes values on the universal covering 4 of
T¢). With the above introduced norms X are Banach spaces. It is immediate to see that if
s < t, then X; ¢ X, and if h € X; then ||h||; < p*~*||hl|;. Furthermore, if h € X; and g € X,
then h - g € Xpis and [|h - glles < |lAll¢llglls.
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Moreover, given r € Z and v > 0, we introduce the product Banach space
er = Xr_Ni1 X XroN41 X Xr_aN4Pr1
endowed with the norm
IRl = hgllr—Nat + g llr— N+ + VIRl —2N4pe

for some v > 0. To make this norm more flexible we keep v as a parameter. Below we will
use a value of v satisfying a certain smallness condition.

3.3.1 The linear operator S
Lemma 3.10. Assume that Ay > by max{1, N — P}. Then, if

N-1 E*

s>max{N — 1+ ———
{ N —5/3 ar

2NP}

the linear operator S : X — X formally introduced in (3.17) is well defined and

s+tN—1
bounded.

Proof. Let 0 < a < ay. We fix a*, b*, p, y satisfying the conditions in Lemma 3.6, and more-
over, (N —4/3)ay < a* and ff small. Then, T, (y, o) is invariant by R.Given T € X, for some
r we have

lloll”

(1+ ja*|lo||N-1)~=T

(T (R (o, 9| < ITIAR) o, ) II” < IITII»

From (3.10) we also introduce M; = Id + C({). Then,

(M7t
M _( 0 Id)

Now let T = (T3, T, T,,) € X ,_,- From the definition of S in (3.17) we also have

o0

(S[Teq(.9) = )

J
[ T MRS ®R@)) ™| T o R (0,9,

1=0

(S[TDy(0,9) = Y Ty o Kl (0,9).
j=0

Now, using (3.24) and that E?:_l(v) — (v,0) = O(J|v||?), we bound

J
ﬂ MloK\q "o R (0) 7! ]_[(1+E’||R’(u)||N b, (3.28)
1=0
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To bound (3.28) we will use the formal identity []r; = exp 3. logr;, for r; > 0. Again by
Lemma 3.6,

J

J J

-~ ~ 1
Dlog(1+ RN < B D IR @IV < EllolN )
1=0 1=0

*|[|N=1
. 1+ la*||o]|
N E' N
-1 . 1
< Elv|| +a—*log(1+]a*||0|| ).

Therefore,

_ . —1\E'/a*
< exp(E'pN T (1 + ja* o NTHE/

J
[T oK o Ry (@)™
1=0

Then, using that s/(N — 1) — E'/a* > 1+ E*/((N — 5/3)ay) — E'/((N — 4/3)as) > 1, by
Lemma 3.21, and that T, T, € X;, we obtain

exp(E'pN 1)

= < MITgyllsen—allol*= N,

I(SITDen (0PIl < ||T§,n||s||0||sz =

778 (1+ ja* ol N1 T
and similarly, since T,, € Xs_n+p,
I(SITDy (0 Yl < MIITplls—nepllof* 2N+

Then, we immediately get

ISITTIS < MIITILS

s+N—1°

3.3.2 The nonlinear operator N

We denote by Erx, s the closed ball of radius § of X,*.
Lemma 3.11. Assumeq > N and§ is so small that ifh € E;a the range offS +h is contained

in the domain ofl?. Then, if § is small, the operator N' sends the ball E;ﬁ c X into XqX+N—1'
Moreover, if ¢ > max{2N — P,2N — M + 1} andv = /p,

LipN _x < M(p'?+p).
|Bq,(§

Proof. Let h € X;°. Note that the condition on g implies ¢ > N + 1. Taking into account the
definition of N in (3.11) we decompose N (h) = N; + Nz + N3 + Ny with

Ah = ;;éq—J Oi?g —-i?g sz
N, = F*%0 (KS +h),
N3 = DFST71(KS)h — M(KS97)h,
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Ny = FS9'o (KS +h) — FS97 1 o KS — DFS91(KS)h.
Since R and K< satisfy the approximate invariance equation (3.2) and R—R= O(||v]|9),

1€ Xgx Xgx Xy < /\’q N_1- Clearly, we also have N, € X; x X; x Xj. On the other hand,

from (310)

C(Kgy) —C(K = (

0

N = c(K\) 0

0]\ hy

[C(K )—c<K<q ) o) (hén)_

Since

Ozq-1 Ozq-1 ) (3.29)

Ozg—N+M—1 O2g—N+M—1

. g _ X
and using the conditions on g, we have N3 € X; x Xy x Xp_11g-nN41 = Xq+N_1.
For N4, we write

1 ! iy~
(N = 5 / (1— t)D2F§g¢1(K< +th)h®? dt.
A :

Using that Fsa-1 (0,0, ¢) does not depend on ¢, we have (Ny)¢ € Xgi(qg-N)> (Na)y €
Xq+(q+M 2N) and (N4)(p € Xq N+P+(g—N)- Then, N(h) €X q+N 1

Now we look for the Lipschitz constant of N restricted to Bq,a- Given h,g € E; PR, 4
we decompose N(h) — N(g) =T1 + T, + T5 + Ty + T5 with

T,=F>%0 (I’(\g +h) — P, (I’('\g +9),
Tp = DFS471(K=)h — M(K=7")h — [DFS7"}(K=)g — M(K=1"")g],

T

1! S g1,
= / (1—1) [D2F<q¢1(K< +th) — D2F§j¢1(K< +1g)|h® dt,

T, == /(1—t)D2 ql(K\+tg)(hh g)dt,

Ts 2/ (1—t)D2 q 1(K\+tg)(h g,9) dt.

We have
Og—1 Og—1 Og \ [ he — g¢

Ty =| Og—1 Oq—1 Oq || by — gy |
Og—1 Og-1 Oq ) \ hyp — gy

where Oy stands for terms of order k in v. Therefore,

(T g 0 ) <MUlIIT (1he = gellg—ns1 + Iy — gyllg—n+) o]~V

+ M”v”q”hq) - gwllq—2N+P+1 ”U”q72N+P+1
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and hence

I3 S M(p? N 4y 1 pd 2P 1y pd=P g p0= N g — g] 1.

X
g+N—1
From the definition of M we have

0 - ><q—1
L=T +T} =|0 o [ [OKen) = Cey I e = ge) |

C(Efq) (hen — 9zn) 0
Therefore,

I(T3)g (0 )1l < MllolI™ (Ilhe = gellg—na1 + 1hy = gyllg—n) 0]l 7~N*

and then ||T}} ||;+N71 < Mv||lh — gllg . Taking into account (3.29) we also have

T eI < MIRITN2(llhe — gellg—ns + Iy — gyllg—n+0) o]~V

and then [|(T?)¢llq < Mp77!|h — gll; . Analogously, [[(T7),lly < MpT*™M=N=1||h — g||.
Then,
||T22||;+N,1 < MpTMNHip — gllg-

Next, we recall that Fsa-1 — (0,0, ¢) does not depend on ¢. Concerning T;, using the third
derivatives of FS9~! and the conditions on g,

I(T)e (0, )1l <MY (llhg — gellg—nen

—N 2 2(g—N-
g = ggllg—ns) 019N gy 12 llolf@ N

and [|(To)gllg < Mp* N 8%||h — gl|; . Analogously, [|(Ts),lly < Mp*TM—3N&2||h — g||
and ||(T3) llgep—n < Mp* TN 8| |h — g|| so that

1Tl sy < MPMN 4 yp? N5 B — gl
For Ty,

I(T)e @, )1l < MlolIN 2 (llhg—gellg—nar+I Ay —gnllg—n+) 019N H gy llg—n ol TN

and [[(Telly < Mp9~Nllh — gll7 . Analogously, [|(To)ylly < MpT™ N8|l — || and
1(Te)pllger—n < MpT=N&||h — g]l.* and

ITall S M+ 9)p?™N + pTM2N)§ IR — gl

X
g+N—1

For T5 we have the same estimate as for T;. Taking into account the conditions on q and that
v = ,/p we get the bound for the Lipschitz constant of N.
]
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3.3.3 End of the proof of Proposition 3.4

Our goal is to prove that the fixed point equation (3.18) has a solution belonging to X,°.
For that we start by estimating the first iterate of the operator ¥ = —S o N, starting with
Eo = 0, namely

Ay = F(0) = —S o N0].
We recall that R and K< satisfy the approximate invariance equation (3.2) and that R—R=
O(]|v]|7). Therefore, using definition of N in (3.11) we have that

SoR+F*90KS =FoKS —KSoR=0(|jo||%)

=)

N[0] = FSI o K< —

and as a consequence N[0] € X; x X; x X,. By Lemmas 3.10 and 3.11, A € Xy We
introduce the radius
8o = 2[|Aullg

and the closed ball E; s, of X5 of radius &.
A standard argument shows that if p is small, 7 (E; s5) © E; s,- Indeed, let Ae E; 5o

Then, by Lemma 3.11,
IF @) < IFE) — FO)Z + 17O
< Lip ?HEH; +80/2 < MIISII(y/p + p)o + bo/2 < b0,

if p is small. Therefore we have a unique fixed point A of F in E; 5 < qu.

3.4 Characterization of the stable manifold

To finish the proof of Theorem 2.7 it remains to relate the parametrization K(u, ®) with
W 5 Assume that K and R are solutions of
P>

FoK—KoR=0
with
Ky (u,0) —u = O([Jull®), Ky (u, ©) = O(|lull?), Ko(u,©) —© =0(|[ul), (3.30)

and
-N
Ry(u.0) =u+f (w0)+O([ul™),  Re(u,©)=0+w+0(|ul).

We first recall that by Proposition 3.1, performing several steps of averaging and changes
of variables we can remove the dependence on 8 of F up to any order. Moreover, we also
have that the parametrization K (u, ©) — (u, 0, ©) and R do not depend on © up to any order.
We assume that we have removed this dependence up to order smaller or equal than N. In
particular, after the corresponding change of variables, the new map F reads as (2.4) with
~ . -~ —N _

F>N. g®M as in (2.8) satisfying that fN = £ (the average of fV) and g" = g™ are functions
independent of 8. Then, the new map has the same constants a £, b 7, A, By as the initial one.
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We prove (2.17) for F. From now on, we remove the symbol ~ in the notation. Then,
undoing the changes of variables, we have the claim for F. We first prove that, if p, § are
small,

d s
K(V, x T) c Wy,

with V,, 5 defined in (2.6). We claim that, foru € V, and © € T?,

Fe(K(u,©)) €V, and  |[|Fy(K(u,0)) < BlIFx(K(u 0))]. (3.31)

Indeed, since Fy(x,y,0) = x + ]_‘N (x,0)+ /01 Dy]_’N(x, sy)yds + fZN*(x,y, ), using that ]_PN

satisfies condition (v), namely dist(x + J_‘N(x, 0),V7) = ay||x||V, and (3.30) we easily obtain
dist(F, (K(1,0)),V5) = ay|ul™¥ — MJuN*
and we conclude that F,(K(u, ©)) € V,,. Also,
Fy(K(1,0)) = Ky (1,0) + 5" (Kyy (1. ©)) + g7 (K (1,0)) = O(||ull*)
and
IEx (K (1,0))] = [Kx (1,0) + (K (1,0)) + fZN (K (1, 0))]| > [lull(1 — Mlull)
give the second condition in (3.31). Next we notice that, by the definition of ar in (2.9),

-N
IR (u, O)I < Nl £ (, )| + Ml ¥ < Nl = apllull™ + Mlful N
a
< Nl (1= =F1hl™ ) <l
for (u,0) € (V,\{0}) x T, if p small. Using Lemma 3.6 and an induction argument we get

IRk (u,©)|| < ||RE(u, ©)|| < ||ul| for k > 1 and thus RX(u,®) — 0 as k — oo. Therefore,
since F¥ o K = K o R, for all k € N, we have that

lim Ff (K(,0)) =0
k—o0 ’

P . d s
and this implies that K(V, x T?) Wi )
Now, assuming B, > 0 we will prove that, for a cone set V close to V,

s v d
W&ﬁ < K(V, x T%).

To simplify the arguments we first check that the image of K is (locally) the graph of a func-
tion K and then we will change variables to put the graph of K on the horizontal subspace.
To check that {K(u, ©)} can be expressed as a graph we note that (3.30) implies that the map
Kyp : (4,0) — (Ky(u,0),Ko(u,®)) is locally invertible and hence we can write (u,©) =
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(Kx.0) " (x, 0) for x in a slightly smaller cone set V. Therefore {K(4,0) | (4,0) € V x T4},
can be expressed as the graph y = K, o K;; (x, 0) which has the same regularity as K. We

define K = K, o K;(; We emphasize that K does not depend on 8 till terms of order N + 1.
Since Ky(u,©) = O(|lull?), it is also clear that [|K(x, 0)|| = O(]|x||*) so that, for p small
enough, (x, K(x,6),0) € A, 5=V, 5 x T

We perform the close to the identity change of variables

(x,9,0) = (&;n+K(E 9), 9).

We have that K(£,8) = O(||€]|?) and DgK (& &) = O(||€||N*!). The n-component of the
transformed map ¥ is given by

Fo(En.9) =n+g" (En) + " (En9)

for some g=M*1. We have g (£,0) = 0 and >M*1(£,0,9) = 0. Therefore,

1 —
FMEn =GEnn GlEn = / D" (Esn)ds, M (En,9) = G(En, .

It is clear that = 0 corresponds to y = ‘K(ic, 0). Therefore, it only remains to be checked
that, if (& 7, J) are such that Tfkn(f, n,9) € Vpp forall k € N and 7}"’7(& n,3) — 0 then
n = 0. Indeed, by the definition of By in (2.11), we have that

17, (Em DN < lln — GEmnll + Mg
[1d — G(& 0)llllnll + MIENM2InlIZ + MIEN N7l

|
Il (1 = BgllEIM =+ M(p + HIENIMT) < linll,

NN

if p, B are small enough. Therefore, |7, (& n, DIl = lInll if (&79,9) € V\p,ﬁ x T9. Applying
this property in a iterative way we have that, when 7’}]‘”( &nd) e ﬁp, g for all k € N, then

Il < IFF(En =0  as k-

and, consequently, ||5|| = 0.

4 Approximation of the invariant manifolds

This section contains the proof of Theorems 2.8 and 2.15. First, in Section 4.1, we will con-
sider a first order partial differential equation which we will encounter as a cohomological
equation in the inductive step to find the terms of the expansion of the parametrization
K, and the function R (for maps) or the vector field Y (for differential equations). Then,
in Sections 4.2 and 4.3 we prove the approximation results for maps and flows, respec-
tively. We emphasize that we provide an explicit inductive algorithm for computing such
approximations as finite sums of homogeneous functions in u.
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4.1 A first order partial differential equation with homogeneous
coefficients

In this section we recall Theorem 3.2 of [16] which will be a key result to solve the so-
called cohomological equations. In that paper the result is stated for the differentiable and
analytical cases. Here we reword it for the analytical case.

Let V < R" be a cone-like set,0 e 0V, meZ, m > land Ac RP.Letp: R" x A — RF,
Q:R"xA— L(Rk, Rk) andw:V x A — R, and consider the equation

Dh(w, ) - p(w, 1) — Qu, A) - h(u, A) = w(u, A) (4.1)

for h: V x A — R¥. Given p > 0, we define the constants ap, by, Ap and Bg by

+puw, )| — A
im— sup MRl by = inf sup 12D
uev,, AeA [lull Aehyey,  lull (42)
2
_ [I1d + Dp(u, A)|| — 1 i 1d — Q(u, M|l -1
Api=— sup ~N_1 s Bg :=— sup N_1
ueV,, AeA lluell ueV,, AeA [Jull

We assume there exists p > 0 such that the following conditions hold
(@) p,Q and w are analytic homogeneous functions in V, x A of degrees N,N — 1 and
m + N, respectively.
(b) The constants ap, Ay, by satisfy

ap >0, Ap > bp.
(c) There exists a constant a?, > 0 such that
dist(u + p(u, A), (Vp)c) > al‘),||u||N, VueV, VieA.

(d) If By < 0 we assume that
Bo
m+1+—>0. (4.3)
ap
We will apply the next theorem for different Q’s and in some cases we may have By <
0.

We will have to consider complex extensions of Q := V x A of the form

Qc(y) == {(u,A) eC" x C | (Reu,Red) € V x A, |[Imu|| < y||Reul, |[ImA| < y*}.
Finally, let ¢, be the flow of & = p(u,A) and ¥g be the fundamental matrix solution of
z = Q(¢p(t;u,A), 1)z such that ¥(0;u, A) = 1d.

Theorem 4.1 (Theorem 3.2 of [16]). Assume that p, Q,w satisfy hypotheses (a)-(d). Then,
equation (4.1) has a unique homogeneous solution of degree m + 1 given by

0
h(u,2) = Hyolh] = / Yol (u Hwipp(tbu ) ) dt,  ueV, LA (44)
o0
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Ifp, Q,w are real analytic functions defined on the extended set Qc(yo) for some yo > 0,
then there exists 0 < y < yo such that h is a real analytic function on Qc(y).

4.2 The approximate solution of the invariance equation for maps

To simplify the notation, throughout this section we will not make explicit the dependence
of the considered objects on A. Also, at some places, we skip the dependence on their vari-
ables of some functions when it will not be possible confusion. We recall that the superscript
in a function, for instance G/, indicates that G/ is a homogeneous function of degree j with
respect to u or (x,y), i.e. with respect to all its variables except the angles and parame-
ters. However, when we use parentheses, G\/) indicates the expression of G at the j step of
some iterative procedure. In this section we prove Theorem 2.8 by finding approximations,
KU, RY) as sums of homogeneous functions that can be determined. The specific way to
do so is precisely described. By an induction procedure, we prove that indeed the functions
obtained with the proposed algorithm satisfy the approximate invariance equation (2.18).

4.2.1 Iterative procedure: the cohomological equations

Although there is some freedom, we look for an approximation K 0 = (K,gj ), Kz(/j ), Kéj ) ) of

the parametrization of the invariant manifold and R = (Rl(,j ), Rg )) of the form:

KV(w,0) = (u+KY@6),00), RVw0)=(u+R, (1),0+a0)
and for j > 2,
KV(1,0) =KV D (4,0)+ K (w,0), RV (u,0)=RV"ue)+RY (4,0)

with K, j > 2, decomposed as the sum of an average and an oscillatory part (of different

degrees):

K (4,0) = Ko (u) + KI™N ' (1, 0),
K (u,0) = K,y () + K™ (u,0),
K (w0) =Ky () +K)" 7 (1,0)

and similarly R decomposed as:
R (w0) =R, W +RN " we),  RYwe) =Ry () +R(we),
such that,
EV =FoKY — KW o RD = (O([lul’™), O(lul”™), O(J|ul**1)).  (45)

Remark 4.2. Notice that property (4.5) is not (2.18) in the statement of Theorem 2.8. We will
obtain (2.18) in Section 4.2.2.
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First we check that the choices of K") and R(!) are such that (4.5) becomes true for j = 1.
Indeed, we write

N ~ I

(1) _ () p(1) K+ fN(u+K{,0,0) =R, — KY(u+R, (u),0+) +O(J|ulN*)
FoK™ =K 7oRY = O(ul)
O(|lull?)

- —N
Comparing the average and the oscillatory parts, we are lead to take RuN(u) =f (u,0)and
KX to be the zero average solution D[] of the small divisors equation

KN (1,0 +w) — KN(1,0) = fN(1,0,0),

and (4.5) holds true for j = 1. Assume, by induction, that we have determined K*) and R"")
for 1 <1< j— 1, with j > 2 such that EV=1) defined in (4.5) satisfies

EU™D = (O(lulP™N =, 0(l[ull 7™, O(lull*F~5).
We decompose

EU) —F o kU) — K)o RU)
—FoKU-D _ gU-1 o gU-D
+FoKD _FokU—D _ pFoKU-D . g
+ DF o KU . U) _ g o RU-1)
KD 6RO 4 kD) o RU-D).

and we define

7;(1') —FoKY _FogU-D _pFogU-D .(]((j)’
«7;(]') =DFo KUV . _qcli) o RU-D),
7;(]') =KW o RV _ g o RU-D

Since F can be expressed as a sum of homogeneous functions with respect to (x,y)
(condition (ii)), it is not difficult to check that

7,9 = (0N, O(lul M), O(lullP+)).

Now we deal with 7;(j). Using that KU~ (4, 0) = (u+O0(||ul?), O(||ul|?), ©+O(||ul))),
decomposition (2.8) in condition (ii) and condition (iv), we write

W+ 0, (fN + 2N 0, (fN + f2N4) gy (fN + f2NH)

DF OK(jfl) — ax(gM +g>M+1) Id + ay(gM +g>M+1) ae(gM +92M+1) oK(jfl)
Oe(h? +h=P) 0y (WP + PP 1d+ 0p(KF + hPH)
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Id+ 0 fN(u,0,0)  0yfN(u,0,0) dofN(u,00)
= 0 Id + 0,9 (u, 0,0) 0 +N(u, ©)
0 0 Id

with

N(w,©) =| O([ul™) Oou|™) O(lul™)
O(llull™" o(llull”~") o(ull")
We note that, by (iv), dgg™ o KU~ = O(||u||"*'). Then,

O(llul™)  O(llull™) O(IIHIIN”))

‘7;(” = 0 Id + (?ng(u, 0,0) 0 ?]y +f(Z+M*1

1d+ 0 fN(1,0,0)  ,fN(@,0,0) dpfN(u,0, @)) Ky + K™
0 0 1d —i% b,
Ky +K)"

K. oRU=D 4 KIPN=1 o RU-D

—| &) oRUD 4 RIMT G RO |+ N(w,©) - KV,
Eéil o RU-D +§§+P_2 o RU-Y

Notice that, since R ™" (1, ©) = u+R, () +O(||u|[¥*1) and RY ™" (1, 0) = ©+w+O([lul]),
we have

I?iy oRUV(y,0) = Eiy(u) + Dl?iy(u)]_zﬁ](u) +O(||ul?N-2),
fé*l oRUD(4,0) = Eé’l(u) +DKJ;1(”)§“N(”) + O([lulF2N -3,
and, writing KU) = (E){+N—1’E;+M—1,Eé'+P_2),
KD o RV (1,0) = KV (1,0 + ) + (O(|[ull /N1, O(|ull7NM=1), O(||ul 7N +F-2)).
Therefore

7,9 = — DRLWR, (w) + 0N (1,0, 0)K 2 (u) + 2y f™ (4,0, 0)K) (u)
+ 00N (u,0,0)(Ky " (w) + K272 (u,0))
+ KN (1,0) — KN (1,0 + w) + O(JulHY),

7,9 = — DK} (u)R,, (u) + 09" (1,0,0)K () + K} ™' (1,0) — K™ (1,0 + o)
+O(|[ull”*™),

7,9 =~ DK} (R, () + K7 (u,0) — K72 (1,0 + ) + O(Jul "),

Finally, we write 7;0 )

1
7;(]) =K o RU) _ gU) 5 RU-D = / DK(j)(R(j—l) +SR(j))R(j) ds
0
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L (1+0(lul) 2R +O(JullN) (0)
= / odll) ol || 26| ds
o\ o 1+0(]lull) o
R, RN 4 RN Ry 4 RETT) + O(ul*Y)
- O([lull**)

—j+P—2  =ip_3 b
Ro  +REPZ0(|ull*Y)

Since F is expressed as a sum of homogeneous functions until degree g — 1, we write
i i +N—1 j+M—1 pj+P— i i iP—
EU7D = (BN LET) + Ol M), Ol M), Ol ). (46)
Therefore, since EY) has to satisfy (4.5), namely:
EY) = (O([ul™), O([lull”*™), O(llull /1)),

from the previous estimates, we impose the corresponding conditions on E)(cj ),Egj ),Eéj ).
That is, for the x-component

EfC+N—l(u, 0) — DEi(u)I_QuN(u) _ §£+N71(u) _ EiJ,N—l(u, o)
+ 2N (1,0, 0)K.(w) + 0y N (1,0, 0K, () + o fN (4,0, 0)K) (1)

_ . . (4.7)
+KIMN T (w,0) — KV TN (1,0 + w) + 0 fN (1,0,0)K) 2 (1, 0)
— 0oKY (u,0) Ry (u) + RS (u,0)) = O(Jlull™).
Concerning the y-component
. N .
E;™M 7 (u,©) — DK (u)R,, (1) + dyg™ (u,0,0)K,, (1) @5
+ K™ (w,0) — KM (1,0 + 0) = O([lull*™).
And finally, for the 8-component
EFP%(u,0) — DK) (R, (1) — Ry (w) — RE" (1, 0) o)

HR) T (w0) — KT .0+ 0) = O(lul .
Now, we explain how to deal with equations (4.7), (4.8) and (4.9) to obtain the terms

#) and RY). We introduce some notation. Given a function G(u, ©) = O(||u||’) that can
be expressed as sum of homogeneous functions of integer degree, we write

G(u,0) = {G}' (u,©) + O(Jlull ™), (4.10)
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where {G}' is the homogeneous part of G of its lowest degree. For practical purposes we do
not assume {G}* to be different from zero. We also introduce

Q[K;]g,Rm] yf (u, 0, @))K (u) + Ao fN (u, 0, ®)K9 (u) +0pfN (u,0, @)KJ+P 2(u 0)

—j+P—2

— 0oKY (w,0)(Ry  (u) +RL"*(1,0))

that satisfies G[K')), RG] = O(||ullP*N=1) since P > 1 and 6K = O([ul[Y).

Therefore, using that ﬁuN (u) = ]_CN(u, 0), equations (4.7), (4.8) and (4.9) decouple into the
triangular system:

E];M—l(u’ o)+ {—DE;(H)?N(U, 0)}j+M_1 +0yg™ (u, 0, G)Eg(u)
+E;+M_1(u, Q) — E§+M_1(“ O +w) =0, (4.11)
E£+P_2(u, 0)+ {_D[?éil(u)?N(u, 0)}j+ o Rg-P 2( ) — ﬁgp_z(u’ 0)
+f<~é'+P72(u, ©) — féwiz(u, O +w) =0, (4.12)
E£+N—1(u, Q) — DI_(j (u)?N(u, 0) + (3fo(“, 0, G)Ei(u)
]+N 1( ) — RN-1(y, 0)

—_~ ~7 -1
+ KN w,0) - KN T (w0 +w) + {g[ngg,Rw]} =0, (413)

These are the so-called cohomological equations. To solve these equations we deal separately

with the average and the oscillatory parts. We first deal with (4.11). We distinguish the cases
M < Nand M =N. . M

* Case M < N. Averaging (4.11) we obtain ang(u, 0)?2(11) - g™ (u) and
therefore, since by the hypotheses of Theorem 2.8, Ong(u, 0) is invertible,

j+M 1

Ky () = —(2,8" (w,0) 'E} ). (4.14)
+ Case M = N, the average part of equation (4.11) is
DR, ) (u,0) — 0,3 (w, 0K, (w) =B, ' (w). (4.15)

This equation is of the form (4.1), therefore we apply Theorem 4.1 with Q(u) =

—N
aygN(u, 0)andp(u) = f (u,0) with the associated constants a, = ar, b, = by, A, = Ag
and By = B, defined in (2.9), (2.10) and (2.11), respectively. Note that, by (iv) the domain

-N
with respect to u of f (u,0) and 8y§N (u, 0) can be extended to R” by homogeneity.
By condition (4.6) and Theorem 4.1 with m = j — 1 the solution of (4.15) is

K} = Hyo [EJ;N”] . with p=F (w0), Q=0d,5"(u0),
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where H,, g is defined in (4.4).

In both cases the oscillatory part of (4.11) is solved as a small divisors equation, using
Theorem 2.1 to an extension of the involved functions to a complex neighbourhood of their
domain. We have ) _ )

KM = D[EJM 4 0,MK, |, (4.16)
where D is introduced in Section 2.1.2. ) '
Remark 4.3. A remarkable fact is that, once I?Jy and E{lJrM_l are found, equations (4.12)
and (4.13) always have solution. For instance we can choose

i1 =i Sj+P—2 pj+N—1
Ky ,K.=0, RS R =0, (4.17)
—ji+tN=1  —j+N—=1 (= (j) () }1+N_1
RO =BT G RO i
—j+P—2  —j+P—2
Re =Le
and j+N—1
—_~ . —_—~ _ —_~ _ —_~ _ —~ . . ] —
Ké+P 2 — D[Eé+P 2]’ K3]c+N 1 — D[E§C+N 1 + {Q[K;{Q),R(@j)]} ]
We notice that with this choice all the involved functions keep the same regularity as F, f;,
and KI™M!
9 .
However, we want to go further and keep R as simple as possible. That is, we want to take,
whenever possible, Rgp_z and R,];'N_l equal to 0.

Before starting solving (4.12) and (4.13) let us say some words about the regularity of
Kije) and Rl(lj@))
Remark 4.4. In Theorem 4.1, if instead of condition (b) we have A, < by, we cannot conclude
that the solution of equation (4.1) has the same regularity as p and Q. This is an optimal gen-
eral condition as it was shown in Section 6 of [16], where some examples showing the loss of
regularity were provided.

However, when M < N, the functions I?Jy and E§+M_l defined in (4.14) and (4.16) are
analytic. Therefore, in this case, when solving (4.12) and (4.13), if Af < by, to have analytic
solutions of (4.12) and (4.13) we use the expressions (4.17) and (4.18),

After this remark we continue with the assumption that Ay > by.

The following analysis discusses how to obtain solutions with the simplest possible R.
We solve first (4.12). We take

>j+P—2 _ Tj+P—2 Dj+P—2 _
KW =D[E" 7], Ry =0

Then, equation (4.12) becomes

—j+P—2

B ) = {Df?g’l(u)?N(u, 0) R

}j+P_2 LB ).

We distinguish the cases P < N and P = N.
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i —N j+P—2
* Case P < N. The expression {DK{Q 1(u)f (u, 0)} = 0 and we take

—j+P—2 —j+P—2 —j—1
R@ —E9 N Kg free.

* Case P = N. We have that Eé._l and RQN_Z must satisfy

—j+N—-2

DK ' Wf (w0)+ Ry Cw) =E" ().

We take Q = 0 and p(u) = ]_‘N(u, 0) in Theorem 4.1 and the corresponding constants
Bg =0,a, = af, Ap = Ay and by, = by defined in (2.11), (2.9) and (2.10). We take

—] 1—7'[1\] [EJQ+P 2]’ Ré;P 2_0.

In both cases, the solution of the oscillatory part of (4.12) can be given by

TjHP—2 _ o~ j+P—2 Sj+P—2 _
K" P =p[E?,  RSTP=o
We finally solve equation (4.13). We notice that after having solved (4.11) and (4.12), the

function Q[K!(/] ), Rg )] is already a known function. To simplify the notation, we introduce

. -1
G]+N—1 = {Q[K;Jg,R(J)]} ,

where the notation {-}* has been introduced in (4.10). We first deal with the average part
of (4.13) which is

DK (u)f (u 0) — (/xf (u O)K (u) +RJ+N 1 —Ej+N71 +5j+N71.

X

We use again Theorem 4.1, now taking Q(u) = xf (u,0) and p(u) = f (u,0). Let ‘B =

Dy be the corresponding constant (see (4.2) and (2.11)) and j;i = [—E] if D < O0and j; =1

if Dy > 0 as defined in (2.14). Condition (4.3) in Theorem 4.1 is satisfied when j + lz—; > 0.
Therefore, A
+ When j < j* we take K., free and

]+N 1 —1

—j+N—1 —j =N -N —j
(u) = (W +G" () — DKL(u)f (1,0 +0xf  (u,0)K(u).
* When j > j* we apply Theorem 4.1 and we take

j+N—1

—j+N—-1 —j+N-1
+G |

K. =Hon , o~ ~[Ex
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The oscillatory part of (4.13) is then solved by setting
RN = D[N 4 GN 4 0 VR, RV =
This arguments show we can take RY) = 0if j > j*. We emphasize that when n = 1, then

—N
f (x0) = —afo and therefore by = ar, A = Nay, Bax?N = —Nay. As a consequence,

j*=Nand B RN = 0if j > N.

4.2.2 End of the proof of Theorem 2.8

As we pointed out in Remark 4.2, with the procedure described in the previous section, we
have obtained that there exist K/) and RV) satisfying

EV) = FoKY —KY o RV = (O(ul™), O(lull"**), O(lul"*")
instead of the stated result EU) = O(||u||/*N). We need then to work further.
When M < N, we look for K, [ = j+1,---,j+N—M of the form K" = gU=1 45 (D)

with . _
K =0, K, (u,0) =K, + KM (u,0),

and we keep R = 0. Assume that, for j+1 < I < j+ N —M
E(lfl) =F OK(Z*I) _ K(lfl) OR(I*I) — (O(”u”l+N71),O(”u”l+M71),O(”u”l+P72)).

Since the map F can be expressed as a sum of homogeneous functions up to degree j +

N < g — 1, we can apply the procedure described before setting Kilg = 0. The equation
corresponding to (4.11) is ’

EEM1(4,0) + 0y g™ (1,0, 0)K,, (u) + KE™M~ (1,0) — KM~ (1,0 + ) = 0,

which can be solved as described in the previous section. In addition, since KJEI; = 0 and

R® =0, then EY = O(||ull*N) and E}} = O(J|u]/*"~") (see equations (4.7) and (4.9)).
We repeat this procedure until [ = j + N — M and we obtain that

iAN—M . i+N—M i+P—
ESNTM = o(Jul*N),  EYNTM = o(|lul ).

Finally, we look for KWN=M) RU4N=M) for | = j+1,---,j+ N — P + 1 of the form
KUAN=M) — g (eN=M=1) 4 ge(+N=M) \with

_ _ —l— =~
KN — o g N (4,0) =Ky () + Ko (u,0)
and R(1+N7M) — R(l+N7M71) +R(1+N7M71) with

—M— —I+P—2
R]SI+N M-1) _ 0, Re = R@; +I.€7®+P’2.
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Assume that, for j+1 <I< j+N—-P+1
E(Z+N—M—1) =F OK(Z+N—M—1) _K(l+N—M—1) OR(1+N—M—1)

= (O™, O(lull’*™). O(|ul ).

Similarly as before, now the equation corresponding to (4.12) is

- —I-1,_ =N WP=2 " _pp—2 -
2 w,0)+ {-DKy 'f o)) —Rg  “(w — R (,0)

+ Ky (u,0) — KPP (w0 + 0) =0

and it is solved as described previously. Note that we can always take ﬁg’ P=2 = 0 and, if

P = N we can also take R@+ - Looking at equations (4.7) and (4.8), it can be easily

deduced that Eg;N—M) = O(||lu]’*N). In the last step of this new induction procedure we
obtain that the corresponding remainder EV+N=M=P) — O (||u||/*N).

4.3 Approximation of the invariant manifolds for differential
equations

Let X be a vector field of the form (2.22) depending quasiperiodically on time with time
frequency v. We briefly describe the procedure which is analogous to the one for maps
explained in detail in Section 4.2. Indeed, first we set

KO (w06) = (u+KY(1,6,0,00), Y00 =(F (10),0+0)
and we check that E() defined by (2.24) satisfies
EM = (0(lul ™), 0(llull"™), O([[ull")).
Then, we define KU) = KU-D 4+ () y() = yU-1 4 y() with

KD (u,0,8) = Kp(w) + KEV T w0,0), K (,0,0) = Koy (w) + K™ (u,0,1),

KD (u,0,1) =Ky (u) + Ko ~2(u,0,1)
and Y as:

YO won =" "+ NN W, YV we) =T )+ YT w0,

We prove by induction, reproducing the same arguments as the ones in Section 4.2.1,
that if U~ defined by (2.24) is such that

EU™ (u,6,6) =(ES™ ™ (0,0, B (u,6,0), B} (w,6,1)
+ (OUIl™), O™, Ol 1))
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with Ei 10 homogeneous functions of degree I, then EV/) satisfies

EV = (O([ul™*N), O(lull™™M), O(lull 1)),

if ), Y U) are solutions of the cohomological equations

i+M—1 .
}J + ang(u> 0, e’ t)K;(u)

M (w6,1) = {DR, 0 (,0)
— QoK™ (0,10 — 0K, ™ (1,0,1), (4.19)
. i _ j+P—2 __i . p_ —.
EIP 2 (u,0,1) = {DKjg "WF (u, 0)}] T T W)+ YT (w0, )
— oK) (1,0, 0)0 — 0,K) T (1,0,1), (4.20)
EFN N (w,0,6) =DRL(u)f * (4,0) — o N (u,0,0) K (u)
LY W)+ YT w0,1) (4.21)

~ _ . . j+N—1
— 00REN T (w0, 00 — 2RI 0,0 — {GIKUL RO

Equations (4.19), (4.20) and (4.21) are the corresponding ones to equations (4.11), (4.12)
and (4.13) for the case of maps. As expected, the difference between them is that the
difference term in the map setting

K(u,0 + ) — K(u, ©)

now becomes the term _ _
0oK (1,0, t)w + 0:K(u, 0, t).

Here, to solve the corresponding equations
00K (1,0, )0 + 0,K (1,0, ) = h(u,0,t) (4.22)

with & a known function with zero average, we use the small divisors theorem (Theorem 2.1)
for differential equations instead of the one for maps. Indeed, consider h(u, 6, 7) be such that
h(u,0,t) = h(u, 6, vt) (as explained in Section 2.1.1) and the small divisor equation

06K (u, 0, 7)o + 0K (1,0, 7)v = h(u, 6, 7).
LetK =D [il\] be its unique solution with zero average (we recall that we use the same nota-
tion, D, for both settings: flows and maps). It is then clear that K(u,0,1) = D[h](u,6,vt) is

the solution of (4.22). Then, with this interpretation, the algorithm described in Section 4.2.1
applies in the same way.
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5 Double parabolic orbits to infinity in the n + 2-body
problem

5.1 The n + 2-body problem and Jacobi coordinates

We consider n+ 2 point masses, m;, i = 0,...,n+1, evolving in the plane under their mutual
Newtonian gravitational attraction. We denote by ¢; € R2,i=0,...,n+1, the coordinates of
the i-th mass in an inertial frame of reference. Their motion is described by the Hamiltonian

H(q.p) =T(p) = U(g), G.1)
where p = (po, . . ., pns1) € R are the conjugate momenta and
el )
T(po, - --»pn+1) = ]Z:(; 2_mj”pj” ;

m;m;
U(q0,~~~;qn+1) = Z —

o<i<j<n+l llgi — q;ll

Well known first integrals of this system, besides the energy, are the total linear momentum,
"3 pj» and the total angular momentum, 3725 det(gj, p;)-
We devote next sections to prove Theorem 1.1. It will be an immediate consequence of
Theorems 2.14, 2.15, once the Hamiltonian (5.1) is written in the appropriate variables.
We want to show that there are solutions in which the first n bodies evolve in a bounded
motion while the last two arrive to infinity as time goes to infinity. For this reason, we use
the classical Jacobi coordinates, in which the position of the j-th body is measured with

respect the center of mass of the bodies 0 to j — 1, for 1 < j < n + 1. More concretely, we

consider the new set of coordinates (qo, . . ., gn+1) defined by
ao = qo;
_ 1 .
qj‘:qJ‘*M Z meqy, j=1...,n+1,
J o<t<j—1

where M; = 2{):01 my, j = 1. The inverse change is given by

9o = qo,

qi=q;+
0<e<j—1

me
L%  j=1...n+L (52)

Mgy

Denoting by A the matrix such that ¢ = Ag, the change in the momenta given by p = A~ "p
makes the whole transformation symplectic. Let

H(@p) =T(A"p) —UA™'Y
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be the Hamiltonian H in the new variables. Notice that, in ,t.he (g, p) variables, the total linear
momentum is simply po. In particular, this implies that H does not depend on go. We can
also assume that py = 0. Then, H does not depend on (qy, po). With this choice and defining

M = diag (mgl, .. m,;ll) a computation gives
1 n+1 1
T~ _ i=T T~ _ =~ 12
T(ATp) = ,p AMATF = ) Bl
j=1 :uJ
where yj_l = Mj_1 + mj_l. Also, in view of (5.2), we have that
~ me _ .
4 —q=9g;+ Z T Isjsn+l,
1<ty Men
- - me - M; _ me )
9 —9i=9 —qi+ Z Mo =4~ 4t ode Tsi<jsn+l
icic—1 Ment i+1 imcrejo1 Mer
Then,
U(A716) — Z mjm; + Z Mmpm; n Mp1M; + Mpyy1Mp
o<in i s —al S e —all S gnn = qill - ligne — gl
m;my m;m;
_ j + j
4 ~ ~ L ~ =~ my ~
1<j<n—1 “qj + let’gjfl M{i1 q[” 1<i<j<n—1 “qj —q;i+ Ziglgjfl Ml:—l qu
+ mpmg + mpm;
— me ~ . - - e ~
Gn + Li<e<n—1 M, 2| isisn—1lqn — G Qi<t<n—1 M., 1t
Mn+1Mo Mp+1M;
+ +
g me ~ - g . me ~
Gn+1 + Zi<e<n Mot CH” 1<i<n—1||qn+1 — i + Xi<e<n Moms Q[H
+ Mpy1My
—_—~ —_—~ m —_—~ bl
||qn+1 —qnt Mn:l-l qn“
where in the first line of the formula ¢ = A™'g. Now we introduce symplectic polar

coordinates in each subspace generated by (gj, p;):
g =rje”,
- Gj i0; j=1,...,n+l,

pj =y +i—Lel,
T

and denote by H(7, 7, 0.G, Tns Un> Tnt 1> Yna 1> Ons Gy Ont1, Gny1) the Hamiltonian in these new
variables, where ¥ = (r4, ..., r,_1) and, analogously, the same notation applies to 7, 0,G.

We will be interested in the region of the phase space where ry,41,r, » ri,i=1,...,n—1.
However, since the final motions we are looking for are parabolic, it will happen that r,, /711
will be of order 1. Hence, we will be able to expand several magnitudes in r;/ry, r;/rpi1,
i=1,...,n— 1,but notin r,/rn.
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In the new variables the potential is

U(r, 9) = ﬁ(;‘:é\)"'Un(?» "'n, 01 _enw . ~:0n—1 _Gn)+Un+1(;\> ns n+ls 91 _9n+1>- . .,9,1 _0n+1)a

where
U(7.0) = el
£ me i(0,—0;
1<jsn—1 |Ij + let’sj—l Mt r[e’( e—0;)
+ m;m;
3
1<i<jan—1 |rj — rie! 00 + 3 o Mo ree!(%c=01)
~ mpmy
Un(r> Tn, ¢1, .. -;¢n—1) =
e e i
rn |1+ Zlg{’énfl Mt rne $e
mpymj
+ - ,
< _Ijig; me Te ,i
1<j<n—11|1— e 97+ Y icran Mo e e
-~ Mp11Mo
Un+1(r:rn,rn+1s¢1:~ . -s¢n) =
Me  Te i
Tni |1+ Zlg[é” Mes1 Tn el
" Muyy1M;j
- _ i i, me 1 Lig,|
ISjsn Tntl 1 Tn+1 er + ng[g” Mes1 Tni €
(5.3)
Proposition 5.1. Letmy, ..., m,—; € R" be fixed. The functions Uy, and U, can be written as
—~ myMp, mp—~
Un(r, n, ¢1,...,¢n71) = + r—Un(r, n, ¢1,...,¢n71) (54)
n n
and M
—~ Mp+1Vin+1 Mpt1 ~ o~
Un+1(rs ns "'n+1s ¢1,~-~»¢n) = + Un+1(rs "ns 'n+1, ¢1s-~-s¢fl)s (55)
Tn+1 Tn+1
with
=~ e, Y1 m—1 ¢ . Tn—1 _jp _
Un(". 1 b1, 1) = Ap (—e L I et
I'n Tn Tn 'n (5 6)
=~ " o 'n_ ' i
Un+1(r»rn:rn+1,¢1=-~-,¢n) =Ann ( e¢1, e ¢1,~--: e¢", e ¢":mn s
n+1 Tn+1 Tn+1 Tn+1
where

(1) An(z1,71,...,2n—1,2n—1) is analytic with respect to its arguments in a neighborhood of 0
and satisfies

An(z1,21, ., Zn—1,Zn—1) = 02(21, 215 > Zn—1, Zn—1)s (5.7)
(2) for any K > 1, there exists m > 0 such that An1(z1,21, . . ., Zn, Zn, My) is analytic in
Dim ={lzj,1Zj| < K™%, j=1,...,n—1, |z4l, |2a] <K,
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|z — 1|, |Zn — 1| > K71, |ma| < m}

and, defining

Ani(z,z,mp) =An11(0,...,0,2,Z,m,) (5~8)
M, m
= r: + :/I - Mn+1
‘1 + Mn+lz |l o Mn+1 Z|
M, m
= " : - Mn+1,
. e I " — e\
(1 + A (z+2) + " zz) (1 — s (z+2)+ " zz)
one has
Ani1 (zla Z1, .o Zns Zns mn) — Apni1(zn, Zn,mp) = O, (21,5, <o Zn—1s anl), (5~9)

uniformly in Dk, p. Finally,

n+1 1 G2
T(r,y,0) =) — (yf +—

Jj=1

Proof. In view of (5.3), we clearly have that

_ _ mo mj
An(z1,21,. ., Zn—1,2n—1) = + —M,
my < my
|1 + Yi<e<n—1 M., 2t 1sisn—1 1—2z;+ ngt’énfl Moo Zf|
and
_ _ my mj
Ani1(21,21, .-, 2Zn, Zg, M) = + — Mpy1.

me - my
|1 + Di<e<n Mo Zf| 1<j<n L= 2 + Yjcren 3 Z(’

The claim is then a straightforward computation. Formulas (5.7) and (5.9) are obtained by
expanding in powers of 21,71, . . ., Zy,—1, Zn—1. The first order terms cancel out identically. O

Now we reduce the number of equations by the total angular momentum. To do so, we
consider the symplectic change of variables

;}:ri, ydl-:yi, i=1...,n+1
G =G 0;=0; —0psy, i=1,....n (5.10)
Guy1 =Gr+ -+ Gpyy, Ons1 = Ong1.

Since the total angular momentum © = Gy + - - - + Gp41 = Gp41 is a conserved quantity, the
Hamiltonian in the new variables does not depend on 6,,4;.
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We remark that, since the potential Uin (5.3) only depends on the angles through 6; — 6,
with 1 < i,j < n — 1, in the new variables (5.10) it has the same expression. We will use
it with the same name. The same happens to U, but not to U,41. Dropping the tildes from
the variables, the potential U in the new variables — which we denote again with the same
letter although now does not depend on 6,41 — is

U(;\, "n, é: Gn) = ﬁ(?’ 5) + Un(;:’ "n, ‘91 - en’ cees gnfl - 9,,) + Upt1 (?’ n, 'n+1, é: en) (5~11)
The Hamiltonian in the new variables is

H(7.7.0.G. 'y Yns Frsts Ynets Ons Gn) = H(7.5,0.G) + H (7.7, 0,G. s Y Frsts Ynsts Ons G,

(5.12)
where _ L R R
H(r,y,0,G) =T(r,y,G) — U(r,0),
with . ,
—~ - =1 G*
TE3.6) =Y — |2+ |, 5.13
(r.y.G) ;‘ZM Y; r]?) (5.13)

the potential U was introduced in (5.3) and

7-[(?; @\, 5: 6, T'ns Yns F'nt1s Yn+1, On, Gn) = T(rn: Yns 'n+1, Yn+1, 6» Gn) - (U(r: 9) - ﬁ(;’: 5)) s
(5.14)

G? 1 (O — Gy — Gp)?
2 2 1 n
(yn+r_’2f)+T(yn+l+ 2 .

n+1 T

with

T(rm Yns "'n+1s Ynt1s 6: Gn) = zﬂn

5.2 A torus in the n-body problem

The Hamiltonian H = T — U, with T and U defined in (5.13) and (5.3), respectively, is the
Hamiltonian of a planar n-body problem in Jacobi coordinates. As such, it possesses 2(n—1)-
dimensional KAM invariant tori. Let @ € R?"~1 be a Diophantine frequency for which a
KAM tori of H exists. There exists a symplectic with respect to the standard 2-form dr A

dy+d0 A dG, analytic change of variables (7,7, 0, G) = ®(¢, p), (¢, p) € T2"=1 x B, where
B = R%("=1) is some ball, such that

H, (¢, p) = Ho ®(p, p) = (w, p) + Os(p).

Let
(I)(q’, P, n,s yn, n+1s yn+1a en, Gn) = ((D(QD, p)s Tn, yn’ "n+1s yn+l> 6"’ Gﬂ)'
It is canonical in the sense that transforms the standard 2-form into

do Adp+dry A dy, +dry A dypg +dO, A dG,. (5.15)
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We define

Hw((Pa P> Tns Yns 'n+1; Yn+1s en» Gn) =Ho q)((l)» Ps T'ns Yns Fn+1> Yn+1s Hns Gn)

= He, (9, p) +H 0 ®(0, p, T, Yns Tns1s Yns1, Ons G, 010
the Hamiltonian in the new variables.
We define the function
0(p.p) =0 = (Gi++--+Gpr) 0 B, p). (5.17)
Since, for p = 0, Gy + - - - + G,_1 is a conserved quantity of ﬁw, we have that
80 =0 — (Gi+---+Gy_1) 0 D(g,0) (5.18)

does not depend on ¢ and it is the average with respect to ¢ of (g, 0).
Theorem 1.1 is a consequence of the following result.
Theorem 5.2. If my,mpy; > 0 are small enough, then Hamiltonian (5.16) satisfies the
following.
* Collinear case. There exist A = 1+O(my, my+1), depending on my,, mp,1, and G2, depend-
ing on my, myy1 and @8, and two 2 + 2(n — 1)-dimensional analytic invariant manifolds,
WC*_;I, invariant by the flow generated by (5.16) such that, for any solution

((P, ,D> n, yns "n+1s yn+1’ em Gn)(t) € WCJ’_(;I,

there exists ¢ € T*"~1) such that

tLirinoorn(t) = tlirinoo i (t) =00, Lirinooen(t) =7,
Lm yn(t) = lim yea () =0, lim Ga(t) =G,
Jim p(1) =0, Jim [o(t) —ot] = o5
and
Fni(t) A

t—>tw 1y(t)

* Equilateral case. There exist% = 71/3+0(mp, Mpy1) and A = 140 (mp, mpy1), depending
on my, Mu41, and Gg, depending_on My, Mpy1 and 88, and two 3 + 2(n — 1)-dimensional
analytic invariant manifold, Wfl, invariant by the flow generated by (5.16) such that, for

any solution (¢, p, Tn, Yn, i1, Ynst, On, Gn) (1) € Wj(’l, there exists ¢} € T2(=1 sych that

tilglocrn(t) - zilgloc ns1(t) = 0, tllril_'loogn(t) = 6y,

. L B . s
tgglocyn(t) - tllril-’loo Y1 (1) =0, tllrinooG”(t) =G,

. B . - .
i p(8) =0, Jim [o(t) —ot] = ¢}
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and
Tn+1(1) — A
t—+o0 rn(t)
We devote the rest of the section to the proof of the theorem. The collinear case is
a immediate consequence of Proposition 5.9 and, the equilateral one, of Proposition 5.12,
below.

5.3 Local behaviour at infinity: double McGehee coordinates

In order to study the behaviour of the system when r,,.1,7, » r;,i = 1,...,n—1, we introduce
the double McGehee coordinates x;, Xp+1, Yn, Yn+1 through

2a — 20041 ~
'n = _Zn’ Yn = ﬁnym Tny1 = Z_H’ Yn+1 = ﬁn+1yn+1’ (5-19)
Xn n+l1

where ay,, fn, a@n+1 and P41 are constants, depending on m,,, my41, such that

Bn _ mp My _
dpnay 4ar21,Bn ' (5.20)
ﬂn+1 _ mn+an+l =1 ’
4,un+1 An+1 4afl+1ﬁn+1 ’
that is,
1 1/3 2/3 Mpm,
n = Sii M fn=2 —
M (5.21)
1 M3 _ o2/3Mns1mni
ny1 = 2473 Mz Bn1 =2 3
n+2

We are interested in the case where my + - - - + my,_; is of order 1 while m,, and m,; are
small. In particular, the constants «, and @, are of order 1 while f, and f,; are small.

Furthermore, we have that
247

- 1+O(%). (5.22)

An+1 n+1

The change (5.19) is not symplectic. It transforms the form (5.15) into

danfn —
3 dx, A dy, —

X;, X

40{n+1,8n+1

3
n+1

do ~dp —

dxps1 A dyns1 +d0, A dG,,. (5.23)

We denote H = 7 — U the Hamiltonian  in (5.14)and H = H+H in (5.12) both expressed
in these new variables. We drop the tildes on the y variables.

Taking into account (5.11), (5.3), (5.4) and (5.5), the potential U — U (see (5.11)) is
transformed into

~ myM, 2 Mpt1Mnia 2
Uw(ﬁl’, P> Xn, xn+1:0n) = xn + n+1
20 2an+1

(5.24)
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2 2

X, ~ xn ~
+ mnEUn,w (@, p, Xn, On) + My 20{::1 Uni1,0 (@, P, Xn, Xns1, On),
where

~ ~ [ 2ay,

Un,w(ql’, Ps Xns, 9n) = Un r(q)’ P)’ ?’ 91((% P) - 6rl’ e en—l(ﬁl’, P) - en 5 (525)
—~ ~ —~ 20y 20n41
Un+1,0 (@, s Xns Xnt1, On) = Unaa (r((p, p)—— —01(@.p),. ... 0n—1(g, p), 9n) ,

n n+1

with (r1(0,0), -+ "a—1(0, ), 01(¢, p)s ..., 0a—1(0, p)) = (7,8) o B(g, p), while the kinetic
energy part of H becomes

ﬂrzl 2 721+1 2 Gﬁxﬁ (©(¢. p) — Gn 2x;4l+1
yi+ i~ o+ 5 , (5.26)
2ftn 2Hn+1 4ap in 40, Pt

T (@, P, Xn> Yns Xns1, Yns1> Gn) =

where © was introduced in (5.17).
Proposition 5.3. Let my,...,m,—1 € R be fixed.
(1) Un, is analytic with respect to its arguments in a neighborhood of (p, x,) = 0 and admits
an expansion of the form

U5 6) = D il Ol "

j=2020
(2) The function Uy, can be written as
2 2
= n X1 g, %n Xni1 —i6
Un+1,w((p:p;xn>xn+l’9n):uO( e, e
An+1 xn An+1 xn
an X an X
n_“n+l i n_ "n+l —if 2k
+Zuk (IP»Pa 7 2 © ",a——ze n)xn+1’
k>2 n+l Xp n+l1 Xp

where, given K > 1, uj(¢, p,z,z) is analytic in a neighborhood of p = 0, |z|, |z| < K,
1 —2z,]1 -2z =K' and

uy(z,z) = Apt1(z, 2z, my) (5.27)

where K,,H was introduced in (5.8). For k > 2, we introduce the expansion

uc(p,p,2.2) = Z up,j(9.2.2)p’.

Jj=0

Proof. The claim for ﬁn,w follows immediately from (5.25), (5.4) and item (1) of Proposi-
tion 5.1.

59



As for ﬁnﬂ,w, in view of (5.6), we have that

2
~ X
Uni10(@: P> Xns Xnet, On) = Aner |11 (. p) 225 L i (@) rl((p,p) L= i0iler),

n+1 Ap+1
a x2 a, X2
+1 i0p— b +1 i0, 3 n +1 0, n +1 6,
ST 1(q0 p) n elon 1((/1/)) l((P P) n —ity, 1(41/))’ nz Py , nz el
0(n+1 an+1 Ony1 X5, Ans1 X2
The claim follows immediately from item (2) of Proposition 5.1. O
Let

Vo(a, 0) = ug(ae’®, ae™ ).
The following lemma summarizes the properties of the functions uy, V; that will be need.

Lemma 5.4. There exist §, K,m > 0 such that, for all0 < m, < m, (a,0) € [1 — 5,1+ 5] x
[t =8,n+8lull—06,1+6] x [n/3— 8, 7/3+ 5] whereV, is analytic and

'aVO(ae)' Kmn,,  j=0,1,2.

Moreover,

%(a 0) = zmn(G ) (1+0(a - 1,mp, 0 — 1)),

aVO( .0) = mn(€—§+0(a—lmn)+02(a—1mn, —7r/3)).

In particular, for each (a,my,) € [1 — 8,1+ 5] x [0, m], the equation

‘Wo(a 0) =0

has the solutions 6 = m and the unique analytic solution in [7/3 — 6, 7/3 + J], 50(05, mn),
satisfying
éb(a, my) = % +O0(a — 1,my).

Proof. In view of (5.8) and recalling that M1 = M, + my,

M, my

V()(Ol, 9) = - Mn+1

my ms o\ My M2 o\ /2
(1 +25-acosf+ Mﬁu az) ( jra M az)
is clearly analytic in neighborhoods of («,8,m,) = (1,7,0) and (a, 0, m,) = (1,7/3,0),
since, then, M;,/My41 = 1, and Vyp,,,—o = 0. This implies the first claim.
The second claim is a straightforward computation. The third one is an immediate

consequence of the second. O
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5.4 The constants A, B and G?

Next lemma provides constants that will be needed later.

Lemma 5.5. Let M, = ;.:01 m; be fixed. Consider the equations for the constants A and B

A’B=A,

(1+ : Mpy1 Vo( On A2, 9)+ Mur10tn OV ( Un A2, 9) A2

2 3
6‘(n.'_lﬁn+l An+1 4an+1ﬁn+1 oa An+1

A4

_(1_ ";"“ %(_“" A2,0)A4)B,
4o Pn oa \ apy1

with® = 7w or0 = 6°(A m,) = 0" (%AZ, m, |, where 0° is the function introduced in
Lemma 5.4. Then, if m,, and my,, are small enough, they admit two pairs of solutions, A, B,
corresponding to 0 = m and 6 = 0°(A, my,),

A=1+0(mp, Mpy1), B=1+0(mp, mp41).

As a consequence 0°(A, my) = Z +O0(my, mpyy).

Proof. We emphasize that, for z € C, z # 1, K,Hl(z, z,0) = M, — M,4; = 0. Then, when
Mmp = 0, Vo(a, 0) = Apsi(ae®,ae=,0) = 0 for all @, such that ae’® # 1. Using this,
the claim simply follows by applying the standard implicit function theorem at the value
(A, B,mp, mpy1) = (1,1,0,0), taking into account the definitions of a,, fn, an+1 and fniq
in (5.21) and Lemma 5.4. O

We expand C:) introduced in (5.17), as

O(p.p) = ) Oklp)p".

k=0
We also introduce _ .
oA 1 A\
Gy =— 0 ( - - ) , (5.28)
®i1Hnt1 \ Onfin i1 Hnt1

where A is given by Lemma 5.5 and (:58 was introduced in (5.18). Observe that G? can take
two different values, one for 8 = 7 and another one for § = 8°(A, m,) in the definition of
the constants A and B. We use the same letter to denote both quantities.

We use G to introduce a new variable g, through G, = GY + g,. This change, which
preserves the 2-form (5.23), only affects the kinetic energy part of the Hamiltonian, in (5.26),
which now becomes

2 2
'72)(@: P> Xns Yns Xn+15 Yn+1, gn) :iyi + 2;;_11 yfl+1
, Gatgn)sy  (O(¢.p) = Gn — gn)* ¥y
dagpin 4aﬁ+1'u”+1
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5.5 Some steps of normal form

In order to apply Theorems 2.15 and 2.16 we will need some coefficients of the expansions of
T, and Uy, in powers of x,,, Xp+1, Xn+1/%n, 0, and p to be independent of ¢. To accomplish this,
we perform several steps of normal form, as is done in [14]. We use the following immediate

fact. Given the generating function S(@, p, Yn, Xn, Yn+1 Xn+1> On» gn), if the equations

0 __ s
=9 PP p=p %
200 P 204 Pk oS 4oy fr — 4oy i oS
— + —, = —_ ==, k:n,n+1
x/% ;12( F 3.(2 Yk J"c’f( k T (5.29)
~ 0§ — oS
Gn:9n+ s In =9gn+ —,
09n 00,

define a close to the identity map

T: ((Pa Ps Xns Yns Xn+1> Yn+1, 9,1, gn) = (a: /F)': ;n: gn, En+1: Fy~n+1s 5}1; gn),
then T preserves the 2-form (5.23).

Proposition 5.6. Choose 0 =  or 0 = 0°(A, m,) in Lemma 5.5 and K as in Proposition 5.3.
Then, after an averaging procedure, Hamiltonian (5.16) becomes

Hw ((Pa P> Qn, gn, Xn, ym Xn+1, yn+1)

2 2
ﬂn 2 n+l 2 myM, , Mus1Mpi1
= <w’p>+2_yn+ 2 Ynt1 — 2 Xn — 2 n+l
,un /1n+1 (047 A+l
2 2 2
x a, X ; a, X ; 1 ~
+1 n +1 n +1 —
— Mpy1 ———1ug "—zele”, — e 0n | 4 ——(Gy + gn)*xy + Opxy
An+1 An+1 Xy An+1 Xy 4o, lin

1 Q0 0y.,.4 1 4 2
- 22— (®0 - Gn)xn+1gn + z—xn+lgn + R((P, P> en’ 9Ins Xns Yns Xn+1, yn+l)’
Api1Hntl Api1Hn+l

where
(1) the function uy(z, zZ) was introduced in (5.27) (see also (5.8)),
(2) G° and @8 were introduced in (5.28) and (5.18), respectively, and depend on the choice of
0 in Lemma 5.5,
(3) ©) = [(09(p) — G2)?] /(40 , jin+1) is a constant,
(4) the remainder has the form

R((P» P Gm 9ns Xns Yns Xn+1, yn+1)

x2 x?
_ § n+l i n+l —i6, 2k 2j  m I ros
- uk,j,m,l,r,s s 2 e, 2 e " xn xn+1yn yn+lgnp >
Xn Xn

k,jymlLrs>0,
k+j>=2
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and there exists o depending on o, such that uy j m 1, s are analytic in its arguments when

2
eeT?D |1 —z|,|1 — 7] >0 withz, = %e"g". In addition R satisfies

OR OR

= Os(Xp, Xp41)s =05 (xn, Xn+1),
axn axn+1
OR OR

= Ot (X, Xns1): O =04 (stn, Xna1):
ayn ayn+1
— = (0(p) + Oy ( Xn> Xn+1)) Os (X, Xnt1) a—R—O(xx )
3(p = pP 2\Yn+1 9n> Xn> Xn+1 6\ Xn> Xn+1), ap =U4(Xn; Xn+1),
OR OR

a5 = O(P)O4(xn, xn+1) + 06 (xna xn+1)s :O(p)04(xmxn+1)

00 0gn

+ Og(Xn, Xn11).

~ ~ 2
Proof. Using Proposition 5.3 for Uy, and Up,1,, we write (with the notation z = 22ntL ¢ifn)

An1Xpy
F Jid 2 2+1 2 (GY +gn)xn (G +gn)?xy
T( s P> Xns s Xn+1s 1s )= = + = & & + & =
@\ @5 P> XnsYn> Xn+1> Yn+1: Gn 2t Yn st n+1 40{;21”" 40{;21#"
4 2 oy 0\2..4
Xp19n (O, p) — Gy)xpyy = oy 4
4 2” + 4 2 = - 2 2 (®(q0’ p) - Gn)gnxn+1’
Api1Hn+l A i1Hn+1 Xpp1Hn+l
~ maMp 5 MpiMuy xg
U, (0, p, xn,Xn+1, 0n) = x5+ xXZ., +m c 0
(@, P, Xp,Xns1, On) 20, " 20tnes n+1 nzan 2,0(, 0n)
x2, x5,
+ - + =
+ Mpgy o (2,Z) + Mpy1 ———1t50(¢, 2,Z) + Ro (@, p, X, On)
n+1 2O(n+1

with u,0(@, z,Z) = u2(@, p, z, Z) and R, satisfying the properties stated for R in the Proposi-
tion. Indeed, the problematic terms are the ones of the form uy (¢, p, z, z)xi’gz, k > 3, with
uy analytic. For those terms

O (Wi (9, . 2, 2) X0 17), O (Ui (0, p, 2, 2)X0417) = O (),

provided |z — 1|,z — 1| > ¢~! and my,, m,+1 are small enough, and its is immediate to check
that these terms satisfy the other properties stated for R.
Therefore, the terms on the Hamiltonian we need to average out are the following:
(1) x;‘l 4+ in 7o,
(2) xiﬂgn in 7,
(3) xS in x,zlﬁ,,,w,
2 . 2
(4) x5 u(p, p, Zmdelln, Sy
tion from the averaging step (2), and
(5) Pn+1b: ((p)x2+lyn+1/(4an+1pn+1). This term appears after the averaging step (1).
We average them out with a sequence of transformations defined through (5.29) with
suitable generating functions S. We drop the tildes in the variables after each step. Along the
proof, after performing each step of averaging, we take care about the new terms that can

e~ 10n) that comes from the term u; in U, and a contribu-
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not be considered as a remainder. The tedious but immediate substitution of the sequence
of transformations is left to the reader.

We recall that, given a function f depending on some angles @, [ f] denotes its average
with respect @.

We start with (1). We consider in (5.29) the generating function S(@, p,Xp+1) =

b1(@. )Ly where (0, Vabi) = (422, )~ ((0(6.9) — G3)* — [(8(6.p) — GI)’1). We
recall that o is Diophantine, and then the existence and analyticity of b; is guaranteed by
Theorem 2.1 (see also [33]). In addition, we can select it with zero mean. Therefore,

P= ﬁ_ V?ﬁbl(a’ ,D)f:i“, Q= 54' Vpbl(aa P)ffm»

1 —
———b1(@, p) -

Yn+1 = Yn+1 +
n+1ﬂn+1

After this change, the term with x?_ in the kinetic energy becomes

~ 1 —~
[(8(5.p) — GY)’l—5—— =8 + O(p).
da; v

with O(p) satisfying the conditions for the remainder R, to which we add the term (besides
some other terms considered as a remainder)

~ o~ ;Bn+1 ~6 ~
bi(@, p)—Xx -
1(¢,p) st et n+1Yn+1

We will average out this term in step (5).

As for (2), we consider by (@, p) satisfying (w, Vzbz) = — (242, ftns1) " (O(9, p) — GY) —
[6(7, p) — GY] and the generating function S(@, p, Xn+1,gn) = b2 (@, p)X:, gn. Again, since
w is Diophantine, this equation can be solved. It defines the change

p=p— V(ZbZ(a’ P)’Yiﬂ.am =0+ Vpbz(a, P)ﬁﬂgm
— 2 — - — - -
Yn+1 = Yn+1 + —bZ((Ps p)%fﬁ-]gm Gn = gn + bZ((P: p)x;},+1~
an+lﬁn+1

We emphasize that after this change the coefficient of x?,, g, becomes

- a0
. ([B@pI -G (20—) +O(x19np)

“*n+1Yn 202 - n+1Yn
an+1,un+l +1l1n+1

with O(x},,9np), independent on g, satisfying the remainder conditions. Moreover, this
change of variables produces a new term in the Hamiltonian of the form

Z ij(z, z)xnﬁ] (b2(, p))! = i1 (2, 2)x5, b2 (,0) + O(pxS,,) + O(x29)), (5.30)

>
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where u; are analytic with respect their arguments, provided |z — 1,z — 1| > 07!, see

Proposition 5.3.

The coefficient u; is averaged out in step (4). The rest of the terms go to the remainder.

Now we deal with (3). We consider S(o, gn,fn) = b3 (o, 5n)}f,, where (w, V5b3) = 50 —
[c20], and is straightforwardly checked that, after the change of variables induced by the
generating function S, the new coefficient of x5 is [c] and that the remainder satisfies the
required properties.

To deal with (4), we consider a generating function of the form

a, X a3 Q x2 ~
~ =~ =~ _3al= n_ “n+l if, n “n+l _—if, | =6
S(@,Xn, Xn41) =S| @, —— e, —— e " | Xy
An+1 Xy An+1 Xy

with, S satisfying
Mp+1

(0,V55) =

(uz,0 — [uz0]) +urba,
_ 2041
where u1b;, introduced in (5.30), has zero mean. In this case, through (5.29) S defines the

change,

p=p - ViS (7.023) T 90 =G0+ Fs (7.0, 23) R0
yn - ?n + Fl ~, P>ZE) Erzlf,‘i“.p yn+1 = §n+1 + FZ (a, P,ZZ) %?Hl’
- a, X2 . . .
where z = an’zl ;2“ ,and F;, i = 1, 2,3, are analytic functions of their arguments.

Finally, in (5):1we consider

S(a’ Yn+1, :’?n+1) =bs (@ﬁﬂynﬂ,

where (w, V5b3) = Bn+1b1/(@n+1pin+1)- Equations (5.29) define the change

Xn+1 = in+1(1 + b3(¢)x§z+1)71/2 = ;nﬂ + §1 (5’ }Jrszﬂ) }?Hl’
Yn+1 = Ynaa (1 — 6b3(¢~’)3~5i+1)_1/2 =Yps1 + §2 (a, ;Cfl+l) ’}?Hlynﬂ,

p=p— Vab3(¢)x~2+1yn+1 =p+S(o, xﬂ;+l)§r‘;+lgn+1’
where §l i =1,2,3, are analytic in their arguments. O

5.6 Regularization of infinity

In what follows, 50 will be either —7 or 8°(A, m,,) = 5 +0(my, mpy;) in Lemma 5.5. Recalling

that
2

2 2
On Xuy1 4o, %n Xn+1 _ig n Xpi1
uo(——ze e =V |— ,On

An+1 Xn An+1 Xn An+1 Xn
where V;, was introduced in Lemma 5.4, we define

_ VY an ., =
= | —A% 0], i,j = 0. 5.31
U:J 60{1691 (an+1 0 L] ( )
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By Lemma 5.4,9; ; = O(my).
For future purposes, we introduce the constants

m - 1( 1 At
V= 1— 2n+1 A4Z)1,0 =1+ O(mn+1), I,=- ( 2 + 2—) s (532)
4an+1ﬁ" 2 nHn Xy 1Hn+1

where A and B were introduced in Lemma 5.5, whose value depends on the choice of 9~0. We

notice that, since
Hn Mo Mpmp

m
- 2 = “ (1+O(mﬂ’ mn+1)),
Hn+1 Mn+1mn+1 Mpu+1

A =1+ O(my, myy1) and the conditions (5.20) and (5.22), we have that

1 8«
1+

I, =
2021y, Myt

- (Mps1 + my + Oz(Mp, Mpy1)).
Mpmympy
(5.33)

The regularization will be obtained as a sequence of simple changes of variables and
blow-ups that are summarized in the following technical result.
Proposition 5.7. Consider the blow-ups given by

(mn + OZ(mn, mn+1))) =

Xna1 = Xn(A+ Enir), Un+1 = Yn (B + Nns1), Yn = X (v + (),

§n+1 = xngwls Nn+1 = xnﬁn+1: 9n = é;) + xnans In = r,flgn, p = x,31,0

Then, denoting Z = ({y, gim, Nn+1s 0~n Jn, Pn) there exists a linear change of variables Z=CZ,

where
1 0 0 0 0

0
0 1+ 52)2 1+ 52’3 62’4 52’5 0
0 —4+ 53’2 1+ 53’3 63’4 53’5 0
0 64’2 64’3 1+ 54’4 1+ 54’5 0
0 Js2 053 054 —1+0855 0
0 0 0 0 0 Id

and
5i,j = O(mp, Mp41),
such that in these variables the Hamiltonian system with Hamiltonian H,, has the equations
%n = —vxp + x301(4n) + Oo(xn),
Z = x3MZ +x30,(xn, 2), (5.34)
¢ = 0 +x,01(xn, Z),
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where

246, 0 0 0 0 0
0 3+g, 0 0 0 0

Mol O 0 —2+e3 0 0 0
0 0 0 1+e4 O 0 :
0 0 0 0 —Y2 + &5 0
0 0 0 0 0 (1+ee)ld

with
€ii = O(mp, Myy1), if i#5,
{fs,s = Oy (mp, Mpy1).
Remark 5.8. Notice that, since the hypotheses of the existence result, Theorem 2.16, only

depend on the dominant terms, there is no need to control the dependence on my,, mpy1 of the
non dominant terms.

Proof. We perform the blow ups in three steps. The first one corresponds to (&,11, Pn+1):

Xns1 = Xp(A+ §n+l), Yn+1 = yn(B + 77n+1)~

For any choice of 9~0 we have vy; = 0 (see definition (5.31) of vp; and Lemma 5.4). We
recall that the equations of motion associated to the Hamiltonian H,,, in Proposition 5.6, are
obtained using the 2-form (5.23) taking into account the choice of the constants a,, @41, B,
and fy41 in (5.20). Then, also using Lemma5.5 we have that

i 1. Xnt 1 X, 0H, 1 0H,
1= —Xpp — ———%p = — XnXn+1
" Xn " xf, " 4an+1ﬁn+1 Xn ayn+1 4anﬁn e O0Yn
1 Xt (Pan JR ) 1 (ﬁrzt é’R)
= Uni1 + —— | + ——XpXna1 | —yn + =—
4an+1,5n+1 Xn  \ Hn+1 " ayn+1 4anﬁn e Hn " ayn

= *xiyn(A + §n+1)3(B + 77n+1) + xiyn(A + §n+1) + 08 (xn)
= xﬁyn(—ASB +A) — ((3A2B - 1)§n+1 + AS’]nH) xflyn + 02(§n+1’ 77n+1)x31yn + O (xn)
= [*(2 + O(mm mn+1)§n+1 - (1 + O(mn: mn+1)’7n+1 + 02(§n+ls ’7n+1)] x,z,yn + OS(XH)-

2
. . . . . X
To avoid cumbersome notation, V; (and its derivatives) means V, evaluated at (aa—"l ) L 9).
n+ n

Similar computations, recalling that x,41 = x, (A + &,41) and yn41 = Yn(B + 1), and using
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again Lemma 5.5, lead us to :

3 3

Bus = 1 g yn+1y _ 1 X,,, OH, 1 x2yn1 OH,
n+l =~ Yn+l — n = - A

Yn y,zl 40{n+1ﬁn+1 Yn axn+1 4anﬂn y;% OXn

4 2
1 Xn+1 Mp+1Mn1 Mpt1 Mp1 @n Xy OV0 —1
= - - Vo — 2 0 xn+105(xns Xnt1)
405n+1,5n+1 Yn An+1 An+1 An+1 An+l Xy [24

4
1 x;llynﬂ myMp  Mpyr an X4 W -1
- + —Q s tX, Os(Xp, Xp41)

4anﬁn y,z, an An+1 Xn+l x;ll oa
4
X 1 _ 1 On — Mp+y1 ~
== —A4 1+ 0,0 + L Ul()AZ +B[1— n 010A4
, , 2 ,
Yn My M1 an da;,  Pn

+Li&npq + Lotner + L3 (0 — 0o) + O (Eni1s Mner, 0 — 0o) + 04(xn))

X4

=y—n (L1§n+1 + Lafp1 + L3 (0 — 50) + Oz (Ens1, M1, 0 — 50) + 04(xn)) ,

where, taking into account (5.31) and (5.20),
Li=—4+ O(mna mn+1)> L,=1+ O(mm mn+1)a Ly = O(mna mn+1)~

We emphasize that the non-explicit error terms are now analytic functions in their

variables, the only non-regular factor being the quotient x;} /y,,.
The rest of the equations can be obtained immediately from the Hamiltonian structure

and Proposition 5.6. Concerning x,, and y,, using (5.20), we have that

. X, OH,
T danfa Oyn —X3Yn + Oo(xn), -
. xr31 an Mp+1 4~ 4 4 "y ’
Yn = 4, fr Ox =—(1- WA 01,0 | Xp + X,01(&nr1, On — 6) + Os(xz).

nPn “%n n+1Pn

In the case of 0, and gy, by the choice of G} in (5.28) and Lemma 5.4 and using that, by

Lemma 5.4 and the choice of 50, vp,1 = 0, the equations are

. OH, 1 1 At
0, = == ( + ) x;llgn + x;}lol(gnﬂ) + 0(p)04(xn) + 06(xn),

2 2
Opfn @ 1Hn+1

0H, Vi x,
_ Mpt1 o OVy ( 2473 n+1,9n) +O(p)04(xmxn+1)+()6(xn,xn+1)

= 00y - 20n+1 xn+1a_9n An+1 xyzl
Mmp Vo [ an
= 20{,:1 xi(A+ §n+1)za—0: (Otn+1 (A+ &), 9n) +0(p)O4(xn) + Os(xn)
an _ _ ~ _
=M1 A0y 1 X + M1 A%002%% (O — 6o) + x20(Ens1, 6 — 60)
n+1 n+1
+O0(p)O04(xn) + Os(xn).
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In view of Lemma 5.4, if 50 = 0, then v1; = 0 but, if 50 = 0°(A,m), then v;; # 0. The
coefficient vy ; is different from 0 for both choices of 6.
Finally, the equations for ¢ and p become

H,
¢ = a& = + O4(xy),

gH (5.36)
p =~ 52 = (0(p) + Oultn g %) Osr).

The change y,, = x, (v +{,) regularizes the term x2 /y, in the equation for 1,+;. Indeed, with
this change,

§n+1 =er31(1 + V_lgn)[ — (24 O0(mp, mp11)) Ener — (14 O(Mp, Mp11) ) ns1 + O2(Ensa, 77n+1)]
+ OS(xn)>
Nn+1 :V_lxi(l + V_lévn)_l [ - (4 + O(mns mn+1))§n+1 + (1 + O(mn: mn+1))’7n+1

+ O My, Mps1) (6 = B0) + Or(Ensr, Nsr, 00 — B0) + Oa ()],
while equations (5.35) are transformed into

Xp = —vxfl(l +1718,) + Oy (xp),
Gn = 203300 + X301 (Engt, On — Oo) + X202 + O5(x).

Equations (5.36) become
@ =+ 04(xp),

p = (O(p) + O2(xn, gn)) O6 (xn).
The equations for 6, g, remain unchanged (the higher order terms O; can change their
explicit expression but they keep the same order).

After this change, the vector field is analytic in its arguments in a neighborhood of

{prT, PZO, xn:O; §n:0, §n+1:0s ’7n+1:Os enEngnZO}-

Now we deal with the last blow-up:

§n+1 = xn§n+ls On = 0 + x,0,, p= XZ,E, Mn+1 = xnﬁnﬂs 9n = F,flﬁn-

Proceeding as before, it is immediate to check that

X‘n = —Vx;ll + x;ll01(§n) + 09(xn)>

. -~ o~ 5.37
gn = 2Vx,31§n + xﬁ01(§n+ls Hn) + ngs + OS(XH)' ( )

Also, for (gm, Nn+1)s

Envt =023 = (14 O 1) Enss — (14 O (M Mpst)) st + Oz s, s, )] + O (),
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ﬁn+l =V_1x,31[ - (4 + O(mn: mn+l))gn+1 + (1 +v% + O(mns mn+1))ﬁn+1

+ O(mn, mn+1)§+ xn02(§n+1» ﬁn+1, é) + 03 (xn)],
and for (gn,gn),

O = Vi3 0y + 332G + %201 (Brr) + X205 (xn, Eners O L),

g;n = lezgnﬂ + YZngn + xZOZ(ng’ gn) + Oé(xn),

where, using (5.33),

an 3~ 8 011
Yi= z_mn+1A Z)1,11—‘1‘1 = _(mn + Mpy1 + Oz(mn, mn+1))_,
n+1 M” n
1 4 V0.2
2~ ,
Y2 = Mp41A%002T0 = — (mp + Mpy1 + O2(Mp, Mpy1)) —,
20tn+1 M, Mp

and, finally, for (¢, p),

¢ =w+ 04(xn),
p = 3vx,p + O(p) 05 (xn) + O3 (%, gn) O3(xn) + px;01(Ln).-

(5.38)

(5.39)

(5.40)

(5.41)

To finish the proof of the proposition, the last change is simply a linear change of vari-
ables to distinguish between the contracting and the expanding variables. It only involves

the variables (;g,,ﬂ,ﬁnﬂ, 0, gn). Denoting Z = ({y, §n+1,ﬁn+1,§n,g~n,ﬁ)—r, equations (5.37),

(5.38), (5.39) and (5.41) can be written as

Xn = —vxp + X301 () + Oo (),
Z= xiﬁZ + x3,02 (xn, 2),
¢ =w+x01(xp,Z),

with,
2+ 1,1 0 0 0 0 0
0 -1+ €22 -1+ €23 €24 0 0
M= 0 —4+ €32 2+ £33 &4 0 0
0 0 0 l+egql 0 ’
0 Y1 0 Y2 0 0
0 0 0 0 0 (3+e)ld

where, using that, by (5.32), v = 1 + O(my, Mp+1), Lemma 5.4 and (5.40),

Eij = O (mp, Mpyy1).

Taking into account the definition of v1; and vz in (5.31) and Lemma 5.4, we have that

Yi = O(mp, Mps1), i=12,
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and

<0, if y=n
& PR (5.43)
Y2 >0, if 6y = 0(A my, Mp4).
Next, we need to diagonalize the submatrix M.
We notice that the most part of the matrix M is already in diagonal form so that it is

only necessary to diagonalize the submatrix

—1l+ey —1+e3 €4 O
K/i _ —4 + €39 2+ £33 €34 0 _ Ml,l M1,2
= 0 0  1+e4 1| \Myy Mo/’

12! 0 Y2 0

where M; ; are the 2 x 2 blocks of M.

We observe that the eigenvalues of My ; are 3+ O (mp, mp41) and —2 + O (my,, m,4q) and,
using (5.42) and (5.43), the eigenvalues of My ; are 1+ O1(my, Myy1) and —yo + Oy (My, Mpy1).
The corresponding eigenvectors are, respectively, v; = (1, —4) " +O(my,, Myy1), 0 = (1, 1) T+
O(mp, Mps1), 03 = (1,0) T + Oz (Mp, Mpsr) and vy = (1, —1) T + O(mp, Mpsq). Let By g and By,
be the matrices with columns vy, v; and vs, vy, respectively, and

_(Bi1 0
B‘( 0 BZ,Z)'

Clearly, the matrix

M=B"'MB= (54“ M“)
M1 My,
satisfies
M _ 3+O(mn, mn+1) 0
L= 0 —2+0(mp, Mpy1) )’
M, , = 14+ O(my, Myy1) 0
22 0 —Y2 + Oz (mp, Mp1)
while

MI,Z, Mz,l = O(mp, Mp41).

It remains to prove that there exists
A =1dyxq + Oz2(mp, mpy1)

such that

o~ Mi; ©
ATTMA =M T, 5.44
(0 My, (5.44)

with

My =My + Oy(mp, Mps), My = Moz + Ox(my, Mp4)

71



being diagonal matrices. We notice that, taking C =BA and
0
0
Id

5

Id 0
C=|0C
00

the proposition follows. In order to prove (5.44), we first look for A; ; such that the matrix

~ Id Ay,
A= (o Id )
satisfies R
A-MA = (M1,1 + Oi(mn: Mps1) _ 0 ) . (5.45)
M, Mz + Oz (mp, Mmyy1)
Since
A-MA = (M1,1 +AA1,2M2,1 M1,1A1,2 - A1£M2,2 ";Ml,z - A1,2M2,1A1,2)
M, M;, + My 1A '
equation (5.45) is equivalent to find a solution A; ; = O(my, my41) of
LA, = _MI,Z +A1,2M2,1A1,2, (5.46)

where R R
LA12 =My1A2 — A2Mz.
One can easily check that £ is invertible and then we rewrite equation (5.46) as the fixed

point equation R R
Ay =FAipi=—L "M+ L 'ApMyiAg,.
We have that [|70]| = | £7'Mi2ll < L7 IIMy2ll = O(my, my). Defining p = 2[|F0]|,
1F ALz — FAL2ll < 2p[l L7 ||A21 — Azl if Ay, Ay satisfy [|Azll, |Arzll < p. Conse-
quently, ¥ is a contraction in the ball of radius p, if m, and my,; are small enough, which
proves the existence of A, = O(my, Mp41).
Next, let
"B': Id+02(m,,, m,,+1) 0 )
0 Id + Og(m,,, m,,+1)
such that the diagonal blocks of

-~ ~ ~~~ [N 0
B'A'MAB = ("'
(NZ,I Nzgz

are in diagonal form. Such matrix B exists because the diagonal blocks of A~'MA are already
in diagonal form up to errors of size O, (my,, mp.1). We observe that

Ni1 =M1+ Oy(mp, mpt1), Nog =Mys + Oy(my, Mpr1), Nai =My + Oy(my, Mpyr).
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Next, let Az be such that
No2Az1 — Az 1Ny = —Nay;.

Such matrix exists, since, as the operator £ above, the operator Ay; — N33A21 — Az 1Ny
is invertible. Let
—~ Id o
A= .
(AZ,1 Id)

It is immediate to check that A~'B~!A~!MABA is block diagonal and, in fact, diagonal
provided Ny 1, N3, are diagonal matrices. |

5.7 Applying Theorems 2.15 and 2.16. Collinear case

We need to distinguish the cases .9,0 = 7 and 50 = 0y(A, m,) since the corresponding stable
invariant manifolds have different dimension (see Theorem 5.2). In this section we consider
the case 6, = x, that corresponds to the collinear configuration. In this case, the constant y,
in the matrix M in (5.34) is negative. Following the notation of Section 2.2.1, we introduce
x= )y = (Gns E,,H, Y Ono p) | with x € R?, y € R#*2(*=1) and ¢ € T2~V Then,
equations (5.34) become

X = f(x, y) + 05 (X, y),

y=9(x,y) + Os(x,y), (5.47)
@ =+ 04(x,y),
where ,
(x,y) = x,5x,
flxy A (5.48)
9(x.y) = x,Uy,
and _
A4 0 0 0 O
0 0 0 O
A 0 2 2
S={ o _ U=[0o0Xo o (5.49)
00 0A O
0 0 0 0 A;5Id
with
).1 =, /12 =2+ €22,
;{1 =2+¢, /Tz =3+2,, IS =143, /T4 = —Yy2 + €44, /Ts =1+%5,
(5.50)
and
Eii = O(mp, Mp41), gj,j = O(Mp, Mp1), Jj # 4, 2:1,4 = Oy(mp, Mpy1).
For &, k > 0, we introduce the cone in R?
Vs ={x= (X Tns1) €ER?| 0 <X <8, [fnra| < KX}
For all x = (i, n+1) € Vs we have that
T 1] < x|l < (1+6%)V25, (5.51)
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where || - || denotes the standard Euclidean norm in R2.

The next proposition guarantees that we can apply Theorems 2.15 and 2.16 to
Equation (5.47).
Proposition 5.9. The vector field corresponding to equation (5.47) has the form (2.22) with
N =M =P = 4. If my,, mpy1 are small enough, for § small enough, it satisfies hypothesis (v) in
Section 2.2.1 in the domain Vs, with

1 _ 1
= min
VT (1R {(1 +x2)1/2

(1 + O(mn= mn+l)) > 1+ O(mn, mn+1)} > 0.

The constants ay, in (2.9), br, Ay, in (2.10) and By, in (2.11), in the domain Vs, have the
following values:
ar > v+ 0(8% «%), by < 1+0(my, Mpy1) + O(x%),
A = 24+ 0(my, mpsr) + O(k) + O(8, 1), By = —y3 + Oa (M, mpsr).
Hence, if my, mpyq are small enough so that —y, + Oz2(my,, my41) > 0, then, for k and § small
enough,
ag >0, Af > bymax{1,N — P}, By > 0.

Consequently, Equation (5.47) satisfies the hypotheses of Theorems 2.15 and 2.16. The origin
possesses a 2+ 2(n — 1) analytic stable invariant manifold.

Proof. We will use the standard Euclidean norm and its induced matrix norm to compute all
the constants. We start by computing ay. Clearly, if (a, b) € Vs,

c . 1
d((a,b),Vy,) = min {m (ka—1b]),6 — a} .

Then, if x € Vs, denoting x* = (X, 7%, ) = x + f(x,0), since
|ﬁ:+1| = |ﬁn+1|(1 - /125(\3) < Kfn(l - A25C\r31)’

we have that, for § small enough,

1 1 R ~ B
m (K';C\:zk - |;7\:’lk+l|) = m (K (xn — A]?;) — |]’,r21+1(1 — A2x3)|)
1 P —
> Uar)ii (k (B0 — MxL) — rexal1 — 1,%2))
1
= (1+—K2)1/2 (A2 — M) X

Also, for x € V. 5,
5—%\: :5_§n+115€3 2).15(\3
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Hence, using (5.51), for x € V,. s, we have that

d(x*,Vs) = (A2 — /11),/11} [E305

1 , 1
min
(1+x2)1/2 {(1 +12)1/2

The claim for ay follows combining this last inequality with (5.50) and taking into account
that v=1+ O(my, mu41), .
Now we compute ay. Using (5.48), (5.49) and (5.51), since

x4 (e 0l = /T2 — M2 + 7%, (1 — 250)°

=5 =32 1/2

X x

= [Ix|l (1 - 24 i '|’|2 — 22 ﬁ”ﬁ;l +O0([Ix]1°)
X x

< el = (4 + Ao llxll* + O(llx 11"

we have that

af=— sup ||X+f(x50)” — ||x|| < /11 +/12K2 +0(53)
! XEVsx ||X||4 - (1 +K2)3/2

By (5.56), the claim follows.
Next, we compute by. Since, in view of (5.48), (5.49) and (5.51),

I1FGe, 0)11 = R2I1Sxll < xia /22 + k22

we have that, using (5.56),

by = sup M < \/V+4K2(4+O(mn, Muy)).

xevs,  IIxl*

The claim on by follows then from (5.50).
Now we compute

I+ Dy f(x, 0)]| — 1
Ar=- swp EE
XEV&K

We bound the spectral radius of (Id + D, f(x,0)) T (Id + D, f(x, 0)). Since

1—40x 0
—3AX2 1 1 — Ao |’

Id+ Dy f(x,0) = (
we have that

T _ 1— 8/1155,31 + O(.;C\g) —(1 — /125('\2)3/125('\,211/]\”4.1
14+ Defe 00 Dufie ) = (s 08 U
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Hence, since (5.50) implies that
811 =8+ O(mn’ mn+1)5 2/12 =4+ O(mn; mn+l)’
applying Gershgorin circle theorem,

I1d + Dy f (x,0)| < 1— (2+ O(mp, mps1) + O(x) + 0(352)) 5?2

Hence, _
2+ O (my, mys1) + O(x) + O(5°)
Af > .
(1+x2)3/2
We finally compute

ld — Dyg(x,0)[| — 1

B; = — su 3

xeVis llx]

By (5.48) and (5.49) it follows that Dyg(x, 0) = X3U. Then, using (5.50) we get
[1d — Dyg(x, 0)|| <1 — (—y2 + Oz(mp, Mps1))%;,

from which the claim for the stable manifold follows. In order to obtain the unstable one we
apply the same procedure to the time reversed system. O

5.8 Applying Theorems 2.15 and 2.16. Equilateral case

Now we deal with the case 9~0 = 0y(A, my) = /3 + O(mp, My41). Unlike the previous one,
we will see that the invariant manifolds are 3 + 2(n — 1)-dimensional, because in this case
U, is a “stable” direction.

However, since U, is very slow, it is easy to check that equation (5.34) does not readily
satisfy the hypotheses in Theorems 2.15 and 2.16. To apply these theorems, we introduce
a new set of variables in the next proposition. We recall that y, = O(m,, mp41) and v =
1 +O(mna mn+1)~ —

Proposition 5.10. Let my, mpy; > 0 be fixed but small enough. Take 6y = 0y(A, my,) in
equation (5.34), that corresponds to y, > 0. Let £ € N and define x,, through x, = x., while
maintaining the other variables the same. Equation (5.34) becomes

= _255131{41

Xn = + Ospi1(Xn),

Z =3CTIMCZ + 00,3, Z), (5.52)
¢ =w+x0(X, 2).
Proof. 1t is a straightforward computation. Indeed, using (5.34),

= 1 1 4t —~
Xn = =X T (—vxy + O (%)) »

from which the claim follows immediately. O
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Remark 5.11. Later, in Proposition 5.12, we will fix £ > 1 such that % < Y. Since v
1+ O(my, Mps1) and yo = O(my, mp11), £ will be large but fixed.

We use the same notation as in Section 5.7. We introduce x = (X, ns1,0n) > y =
(L Ensts X p) 1 that is, x € R® y € R¥*2(=D and ¢ € T2V, Then, equation (5.52)
becomes

%= f(x,y) + Osp42(x, y),
¥ =9(x,y) + Ospi2(x,y), (5.53)
¢ =+ O3p11(x, 1),

where ar
(x,y) = X Sx,
flxy iy (5.54)
9(xy) =x, Uy
and _
e o 200 0
A ~
04 0 O
s=l 0 —x o0 | U= ZI (5.55)
0 0 —As 0 0 A3 ~O
0 0 0 AJd
with y
M=-, Ay =2+ ¢&3, A3 = yo + £33,
ot _ _ _ (5.56)
1=2+¢1, Az =346, A3 =1+7%33,, A =14+%4,,
and
eii = O0(Mu,Mpy1), i#3, e33=0(Mp,Mpr1), & j = O(Mp, Mps1).
For 4, x > 0, we introduce the following cone in R3
V(S,K = {x = (fn, ﬁn+1,ﬁn) € R3 | 0< fn <6, ﬁf1+1 +6121 < Kzfp%}-
For all x = (X, n+1, Un) € Vs, we have that
Xons [Tnsls [On] < [lxl] < (14+6%)15,, (5.57)

where || - || denotes the standard Euclidean norm in R3.

Next proposition is analogous to Proposition 5.9 in this case.
Proposition 5.12. The vector field corresponding to equation (5.53) has the form (2.22) with
N =M =P =3¢+1.Ifmy, myy; are small, choosing ¢ large enough, for § small, hypothesis (v)
in Section 2.2.1 is satisfied in the domain Vs, with

1 . 1
= min
(1+x2)1/2 {(1+K2)1/2

ay (z +ys— % + O (1, Mns1) + 0(5“)) ,/11} > 0.

For the constants ar, in (2.9), bf, Ag, in (2.10) and By, in (2.11), in the domain Vs, have the
following estimates:

2
a > 3 +0(8%,1), b <\ 77 +O(),

Az 12+ Oz (mp, mp41) + O(k) + 0(33(’, KZ)’ By=z1+ O(mp, mp41).
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Hence, if my, myy1 are small enough such that y, + Oy(my, mp1) > 0, taking € sufficiently
large so that v/t < y, + Oy(my, mpi1), then, for k and § small,

ar <0, Af > brmax{1,N — P}, By > 0.

Consequently, equation (5.53) satisfies the hypotheses of Theorems 2.15 and 2.16. The origin
possesses a 3 + 2(n — 1) analytic stable invariant manifold.

Proof. We assume m,, and m,; small enough so that A3 = y, + O2(m,, mp4+1) > 0 and choose
tsuchthat A; = v/t = (1 +O(my, mps1)) /£ < As.

We will use the standard Euclidean norm and its induced matrix norm to compute all
the constants. We start by computing ay. Clearly, if (a, b, ¢) € V5,

d((a,b,c),V(;K)zmin:(l 1 (Ka—vb2+02),5—a}.

K2)1/2
Then, if x € Vs, denoting x* = (X, 7}, ,,U) = x + f(x, 0), since

|’7n+1| = |7In+1|(1 - /12x3[) < Kxn(l - A2x3[)

[0F] = [Ua](1 — 135 < kX (1 — A3%20),

we have that

e (@ @)

—1 - s —
- (1+x2)1/2 ( (x" - —x3¢’+1) \/?7,,+1(1 — A2 +Up(1 — /13353[) )

.
(1+1<2)1/2

_ 1 (

- (1+ K2)1/z

(K (% — ML) — ke[ (1 — B2 + (1 — mgf)Z)

Az + /13 — /11 + 0(536)) 5731{’+1.

Also, for x € Vs,
S—xF=6—x,+ 1155,31”1 > /1155,31“1.

Hence, using (5.57), for x € Vi s,

c 1 7. +
d(x*, V<) = ‘“{(1+K2)1/2 (247 - —+0(53")) }IIxII” g

1
TEToI
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Now we compute as. Using (5.54), (5.55) and (5.57), we have

e+ £ Ol = /B (1 = AT)? + 72y (1 — M)+ (1 — A2

230+2 23072 23072 1/2
X X, n 1 X, U 1
ol (1~ 20 — 2T = g TR O

< lell = (A + (g + A3)67) [P + O (Il

and

[+ 0 Ol — Ilxll (4 + (e +43)K?) + 0(8*)
= (1+K2)3l/2

ar=— sup
T eV [P

By (5.56), the claim follows.
Next, we compute by. Since, in view of (5.54), (5.55) and (5.57)

If G )l = XISl < x4 /AT + k2(v] + 1)

Using (5.56) we obtain

ILf Gx, 0l

2
v
br= su R < \/ﬁ+1<2(4+y§+0(m,,,mn+1)).

XGV(;YK

Now we compute
Id+ Dy f(x,0)]] — 1
Ap= sup I4+DS O]
XV [l
We bound the spectral radius of (Id + D f(x, 0)) T (Id + D, f(x, 0)). Since

1— 3+ 1DAx! 0 0
Id+Dyf(x,0) = —36Ax) s 1— A% 0 ,
—3tA,% 10, 0 1— Asxt

we have that

(Id + Dy f(x,0)) " (Id + D, f(x, 0))
1—2030+ DA+ O(X) —(1 — Ax30) 300,55 e — (1 — A3x39)3043%0 0,
= (1= 030035 e 120300+ O(X3) 0
—(1— X3x3)3eA3%5 10, 0 1— 24360 + O(x8)
Hence, since (5.56) implies that
2(3{7 + 1)11 > 6+ O(mn, mn+1), 2).2 >4+ O(mn, mn+1), 2).2 = 2}/2 + Og(mn, mn+1),

applying Gershgorin circle theorem,

I1d + D f (x,0) | < 1= (y2 + O2(mn, mpir) + O(x) + O(X;)) X3
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Therefore,

_ Y2+ Ox(ma M) + O (k) + O(6*)

Af (1+ k2)302
We finally compute
Id — D,g(x,0)|| — 1
b= oup M= D00
xeVis llxIl

By (5.54) and (5.55) we have Dyg(x, 0) = x3'U. By (5.56), this implies
I1d — Dyg(x,0)|]| < 1— (1+O(my, Mpe1) X

from which the claim for the stable manifold follows. As in the collinear case, in order to
obtain the unstable one it is only necessary to apply the same procedure to the time reversed
system. |

6 Acknowledgements

LB. has been partially supported by the grant PID-2021-122954NB-100, E.F. has been partially
supported by the grant PID2021-125535NB-100, and P.M. has been partially supported by
the grant PID2021-123968NB-100, funded by the Spanish State Research Agency through the
programs MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”.

Also, all authors have been partially supported by the Spanish State Research Agency,
through the Severo Ochoa and Maria de Maeztu Program for Centers and Units of Excellence
in R&D (CEX2020-001084-M).

A Proof of Remark 2.4

As in the rest of this work, we do not write the dependence of the different objects with
respect to the parameter A.

Assume that a map ¥ as in the remark satisfies conditions (i)-(iii) and has an invariant
manifold tangent to {y = 0} represented as y = K(x, 6). It is clear that if M > N, we can
take Z?’I;Nl ¢’ (x,y,0) = 0, hence (iv) is satisfied and we are done.

Now we consider the case M < N. By Lemma 3.2, we can remove the dependence on 6
of the map ¥ up to order N. Let j_fN(x, y), 521 (x, y) and Efp (x, y) be the terms of degree
less or equal than N in each component of ¥ — Id, respectively, after the dependence on 6
has been removed. The invariance condition for K(x, 0) reads

K (x,0)+7M (6, K(x,0) = K(x+ . (x. K (x,0)),0+w+h. (x,K(x,0))) +O([lx||N*Y).

*

Differentiating with respect to 8 and writing

Fry= (x4 fr (6 K(x,0),0+0+h, (xK(x0))
we have

0pK(x,0)—0pK(x,0 + )
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—=M % =N
=—0y95 (x,K(x,0)) 00K (x,0) + OxK(F . p)0yf . (% K(x,0))0pK(x, 0)

+ 09K (F2)dyhs (K (x, 6)) 06 (x, 0)
+ 0K (Fy) — 06K (%0 + ) + O([IxlIN*). (A1)

If we assume 0pK(x,0) = O(]|x]|™) with m < N, then the right hand side of (A.1) has
order min{N + 1, m + 1} with respect to x. Since we are assuming K exists, Jp’K has zero
average and therefore the right hand side of (A.1) should have zero average. By Theorem 2.1,
0pK has to have order m + 1, which is a contradiction. Hence m > N. So we conclude that
09K (x,0) = O(||x]IN*1). Therefore, we can write K(x, ) = K<(x) + O(||x||N*") and the

invariance condition becomes

! = < —= < +1
72 M (x, K< (x)) = / DK=(x + Sf*N(x, K= (x)))f*N(x, K=(x)) ds +O(||x||N*1).

0

We decompose g3 (x,y) = g5 (x, 00+ [37" (x,y) =75 (x, 0)] =: g1 (x) +g2(x, y)y and we
denote M, the order of g; and M, — 1 the order of g,. If My > M, = M, §f(x, y) = g2(x,y)y

and satisfies §f(x, 0) = 0. In the other case, M = M; < M,, we have

91(x) = —g2 (6 K= ()K= (x) + DK=(x)f  (x.K=(x)) + O(x[™N) + O ([N

and this implies that N > M = M; > min{M,+1, N+1, 2N} which provides a contradiction
that comes from assuming that M; < M.

B Proof of Corollary 2.11

We first prove that
1

U GL(WS (F) = W . (B.1)

=0
Take (x,y,0) € Gj(ngﬁ (F))). We have that (%,4,0) := G,”(x,4,0) € Wgﬂﬂ (Fy). For all
I e N, there exist p,q € N, 0 < p < ¢ — 1 such that j + [ = gf + p. Then,

Gi(x.4.0) =G (%,5.0) = GI(x,3,0) = GF (F!(%,5.0)) € GE (A, p) < B,p.

Moreover

||(Gﬁ)x,y<x,y,e>||=H(G§<F§(x,y,é))xyH<M||(F;’>x,y(x,y,é)n~o as g — .

Therefore, since ¢ — oo if and only if | — o0, (x,y,0) € W]Bf 5
P
Then, by Theorem 2.9

£—1

J s s
W e U Gl(W; (F) e Wy |

Jj=0
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and the first claim of Corollary 2.11 is proved.
Assume now that By > 0, then, by Theorem 2.9 we have the properties in (2.20):

K(V, x T ) =W2 (F and WS (F)=(|FF(A,p), B.2
(Vo x T2) = W2 (F) 2 (R k(]o ) B2)

where we recall that Ap, 5= 17[,, R T4 where V is a slightly smaller cone contained in V. To
avoid cumbersome notations, we skip the symbol ~ in our notation. To prove the last part
of the result, by (B.1) and (B.2), we only need to check that

£—1
s Jj s
Wy < UO Gl(W; () (B.3)
=

because, if (B.3) holds true, then by (B.1) and (B.2),
-1 -1
wi =l Jeiws () = Gl(K(W, x T 1) = W.
Jj=0 j=0

Next we prove (B.3). We first observe that, since G,, F; are local diffeomorphisms, we
have that

G} (Wa,, , (F1) = W, leZ. (B.4)

i(Ap,ﬁXTd) (F/\)s

Now we notice that, if for some j € {0,---,£ — 1}

G (App) =) Gi(App)

i#]
then (B.3) holds true and the proof is complete in this case. Indeed, in this case B, =
Gi(Ap,ﬁ)' Therefore, if (x,y,0) € W]prﬁ, then, for all [ € N, Gi(x, y,0) € Gfl(Ap,/;) and, in

particular, F/l1 (x,y,0) € G/{ (A, p) for all I € N. From the second identity in (B.2) and (B.4),

s — (s -
we conclude that (x,y,0) € we o) (F1) =G (WAp,/)’ (F1)) and (B.3) follows trivially.

From the previous arguments, we now assume that the set B, s can be rewritten as
-1 A
Bp»ﬁ = U Bj, Bj = G,jl(Ap,ﬂ)\ {U G,l1 (Ap,ﬁ)} + .
Jj=0 i#j

We notice that B; n B; = (Jif i # j.
Let (x,y,0) € W 50 By. It is clear that Gi(x, y,0) € Gfl (Bp) if I < ¢ — 1 and since the
P>

only set B; with non-empty intersection with Gfl(Bo) is By, then Gfl(x, y, 0) € B;.In addition,

t—1
G} (x,9.0) € Gy(Br—1) = G (App)\ {U Gg(Ap,ﬁ)} .

i=1
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Since B; N B; = & and Gﬁ(x, y,0) ¢ Gi(Ap,ﬁ) fori = 1,---,£ — 1, we conclude that
Gﬁ (x,y,0) € By. By induction, we prove that if (x,y, ) € By, F;I(x, y,0) = GZ{) (x,y,0) € By.
Therefore, (x,y,0) € WEO(FA) cw; ﬁ(F,l).
P,
When (x,y,0) € W]Bipﬁ N Bj, reasoning in an analogous way as for j = 0, we conclude

that (x,y,0) € ng (Fy) c WGSj Arp) (Fy) and by property (B.4) the proof of (B.3) is complete.
A\

C Proof of Lemma 3.6

We first recall that for z € C! we use the norm ||z|| = max(||Re z||, |[Imz||). In addition, by
definition of the complex set Q,(y), [[Imz|| < y|[Re z|| and therefore ||z|| = [[Rez| if y < 1.
As a consequence, if we consider the definition of the values af, by, Ar, D¢ and B, in (2.9),
(2.10) and (2.11) with x belonging to Q,(y) instead of V,, they change by a quantity of order
¥, provided y is small enough. Since all the conditions on these constants are open conditions
we can choose y small enough such that those properties still hold true.

We also recall that, Ry(0) = v +]_‘N(v, 0) + w=N*1(v), with w>N*1 () = O(||o||N*Y).

The two first items in Lemma 3.6 has been proven in previous works [14-16]. Then, we
sketch a simple proof of them. The first item relies on the invariance by R, of the set Q o (1).
To do so, the following technical lemma, which is a straightforward consequence of Taylor’s
theorem, is used.

Lemma C.1. Let0 < p,y < L.If y : Q,(y) = C" — C" is a real analytic function, satisfying
x(@) = O([lo]|*), then

1
x(@) = y(Reo) + i/ Dy(Rev +isImo)Imods = y(Rev) + iDy(Rev)Imo + y20(||Rev||k).
0

We fix a, b, A satisfying (3.20), namely a < ar,b > byand A < Ay. Recall that ar < by.
Let v € Q,(y). We are going to check that Re ﬁv(v) €V, and ||Im§v(v)|| < yllRe §0(0)|| On

the one hand, by hypothesis (v) on ]_CN and Lemma C.1 we have that, if y is small,
dist(Reﬁv(v), V;) > dist(Reo +]_”N(Re v,0), V[f) — My|Reo||N = C%V IReo||N.

On the other hand, if v € Q,(y) with y < 1, using again Lemma C.1, and that |[o|| = |[Re ||,
we obtain

—N
[tmol|(I[[d+Df " (Rev,0)|| + Myllo||N " + Mllo||N)
vlIReol|(1 — (Ar — My — Mp)|lo|N1).

ITm Ry ()]

NN

Using similar arguments we can see that ||[Re Ev(v) | = [IReol|(1—(br+My+Mp) lo||N—1).
Then, to check that ||Im ﬁv(v) || <yllRe Rz,(v) ||, it is sufficient to check that

br+M(y+p) <b<A<Ar—M(y+p)
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which is satisfied if b < A and p, y are small enough. This proves that Q,(y) is invariant by
R,.

To prove (3.25) in the second item of Lemma 3.6, we note that there exist p,y small
enough such that if v € Q,(y),

IRy (@)1| < lloll — aglloll™ + Mol N*" < o]l (1 — allolN ), (C.1)
and 5
IR ()| = lloll = belloll™ — MlolN*! = Jlo]l(1 = bllolIN1). (C2)
Analogously, _
IDRy ()| < 1= Allo] N, (C3)

Then, since
lloll(1 = blolIN™") < R (@)l < lloll(1 — allo]|N ™),

taking a* < a(N — 1), b* > b(N — 1) and p, y small enough, it is clear that

lol ’ ol
— <R < — 0eQpy). (€Y

[1+b*|[o|N-1] 7= [1+ a*[Jo||N-1] ¥

Introducing the map R (&) = £[1+c&N~!]” N7, with ¢ > 0, (C.4) can be rewritten as

Ry (loll) < 1Ry (0) | < R ([lo]])-

c N
NTW s

On the other hand, the flow ¢(t, w) of the differential equation w = —

o(t,w) = A
[1 + tch—l] N-1

Clearly, by induction on k, R¥(|jo]]) = ¢(k,||o||) for all k& > 0. Since R, and R+ are

increasing functions and Q, (y) is invariant by R,, using again induction on k we prove (3.25).
In order to prove items (3) and (4) of Lemma 3.6, we first need some estimates on DR,

and D?R,,.

Lemma C.2. Let a, b and A satisfy (C.1), (C.2) and (C.3) with A > b. Letalso1 < £ < A/b

and b* = M. Then, there exist p,y small enough and a constant M > 0 such that for all

veEQ,(y) andk > 1

1
[1+ kb* Jo|| N-1] ¥

k—1
IDRE@)| < [ [ IIDR(R, (0))]] < : (C5)
1=0

1

ID?RE (0) || < M —.
l[oll[1 + kb*[Jo||N=1] ¥
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In addition,
[ITm o]|

[1:+ kb Jo||N-1] ¥
Proof. By the chain rule and (C.3), if v € Q, (y),

ITm R (0) || <

(C.6)

k—1 k—1
IDRE @)1 < [ TIPR,(Ry o))l < [ [(1 = AR, ) 1N ).
1=0 1=0

Now we bound the logarithm of the product. Since b* > b(N — 1), using property (3.25) we
obtain

k—1 k—1

1
D log (1 - AR, ()N ) < AZIIR’(U)IIN P< AN

# ||| [N—1
n = 01+lb o]

A _
< —pylog(l +kb*[jo||N 7).
Therefore,
1
[1+ kb*[JofN 1]
property (C.5) is proven.

IDRE (0) || <

A
Finally, since o N <,

Now, we deal with the bound for ||D21\€/§ (0)]]. We have that

k—1

ID*RS (0)]| < Z ID*Ry (R @) IHIDRE (o)1 | | DR (R (0)) 111 DRy (R (2)11 7.

1=0
We recall that a* < a(N — 1) and a* < b*. Using that ||D§z,(§z’,"(v))|| >1—CpN~!forall
m € N, that ||D?R,(0)|] < M|jo||N72, (C.5) and (3.25):

k—1 k—1
ID?RE @) < M [ [ IDR(RL @)l D IR (@) IIN 2| DR (o) |

1=0 m=0

o~
|
-

1 1 1

_t N—2 _t
[1+kb*[[ol|N=1] N7 =0 [1 4 ma*|jo||[N=1]¥=7 [14 mb*|jo[[N=1]¥=T

< MoV

3

>~
[u

1 1

< Mlo| N2 —
[1+ kb |Jo|N—1] 7=

3

N—2+¢ °
-0 [1 + ma*HUHN_l] N—T
Then, since £ > 1, the sum above converges when k — o0 and we conclude that
1 1

ID*RE(0) ]| < M—
[lo]l [1 + kb*||o||N— 1]
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To finish the proof of this lemma we prove (C.6). By Lemma C.1,
N 1 N
Itm RE (0) || < ||ImU||/ IDRE (Re v + isIm o) || ds.
0

Then, from the fact [|[Rev + isImo|| = max{|[Reo||, s[Imol|} = ||Rev|| = ||v]|, using (C.5) for
IDR¥ (Re v + isIm ) |, we obtain the result. O

Remark C.3. When n = 1 one can further check that Imﬁﬁ(v) -Imov > 0 and that for
a* <a(N —1)andt > N,
[Imo|

[1+ka*|JoN-1] 7T

jm R (0)| >

Indeed, when n = 1, R(v) = v — ao™ + O(|o|N*"). Then, InR(v) = Imo(1 — aO(|o|)N~1) and
it is clear that, if Im v is small, Im Rk (v) and Imov have the same sign.

To prove the lower bound for Im RK(v) we use that, for any B > aN, taking y, p small
enough

IImR(0)| = [Imx|(1 —Blo/N"Y),  xe€Q(y,p).
Therefore,
k=1
IIm R¥ (0)| > |Imo| ]_[(1 —BIR ()N ).

1=0
As we did in the proof of Lemma C.2, we consider the logarithm of the last product:

k=1
~ _ B _
Zlog(l — BIR ()N = —— log(1 +a*k)o|N D).
1=0
Take a* < a* and p small enough such that

[Imo|

[1 + a*k||v||N—l]

Dk
Im R (0)] > =

Since the choice of B, a*,a* can be done arbitrarily close to Na,a(N — 1),a* and B/a* >
N/(N — 1) the proof is finished.

Next, we prove property (3.26) in the third item of Lemma 3.6. Recall that I?l/,(v, Y) =
w + ¥ + Ry (v) with Ry (v) = O(||o||"). By Lemma C.1 one has that

1
[Tm Ry (v)]| < ||Im0||/ IDRy (Rev + isImo)|| ds < M|Imo|[]jo]|P~L.
0
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Let ¢ be such that max{1, N — P} < £ < A/b. Then, using (3.25) and Lemma C.2:

O o0
Dl Ry (RE@) | < M ltm B (o) [1R) (2) 1P~
j=0 j=0

o0

P—
< Mjmol|flol "~ )"

770 [1+ ja*|lo||N-1] T

1

[[Im o]
~ )
lJoIN=F

where we have used thata < band ¢ +P —1> N — 1. _
Finally, for item (4) let (v,1) € I,,(y, o). We have already seen that R,(v) € Q,(y). It
remains to prove that Ew(v, ) satisfies the condition of the definition of the set I, (y, o). We

have

I Ry (o, )| + > I[Tm Ry (RE (o)) 1] =[ltm (3 + Ry (@) + D [t Ry (R (0) |

1=0 =0

[oe]
<lmyll+ >’ llm Ry (R (0))]| < o
1=0

so that I, (y, o) is invariant by R. This finishes the proof of Lemma 3.6.
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